

 Department of Mathematical Sciences
 839 Old Chemistry Building

 PO Box 210025
 Phone
 (513) 556-4075

 Cincinnati OH 45221-0025
 Fax
 (513) 556-3417

COMPLEX ANALYSIS HOMEWORK PROBLEMS SPRING QUARTER 2010

Please provide plenty of details! Pix are definitely kewl ($\ddot{\smile}$).

- (1) Please be sure to read Ahlfors and look at (and work) the suggested problems; check the web page on a regular basis. For now, start reading §4 of Chapter 4.
- (2) You can also look at Palka's book: see his §§5,6 of Chapter 5.
- (3) Let Ω be a bounded plane domain containing the origin. Suppose $\Omega \xrightarrow{f} \Omega$ is holomorphic with f(0) = 0 and f'(0) = 1. Prove that for all $z \in \Omega$, f(z) = z. (Hints: It suffices to show that f(z) = z for all $z \in \Delta$ where $\Delta := D(0; r)$ and $0 < r < \text{dist}(0, \partial \Omega)$. Look at the Maclaurin series for f, say $f(z) = z + a_m z^m + \dots$ Use Cauchy estimates to find a bound for $|a_m|$. Assume that $a_m \neq 0$ and examine the Maclaurin series for the k-fold composition $f \circ f \circ \dots \circ f$ and consider 'what happens' as $k \to \infty$.)
- (4) Read pp.1-136 in Ahlfors and do problems 1-4 on p.133.
- (5) Read pp.152-154 in Ahlfors and do problems 1-3 on p.154.
- (6) Determine the number of solutions to $z^4 5z^2 + 3 = e^{-z}$ in the closed right half-plane $\overline{\mathbb{H}} = \{\Re \mathfrak{e}(z) \ge 0\}.$
- (7) Show that $f(z) = z^4 3z^2 + 3$ has exactly one zero in the open first quadrant $Q = \{\Re \mathfrak{e}(z) > 0, \Im \mathfrak{m}(z) > 0\}$. (Hint: Use the Argument Principle.)
- (8) Prove the following generalization of Rouché's Theorem: Let $f, g \in \mathcal{H}(\Omega)$. Let Γ be a positively oriented piecewise smooth Jordan loop with the closure of $int(\Gamma)$ contained in Ω . Suppose that for all $z \in |\Gamma|$,

$$|f(z) - g(z)| < |f(z)| + |g(z)|.$$

Then f and g have exactly the same number of zeroes in $int(\Gamma)$, counted according to multiplicity.

- (9) Use Rouché's Theorem to prove Hurwitz' Theorem.
- (10) Let $(f_n)_1^{\infty}$ be a sequence of functions that are holomorphic and univalent in a domain Ω . Suppose that $(f_n)_1^{\infty}$ converges normally in Ω to some f. Prove that either f is a constant map or f is univalent in Ω .
- (11) Let $h(z) := z(z^2 1)$. For each of the following sets A, determine whether or not there exists a branch of the cube root of h in $\mathbb{C} \setminus A$.

$$\begin{array}{ll} \text{(a)} \ A = (-\infty, -1] \cup \{iy : y \geq 0\} \cup [1, +\infty); & \text{(b)} \ A = [-1, 1]; \\ \text{(c)} \ A = \{iy : y \geq 0\} \cup \{e^{it} : -\pi \leq t \leq 0\}; & \text{(d)} \ A = [-1, 0] \cup [1, \infty). \end{array}$$

Date: May 14, 2010.

(12) Suppose that a map f is defined and holomorphic in some region |z| > R. As discussed on page 129 in Ahlfors, in this situation we say that f has an isolated singularity at ∞ . The nature of this singularity is determined by looking at the map g defined by g(z) := f(1/z): f has a removable singularity (or pole or essential singularity) at ∞ if and only if g has a removable singularity (or pole or essential singularity, respectively) at 0. When this singularity is removable, we say that f is holomorphic at ∞ ; be careful—we have not proven any theorems about such a map (only theorems about the auxiliary map g).

Prove that f has a non-essential singularity at ∞ if and only if there exists a point $a \in \hat{\mathbb{C}}$ with the property that

$$\lim_{z \to \infty} \chi(f(z), a) = 0$$

where χ is the chordal distance in $\hat{\mathbb{C}}$.

- (13) Let f be holomorphic and non-constant in a domain Ω . Prove that whenever B is a discrete set in \mathbb{C} , $A := f^{-1}(B)$ is a discrete set in Ω . (If you argue by way of contradiction, be very careful that you actually arrive at a contradiction!)
- (14) Suppose $f \in \mathcal{M}(\Omega_f)$ and $g \in \mathcal{M}(\Omega_g)$. Determine conditions (on f, g and/or on Ω_f , Ω_g) that describe when fg, f + g, f/g and $f \circ g$ are meromorphic.

Suppose that f is meromorphic in a neighborhood U of some $a \in \hat{\mathbb{C}}$. We define the *multiplicity* m(f; a) of f at a as follows:

- If f is constant in U, then we set $m(f;a) := \infty$.
- If f has a pole of multiplicity m at a, then we set m(f;a) := m.
- If f is holomorphic and non-constant in U, then m(f;a) is the multiplicity of the zero of the function $z \mapsto f(z) f(a)$ at a.

Now let $f \in \mathcal{M}(\Omega)$. The counting function $\hat{\mathbb{C}} \xrightarrow{\nu_f} \mathbb{Z}_+$ for f is defined by

$$\nu_f(c) := \sum_{a \in f^{-1}(c) \cap \Omega} m(f;a) \,.$$

Thus for each $c \in \hat{\mathbb{C}}$, $\nu_f(c)$ is the number of time that f takes on the value c, counted according to multiplicity.

- (15) Prove that the counting function for a polynomial is a constant function.
- (16) Let f be a rational function. Find the counting function ν_f .
- (17) (a) Let A, B be disjoint closed plane sets with B bounded. Construct a cycle Σ in $\mathbb{C} \setminus (A \cup B)$ with the property that

$$n(\Sigma; z) = \begin{cases} 0 & \text{for } z \in A, \\ 1 & \text{for } z \in B. \end{cases}$$

(b) Can you 'make' Σ a loop? A Jordan loop?

(c) Let A, B_1, B_2 be disjoint closed plane sets with B_1, B_2 bounded. Construct cycles Σ_1, Σ_2 in $\mathbb{C} \setminus (A \cup B_1 \cup B_2)$ with the property that for $1 \leq i, j \leq 2$ and $i \neq j$

$$n(\Sigma_j; z) = \begin{cases} 0 & \text{for } z \in A \cup B_i , \\ 1 & \text{for } z \in B_j . \end{cases}$$

- (18) Construct a simply connected domain whose complement is the disjoint union of an infinite number of closed connected sets.
- (19) Suppose a domain Ω has the property that each point z in $\mathbb{C}\setminus\Omega$ lies in some unbounded connected subset A_z of $\mathbb{C}\setminus\Omega$. Prove that Ω is simply connected.
- (20) Prove that a domain Ω is simply connected if and only if each $f \in \mathcal{H}(\Omega)$ possess an anti-derivative that is holomorphic in Ω .
- (21) Let Ω be any simply connected region that does not contain the origin. Prove that in Ω there exist holomorphic branches of: the logarithm function, each p^{th} -root function $(p \in \mathbb{N})$, and even a branch of z^z .
- (22) Suppose Ω is simply connected and $f \in \mathcal{H}(\Omega)$. Let Γ be a piecewise smooth loop in Ω . Prove that for each $b \in \mathbb{C} \setminus f(\Omega)$, $n(f \circ \Gamma; b) = 0$. Does this imply that the domain $f(\Omega)$ is simply connected?
- (23) Prove that a domain Ω is simply connected if and only if for every $f \in \mathcal{H}(\Omega)$ that is zero free in Ω there is a holomorphic branch of the square root of f in Ω . Is this fact true if 'square' root is replaced by 'pth-root' for some integer $p \geq 3$?
- (24) Let Ω be a domain with the property that ± 1 lie in the same component of the complement of Ω . Prove that there exists an $h \in \mathcal{H}(\Omega)$ that satisfies: for all $z \in \Omega$, $[h(z)]^2 = 1 z^2$. Determine all possible values of

$$\int_{\Gamma} \frac{dz}{h(z)} \quad \text{for } \Gamma \text{ a piecewise smooth loop in } \Omega \,.$$

- (25) Use our Factor Theorem for Poles to derive our formulas for the residue at a pole.
- (26) Read pp.154-161 in Ahlfors and do problems 1, 3, 4 on p.161.
- (27) Read pp.175-186 in Ahlfors and do problems: 2,4,5 on pp.178-179 ; 1,3,5 on p.184; 2,3 on p.186.
- (28) Verify that each of the following converges and determine their values.

$$\int_{1}^{\infty} \frac{dx}{1+x^2} , \qquad \int_{0}^{\infty} \frac{x\sin(x)}{x^2+a^2} \, dx , \qquad \int_{0}^{\infty} \frac{x^{\alpha}}{(1+x^2)^2} \, dx \quad (\text{where } -1 < \alpha < 3)$$

- (29) Let f be holomorphic in Ω except for isolated singularities in some set $S \subset \Omega$. Prove that f has a holomorphic anti-derivative in Ω if and only if for each $a \in S$, $\operatorname{Res}(f; a) = 0$.
- (30) Let $f \in \mathcal{H}(\mathbb{D}) \cap \mathcal{C}(\overline{\mathbb{D}})$ and non-constant. Suppose that for all $z \in \mathbb{T}$, $|f(z)| \leq 1$.
 - (a) Prove that f has at least one fixed point in $\overline{\mathbb{D}}$.
 - (a) Suppose for all $z \in \mathbb{T}$, $f(z) \neq z$. Prove that f has exactly one fixed point in $\overline{\mathbb{D}}$.
- (31) Let \mathcal{F} be a family of maps $\mathbb{C} \supset \Omega \xrightarrow{f} \mathbb{C}$ that are continuous in the open set Ω . Prove that if \mathcal{F} is normal in Ω , then it is both equicontinuous in Ω and locally uniformly bounded in Ω . (I suggest proving the contrapositive or each of these. Thus, for example, suppose that \mathcal{F} is not locally uniformly bounded and verify that there exist a sequence (f_n) in \mathcal{F} that fails to converge normally in Ω .)

- (32) Let $\mathcal{F} \subset \mathcal{H}(\Omega)$. Put $\mathcal{F}' := \{ f' \mid f \in \mathcal{F} \}.$
 - (a) Prove that if \mathcal{F} is locally uniformly bounded in Ω , then so is \mathcal{F}' .
 - (b) Prove that if \mathcal{F} is normal in Ω , then so is \mathcal{F}' .
- (33) Recall that $\mathcal{H}(\Omega, \Omega') := \{ f \in \mathcal{H}(\Omega) \mid f(\Omega) \subset \Omega' \}$. Suppose that Ω' is a non-dense subset of \mathbb{C} . What can you say about any sequence $(f_n)_1^{\infty}$ in $\mathcal{H}(\Omega, \Omega')$?
- (34) Let $\mathcal{F} \subset \mathcal{C}(\Omega)$ be normal in a domain Ω . Suppose that $\mathcal{G} \subset \mathcal{H}(\Omega)$ enjoys the following properties:
 - (i) For each $g \in \mathcal{G}, g' \in \mathcal{F}$.

(ii) There is a point $a \in \Omega$ such that $\{g(a) \mid g \in \mathcal{G}\}$ is a bounded set in \mathbb{C} . Prove that \mathcal{G} is normal in Ω .

- (35) Read pp.219-227 (skip $\S5.2$) in Ahlfors and do problems: 1-4 on p.227.
- (36) Let $A \subset \Omega$ with Ω a domain in \mathbb{C} and A having an accumulation point in Ω . Suppose $\mathcal{F} \subset \mathcal{H}(\Omega)$ is normal in Ω . Let $(f_n)_1^{\infty}$ be a sequence of in \mathcal{F} . Suppose that $(f_n)_1^{\infty}$ is pointwise convergent on A. Prove that $(f_n)_1^{\infty}$ converges normally in Ω .

(37) (a) Prove that
$$f(z) := \sum_{n=1}^{\infty} \frac{1}{z^2 + n^2}$$
 is holomorphic in $\Omega := \mathbb{C} \setminus i\mathbb{Z}_*, \mathbb{Z}_* := \mathbb{Z} \setminus \{0\}.$

(Confirm that the series converges normally in Ω .)

(b) Show that for each $r \in \mathbb{R}_+ \setminus \mathbb{N}$,

$$\int_{C(0;r)} f(z) \, dz = 0 \, .$$

(c) Show that for all $m \in \mathbb{N}$ and each $r \in \mathbb{R}_+ \setminus \mathbb{N}$,

$$\int_{C(m;r)} f(z) \, dz = \pi \sum_{|m-r| < n < m+r} \frac{1}{n} \, .$$

(d) Prove that $F(z) := \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{ArcTan}\left(\frac{z}{n}\right)$ is a holomorphic antiderivative for f in the domain $\mathbb{C} \setminus \{iy \mid |y| \ge 1\}$.

- (38) Read pp.229-232 in Ahlfors and do problems: 1-2 on p.232.
- (39) The first step in our proof of the Riemann Mapping Theorem can be done in a slightly different manner. Instead of using a branch of some square root, we could instead start with a branch of some logarithm. Composing this with an appropriate Möbius transformation would then provide a map into the unit disk sending the base point *a* to the origin. Fill in the details for this approach.
- (40) Reread pp.89-96 in Ahlfors and do problems: 1-8 on pp.96-97.
- (41) Everywhere below $w \mapsto \sigma(w)$ is the branch of square root function that is holomorphic for $w \in \mathbb{C} \setminus [0, +\infty)$ with $\sigma(-1) = i$.

(a) Examine in detail the map $z \mapsto \sigma(z^2 - 1)$ for z in the upper half-plane $i\mathbb{H}$. Explain why this map is conformal. Find the image of $i\mathbb{H}$ as well as the "image" of \mathbb{R} .

(b) Provide a similar analysis for the map $z \mapsto \sigma(z^2 + 1)$. For what z is this map even defined? When is it conformal? What is the "image" of $\{iy \mid 0 \le y \le 1\}$?

(c) What is the connection between the maps in parts (a) and (b)?

- (42) Let c := a + i b be a point in the upper half-plane. Let K be the circle in \mathbb{C} that passes through 0 and c and is orthogonal to \mathbb{R} . Let A be the closed subarc of K that joins 0 to c in $i\mathbb{H} \cup \{0\}$. Find a conformal map from $i\mathbb{H} \setminus A$ onto $i\mathbb{H}$. (Suggestion: Start with the Möbius transformation $w = T_c(z) := \frac{bz}{a^2 + b^2 az}$.)
- (43) Coming soon!
- (44) Let $f \in \mathcal{H}(\mathbb{D})$. Suppose there is a non-empty arc $A \subset \mathbb{T}$ (either open or closed or neither) with the property that f has a continuous extension to $\mathbb{D} \cup A$ and for each $\zeta \in A$, $f(\zeta) = 0$. Prove that f = 0. (Hint: Rotate!)
- (45) Let -1 < a < b < 1. Find a conformal map from $\mathbb{D} \setminus ((-1, a] \cup [b, 1))$ onto \mathbb{D} . If possible, do this so that f preserves symmetry as much as possible. What point is mapped to the origin? (Suggestion: First invert. Then 'squash'.)
- (46) Let $\Omega \subseteq \mathbb{C}$ be simply connected. Suppose that Ω is symmetric with respect to some $K \in \hat{\mathcal{C}}$. Prove that any Riemann map (i.e., conformal map) $f : \mathbb{D} \to \Omega$ with $f(0) \in K$ and "f'(0) tangent to K at f(0)" is also symmetric with respect to K (in the sense that for all $\zeta \in \mathbb{D}$, $f(\bar{\zeta}) = \rho_K(f(\zeta))$. (Suggestion: Start with the case $K = \hat{\mathbb{R}}$.)
- (47) Let K and \tilde{K} be circles in $\hat{\mathbb{C}}$ with associated reflections ρ and $\tilde{\rho}$. Let $f \in \mathcal{H}(\Omega)$. Put $\Omega' := \rho(\Omega)$ and define $g : \Omega' \to \hat{\mathbb{C}}$ by $g(z) := \tilde{\rho} \circ f \circ \rho(z)$. Verify that g is meromorphic in Ω' and describe precisely the set of poles of g. Also, give the multiplicity for g at each of its poles. What if $f \in \mathcal{M}(\Omega)$?
- (48) What "happens" if we do *Schwarz Reflection* starting with a meromorphic map (instead of a holomorphic one)?
- (49) Let f be an entire function.

(a) Suppose there is an interval $I \subset \mathbb{R}$ such that for all $x \in I$, $f(x) \in \mathbb{R}$. Prove that $f(\mathbb{R}) \subset \mathbb{R}$.

(b) Suppose there is also an interval $J \subset i\mathbb{R}$ such that for all $iy \in J$, $f(iy) \in \mathbb{R}$. Prove that for all $z \in \mathbb{C}$, f(z) = f(-z).

(50) Let $\omega > 0$ and $\Sigma := \{z \in \mathbb{C} \mid 0 < \Im \mathfrak{m}(z) < \omega\}$. The Riemann Mapping Theorem provides a conformal map $f : \Sigma \to i\mathbb{H}$. In fact, we can choose such a map that will have a homeomorphic extension $f : \overline{\Sigma} \to \overline{i\mathbb{H}} \setminus \{0\}$ with

$$f(\mathbb{R}) = (0, +\infty)$$
 and $f(\mathbb{R} + i\omega) = (-\infty, 0)$.

Use the Schwarz Reflection Principle to extend f to an entire map F. What is the range $F(\mathbb{C})$? What is the image of any vertical line? Show that F is periodic and determine a period. Can you identify the map F? What if ω is something "good to eat"?

(51) Let $\tau > 0$ and $\Sigma := \{z \in \mathbb{C} \mid 0 < \Re \mathfrak{e}(z) < \tau, \Im \mathfrak{m}(z) < 0\}$. The Riemann Mapping Theorem provides a conformal map $f : \Sigma \to i\mathbb{H}$. In fact, we can choose such a map that will have a homeomorphic extension $f : \overline{\Sigma} \to i\overline{\mathbb{H}}$ with (see Figure 1)

$$f(\{iy \mid y \le 0\}) = [1, +\infty) , \ f(\{\tau + iy \mid y \le 0\}) = (-\infty, -1] , \ f([0, \tau]) = [-1, 1] .$$

Use the Schwarz Reflection Principle to extend f to an entire map F. What is the range $F(\mathbb{C})$? Show that F is periodic and determine a period. Can you identify the map F? What if τ is something "good to eat"?

FIGURE 1. Mapping an semi-infinite strip

- (52) Let a > 0 and b > 0. Put $\Omega = (0, a) \times (0, ib) = \{x + iy : 0 < x < a, 0 < y < b\}$ and $Z = \{ma + inb : m, n \in \mathbb{Z}\}$. Suppose $f \in \mathcal{H}(\Omega)$ and maps Ω conformally onto a half-plane. Construct a function $F \in \mathcal{H}(\mathbb{C} \setminus Z)$) satisfying $F|_{\Omega} \equiv f$.
- (53) Prove that two rectangles are conformally equivalent via a vertex preserving homeomorphism if and only if the ratio of their dimensions is exactly the same.
- (54) Determine when two annuli are conformally equivalent. (You may assume that any conformal map between two annuli extends to a homeomorphism between their clo-sures.)
- (55) Let Ω be the open square with vertices at ± 1 and $\pm i$. Let $\Omega \xrightarrow{f} \mathbb{D}$ be conformal with f(0) = 0 and $\theta := \operatorname{Arg}(f'(0))$. Determine the images of (-1, 1), (-i, i) and X under f, where X is the union of the two open line intervals (line segments) that join the opposite midpoints of the edges of $\partial\Omega$.
- (56) Find a conformal map from the upper half-plane onto the interior of an equilateral triangle. Explicitly determine the mapping constants in terms of the side length of the given triangle.
- (57) Let a > 0, b > 0. Find a conformal map from the upper half-plane onto $\{u + iv : u > 0, v > 0, (u/a) + (v/b) < 1\}$ as illustrated in Figure 2.

FIGURE 2. Mapping to a right triangle

FIGURE 3. Mapping to a 'broken' half-plane

(58) Let $i\mathbb{H} \xrightarrow{f} \Omega$ be the conformal mapping from the upper half-plane onto the region Ω as pictured in Figure 3 with f mapping $-1, 1, \infty$ to $i, 0, \infty$ respectively. Show that

$$f(z) = \frac{1}{\pi} \left[\sqrt{z^2 - 1} + \log \left(z + \sqrt{z^2 - 1} \right) \right].$$

- (59) Show that $z \mapsto \int_0^z \frac{d\zeta}{[\zeta(1-\zeta^2)]^{1/2}}$ maps the upper half-plane onto an open square of edge length one.
- (60) Show that $z \mapsto \int_0^z \frac{d\zeta}{(1-\zeta^4)^{1/2}}$ maps the unit disk onto an open square.
- (61) Show that $z \mapsto \int_0^z \frac{d\zeta}{(1-\zeta^n)^{2/n}}$ maps the unit disk onto an open regular *n*-gon.

Department of Mathematics, University of Cincinnati, OH 45221 $E\text{-}mail\ address:$ David.Herron@math.UC.edu