

Department of Mathematical Sciences 839 Old Chemistry Building PO Box 210025 Phone (513) 556-4075 Cincinnati OH 45221-0025 Fax (513) 556-3417

COMPLEX ANALYSIS HOMEWORK PROBLEMS WINTER QUARTER 2010

Please provide plenty of details! Pix are definitely kewl $(\ddot{\circ})$.

- (1) Please be sure to read Ahlfors and look at (and work) the suggested problems; see last quarter's web page. For this quarter, for now, start reading Chapter 4.
- (2) You can also look at Palka's book. For starters, his §1 of Chapter 4 is a great discussion of paths. The rest of his Chapter 4 is good too, as are his problems on pp.136-139.

Recall that when f is complex differentiable at a, $T_{f,a}(z) := f(a) + f'(a)(z-a)$ is the complex linear first-order approximation for f near $z = a$. It gives the 'best' complex linear approximation for f in the sense given in the next problem. Note that we well understand the geometry of the complex linear map $z \mapsto T_{f,a}(z)$ (right?), and this knowledge is useful in studying the geometry of the map f , at least near a when f is differentiable at a.

(3) Suppose that f is differentiable at a. Let $T := T_{f,a}$. Demonstrate that for any complex linear map L, there is a $\delta > 0$ such that for all $z \in D(a; \delta)$,

$$
|f(z) - L(z)| \ge |f(z) - T(z)|.
$$

- (4) Suppose $\mathbb{C} \stackrel{\rho}{\to} \mathbb{C}$ is given by $\rho(z) := c\overline{z} + d$ for some $c, d \in \mathbb{C}$. Determine when ρ is reflection in some line, and when so, find the line.
- (5) Suppose $\hat{\mathbb{C}} \stackrel{\rho}{\rightarrow} \hat{\mathbb{C}}$ is given by $\rho(z) := (a\bar{z}+b)/(c\bar{z}+d)$ for some $a, b, c, d \in \mathbb{C}$. Determine when ρ is reflection in some circle, and when so, find the circle.
- (6) (a) Prove that

$$
\forall\; z,w\in\mathbb{C}\,,\quad \chi(z,w)\leq 2|z-w|\,.
$$

Deduce that $(\mathbb{C}, \lvert \cdot \rvert) \stackrel{\text{id}}{\rightarrow} (\mathbb{C}, \chi)$ is continuous (in fact, Lipschitz continuous). (b) Prove that for each $R > 0$,

$$
\forall z, w \in \mathbb{C}, \quad |z|, |w| \le R \implies \chi(z, w) \ge 2|z - w|/(1 + R^2).
$$

Deduce that $(\mathbb{C}, \chi) \stackrel{\text{id}}{\rightarrow} (\mathbb{C}, |\cdot|)$ is continuous.

(c) Explain why $(\mathbb{C},|\cdot|) \stackrel{\mathrm{id}}{\rightarrow} (\mathbb{C},\chi)$ is a homeomorphism.

Date: March 8, 2010.

(7) Let $\mathbb{C} \stackrel{L}{\to} \mathbb{C}$ be a non-constant complex linear map. Define $\hat{\mathbb{C}} \stackrel{\hat{L}}{\to} \hat{\mathbb{C}}$ by

$$
\hat{L}(z) := \begin{cases} L(z) & \text{when } z \in \mathbb{C} \,, \\ \infty & \text{when } z = \infty \,. \end{cases}
$$

Prove that \hat{L} is continuous at ∞ . (Suggestions: Start by showing that

$$
\chi(z,\infty) < \delta < 1 \implies |z| > 1/\delta \text{ and } |w| > R \implies \chi(w,\infty) < 2/R.
$$

Assume $L(z) = az + b$. Given $\varepsilon > 0$, show $\delta := \min\{1, \ldots, \delta\}$ 1 2 $|a|$ $|b| + 1$ $\frac{|a|\varepsilon}{4}$ $\frac{4}{4}$ "works".) Verify that \hat{L} is a self-homeomorphism of $\hat{\mathbb{C}}$ onto itself.

(8) Let $\mathbb{C} \stackrel{P}{\to} \mathbb{C}$ be a non-constant complex polynomial, say

$$
P(z) := a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + z^n.
$$

Define $\hat{\mathbb{C}} \stackrel{\hat{p}}{\rightarrow} \hat{\mathbb{C}}$ by $\hat{P}(z) := \begin{cases} P(z) & \text{when } z \in \mathbb{C} \\ \infty & \text{when } z = \infty \end{cases}$ ∞ when $z = \infty$. Prove that \hat{P} is continuous at ∞ . (Suggestions: Use the estimates from the previous problem. Note that

$$
|z| > 2n \max\{|a_0|, |a_1|, \ldots, |a_{n-1}|, 1\} \implies \left|1 + \frac{a_{n-1}}{z} + \cdots + \frac{a_0}{z^n}\right| \ge \frac{1}{2}.
$$

Explain why $\hat{C} \stackrel{\hat{P}}{\rightarrow} \hat{C}$ is continuous. Do you see any way to show that \hat{P} is surjective? Why is this last question easy to answer for polynomials $\mathbb{R} \to \mathbb{R}$?

- (9) Repeat the above problem for a complex rational function, say $R := P/Q$ where P and Q are complex polynomials. You must determine how to define \hat{R} at ∞ and at each zero of q in order to obtain a continuous map $\hat{R} : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$.
- (10) Let $\mathbb{D} \stackrel{f}{\to} \mathbb{C}$ be a continuous map. Given $z = x + iy \in \mathbb{D}$, let $\gamma_z := [0, x] + [x, z]$; thus γ_z is the piecewise smooth path in D with trajectory $[0, x] \cup [x, z]$ —the union of a horizontal line segment and a vertical line segment (of course either of these may reduce to a single point, e.g., if $x = 0$ or $y = 0$). For $z \in \mathbb{D}$, define

$$
F(z) := \int_{\gamma_z} f(\zeta) \, d\zeta \, .
$$

- (a) Demonstrate that F is continuous in \mathbb{D} .
- (b) Calculate the partial derivative $\frac{\partial F}{\partial x}$ $\frac{\partial T}{\partial y}$ with your 'bare hands'. That is, find $\lim_{h\to 0}$ $F(z + ih) - F(z)$ $\frac{h}{h}$ where $z \in \mathbb{D}$ and $h \in \mathbb{R}$.

(Except for the Fundamental Theorem of Calculus, please prove all so-called Fundamental Theorems that you use.)

(c) Is F holomorphic in \mathbb{D} ? Prove, or disprove, your answer.

(11) Derive the Complex Green's Theorem from the 'usual' Green's Theorem (both for rectangles): Suppose $f \in C^1(\Omega)$ and a standard rectangle R lies in Ω . Then

$$
\int_{\partial R} f(z) dz = 2i \iint_{R} \frac{\partial f}{\partial \bar{z}} dx dy.
$$

(12) Let p, q be \mathcal{C}^1 functions in some rectangle $\Omega := \{(x, y) : |x - a| < r, |y - b| < s\}.$ Suppose that

$$
\forall z \in \Omega \,, \quad \frac{\partial p}{\partial y}(z) = \frac{\partial q}{\partial x}(z) \,.
$$

Prove that there is an $F \in C^2(\Omega)$ with $\nabla F = (p, q)$ (i.e., $F_x = p$ and $F_y = q$) in Ω . (Hint: You are asked to produce an F with $dF = p dx + q dy$. For $(x, y) \in \Omega$ define

$$
F(x, y) := \int_{a}^{x} p(t, b) dt + \int_{b}^{y} q(x, s) ds = \int_{\beta(x, y)} p dx + q dy.
$$

for the broken-line-segment path $\beta(x, y) := [(a, b), (x, b)] + [(x, b), (x, y)]$. What does Green's Theorem say about $\int_{\partial R} p \, dx + q \, dy$ for any standard rectangle $R \subset \Omega$, and what does this say about $F(x, y)$?)

- (13) Explain why the conclusion of the above problem is also valid if Ω is an open disk or an open ellipse or an open half-plane. What is the crucial feature needed to make the proof work?
- (14) Let Ω be an open rectangle (or an open disk or ellipse or half-plane). Suppose that f is holomorphic and \mathcal{C}^1 in Ω . Prove that f has a holomorphic anti-derivative in Ω . (Hint: Use HW#(12) with $p dx + q dy := f dz$.) Do not use Cauchy's Theorem!
- (15) Suppose that $\mathbb{C} \stackrel{f}{\to} \mathbb{C}$ is continuous and is such that for any piecewise \mathcal{C}^1 path γ in \mathbb{C} ,

$$
\int_{\gamma} f(\zeta) d\zeta
$$
 depends only on the endpoints of γ .

Define a function $\mathbb{C} \stackrel{F}{\to} \mathbb{C}$ as follows: for $z \in \mathbb{C}$ put $F(z) := \int_{[0,z]}$ $f(\zeta) d\zeta$.

(Recall that the line segment $[0, z]$ from the origin to z can be parameterized via $[0, 1] \ni t \mapsto tz$.) Prove that F is entire and that $F' = f$. Do not use Cauchy's Theorem!

- (16) Let Γ be the loop given by $\Gamma(t) := 2 \cos(t) + i \sin(t)$ for $0 \le t \le 2\pi$. Evaluate \int_{Γ} dz z . (Hint: Compare to $\int_{\mathbb{T}} dz/z$.)
- (17) Calculate $|z|=2$ dz $\frac{dz}{z^2-1}$.

(Hint: Where does $(z^2 - 1)^{-1} = \frac{1/2}{z-1}$ $\frac{1}{z-1}$ 1/2 $z+1$ have a holomorphic anti-derivative?)

- (18) Confirm that $C(a;r)$ dζ $\zeta - z$ = $\int 2\pi i \quad \text{if } |z-a| < r \,,$ 0 if $|z - a| > r$. (Hint: Find a region in which $\frac{1}{\epsilon}$ $\sqrt{\zeta-z}$ – 1 $\zeta - a$ has a holomorphic anti-derivative.)
- (19) Let $f \in \mathcal{H}(\Omega) \cap \mathcal{C}^1(\Omega)$ with $|f 1| < 1$. Prove that for every piecewise smooth loop $Γ$ in $Ω$,

$$
\int_{\Gamma} \frac{f'(z)}{f(z)} dz = 0.
$$

(20) Let $f \in \mathcal{H}(\Omega) \cap \mathcal{C}^1(\Omega)$. Show that for each piecewise smooth loop Γ in Ω ,

$$
\int_{\Gamma} \overline{f(z)} f'(z) \, dz
$$

is purely imaginary.

- (21) Let P be a complex polynomial. Evaluate $C(a;r)$ $P(z) d\bar{z}$.
- (22) Let $f(z) = z^2$. Calculate $\int_{0}^{2\pi}$ 0 $f(2+e^{i\theta}) d\theta$ (and confirm that it is non-zero). Doesn't Cauchy's Theorem say that \int $|z-2|=1$ $f(z) dz = 0$?? Explain!
- (23) Evaluate $\int_{\mathbb{T}} |z 1| |dz|$.
- (24) Let γ be a piecewise smooth path and $|\gamma| \stackrel{f}{\rightarrow} \mathbb{C}$ be continuous. Prove that

$$
\left| \int_{\gamma} f(z) dz \right| \leq \max_{z \in |\gamma|} |f(z)| \cdot \ell(\gamma).
$$

- (25) Let $[0, \pi] \stackrel{\gamma}{\rightarrow} \mathbb{C}$ be the path $\gamma(t) := \exp(1 + it)$. Prove that $\begin{array}{c} \hline \end{array}$ Z γ dz ${\rm Log}\,z$ $\leq e \operatorname{Log}(\pi + \sqrt{\pi^2 + 1}).$
- (26) Find a function f that has the following properties:
	- f is \mathcal{C}^1 in some open set Ω with $\overline{\mathbb{D}} \subset \Omega$.
	- Z $\int_{\mathbb{T}} f(z) dz = 0$.
	- f fails to be holomorphic at any point of Ω .
- (27) Suppose that f is continuous in \mathbb{D} and for all $0 < r < 1$, $|z|=r$ $f(z) dz = 0$. Must f be holomorphic in \mathbb{D} ? Must either f or \bar{f} be holomorphic in \mathbb{D} ?

(28) Suppose $f \in \mathcal{H}(\mathbb{C}_*)$. Let S be the unit square $S = \{z : |\Re(z)| \leq 1, |\Im(\mathfrak{m}(z)| \leq 1\}$. Use Cauchy's Theorem (in a disk—or in several disks) to demonstrate that

$$
\int_{\partial S} f(z) dz = \int_{\mathbb{T}} f(z) dz.
$$

(29) Here are two more ways to calculate the integral in $HW#(18)$ (so don't use your solution from there!). First, as in the problem directly above, use Cauchy's Theorem (in a disk—or in several disks). This is easy when $|z-a| > r$. For the case $|z-a| < r$, explain why

$$
\int_{C(a;r)} \frac{d\zeta}{\zeta - z} = \int_{C(z;r-|z-a|)} \frac{d\zeta}{\zeta - z} = 2\pi i.
$$

Second, define $\mathbb{C} \setminus C(a; r) \stackrel{I}{\rightarrow} \mathbb{C}$ by $I(z) := \int_{C(a; r)}$ $d\zeta$ $\zeta - z$. Examine the difference quotient

$$
\frac{I(z+h) - I(z)}{h} \quad \text{and verify that}
$$

$$
\lim_{h \to 0} \left| \frac{I(z+h) - I(z)}{h} - \int_{C(a;r)} \frac{d\zeta}{(\zeta - z)^2} \right| = 0.
$$

(Be sure to give all the details!) Explain why I is holomorphic in $\mathbb{C}\setminus C(a;r)$ and give $I'(z)$. Using your formula for I' , show that I' is some constant. Use this information to calculate $I(z)$. (What are $I(a)$ and $\lim_{z \to \infty} I(z)$?)

(30) Suppose f is holomorphic in some open set Ω that contains the closed disk $D[a; r]$. Let z be a fixed (but arbitrary) point in the open disk $D(a;r)$. Using Cauchy's Integral Formula (for the circle $C(a;r)$), calculate

$$
\frac{f(z+h) - f(z)}{h} \quad \text{and verify that}
$$

$$
\lim_{h \to 0} \left| \frac{f(z+h) - f(z)}{h} - \frac{1}{2\pi i} \int_{C(a;r)} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta \right| = 0.
$$

(Be sure to give all the details!) What can you now conclude?

(31) Let γ be a piecewise smooth path in the plane C. Suppose $|\gamma| \stackrel{\varphi}{\to} \mathbb{C}$ is continuous. Define $\Phi : \mathbb{C} \setminus |\gamma| \to \mathbb{C}$ by

$$
\Phi(z) := \int_{\gamma} \frac{\varphi(\zeta)}{\zeta - z} d\zeta \quad \text{for } z \in \mathbb{C} \setminus |\gamma|.
$$

In class we proved a fancy Proposition about Φ. Here we'll do less, but with our 'bare hands'. By looking at a difference quotient (the same argument as for the above problem), it is straightforward to show that $\Phi \in \mathcal{H}(\mathbb{C} \setminus |\gamma|)$ with

$$
\Phi'(z) = \int_{\gamma} \frac{\varphi(\zeta)^2}{\zeta - z} d\zeta \quad \text{for } z \in \mathbb{C} \setminus |\gamma|.
$$

In a similar way, prove that $\Phi' \in \mathcal{H}(\mathbb{C} \setminus |\gamma|)$ with

$$
\Phi''(z) = 2 \int_{\gamma} \frac{\varphi(\zeta)}{(\zeta - z)^3} d\zeta \quad \text{for } z \in \mathbb{C} \setminus |\gamma|.
$$

(32) Calculate the following integrals (using $HW#(18)$ and partial fractions):

$$
\int_{C(0,4)} \frac{d\zeta}{(\zeta-1)(\zeta-2i)}, \quad \int_{C(1,5)} \frac{\zeta^2+\zeta}{(\zeta-2i)(\zeta+3)} d\zeta.
$$

(33) Let $f \in \mathcal{H}(\Omega)$ and suppose $D[a; r] \subset \Omega$. Confirm that

$$
f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta}) d\theta.
$$

Derive a similar formula for $f^{(n)}(a)$.

(34) Calculate the following integrals:

$$
\int_{\mathbb{T}} \frac{e^z}{z} dz , \int_{\mathbb{T}} \frac{e^z}{z^n} dz , \int_{C(0;2)} \frac{dz}{z^2 + 1} , \int_{C(0;2)} z^n (1 - z)^m dz \ (m, n \in \mathbb{Z}).
$$

(35) Calculate the following integrals, assuming that $r \neq |a|$:

$$
\int_{C(0;r)}\frac{|dz|}{|z-a|^2}\,,\quad \int_{C(0;r)}\frac{|dz|}{|z-a|^4}\,.
$$

- (36) Let K be any line or circle in C. Suppose that $\mathbb{C} \supset \Omega \stackrel{f}{\to} \mathbb{C}$ is continuous with $f \in \mathcal{H}(\Omega \setminus K)$. Prove that $f \in \mathcal{H}(\Omega)$. (Thus lines and circles are removable sets for holomorphicity.)
- (37) Let f be holomorphic in $D[0;R]$ with $|f| \leq M$ on $C(0;R)$. Fix $r \in (0,R)$. Give a uniform upper bound for $|f^{(n)}(z)|$ that is valid for all $z \in D[0; r]$.
- (38) Let f be holomorphic in \mathbb{D} . Suppose that for all $z \in \mathbb{D}$, $|f(z)| \leq 1/(1-|z|)$. Find the best upper bound for $|f^{(n)}(0)|$ that is obtainable by using a Cauchy estimate.
- (39) Let $f \in \mathcal{H}(\Omega)$. Fix a point $a \in \Omega$. Prove that the derivatives $f^{(n)}$ cannot satisfy $|f^{(n)}(a)| > n! n^n$ (for all $n \in \mathbb{N}$). Formulate, and prove, a sharper theorem with a similar result.
- (40) Prove that an entire function whose real part is always non-negative must be a constant. Conclude that any entire function that maps the plane into some halfplane must be a constant.
- (41) Suppose $\mathbb{C} \stackrel{f}{\rightarrow} \mathbb{C}$ is a non-constant entire function. Demonstrate that $f(\mathbb{C})$ is dense in C. (That is, $\overline{f(\mathbb{C})} = \mathbb{C}$; i.e., if $U \subset \mathbb{C}$ is any non-empty open set, then $U \cap f(\mathbb{C}) \neq \emptyset$.)
- (42) Let f be an entire function. Suppose there are constants $k > 0$ and $R > 0$ and some $n \in \mathbb{N}$ such that for all $z \in \mathbb{C}$, $|z| \geq R \implies |f(z)| \leq k|z|^n$. Prove that f must be a polynomial. What is the maximum possible degree of f ?
- (43) Prove that a complex polynomial P of degree n can be factored in the form

$$
P(z) := b(z - a_1)(z - a_2) \dots (z - a_n) \text{ for some } b, a_1, a_2, \dots, a_n \in \mathbb{C}.
$$

Deduce that a complex polynomial of degree n has exactly n zeroes (provided the zeroes are counted according to multiplicity).

(44) Let P be a (complex) polynomial. Fix $a \in \mathbb{C}$, $r > 0$ and assume that for all $z \in C(a; r)$, $P(z) \neq 0$. Calculate

$$
\int_{C(a;r)}\frac{P'(z)}{P(z)}\,dz\,.
$$

(45) Let R be a (complex) rational function. Fix $a \in \mathbb{C}$, $r > 0$ and assume that for all $z \in C(a; r)$, $R(z)$ is defined with $R(z) \neq 0$. Calculate

$$
\int_{C(a;r)} \frac{R'(z)}{R(z)} dz.
$$

(46) In Ahlfors, do the following problems on p.37: $\#$'s 1-5.

- (47) Prove that for each $z \in \mathbb{D}$, $\lim_{n \to \infty} z^n = 0$. Demonstrate that, however, the function sequence $(z^n)_1^{\infty}$ does <u>not</u> converge uniformly to 0 in \mathbb{D} . What can you say about its convergence on a compact subset of D?
- (48) Demonstrate that a uniform limit of continuous functions is continuous.
- (49) Let γ be a piecewise smooth path in \mathbb{C} . Let $(f_n)_1^{\infty}$ be a sequence of continuous functions $f_n: |\gamma| \to \mathbb{C}$. Suppose that $(f_n)_1^{\infty}$ converges uniformly on $|\gamma|$. Prove that

$$
\lim_{n \to \infty} \int_{\gamma} f_n(z) dz = \int_{\gamma} \left(\lim_{n \to \infty} f_n(z) \right) dz.
$$

(50) Prove the Limit Comparison Test:

Let $(a_n)_1^{\infty}, (b_n)_1^{\infty}$ be sequences of positive real numbers. Define

$$
L := \limsup_{n \to \infty} \frac{a_n}{b_n} \quad \text{and} \quad \ell := \liminf_{n \to \infty} \frac{a_n}{b_n}.
$$

Then:

- (a) If $L < \infty$ and $\sum_{n=1}^{\infty} b_n$ converges, then so does $\sum_{n=1}^{\infty} a_n$.
	- (b) If $\ell > 0$ and $\sum_{1}^{\infty} a_n$ converges, then so does $\sum_{1}^{\infty} b_n$.
	- (c) Deduce that when $0 < \ell$ and $L < \infty$, the series $\sum_{1}^{\infty} a_n$ and $\sum_{1}^{\infty} b_n$ either both converge or both diverge.

Here's an easier version to 'warm-up' with. Suppose that $L := \lim_{n \to \infty} (a_n/b_n)$ exists in $[0, +\infty]$. Show that when $L < \infty$, convergence of $\sum_{1}^{\infty} b_n$ implies convergence of $\sum_{1}^{\infty} a_n$; and, when $L > 0$, convergence of $\sum_{1}^{\infty} a_n$ implies convergence of $\sum_{1}^{\infty} b_n$. Deduce that $0 < L < \infty$ implies that the series $\sum_{1}^{\infty} a_n$ and $\sum_{1}^{\infty} b_n$ either both converge or both diverge.

(51) Prove the Geometric Series Test:

The infinite series $\sum_{n=1}^{\infty}$ $\boldsymbol{0}$ z^n : (a) converges to $(1-z)^{-1}$ for each $z \in \mathbb{D}$; (b) converges, in $\hat{\mathbb{C}}$, to ∞ for each $z \in \mathbb{C} \setminus \bar{\mathbb{D}}$; (c) does not converge for any $z \in \mathbb{T}$.

- (52) Prove that, in its disk of convergence, a power series is continuous. (Do not use the fact that power series are holomorphic in their disk of convergence!)
- (53) In Ahlfors, do the following problems on p.41: $\#$'s 1-9.

(54) Determine the set of all
$$
z \in \mathbb{C}
$$
 with $\sum_{n=1}^{\infty} \frac{z^n}{1+z^{2n}}$ convergent.

Discuss where we do, or do not, get absolute and/or uniform convergence.

- (55) Let $R := P/Q$ be a complex rational function with P and Q complex polynomials having no common zeroes. Let $Z := \{z \in \mathbb{C} : Q(z) = 0\}$ and put $\Omega := \mathbb{C} \setminus Z$. Prove that for each $a \in \Omega$, the radius of convergence for the Taylor series for R centered at the point a is precisely $dist(a, Z)$. (Suggestion: Look first at the special case $R(z) = 1/(z - b)$ where b is a point in Z with $|a - b| = \text{dist}(a, Z)$.) Please do not use Taylor's Theorem here, in any way.
- (56) Let h be any holomorphic branch of the logarithm function in $\Omega := \mathbb{C} \setminus [0, +\infty)$. Find the Taylor series for h with center $a := 1 + i$. Prove that the radius of convergence R for this power series satisfies $R > dist(a, \partial \Omega)$. Find a point $z \in \Omega \cap D(a; R)$ such

that at z the series converges to something different from $h(z)$. Can you determine exactly what the series does converge to in $D(a; R)$?

(57) Let $\mathbb{C} \supset \Omega \xrightarrow{f} \mathbb{C}$ be continuous. Let $[0,1] \xrightarrow{\gamma_n} \Omega$ be piecewise smooth paths that converge uniformly to γ . Assume that γ is also a piecewise smooth path and that $\gamma_n \to \gamma$ uniformly. (How much of these latter hypotheses are actually needed? Check out http://www.mathcs.org/analysis/reals/funseq/uconv.html) Prove that

$$
\lim_{n \to \infty} \int_{\gamma_n} f(z) dz = \int_{\gamma} f(z) dz.
$$

- (58) Let $(\varphi_n)_1^{\infty}$ be a sequence of continuous maps defined on a compact set $K \subset \mathbb{C}$. Suppose that for each $z \in K$, $(|\varphi_n(z)|)_1^{\infty}$ is a decreasing sequence that converges to zero. Prove that $(\varphi_n)_1^{\infty}$ converges uniformly to zero on K. (Hint: Given $\varepsilon > 0$, consider the sets $K_n := \{ z \in K \mid |\varphi_n(z)| \geq \varepsilon \}.$ Explain why $\bigcap_n K_n = \emptyset$, and use this to assert the existence of an $N \in \mathbb{N}$ with $K_N = \emptyset$. Recall that a decreasing sequence of non-empty compact sets has a non-empty intersection, right?) Can you find an example of a sequence $(\varphi_n)_1^{\infty}$ of continuous maps on a compact set $K \subset \mathbb{C}$ that converges to zero but not uniformly?
- (59) Let $(f_n)_1^{\infty}$ be a sequence of continuous maps defined on an open set $\Omega \subset \mathbb{C}$. Suppose that $\sum_{1}^{\infty} |f_n|$ converges pointwise in Ω to a continuous function g. Prove that $\sum_{n=1}^{\infty} f_n$ converges normally in Ω . (Hint: Use the previous problem with $\varphi_n := g - \sum_{i=1}^n f_k(i)$.)
- (60) Prove that normal convergence in an open set Ω is equivalent to uniform convergence on every closed disk in Ω .
- (61) Let $(f_n)_1^{\infty}$ be a sequence of continuous functions defined in some open set Ω , and let $γ$ be a piecewise smooth path in $Ω$. Suppose that $(f_n)^\infty$ converges normally in $Ω$. Demonstrate that $\lim_{n\to\infty} f_n$ is continuous in Ω and that

$$
\lim_{n\to\infty}\int_{\gamma}f_n(z)\,dz=\int_{\gamma}\lim_{n\to\infty}f_n(z)\,dz\,.
$$

(62) Let $(f_n)_1^{\infty}$ be a sequence of continuous functions defined in some open set Ω , and let γ be a piecewise smooth path in Ω . Suppose that $\sum_{n=1}^{\infty} f_n$ converges normally in Ω . Demonstrate that $\sum_{n=1}^{\infty} f_n$ is continuous in Ω and that

$$
\int_{\gamma} \sum_{n=1}^{\infty} f_n(z) dz = \sum_{n=1}^{\infty} \int_{\gamma} f_n(z) dz.
$$

- (63) Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions that are continuous in $\Omega \subset \mathbb{C}$. Assume that $(f_n)_{n=1}^{\infty}$ converges normally in Ω to some function f. Suppose $(z_n)_{n=1}^{\infty}$ is a sequence of points in Ω that converges to a point $a \in \Omega$. Prove that the sequence $(f_n(z_n))_{n=1}^{\infty}$ converges to $f(a)$. Suppose that in addition, each $f_n \in \mathcal{H}(\Omega)$. Demonstrate that for each $k \in \mathbb{N}$, $(f_n^{(k)})_1^{\infty}$ converges to $f^{(k)}(a)$.
- (64) Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions that are holomorphic in $D := D(a; r)$ and continuous in \overline{D} . Suppose that φ is continuous on $C := \partial D = C(a; r)$, that $(f_n)_{n=1}^{\infty}$

converges pointwise to φ on C, and that $\int_C |f_n(\zeta) - \varphi(\zeta)||d\zeta| \to 0$ as $n \to \infty$. Prove that $(f_n)_{n=1}^{\infty}$ converges normally in D to the function f given by

$$
f(z) := \frac{1}{2\pi i} \int_C \frac{\varphi(\zeta)}{\zeta - z} d\zeta.
$$

- (65) Prove that $\sum_{n=0}^{\infty} \cos(nz)/n!$ converges normally in \mathbb{C} , and find the entire function given by this sum.
- (66) Given $t > 0$, verify that the series $\sum_{n=0}^{\infty} (1-z)^n (1+z)^{-n}$ converges absolutely and uniformly on the set $A_t := \{z \in \mathbb{C} \mid \Re(\tilde{z}) \ge t, |z| \le 1/t\}$. Conclude that the series converges absolutely and normally in the right half-plane H, and find its sum there. Show that the series fails to converge at every other $z \in \mathbb{C} \setminus (\mathbb{H} \cup \{-1\}).$
- (67) Given $\lambda \in \mathbb{C}$, consider the doubly infinite power series $\sum_{-\infty}^{+\infty} \lambda^{|n|} z^n$. Find the set Λ of all λ for which this series has a non-empty annulus of convergence. For each $\lambda \in \Lambda$, identify the function represented by the associated series.
- (68) Let $f \in \mathcal{H}(\Omega) \cap \mathcal{C}(\overline{\Omega})$. Fix $a, b \in \mathbb{C}$ and $R > 0$. Assume that $\Omega \cap D(0; R) \neq \emptyset$. Prove that there is a point $\zeta \in \partial \Omega \cap D[0;r]$ such that $|af(\zeta)+b| = \sup_{z \in \Omega \cap D(0;R)} |af(z)+b|$.
- (69) Let Ω be a bounded plane domain. Suppose that $f \in \mathcal{H}(\Omega) \cap \mathcal{C}(\overline{\Omega})$ with $|f(z)| = 1$ for each $z \in \partial\Omega$. Prove that either f is a constant function or there exists a point $a \in \Omega$ such that $f(a) = 0$
- (70) Let Ω be a bounded plane domain. Suppose that $f \in \mathcal{H}(\Omega) \cap \mathcal{C}(\Omega)$ with $|f(z)| = 1$ for each $z \in \partial\Omega$. Prove that either f is a constant function or that $f(\Omega) = \mathbb{D}$. (Hint: Given $b \in \mathbb{D}$, consider $g := T \circ f$ where $T(w) = (w - b)/(1 - \overline{b}w)$.)
- (71) Let $f \in \mathcal{H}(\mathbb{D}) \cap \mathcal{C}(\overline{\mathbb{D}})$. Suppose there are $A, B \geq 0$ such that for all $z \in \mathbb{T}$,

$$
\Im \mathfrak{m}(z) \ge 0 \implies |f(z)| \le A \quad \text{and} \quad \Im \mathfrak{m}(z) \le 0 \implies |f(z)| \le B \, .
$$

Demonstrate that $|f(0)| \le \sqrt{AB}$. (Suggestion: consider also $g(z) := f(-z)$.)

(72) Let $f \in \mathcal{H}(\Omega) \cap \mathcal{C}(\overline{\Omega})$ with Ω unbounded. Suppose that

$$
\lim_{\Omega \ni z \to \infty} f(z) = 0 \, .
$$

Determine whether or not there exists a point $\zeta \in \partial \Omega$ such that $|f(\zeta)| = \sup_{z \in \Omega} |f(z)|$. (Either prove that this is so, or provide a counter-example.) What happens if we replace the condition (\star) with $\lim_{\Omega \ni z \to \infty} |f(z)| = L$ for some $L > 0$? What are the corresponding results when we replace "sup" with "inf"?

- (73) Let $f \in \mathcal{H}(\mathbb{D})$ with $|f'| \leq 1$ and $f(0) = f'(0) = 0$. Demonstrate that for all $z \in \mathbb{D}$, $|f(z)| \leq |z|^2/2$. For which functions does equality hold at some z? What is the generalization of this when $f(0) = f'(0) = f''(0) = \cdots = f^{(n)}(0) = 0$ and $|f^{(n)}| \le 1$?
- (74) Let f be holomorphic in a region Ω with $f(a) = 0$ for some point $a \in \Omega$. Suppose $D(a; d) \subset \Omega$ and $f \not\equiv 0$ in $D(a; d)$. Prove that there is a unique $m \in \mathbb{N}$ and a unique $F \in \mathcal{H}(\Omega)$ with $F(a) \neq 0$ and such that for all $z \in \Omega$, $f(z) = (z-a)^m F(z)$. Conclude that there exists $0 < r < d$ such that for all $0 < |z - a| < r$, $f(z) \neq 0$.
- (75) Read pp.134-136 in Ahlfors and do problems $\#$ 'd 1-5 on p.136.
- (76) State and prove a Schwarz Lemma type result for holomorphic $\mathbb{D} \stackrel{f}{\to} \overline{\mathbb{H}}$ with $f(0) = 1$.
- (77) Let $f \in \mathcal{H}(\mathbb{D}) \cap \mathcal{C}(\bar{\mathbb{D}})$. Suppose that for all $z \in \mathbb{T}$ with $\mathfrak{Sm}(z) \geq 0$, $f(z) = 0$. Prove that $f \equiv 0$. (Hint: Consider $f(-z)$ along with $f(z)$. Use HW#(84).)
- (78) Let f be holomorphic and bounded in $S := \{z : |\Re(z)| < 1, |\Im(z)| < 1\}$ (i.e., the open 'unit' square centered at the origin). Let E denote one of the closed edges of ∂S (so E includes its endpoints). Suppose that for all $w \in E$,

$$
\lim_{S\ni z\to w}f(z)=0.
$$

Prove that $f \equiv 0$. What can you say if f is not assumed to be bounded?

(79) Let $A \subset \mathbb{C}$. Recall that A' denotes the set of accumulation points of A. Verify that

 $z \in A' \iff \exists (a_n)_1^{\infty} \text{ in } A \setminus \{z\} \text{ with } a_n \to z.$

Deduce that A' is always a closed set (regardless of A).

- (80) Let $A \subset \Omega$ with Ω an open subset of $\mathbb C$. Demonstrate that A is discrete in Ω if and only if for each $z \in \Omega$ there exists an $r > 0$ such that $D(z; r) \cap A \subset \{z\}.$
- (81) Let $A \subset \Omega$ with Ω an open subset of $\mathbb C$. Suppose that A is discrete in Ω . Prove that: (a) $\Omega \setminus A$ is open.
	- (b) If Ω is a domain (i.e., an open connected set), then so is $\Omega \setminus A$.
	- (c) If K is a compact subset of Ω , then $A \cap K$ is a finite set.
- (82) Let $\mathbb{C} \supset \Omega \stackrel{f}{\to} \mathbb{C}$ and $\mathbb{C} \supset \Omega' \stackrel{g}{\to} \mathbb{C}$ be non-constant holomorphic maps with $\Omega' \supset \Omega$. Suppose that the multiplicity of f at a is m, and the multiplicity of q at $b := f(a)$ is n. Prove that the multiplicity of $q \circ f$ at a is mn.
- (83) Does there exist a non-constant $f \in \mathcal{H}(\mathbb{H})$ with $f(1/n) = 2$ for each $n \in \mathbb{N}$? Either produce an example of such a function, or prove that none exists.
- (84) Let f, g be functions that are both holomorphic in some domain Ω . Suppose that for all $z \in \Omega$, $f(z)g(z) = 0$. Verify that either $f \equiv 0$ in Ω or $g \equiv 0$ in Ω .
- (85) Let $f \in \mathcal{H}(\mathbb{D}) \cap \mathcal{C}(\overline{\mathbb{D}})$ be non-constant. Suppose that for all $z \in \mathbb{T} = \partial \mathbb{D}$, $|f(z)| = 1$. Demonstrate that f has the form

$$
\forall z \in \mathbb{D}, \quad f(z) = c \prod_{i=1}^{k} \left(\frac{z - a_i}{1 - \bar{a}_i z} \right)^{m_i}
$$

where $c \in \mathbb{T}, a_1, \ldots, a_k \in \mathbb{D}$ are distinct, and $m_1, \ldots, m_k \in \mathbb{N}$. (Recall HW#s(69,70).)

- (86) Suppose f is entire and non-constant and satisfies $f(\mathbb{T}) \subset \mathbb{T}$. Prove that there exists $c \in \mathbb{T}$ and $m \in \mathbb{N}$ such that for all $z \in \mathbb{C}$, $f(z) = c z^m$.
- (87) Suppose that the power series $\sum_{n=0}^{\infty} c_n z^n$ has radius of convergence 1. Let f denote the holomorphic map given by this series. Prove that there exists a point $\zeta \in \mathbb{T}$ such that there is no $r > 0$ with the property that f can be extended to a holomorphic map in $\mathbb{D} \cup D(\zeta; r)$.
- (88) Read pp.30-32 in Ahlfors and do problems 2,4,5,6 on pp.32-33.
- (89) Prove the Factor Theorem for Poles: Let f be holomorphic in $\Omega \setminus \{a\}$. Suppose that f has a pole at a. Then there is a unique $m \in \mathbb{N}$ and a unique $F \in \mathcal{H}(\Omega)$ with $F(a) \neq 0$ and such that for all $z \in \Omega$, $f(z) = F(z)/(z - a)^m$.
- (90) Read pp.124-129 in Ahlfors and do problems 2-6 on p.130.
- (91) Suppose that f and q have poles of orders m and n respectively at the point $z = a$. Provide as much information as you can about the nature of the singularity at $z = a$ for the maps: (i) $f + g$, (ii) fg , (iii) f/g .
- (92) Suppose f has a pole of order m at $z = a$. Confirm that f' has a pole of order $m + 1$ at $z = a$.
- (93) Let $f \in \mathcal{H}(\mathbb{C}_*)$. Suppose there exists an $M > 0$ such that

$$
\forall z\in\mathbb{C}_*,\quad |f(z)|\leq M|z||\operatorname{Log}(z)|\,.
$$

Prove that $f = 0$.

- (94) Let $f \in \mathcal{H}(D_*(a; r))$ for some $a \in \mathbb{C}$ and $r > 0$. For those $z \in D_*(a; r)$ with $f(z) \neq 0$, define $q(z) := 1/f(z)$. Discuss the holomorphicity of q. (Where is q holomorphic? Does g have any isolated singularities? If so, classify each of them.)
- (95) Let f be non-constant and meromorphic in $\mathbb C$. Suppose that for all $z \in \mathbb T = \partial \mathbb D$, $|f(z)| = 1$. Demonstrate that f has the form

$$
f(z) = c \prod_{i=1}^{k} \left(\frac{z - a_i}{1 - \bar{a}_i z} \right)^{m_i} \prod_{j=1}^{l} \left(\frac{1 - \bar{b}_j z}{z - b_j} \right)^{n_j}
$$

where $c \in \mathbb{T}, a_1, \ldots, a_k \in \mathbb{D}$ are the distinct zeroes of f in \mathbb{D} with respective multiplicities $m_1, \ldots, m_k \in \mathbb{N}$, and $b_1, \ldots, b_l \in \mathbb{D}$ are the distinct poles of f in $\mathbb D$ with their multiplicities $n_1, \ldots, n_l \in \mathbb{N}$. (If f is zero free in \mathbb{D} , then the first product is missing; if f has no poles in \mathbb{D} , then the second product is missing.)

- (96) Let f be meromorphic in all of $\mathbb C$. Suppose there exist circles K and K' on $\mathbb C$ such that $f(K) \subset K'$. Prove that f is in fact a rational function.
- (97) Let $f \in \mathcal{H}(\Omega)$. Suppose that g is a branch of the logarithm of f in Ω . Prove that $g \in \mathcal{H}(\Omega)$.
- (98) Let R be a rational function. State and prove necessary and sufficient conditions for there to be a holomorphic branch of the logarithm of R in some domain Ω .
- (99) For which of the following sets A does there exist a holomorphic branch of the logarithm of $z^{-2}(z+1)^{-1}(z^2+1)$ in $\Omega := \mathbb{C} \setminus A$? (i) $A := (-\infty, -1] \cup [0, \infty) \cup \{iy :$ $y \in \mathbb{R}, |y| \ge 1$, (ii) $A := (-\infty, -1] \cup \{iy : \in \mathbb{R}, |y| \le 1\}$, (iii) $A := (-\infty, 0] \cup \{e^{it} :$ $-\pi/2 \le t \le \pi/2$, (iv) $A := \{e^{it} : \pi/2 \le t \le \pi\} \cup \{iy : y \le 0\}.$

Let $p \in \mathbb{N}$ (with $p \geq 2$) and $\Omega \stackrel{f}{\rightarrow} \mathbb{C}$ be continuous. We call $\Omega \stackrel{g}{\rightarrow} \mathbb{C}$ a branch of the p^{th} -root of f in Ω provide g is continuous and for all $z \in \Omega$, $[g(z)]^p = f(z)$ (briefly, $g^p = f$ in Ω).

(100) Let $f \in \mathcal{H}(\Omega)$. Suppose that g is a branch of the pth-root of f in Ω . Prove that $q \in \mathcal{H}(\Omega)$.

- (101) Let f be a quadratic polynomial with distinct zeroes a, b .
	- (a) Show that the existence of a square root of f in Ω implies that $\{a, b\} \cap \Omega = \emptyset$. What if $a = b$?
	- (b) Demonstrate that the hypothesis

 \forall PSL Γ in Ω , $n(\Gamma; a) = n(\Gamma; b)$

guarantees the existence of a square root of f in Ω .

(c) Prove that the existence of a square root of f in Ω implies that

 \forall PSL Γ in Ω , $n(f \circ \Gamma; 0) \in 2\mathbb{Z}$.

(Hints for (b): First look at $f(z) = z^2 - 1$. Explain why there is a square root S of T where $T(z) := (z - a)/(z - b)$. Then examine $g(z) = (z - b)S(z)$.

- (102) For which of the following does there exist a holomorphic branch of the pth -root of f in the domain $\Omega := \mathbb{C} \backslash A$? (i) $p = 3$, $f(z) := z(z-1)(z+1)$, $A := (-\infty, -1] \cup [0, 1]$; (ii) $p = 2, f(z) = z^2 - 2z, A := [0, 2];$ (iii) $p = 4, f(z) := z^3 + z, A := (-\infty, 0] \cup [1, +\infty) \cup$ ${e^{it} : -\pi/2 \le t \le \pi/2};$ (iv) $p = 3$, $f(z) := z^3 + z^2 + z + 1$, $A := {e^{it} : \pi/2 \le t \le 3\pi/2}.$
- (103) Explain why there is a branch g of the square root of $f(z) := (z 1)(z 2)(z + 2)$ in the domain $\Omega := \mathbb{C} \setminus ((-\infty, -2] \cup [1, 2])$ with $g(0) = 2$. Find a formula for g in terms of *elementary* functions. (NB The function $z \mapsto \sqrt{(z-1)(z-2)(z+2)}$ does not meet the requirements, because it is not even continuous in Ω .)
- (104) Let $f \in \mathcal{H}(\Omega)$. State a necessary condition for there to be a holomorphic branch of the p^{th} -root of f in domain Ω .
- (105) Let f be an entire function. Suppose that $g(z) = \sqrt{f(z)}$ also defines an entire function (where \sqrt{w} denotes the principal value of the square root of w). What can you deduce about f?
- (106) Read pp.1-136 in Ahlfors and do problems 1-4 on p.133.
- (107) Let Ω be a bounded plane domain containing the origin. Suppose $\Omega \stackrel{f}{\rightarrow} \Omega$ is holomorphic with $f(0) = 0$ and $f'(0) = 1$. Prove that for all $z \in \Omega$, $f(z) = z$. (Hints: It suffices to show that $f(z) = z$ for all $z \in \Delta$ where $\Delta := D(0; r)$ and $0 < r <$ dist $(0, \partial\Omega)$. Look at the Maclaurin series for f, say $f(z) = z + a_m z^m + \dots$ Use Cauchy estimates to find a bound for $|a_m|$. Assume that $a_m \neq 0$ and examine the Maclaurin series for the k-fold composition $f \circ f \circ \ldots \circ f$ and consider 'what happens' as $k \to \infty$.)

Department of Mathematics, University of Cincinnati, OH 45221 E-mail address: David.Herron@math.UC.edu