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1. Complex Integration Theory

1.A. Groupoid Properties of Paths. Recall that a path in Ω is a continuous map R ⊃

[a, b]
γ
→ Ω and its trajectory (i.e., its image:-) is the set |γ| := γ([a, b]). Note that |γ| is a

compact connected subset of Ω; thus, e.g., dist(|γ|, ∂Ω) > 0. We think of γ as going from its
initial point γ(a) to its terminal point γ(b). When γ(a) = γ(b), we call γ a loop. (The term
closed path is also used, but I think that this can be misleading.)

Please see Palka’s book (and my class notes too) for a more thorough discussion of paths.

1.B. Real Path Integrals. Here we recall a few things from Calculus.
We call p dx+q dy an exact differential if there is a function F satisfying dF = p dx+q dy;

of course this means that
∂F

∂x
= p and

∂F

∂y
= q .

Alternatively, we could ask that the vector field (p, q) be a conservative or gradient field,
meaning that there exists some F with ∇F = (p, q). Here p, q, F should all have the same
domain of definition, and can be either real or complex valued. Of course F should possess
the indicated partial derivatives, and when p, q are continuous, F must be C1.

Now suppose that p dx + q dy is exact in Ω, say equal to dF . Let’s look at the integral of
this along a path γ : [a, b] → Ω. We see that

∫

γ

p dx + q dy =

∫ b

a

d

dt
[F ◦ γ] dt = F (γ(b)) − F (γ(a)) .

In particular we see that the integral of an exact differential depends only on the endpoints
of the path and not on the actual path we take from one endpoint to the other.

The converse is also true, and we record this as the following fundamental result regarding
path integrals.

1.1. Theorem (FTRPI). Let p and q be continuous in some domain Ω. Then the following
are equivalent.

(a) p dx + q dy is an exact differential in Ω.

(b) For any piecewise smooth path γ in Ω, the value of

∫

γ

p dx + q dy depends only on

the endpoints of γ.

(c) For any piecewise smooth closed loop Γ in Ω,

∫

Γ

p dx + q dy = 0.

Proof. We have already indicated why (a) implies (b). We leave confirmation of (b) ⇐⇒ (c)
to the reader. Here we verify that (b) implies (a). So, assume (b) holds. We define an
F ∈ C1(Ω) with the property that dF = p dx + q dy.

To this end, let z0 be a fixed point in Ω. For each z ∈ Ω, let γz denote some piecewise
smooth path in Ω that joins z0 to z. Then, for each z ∈ Ω, we define

F (z) :=

∫

γz

p dx + q dy .

Note that the hypotheses in (b) permit us to use any piecewise smooth path γz whatsoever,
that joins z0 to z in Ω. It remains to corroborate that

∀ z ∈ Ω , Fx(z) = p(z) and Fy(z) = q(z) .
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We give the details for the first of these; a proof of the second assertion is similar.
Let z1 be a fixed point in Ω and let γ1 := γz1

be any fixed piecewise smooth path in Ω
that joins z0 to z1. Since Ω is open, there is an r > 0 so that D(z1; r) ⊂ Ω. Then for each
h ∈ R with |h| < r, the path

γ = γz1+h := γ1 + [z1, z1 + h]

is a piecewise smooth path in Ω that joins z0 to z1 + h. (Of course this path is just the
concatenation of γ1 with the line segment from z1 to z1 + h.) According to our definition of
F ,

F (z1 + h) =

∫

γ

p dx + q dy =

∫

γ1+[z1,z1+h]

p dx + q dy

=

∫

γ1

(p dx + q dy) +

∫

[z1,z1+h]

(p dx + q dy)

= F (z1) +

∫

[z1,z1+h]

p dx + q dy

and thus—recalling that [0, 1] ∋ t 7→ z1 + th parametrizes [z1, z1 + h]—we obtain

F (z1 + h) − F (z1) =

∫

[z1,z1+h]

(p dx + q dy) =

∫ 1

0

p(z1 + th) h dt

and so

F (z1 + h) − F (z1)

h
=

∫ 1

0

p(z1 + th) dt .

We could now appeal to the Fundamental Theorem of Calculus, but it is easy enough to
finish the proof. Let ε > 0 be given. Since p is continuous, we may select a δ ∈ (0, r) so that

∀ z ∈ D(z1; δ) ⊂ Ω , |p(z) − p(z1)| < ε .

Then for each h ∈ R with 0 < |h| < δ, [z1, z1 + h] ⊂ D(z1; δ), so

F (z1 + h) − F (z1)

h
− p(z1) =

∫ 1

0

p(z1 + th) dt − p(z1) =

∫ 1

0

[p(z1 + th) − p(z1)] dt

and thus
∣

∣

∣

∣

F (z1 + h) − F (z1)

h
− p(z1)

∣

∣

∣

∣

≤

∫ 1

0

|p(z1 + th) − p(z1)| dt ≤

∫ 1

0

ε dt = ε .

It now follows that

lim
h→0

F (z1 + h) − F (z1)

h
= p(z1) so

∂F

∂x
(z1) = p(z1) .

Since z1 was an arbitrary point of Ω, Fx = p everywhere in Ω. �

We also have path integrals with respect to arclength; we note that ds is not a differential!



4 DAVID A HERRON

1.C. Complex Path Integrals. Let R ⊃ [a, b]
γ
→ C be a piecewise smooth path. Suppose

|γ|
f
→ C is continuous. Then the integral of f along γ is

∫

γ

f(z) dz :=

∫ b

a

f(γ(t)) γ̇(t) dt .

The following is a simple, but oh-so-important, fundamental example.

1.2. Example (FX). For any a ∈ C and each r > 0,
∫

C(a;r)

dz

z − a
= 2πi .

Complex path integrals enjoy the usual linearity properties (of course here with respect
to complex coefficients).

Recall that F is an holomorphic anti-derivative of f if F is holomorphic and F ′ = f . As
simple, but important, examples we note that ez and all complex polynomials have entire
holomorphic anti-derivatives.

Here is a simple but surprisingly useful fact.

1.3. Proposition. Let C ⊃ Ω
f
→ C be continuous. Then f dz is an exact differential if and

only if f has a holomorphic anti-derivative in Ω.

Proof. If there exists a C1 function C ⊃ Ω
F
→ C with

f dx + if dy = f dz = dF = Fx dx + Fy dy ,

then Fx = f = −iFy so F is holomorphic in Ω. The converse is easy to check. �

As a corollary we obtain the following complex version of the fundamental theorem for
path integrals.

1.4. Theorem (FTPI). Let C ⊃ Ω
f
→ C be continuous. Then the following are equivalent.

(a) f dz is an exact differential in Ω.

(b) f has a single-valued holomorphic anti-derivative in Ω.

(c) For any piecewise smooth path γ in Ω, the value of

∫

γ

f(z) dz depends only on the

endpoints of γ.

(d) For any piecewise smooth closed loop Γ in Ω,

∫

Γ

f(z) dz = 0.

1.5. Corollary. It is not possible to define a single-valued holomorphic branch of log z in C∗.

Here is a nice application of the fundamental theorem for path integrals; we will use this
in our proof of Cauchy’s Integral Formula for a circle.

1.6. Lemma.
∫

C(a;r)

dζ

ζ − z
=

{

2πi for |z − a| < r ,

0 for |z − a| > r, .

Proof. In both situations there is an appropriate single-valued holomorphic branch of a
certain logarithm in the necessary domain. �
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2. Cauchy Theory–Part I

Here we present elementary versions of Cauchy’s Theorems and Integral Formulas. The
latter provide a key tool for proving many basic results in complex function theory.

2.A. Cauchy’s Theorems. We begin this subsection with one of the most important results
from multivariable calculus, Green’s Theorem. We only require this in its simplest form, in
which case the proof is immediate.

2.1. Theorem (GTR). Let p, q be C1 in an open set Ω ⊂ C. Suppose a closed rectangle R,
with horizontal and vertical edges, lies inside Ω. Then

∫

∂R

p dx + q dy =

∫∫

R

(

∂q

∂x
−

∂p

∂y

)

dxdy .

Now we start our investigation into Cauchy’s Theorems: there are many ‘flavors’ of these
each of which says, roughly,

for any holomorphic f and pcws smooth loop Γ,

∫

Γ

f(z) dz = 0 .

Of course, since

∫

T

dz

z
= 2πi

we see that there must some additional hypotheses! In fact there will always be some kind
of topological hypothesis, either a restriction concerning the type of path Γ, or something
about the region/domain in question (that is, the location of Γ). We draw attention to which
type of hypothesis is in play by employing the preposition for in the former situation and
in for the latter. The reader is encouraged to pay attention!

We begin by considering Cauchy’s Theorem for a Rectangle (CTR). We present two proofs
of this result, first explaining the classical proof that utilizes Green’s Theorem, and then
giving Goursat’s proof via a bisection method.

2.2. Theorem (CTR). Let f ∈ H(Ω). Suppose that a closed rectangle R (its interior and
boundary) lies inside Ω. Then

∫

∂R

f(z) dz = 0 .

It will be especially useful to know the following modified version of Cauchy’s Theorem
for a Rectangle.

2.3. Theorem (CTR′). Fix ζ ∈ Ω ⊂ C. Let f ∈ H(Ω \ {ζ}). Assume that

lim
z→ζ

(z − ζ)f(z) = 0 .

Then for each closed rectangle R ⊂ Ω with ζ /∈ ∂R,

∫

∂R

f(z) dz = 0 .
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Note that, by induction, we can actually have a finite number of exceptional points ζ .
With the aid of Cauchy’s Theorem for a Rectangle, we can now prove Cauchy’s Theorem

in a Disk. (Again, note the difference between the uses of the prepositions for and in!)
Recall too the Fundamental Theorem for Path Integrals.

2.4. Theorem (CTD). Let f be holomorphic in a disk D := D(a; r). Then for any piecewise
smooth loop Γ in D,

∫

Γ

f(z) dz = 0 .

As with CTR, we require the following modified version of CTD.

2.5. Theorem (CTD′). Let ζ1, . . . , ζn be points in a disk D := D(a; r). Suppose that f is
holomorphic in Ω := D \ {ζ1, . . . , ζn} and that

for each exceptional point ζk , lim
z→ζk

(z − ζk)f(z) = 0 .

Then for any piecewise smooth loop Γ in Ω \ {ζ1, . . . , ζn}
∫

Γ

f(z) dz = 0 .

2.B. Cauchy’s Integral Formulas. The immediate consequences of CIF include virtually
every basic result in Complex Function Theory. To name a few we mention: connection
with power series (holomorphic functions are real analytic), CIF for derivatives, holomor-
phic functions have holomorphic derivatives, Morera’s Theorem, Liouville’s Theorem, Funda-
mental Theorem of Algebra, Cauchy Estimates, Casorati-Weierstrass Theorem, Mean Value
Property, Maximum Principle, Schwarz’ Lemma, Riemann’s Extension Theorem, Argument
Principle, Residue Theorem.

Here is Cauchy’s Integral Formula for a Circle.

2.6. Theorem (CIFC). Let f ∈ H(Ω). Suppose that Ω contains the closed disk D[a; r]. Then
for each z ∈ D(a; r)

f(z) =
1

2πi

∫

C(a;r)

f(ζ)

ζ − z
dζ .

As always we can have a finite number of exceptional points, although in this case we
must of course require that none of these lie on the path of integration.

The proof of CIF is an easy consequence of CTD′ and Lemma 1.6.
Our first application of CIF is Cauchy’s Integral Formulas for derivatives (again just for

a circle).

2.7. Theorem. Let f ∈ H(Ω). Suppose that Ω contains the closed disk D[a; r]. Then f ′, f ′′,
etc. are all holomorphic in Ω and for each z ∈ D(a; r)

f (n)(z) =
n!

2πi

∫

C(a;r)

f(ζ)

(ζ − z)n+1
dζ .

This is actually a consequence of the more general result, Lemma 3 on p.121 in Ahlfors.
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