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1. Elementary Things

1.A. The Beginning. What are complex numbers, and what can we do with them?

What is C? From an informal algebraic point of view, C is the field of complex numbers
z = x + iy, w = u + iv, ζ = ξ + iη (etc.) where the laws of complex arithmetic hold. Here
u, v, x, y, ξ, η ∈ R are real numbers and i2 = −1. Unlike the field R of real numbers, C is
not an ordered field. Of course, in order to have a field there must exist both additive and
multiplicative inverses.

Example: For z 6= 0, z−1 = 1/z = z̄/|z|2. Here z̄ is the complex conjugate of z and |z| is

the absolute value (or modulus) of z; when z = x+ iy, z̄ := x− iy and |z| :=
√

x2 + y2. The
map w = 1/z is called complex inversion. Notice that zz̄ = |z|2.

Here is some more notation: when z = x + iy, <(z) := x and =(z) := y are called
the real part and imaginary part of z (respectively). A complex number z is purely real if
=(z) = 0 and is purely imaginary when <(z) = 0. We identify the real number field R with
{z ∈ C : =(z) = 0} and write iR for {z ∈ C : <(z) = 0}. Note the useful inequalities

|<(z)| ≤ |z| and |=(z)| ≤ |z|.

From a geometric point of view, we can picture C as a Euclidean plane by using cartesian
coordinates: the complex number z = x + iy is identified with the point (x, y). In this
setting the x-axis is called the real axis, which is just R ⊂ C, and the y-axis, the so-called
imaginary axis, is iR ⊂ C. Notice that z̄ is the reflection of z across the real axis and |z| is
the distance from z to the origin. Three other sets which are worthy of special designations
are the unit disk D := {z : |z| < 1}, the unit circle T := {z : |z| = 1}, and the right
half-plane H := {z : <(z) > 0}. Also, C∗ := C \ {0} and D∗ := D \ {0} are the punctured
plane and punctured disk.

Example: Let w = T (z) =
1 − z

1 + z
=

1 − |z|2

|1 + z|2 − i
2=(z)

|1 + z|2 .

Notice that T maps R \ {−1} bijectively onto itself and iR bijectively onto T \ {−1}. Also,
|z| < 1 if and only if <(w) > 0 and |w| < 1 if and only if <(z) > 0.

We have seen that complex numbers can be viewed algebraically as numbers in a field
and geometrically as points in a Euclidean plane. We can also view z = x + iy as a two-
dimensional vector in R2; here we are thinking of C as a real two-dimensional vector space.
In fact C is a normed linear space where |z| is the norm of the vector/number z. Moreover,
this norm arises by way of the (Hermitian) inner product < z,w >= zw̄. Notice that we
recover the usual Euclidean ‘dot product’ of z and w by taking the real part of this; i.e.,
z ·w = <(zw̄) = xu + yv (when z = x + iyand w = u + iv). Thus, for example, z and w are
orthogonal (as vectors in R2) precisely when <(zw̄) = 0.

Date: October 7, 2005.
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From a topological viewpoint, C is a metric space where the distance function is given in
the usual way by the underlying norm. Thus, |z − w| is the distance between the complex
numbers z and w; of course, this is just the ordinary Euclidean distance between the points
z and w in the plane. In this regard we must mention the Triangle Inequalities:

||z| − |w|| ≤ |z ± w| ≤ |z|+ |w|.

In conclusion, we can view C in several different ways: a number field, a metric (or topolog-
ical) space, a (two-dimensional) real vector space, or the Euclidean plane. Because of these
many options, complex numbers have become an indispensable tool employed throughout
pure and applied mathematics as well as the physical and engineering sciences.

1.B. Polar Coordinates. Here is an especially useful way to describe complex numbers.

We start by defining, for a real number θ, exp(iθ) = eiθ := cos θ + i sin θ; thus we obtain
a map exp : R → T. See §2.C for motivation as to why we use this definition.

Recall the notion of polar coordinates used in analytic geometry. For non-zero complex
numbers, r = |z| gives the distance from the point z to the origin. The other ‘coordinate’ is
the so-called polar angle. We say θ is a value of the argument of z, denoted θ = arg(z), if
z = |z|eiθ; in other words, if <(z) = |z| cos θ and =(z) = |z| sin θ. Thus the polar coordinate
notation z = reiθ means that r = |z| and θ is some value of arg(z); this notation is only used
for z ∈ C∗.

Clearly if θ is one of the possible values of the argument of z, then the set of all possible
values is given by {θ + 2nπ : n ∈ Z}. (The reader should note—at least mentally—the set
of all arguments of, say, ±1, ±i, and 1 + i.) Given z ∈ C∗, we single out the unique value
θ of arg(z) which satisfies −π < θ ≤ π and call this the principal value of the argument
of z, or briefly, the principal value of arg(z); we denote this by Arg(z). Thus we have a
mapping Arg : C∗ → (−π, π] with the property that z = |z| exp[Arg(z)] for all z ∈ C∗.
Note that the set of all possible values of the argument of z ∈ C∗ can now be described by
{Arg(z) + 2nπ : n ∈ Z}. Finally, we point out the obvious, but oh so important, fact that
Arg is not continuous (as a mapping from C∗ to R).

Recalling the angle addition identities for the sine and cosine functions we readily deduce
the following.

1.1. Proposition. For all α, β ∈ R, eiαeiβ = ei(α+β).

We are now ready to take a geometric look at complex multiplication. Writing z = reiθ

and a = |a|eiα, say, we find that az = r|a|ei(θ+α). Thus a geometric description for the
mapping z 7→ az is that the vector z is scaled by |a| and then rotated by arg(a). We can also
provide pictures for the complex arithmetic operations: addition, multiplication, inversion,
square root. See my class notes!

As another application of Proposition 1.1 we note that arg(ab) = arg(a)+arg(b). However,
this is only true as a set equality. (The reader should be sure to understand the precise
meaning of this last statement!) For example, it is rarely true that Arg(ab) = Arg(a)+Arg(b).

Polar coordinates are especially useful for determining powers zp and roots z1/p where
p ∈ Z is an integer. First we remark that

ρeiϕ = reiθ ⇐⇒ ρ = r and ϕ = θ + 2kπ for some integer k.
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As an example, the four fourth roots of 4i (i.e., the four numbers z with the property that
z4 = 4i) are easily found to be ±

√
2eiπ/8,±

√
2ei5π/8. Similar reasoning provides verification

of the following.

1.2. Proposition. Let n ∈ N. Then each z ∈ C∗ has exactly n distinct nth roots; that is,
there are n distinct complex numbers w with wn = z. In fact, these roots are given (in polar
coordinates) precisely via

w = ρeiϕ where ρn = |z| and ϕ = [Arg(z) + 2kπ]/n for k = 0, 1, . . . , n − 1.

We emphasize that the notation z1/n is ambiguous in that it stands for any one of the n
distinct roots of z. Typically which root is understood from context, but the reader is urged
to use this notation with extreme caution! It is convenient to let

n
√

z := ρ exp

(
i

n
Arg(z)

)
where ρn = |z|

denote the principal value of the nth root of z. Thus, for example,
√

z := 2
√

z = ρe(i/2)Arg(z)

(where ρ2 = |z|) is the principal value of the square root of z; note that z1/2 can be either
+
√

z or −
√

z.

For later use we now define the oriented angle from z to w (for z,w ∈ C∗) by

Θ(z,w) := Arg(w/z).

Notice that w/z is what we must multiply z by to get w, so Θ(z,w) is the (principal value
of the) angle we must rotate z by to get the direction given by w. As simple examples,
Θ(1, 1 + i) = π/4 and Θ(i, 1) = −π/2.

Here are some easy to check properties of this concept.

1.3. Proposition. Let z and w be non-zero complex numbers. Then:

(a) θ = Θ(z,w) is a signed angle in (−π, π] and |θ| is the measure of the smaller of the
two angles formed by the vectors z and w at the origin.

(b) Θ(z,w) = π if and only if w = tz for some t < 0.
(c) When Θ(z,w) 6= π, Θ(w, z) = −Θ(z,w) = Θ(z̄, w̄).
(d) When Θ(z,w) = π, Θ(w, z) = π = Θ(z̄, w̄).
(e) Θ(−z,w) = Θ(z,w) − π = Θ(z,−w).
(f) For all c ∈ C∗, Θ(cz, cw) = Θ(z,w).
(g) For all positive r and s, Θ(rz, sw) = Θ(z,w).

♣♣♣ Most of these follow by looking at Arg(ζ). ♣♣♣
We conclude this subsection by discussing the notion of a branch of the argument function.

Let A be a subset of C∗. A function ϑ : A → R is termed a branch of the argument
function (or simply a branch of arg(z)) in A provided ϑ is continuous and for all z ∈ A,
z = |z| exp[ϑ(z)] (i.e., ϑ(z) is some value of arg(z)). The reader should convince herself that
there does not exist a (continuous) branch of the argument in C∗. In particular, Arg(z) is
not a branch of arg(z) (in C∗). Your proof probably can be modified to demonstrate that if
A is any set containing the unit circle T, then there does not exists a (continuous) branch
of the argument in A. We will see that this seemingly trivial fact is at the heart of much of
complex analysis!

Once again: there does not exist a (continuous) branch of the argument in C∗. To remedy
this situation, we typically ‘cut’ the plane from the origin out to infinity and look for contin-
uous branches of arg(z) in such regions. To provide some concrete examples of branches of
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arg(z) in various sets, let us start with Arg(z) which is continuous when restricted to the set
C \ (−∞, 0] (or any subset thereof) and thus defines a branch of arg(z) there, the so-called
principal branch. As a second example, the function ϑ given by

ϑ(z) =

{
Arg(z) when =(z) ≥ 0

Arg(z) + 2π when =(z) < 0

defines a (continuous) branch of the argument in C\ [0,+∞). At this time the reader should
construct a branch of the argument in C \ {teiα : 0 ≤ t < ∞}. We ask: Does there exist a
(continuous) branch of arg(z) defined in C \ {teit : t ≥ 0}?

We emphasize that whether or not a given set supports a branch of the argument is purely
a question of continuity!

1.C. Analytic Geometry. What are the complex equations for lines and conics?
♣♣♣ This would also be a good place to discuss central and inscribed angles! ♣♣♣

Let us recall the ‘standard’ equations for lines and circles. Using our distance function it
is easy to express disks and circles: we write

D(a; r) = {z : |z − a| < r}, D[a; r] = {z : |z − a| ≤ r}, and C(a; r) = {z : |z − a| = r}

(respectively) for the open disk, closed disk, and circle (respectively) with center a and radius
r. See below for an alternative description of circles.

There are two standard was to express an equation for a line. As in calculus, we can
parametrize the line through the points a, b and obtain z = z(t) = a + t(b − a) (t ∈ R).
Alternatively, if we know a normal vector, say ν, then the line through the point a with
normal ν consists of points z such that the vector z − a is orthogonal to ν. Recalling that
<(zw̄) gives the Euclidean dot product of z and w, we deduce that this line is given by
<[(z − a)ν̄] = 0. As an added bonus, we see that this technique also provides a description
for the half-plane determined by this line and ν; namely, {z : <[(z − a)ν̄] > 0}.

We can also easily express the equations for conic sections. For example, an ellipse is
the locus of points z with the property that the sum of the distances from z to two given
points, say a and b, is a constant. Thus {z : |z − a| + |z − b| = 2r} is the ellipse with foci
a, b and major axis r. The reader should write down similar expressions for parabolas and
hyperbolas.

It is straightforward to verify that the equation

Azz̄ + Bz + B̄z̄ + C = 0 , with A,C ∈ R, B ∈ C and |B|2 > AC

represents a line if and only if A = 0 and otherwise (i.e., when A 6= 0) a circle. ♣♣♣ Should
let C be the complex number. ♣♣♣

A careful analysis of the complex equation az + bz̄ + c = 0, with a, b, c ∈ C, is a wonderful
exercise in using complex analysis. Of course this one equation corresponds to two real linear
equations (obtained by taking the real and imaginary parts of the left hand side) involving
two real variables x, y. From sophmore linear algebra we know that the solution possibilties
are precisely: no solutions, a unique solution, or infinitely many solutions. It is a worthy
exercise to determine this and explicitly describe the solutions using only complex analysis.
[Answer: The trivial case, when a = b = 0 has either no solutions (when c 6= 0) or every z a
solution (when c = 0). Assume one of a or b is non-zero. Then we get: a unique solution if
and only if |a| 6= |b|, in which case z = (bc̄− āc)/(|a|2−|b|2); a line if and only if |a| = |b| 6= 0
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and bc̄ = āc, and the line is given by <[(z+ c/2a)ac̄] = 0, which is the line through the point
−c/2a with normal vector āc; otherwise, there are no solutions.]
♣♣♣ could mention conics here—these preserved by cplx linear maps ♣♣♣

For later use we set up the following notation: we let L and C denote the collections of all
lines and all circles (respectively) in C. Thus

L := {L ⊂ C|L is a straight line} and C := {C ⊂ C|C is a Euclidean circle}.

2. Elementary Mappings-part I

Here we begin our study of function theory. There are various types of functions including:
real-valued functions of a real variable u = u(x), complex-valued functions of a real variable
z = z(t), real-valued functions of a complex variable u = u(z), and complex valued functions
of a complex variable w = f(z). We are especially interested in visualizing the ‘action’ of
such function via appropriate pictures. In particular, given a set A in the z-plane, what is
f(A) in the w-plane?

As in undergraduate calculus, we can (and will) study polynomials, rational functions,
trignometric functions, algebraic functions, and transcendental functions (including the ex-
ponential, logarithm and trignometric functions). We start with the simplest possible func-
tions.

2.A. Complex Linear Maps. What are these?

Well, what are real linear maps? The answer depends on the context. In a linear algebra
class, a linear map (usually described as a linear transformation) between two vector spaces
is simply a function which preserves the (linear) structure. On the other hand, in a freshman
calculus class, the so-called linear functions are those of the form y = ax + b whose graphs
are straight lines. (In linear algebra, such a function is termed an affine map.) Here we shall
adopt the latter point of view, although as a word of caution, we remark that some texts
might use the former.

Thus, complex linear maps are complex-valued functions of a complex variable of the form
w = az+b where a, b ∈ C are constants and z ∈ C is a complex variable; typically we assume
that a 6= 0. Special cases include:

a translation by b ∈ C: w = z + b,
a rotation about the origin: w = eiθz,
a dilation wrt the origin: w = kz (k > 0).

A geometric description of the map z 7→ w = az + b is that: z gets rotated by arg(a), then
dilated by |a|, and then translated by b. We emphasize this: every complex linear map L
can be factored as

L = T ◦ S ◦ R where R is a rotation, S is a scaling(dilation), and T is a translation.

As a simple example, look at w = 2iz + (1 − i).

We can consider these as maps R2 L→ R2 and from linear algebra we know their matix
representations. For example, the dilation w = kz is given by

(
u
v

)
=

(
k 0
0 k

)(
x
y

)
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and a rotation (about the origin) by the angle θ is
(

u
v

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
.

Again, in general a complex linear map does not give a linear transformation of R2 to itself
but rather an affine transformation.

It is not difficult to confirm the following fundamental properties of complex linear maps.

2.1. Proposition. A complex linear map w = L(z) = az + b with a 6= 0 is a complex
polynomial of degree one which is a bijection of C with inverse z = L−1(w) = (w − b)/a
another complex linear map. (In fact, L is a self-homeomorphism of the plane.)

We also note that if L is a pure rotation or pure dilation or pure translation, then so is L−1.
It turns out that complex linear maps possess many important properties which also hold

for more general maps. However, the proofs for the linear maps are nice geometric exercises,
so we explain the basic ideas here.

A map f : C → C is called a similarity if the image of every triangle ∆ is a triangle ∆′ =
f(∆) which is similar to ∆. A more useful definition is that f is a similarity if and only if there
is a t > 0 such that for all z, z′ ∈ C, |f(z)−f(z′)| = t|z− z′|. (Alternatively, f is a similarity
if and only if for all distinct points a, b, c ∈ C, |a − b|/|a − c| = |f(a) − f(b)|/|f(a) − f(c)|.)
When t = 1 we see that f preserves distances; such a map is called an isometry, and it maps
every triangle ∆ to a triangle ∆′ which is congruent to ∆.

It is straightfoward to demonstrate that complex linear maps are similarities.

2.2. Proposition. A complex linear map L(z) = az+ b is a similarity transformation; when
|a| = 1 it is an isometry.

Proof. |L(z) − L(z′)| = |(az + b) − (az′ + b)| = |a(z − z′)| = |a||z − z′|. �

In fact, complex linear maps are precisely the orientation-preserving similarities of the Eu-
clidean plane.

Now we want to prove that complex linear maps transform lines and circles to lines and
circles respectively. This is geometrically transparent for translations and rotations (isn’t
it?), but what about dilations? Here is an algebraic argument that should convince you. Let
K be a line or a circle. Then K is given by some equation of the form

A|z|2 + Bz + B̄z̄ + C = 0 , with A,C ∈ R, B ∈ C and |B|2 > AC

and K is a line if and only if A = 0 and otherwise (i.e., when A 6= 0) a circle. Now the
mapping w = kz transforms K into a set K ′ which is given by the equation

A′|w|2 + B′w + B̄′w̄ + C ′ = 0 , with A′ = A/k2, C ′ = C ∈ R and B′ = B/k ∈ C.

Since |B′|2 = |B|2/k > AC/k2 = A′C ′ and A′ = 0 if and only if A = 0, we see that K ′ is a
line or a circle just as K is.

The reader should convince herself that a similar argument works for rotations and trans-
lations.

Here is a geometric proof which works in general.

2.3. Proposition. Let L be a complex linear map. If K is a line (or circle, respectively),
then so is L(K) (respectively).
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Proof. Assume that w = L(z) = az + b. First, suppose K = C(z0; r) is the circle centered at
z0 and of radius r. Let w0 = L(z0). Suppose w = L(z) for some z ∈ K. Recalling the proof
of Proposition 2.2 we obtain

|w − w0| = |L(z)− L(z0)| = |a||z − z0| = |a|r.
This means that L(K) ⊂ K ′ where K ′ = C(w0; r

′) is the circle centered at w0 of radius
r′ = |a|r. Exactly the same argument, applied to the inverse map L−1, gives us L−1(K ′) ⊂ K.
Thus L(K) = K ′.

Next, suppose K is a straight line. Select two points z1 and z2 so that K is the perpen-
dicular bisector of the segment [z1, z2]; i.e., K = {z : |z − z1| = |z − z2|}. Let wi = L(zi)
for i = 1, 2 and define K ′ to be the perpendicular bisector of the segment [w1, w2]; so,
K ′ = {w : |w − w1| = |w − w2|}. If w = L(z) for some z ∈ K, then

|w − w1| = |L(z) − L(z1)| = |a||z − z1| = |a||z − z2| = |L(z) − L(z2)| = |w −w2|.
Thus L(K) ⊂ K ′. Similarly, L−1(K ′) ⊂ K, so L(K) = K ′. �

Here are three noteworthy consequences of the above.

2.4. Corollary. Let C be a circle in C.

(a) For any points z1, z2, L([z1, z2]) = [L(z1), L(z2)].
(b) If [z1, z2] is a diameter of a circle C, then its image is a diameter of L(C).
(c) If T is a line tangent to a circle C, then L(T ) is a line tangent to L(C).

In particular we notice from the above that if T is a line tangent to a circle C, and D is
the line through the center of C and the point of interesction of C and T , then T and D
are orthogonal and so are their images under any complex linear map. What about other
angles?

We next verify the angle preservation property: If two lines (or two circles or a line and
a circle) intersect, then so do their images and moreover the angles of intersection (for the
original sets and their images) are exactly the same. This property just mentioned, angle
preservation, is especially important. In fact, complex linear maps preserve oriented angles;
mappings which possess this property are called conformal. The map z 7→ z̄ preserves angles
(so it is an isogonal map), but does not preserve orientation and so is not conformal (but
rather is anti-conformal).

The reader no doubt understands (from calculus or linear algebra) what is meant by the
angle between two lines (or two circles or a line and a circle). As a warm-up for later
purposes, when we study this in general for two intersecting paths, we now formalize this
concept. Recall that for z,w ∈ C∗, Θ(z,w) = Arg(w/z) is the oriented angle from z to w.

Suppose that A and B are two lines which intersect at some point z0. Pick direction vectors
a, b for A, B (respectively); thus A, B are given by the parametric equations α(t) = z0 + ta,
β(t) = z0 + tb (respectively) where t ∈ R. We note that here we are actually considering
A, B as oriented lines: −a is also a direction vector for the line A and it gives the opposite
orientation. The oriented angle from A to B is Θ(A,B) = Θ(a, b) = Arg(b/a). Note that
changing the orientation of A (from that given by a to that given by −a) changes this angle
by π; see Proposition 1.3(e). Also, A = B as oriented lines if and only if the angle between
them is zero; when this angle is π, then the lines are the same but they have opposite
orientations.

It is now a simple matter to define the angle between two intersecting oriented circles
or between an oriented circle and oriented line which meets it. Let K and K ′ each be an
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oriented line or circle (so, two lines or two circles or one of each) which intersect at some
point. Let T , T ′ be oriented lines which are tangent to K, K ′ (respectively) at the point of
intersection (with the orientations induced by the orientations of K, K ′). Then the oriented
angle from K to K ′ is Θ(K,K ′) = Θ(T, T ′). Note that two circles (for example) are tangent
at a point exactly when the angle between them is either 0 or π: which value we get depends
both on whether the circles have opposite or identical orientation as well as whether they
are internally tangent or externally tangent.

The reader is encouraged to not get too tangled up with the above formal definitions!
It is now rather straightforward to demonstrate that complex linear maps are conformal.

Notice that if K is an oriented line or circle, then so is its image under any complex linear
map.

2.5. Proposition. Let L be a complex linear map. Suppose A and B are two oriented lines
(or two oriented circles or an oriented line and an oriented circle) which intersect. Then so
do their images A′ = L(A) and B′ = L(B), and moreover Θ(A′, B′) = Θ(A,B).

Proof. (Here is an outline for a formal proof.) First, the reader should convince herself that
we need only consider the case when both A, B are oriented lines. Next, the assertion is
immediate for translations (right?). Now look at the special case when A, B intersect at the
origin and L(0) = 0. In this case L(z) = cz, so the lines A, B are simply rotated through
the angle Arg(c) and hence the oriented angle of intersection is unchanged.

Finally, consider the general case. Let w0 = L(z0) where z0 is the point common to A, B.
The translations T (z) = z − z0 and S(w) = w − w0 preserve the oriented angles Θ(A,B) at
z0 and Θ(A′, B′) at w0 (respectively). Put F = S ◦L◦T−1. Then F is a complex linear map
with F (0) = 0. Since T (A), T (B) intersect at the origin, F preserves their oriented angle of
intersection. It now follows that

Θ(A′, B′) = Θ
(
S−1(F [T (A)]), S−1(F [T (B)])

)
=

= Θ(F [T (A)], F [T (B)]) = Θ (T (A), T (B)) = Θ(A,B).

�

Later we will examine functions of the form w = (az + b)/(cz + d); these are the simplest
possible rational functions and are called Möbius transformations. We will see that these
maps possess many of the same properties enjoyed by the linear functions.

2.B. Non-injective Maps. Here we seek a geometric description of the polynomial map

z 7→ w = p(z) = a0 + a1z + · · · + anz
n.

Basic example: w = z2; lotsa pictures including the images and preimages of straight lines;
angles at the origin are doubled whereas away from the origin this is isogonal; lines,circles
are not mapped to lines,circles; much more complicated than linear maps; inverses are ±

√
z.

Another example: w = z + 1/z

2.C. The Complex Exponential Function. What should ez be for z ∈ C?

We assume knowledge about ex for x ∈ R. For z = x + iy we define

exp(z) = ez := exeiy = ex cos y + i ex sin y.

Recall from the beginning of §1.B that for a real number θ we have defined eiθ := cos θ+i sin θ.
To understand why we use this definition of eiθ, we first note that for n ∈ N, in is either ±1
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(when n is even) or ±i (when n is odd). In particular, if n = 2k, then in = (−1)k and if
n = 2k + 1, then in = (−1)ki. Now we use property (1) below and (formally) manipulate
power series as follows:

eiθ =
∞∑

n=0

(iθ)n

n!
=

∞∑

k=0

(−1)kθ2k

(2k)!
+ i

∞∑

k=0

(−1)kθ2k+1

(2k + 1)!
= cos(θ) + i sin(θ).

Properties of ez

(1) ez =
∑∞

0 zn/n! and this converges absolutely for all z ∈ C.
(2) |ez| = e<(z) and arg(ez) = =(z) + 2kπ for k ∈ Z.
(3) ezew = ez+w, e−z = 1/ez, and for all n ∈ N : (ez)n = enz.
(4) ew = ez if and only if w = z + 2kπi for some k ∈ Z.

Remarks

(1) |ez| = e<(z) > 0 implies in particular that ez 6= 0 for all z ∈ C. We shall see that
every non-zero complex number w can be written as ez; in fact this can be done for
infinitely many z. Thus every point w ∈ C, except w = 0, is covered infinitely often
by the mapping w = ez.

(2) limz→∞ ez does not exist. In fact, by choosing an appropriate sequence of points zn →
∞, you can get any value you want for limn→∞ ezn. Another, more sophisticated, way
of expressing this is that in every neighborhood of infinity, w = ez comes arbitrarily
close to every complex number infinitely often.

Mapping properties of w = ez: look at the images of horizontal and vertical lines; the
image of a rectangle {x + iy : a ≤ x ≤ b, c ≤ y ≤ d} with d − c ≤ 2π is the ‘circular
rectangle’ {reiθ : ea ≤ r ≤ eb, c ≤ θ ≤ d}; what is the image of a line {x + imx : x ∈ R}?

2.D. Trignometric and Hyperbolic Functions. These are defined as follows:

cos(z) = (eiz + e−iz)/2, sin(z) = (eiz − e−iz)/2i

and

cosh(z) = (ez + e−z)/2, sinh(z) = (ez − e−z)/2.

2.E. The Complex Logarithm Function. What should log(z) be for z ∈ C?

Recall that for real x, the functions x 7→ ex and x 7→ lnx are inverses of each other; we
assume knowledge concerning the natural logarithm function lnx for x ∈ R. We want to
define an inverse for the complex exponential function, but of course this does not make
sense because z 7→ ez is not one-to-one (in fact, is far from it). In spite of this, let us try
to do it anyway and see where this leads. We begin with a fixed z ∈ C and try to solve the
equation ew = z for w. Obviously this cannot have a solution unless z 6= 0, so we assume
this. Then we can express z in polar coordinates as z = reiθ where θ is some value of arg(z).
Now write w = u + iv. Then we have

reiθ = z = ew = eueiv

which leads to r = eu and θ = v + 2kπ for some k ∈ Z. From this we conclude that

u = ln(r) = ln |z| and v = θ + 2kπ for some k ∈ Z.

Notice that v above is equal to some value of arg(z). We record our observations as follows.

2.6. Lemma. For z ∈ C∗, ew = z ⇐⇒ w = ln |z| + i arg(z).
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The reader should be certain (s)he understands the precise meaning of the above! It is
not hard to see that when w has such a form, then ew = z; the necessity of this is what we
verified above. Notice that this Lemma says that <(w) = ln |z| for any w with ew = z; note
that z 7→ ln |z| is a well-defined (single-valued) real-valued function of a complex variable.
On the other hand, all we know about =(w) is that it must be some value of arg(z).

Given z ∈ C∗, we say that w ∈ C is a value of the logarithm of z (or more simply, a value
of log(z)) if ew = z. Lemma 2.6 tells us precisely what these values are. As an example, the
principal value of log(z) is

Log(z) = ln |z| + iArg(z).

We cannot use the ‘formula’ for w provided by Lemma 2.6 to define a function log(z)
because it does not provide a single-value but rather many possible values. To get a true
(i.e. single-valued) function we must first choose a branch of the argument. Recall that
any continuous real-valued function ϑ(z) satisfying z = |z|eiϑ(z) is termed a branch of the
argument of z. Here, of course, the domain of ϑ must be a subset of C∗, and this just means
that ϑ(z) is one of the (many) values for arg(z).

Next, by a branch of the logarithm function we mean a (single-valued) complex-valued
function λ(z) with the property that eλ(z) = z for all z. Thus λ(z) is a value of log(z) for
each z and so λ serves as an inverse for the exponential function; hence the domain of λ
must be a subset of C∗. Again, we also want λ to be continuous, and this is impossible to do
in all of C∗, so usually we restrict our attention to the regions described at the end of §1.B
(where we took a branch cut from the origin out to infinity).

To make a formal definition, a continuous function λ : A → C (with A ⊂ C∗) is a branch of
the logarithm function in A (or more briefly, a branch of log(z) in A) provided exp(λ(z)) = z
for all z ∈ A. Note: Any such λ serves as an inverse for the exponential function in A.

Let us emphasize the point that whenever we speak of a branch of the logarithm, there
is always an associated domain-set. In fact, whether or not there exists a (continuous)
branch of the logarithm in a given set A depends in a very strong way on the topology of A.
Moreover, this problem (of determining when there exists a branch of log(z)) is at the very
heart of complex analysis.

As an example, the principal branch of the logarithm is defined for z ∈ C \ (−∞, 0] via

Log(z) = ln |z| + iArg(z).

As one might expect, there is a close tie between branches of the argument and branches
of the logarithm. In fact we have the following result, whose proof mimics the argument
given for Lemma 2.6.

2.7. Proposition. A function λ(z) is a branch of the logarithm if and only if there exists a
branch of the argument, say ϑ(z), such that for all z, λ(z) = ln |z|+ iϑ(z).

We also have the following information about continuous branches of the logarithm.

2.8. Theorem. Let λ1 and λ2 be two branches of the logarithm defined (and continuous)
in the same open connected set Ω. Then there is a fixed k ∈ Z such that for all z ∈ Ω,
λ1(z) = λ2(z) + 2kπi.

Proof. �
Note that for any branch λ(z) of the logarithm, defined in some set A, we always have

eλ(z) = z for all z ∈ A. However, we may not have λ(ez) = z. Indeed, even for z = x > 0 we
need not have log(x) = ln(x). For example...
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2.F. Complex Powers and Roots. For a ∈ C∗ and b ∈ C we define

ab := eloga.

Some special cases of this include:

(1) If b ∈ Z, then ab is a single value.
(2) If b = p/q ∈ Q is rational with p, q having no common factors, then there are q

distinct complex values of ab and these are symmetrically located around the circle
|w| = |a|b.

(3) If b ∈ R \ Q is irrational, then ab consists of infinitely many complex values located
around the circle |w| = |a|b.

Note however that the ‘law of exponents’ abac = ab+c fails to hold, even when this is consid-
ered as a set equality. For example...

2.G. Inverse Functions. The branches of the inverse of y = x2 are ±
√

x.
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