

LINEAR ALGEBRA Exam 2 Review

I Systems of Equations

- (1) General System of Linear of Equations
 - What is an SLE?
 - What constitutes a solution?
 - What are the: coefficients? variables? constants?
 - What are corresponding vector and matrix equations?
- (2) Geometric Viewpoint—lines, planes in \mathbb{R}^3 and k-planes in \mathbb{R}^n
- (3) Solution Trichotomy—none, a unique one, infinitely many
- (4) Finding Solutions to $A\vec{x} = \vec{b}$
 - manipulation phase into upper triangular system
 - row reduction via elementary row operations to REF
 - back-substitution to get solutions, or use reduced REF
 - Gaussian elimination (GE) and Gauss-Jordan elimination (GJE)
 - what is general solution? how to find?
- (5) Row Equivalent Systems
 - why do these have the same solutions?
- (6) Homogeneous Systems $A\vec{x} = \vec{0}$
 - why is there always a solution?
 - what is general solution? how to find?
 - what is connection to non-homogeneous system?
 - what is connection with *linear independence*?
- (7) Existence and Uniqueness of Solutions to $A\vec{x} = \vec{b}$
 - when do solutions exist? when unique?
 - connection with *linear combinations*?
 - connection with *linear independence*?
 - how to find all \vec{b} so consistent?

II Matrices

- (1) Notation
 - entries, columns, rows
- (2) Arithmetic
 - scalar multiplication and addition
 - matrix multiplication
 - inverses (what? how get? "big theorem")
- (3) Connection with Linear Systems of Equations
 - coefficient and augmented matrices
 - elementary row operations
 - row equivalent matrices
 - GE and row echelon form (REF)
 - GJE and reduced row echelon form (RREF)
- (4) Interpretation of (R)REF: Existence & Uniqueness of Solutions
 - the BIG theorem
 - zero rows (consistency—existence of solutions)
 - number of columns w/o row leader ("free" variables—uniqueness of solutions)
 - number of row leaders (what?)

- (5) Invertible (or Non-Singular) Matrices
 - definition/meaning; connection with inverses
 - how to calculate?
 - connection with solutions to SLEs
 - basic properties
 - the BIG theorem
 - (6) Transpose
 - definition/meaning
 - symmetric and skew-symmetric matrices
 - upper and lower triangular matrices
 - diagonal matrices
 - (7) Determinants
 - What is one of these? How to calculate?
 - What are basic properties?

III Euclidean Space

- (1) \mathbb{R}^n
 - arithmetic (scalar multiplication, vector addition)
 - scalars vs vectors vs sets of vectors
- (2) Sets of Vectors
 - closed wrt scalar multiplication
 - closed wrt vector addition
- (3) Vector subspaces of \mathbb{R}^n
 - definition (closed wrt scalar mult and vector add)
 - vector subspaces of \mathbb{R}^2 and \mathbb{R}^3
 - basic example: the null space $\mathcal{NS}(A)$ of a matrix A
 - what does $\mathcal{NS}(A) = \mathbb{R}^n$ mean?
 - what does $\mathcal{NS}(A) = \{\vec{0}\}$ mean?
- (4) Linear Combinations
 - definition/meaning
 - how to tell if a vector is a LC of other vectors?
 - reinterpretation of vector subspace definition
 - (\mathbb{V} is a vector subspace iff it is closed wrt LC)
 - interpretation of matrix multiplication
 - $(A\vec{x} \text{ is a LC of the columns of } A)$
- (5) Span of a Set of Vectors
 - definition/meaning
 - how to tell if a vector is in the span of other vectors?
 - basic example: the *column space* $\mathcal{CS}(A)$ of a matrix A
 - **3** interpretations of $\mathcal{CS}(A)$
 - what does $\mathcal{CS}(A) = \mathbb{R}^m$ mean?
 - what does $\mathcal{CS}(A) = \{0\}$ mean?
- (6) Linear Independence vs Linear Dependence
 - definition/meaning (especially for 2 or 3 vectors)
 - how to tell when vectors LI?
 - how to find LI subset of set of vectors?
 - connection with solutions to homogeneous system of equations
 - the BIG theorem
- (7) Bases & Dimension
 - definitions/meanings
 - minimal spanning set vs maximal linearly independent set
 - how to find (especially for $\mathcal{CS}(A)$ and $\mathcal{NS}(A)$)

 $\mathbf{2}$

- special case when get spanning set iff linearly independent

- (8) Rank and Nullity
 - definitions
 - connection with existence and uniqueness of solutions

what does it mean if

- the rank of A is: 0? m? < m?
- the nullity of A is: 0? n? > 0?
- Rank-Nullity Theorem
- what does this say about existence and uniqueness of solutions especially when m > n or m < n or m = n?
- why is the rank of A^T the same as the rank of A?
- (9) Coordinates
 - definition/geometric meaning
 - coordinate vector
 - how to find coordinates?
 - change of basis coordinate change matrix
 - what is it? how to find it? properties
 - how to use to find coordinates?

IV Vector Spaces and Linear Transformations

- (1) Vector Spaces and Subspaces
 - What is a vector space?
 - What is a vector subspace?
 - Exs: \mathbb{P} , \mathbb{P}_n , \mathbb{F}
- (2) Linear Combinations, Span, Linear Independence
 - What is $Span\{\vec{v}_1,\ldots,\vec{v}_p\}$?
 - Why is this always a vector subspace?
 - When is $\{\vec{v}_1, \ldots, \vec{v}_p\}$ LI?
- (3) Bases, Coordinates, Dimension
 - definitions/meanings of these?
 - minimal spanning set vs maximal linearly independent set
 - how to find bases, coordinates, coordinate vectors?
- (4) Linear Transformations
 - What is one of these?
 - What do the following words mean?
 - domain, codomain, image (2 meanings), range, kernel onto, one-to-one, pre-image (2 meanings)
- (5) Images and Pre-Images
 - What are these?
 - How can you calculate these?
 - What can you say about the image of a vector subspace?
- (6) Rank-Nullity Theorem
 - What does this tell us about the range and kernel?
 - What does this tell us about whether or not a LT is one-to-one or onto?
- (7) Matrix Representation of a Linear Transformation $\mathbb{R}^n \to \mathbb{R}^m$
 - What is the standard matrix representative for a LT? How do you calculate it?