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COMPLEX ANALYSIS HOMEWORK PROBLEMS

WINTER QUARTER 2010

Please provide plenty of details! Pix are definitely kewl (⌣̈).

(1) Please be sure to read Ahlfors and look at (and work) the suggested problems; see
last quarter’s web page. For this quarter, for now, start reading Chapter 4.

(2) You can also look at Palka’s book. For starters, his §1 of Chapter 4 is a great
discussion of paths. The rest of his Chapter 4 is good too, as are his problems on
pp.136-139.

Recall that when f is complex differentiable at a, Tf,a(z) := f(a)+f ′(a)(z−a) is the
complex linear first-order approximation for f near z = a. It gives the ‘best’ complex
linear approximation for f in the sense given in the next problem. Note that we well
understand the geometry of the complex linear map z 7→ Tf,a(z) (right?), and this
knowledge is useful in studying the geometry of the map f , at least near a when f is
differentiable at a.

(3) Suppose that f is differentiable at a. Let T := Tf,a. Demonstrate that for any
complex linear map L, there is a δ > 0 such that for all z ∈ D(a; δ),

|f(z) − L(z)| ≥ |f(z) − T (z)| .

(4) Suppose C
ρ→ C is given by ρ(z) := cz̄ + d for some c, d ∈ C. Determine when ρ is

reflection in some line, and when so, find the line.

(5) Suppose Ĉ
ρ→ Ĉ is given by ρ(z) := (az̄+b)/(cz̄+d) for some a, b, c, d ∈ C. Determine

when ρ is reflection in some circle, and when so, find the circle.

(6) (a) Prove that

∀ z, w ∈ C , χ(z, w) ≤ 2|z − w| .

Deduce that (C, |·|) id→ (C, χ) is continuous (in fact, Lipschitz continuous).

(b) Prove that for each R > 0,

∀ z, w ∈ C , |z|, |w| ≤ R =⇒ χ(z, w) ≥ 2|z − w|/(1 + R2) .

Deduce that (C, χ)
id→ (C, |·|) is continuous.

(c) Explain why (C, |·|) id→ (C, χ) is a homeomorphism.

Date: March 8, 2010.
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(7) Let C
L→ C be a non-constant complex linear map. Define Ĉ

L̂→ Ĉ by

L̂(z) :=

{

L(z) when z ∈ C ,

∞ when z = ∞ .

Prove that L̂ is continuous at ∞. (Suggestions: Start by showing that

χ(z,∞) < δ < 1 =⇒ |z| > 1/δ and |w| > R =⇒ χ(w,∞) < 2/R .

Assume L(z) = az + b. Given ε > 0, show δ := min{1, 1

2

|a|
|b| + 1

,
|a|ε
4

} “works”.)

Verify that L̂ is a self-homeomorphism of Ĉ onto itself.

(8) Let C
P→ C be a non-constant complex polynomial, say

P (z) := a0 + a1z + · · ·+ an−1z
n−1 + zn .

Define Ĉ
p̂→ Ĉ by P̂ (z) :=

{

P (z) when z ∈ C

∞ when z = ∞ .
Prove that P̂ is continuous at ∞.

(Suggestions: Use the estimates from the previous problem. Note that

|z| > 2n max{|a0|, |a1|, . . . , |an−1|, 1} =⇒
∣

∣

∣
1 +

an−1

z
+ · · ·+ a0

zn

∣

∣

∣
≥ 1

2
.)

Explain why Ĉ
P̂→ Ĉ is continuous. Do you see any way to show that P̂ is surjective?

Why is this last question easy to answer for polynomials R → R?

(9) Repeat the above problem for a complex rational function, say R := P/Q where P

and Q are complex polynomials. You must determine how to define R̂ at ∞ and at
each zero of q in order to obtain a continuous map R̂ : Ĉ → Ĉ.

(10) Let D
f→ C be a continuous map. Given z = x + iy ∈ D, let γz := [0, x] + [x, z];

thus γz is the piecewise smooth path in D with trajectory [0, x]∪ [x, z]—the union of
a horizontal line segment and a vertical line segment (of course either of these may
reduce to a single point, e.g., if x = 0 or y = 0). For z ∈ D, define

F (z) :=

∫

γz

f(ζ) dζ .

(a) Demonstrate that F is continuous in D.

(b) Calculate the partial derivative
∂F

∂y
with your ‘bare hands’. That is, find

lim
h→0

F (z + ih) − F (z)

h
where z ∈ D and h ∈ R .

(Except for the Fundamental Theorem of Calculus, please prove all so-called Funda-
mental Theorems that you use.)

(c) Is F holomorphic in D? Prove, or disprove, your answer.

(11) Derive the Complex Green’s Theorem from the ‘usual’ Green’s Theorem (both for
rectangles): Suppose f ∈ C1(Ω) and a standard rectangle R lies in Ω. Then

∫

∂R

f(z) dz = 2i

∫∫

R

∂f

∂z̄
dxdy .
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(12) Let p, q be C1 functions in some rectangle Ω := {(x, y) : |x − a| < r, |y − b| < s}.
Suppose that

∀ z ∈ Ω ,
∂p

∂y
(z) =

∂q

∂x
(z) .

Prove that there is an F ∈ C2(Ω) with ∇F = (p, q) (i.e., Fx = p and Fy = q) in Ω.
(Hint: You are asked to produce an F with dF = p dx + q dy. For (x, y) ∈ Ω define

F (x, y) :=

∫ x

a

p(t, b) dt +

∫ y

b

q(x, s) ds =

∫

β(x,y)

p dx + q dy.

for the broken-line-segment path β(x, y) := [(a, b), (x, b)] + [(x, b), (x, y)]. What does
Green’s Theorem say about

∫

∂R
p dx + q dy for any standard rectangle R ⊂ Ω, and

what does this say about F (x, y)?)

(13) Explain why the conclusion of the above problem is also valid if Ω is an open disk
or an open ellipse or an open half-plane. What is the crucial feature needed to make
the proof work?

(14) Let Ω be an open rectangle (or an open disk or ellipse or half-plane). Suppose that
f is holomorphic and C1 in Ω. Prove that f has a holomorphic anti-derivative in Ω.
(Hint: Use HW#(12) with p dx + q dy := f dz.) Do not use Cauchy’s Theorem!

(15) Suppose that C
f→ C is continuous and is such that for any piecewise C1 path γ in C,

∫

γ

f(ζ) dζ depends only on the endpoints of γ .

Define a function C
F→ C as follows: for z ∈ C put F (z) :=

∫

[0,z]

f(ζ) dζ .

(Recall that the line segment [0, z] from the origin to z can be parameterized via
[0, 1] ∋ t 7→ tz.) Prove that F is entire and that F ′ = f . Do not use Cauchy’s
Theorem!

(16) Let Γ be the loop given by Γ(t) := 2 cos(t) + i sin(t) for 0 ≤ t ≤ 2π. Evaluate

∫

Γ

dz

z
.

(Hint: Compare to
∫

T
dz/z.)

(17) Calculate

∫

|z|=2

dz

z2 − 1
.

(Hint: Where does (z2 − 1)−1 =
1/2

z − 1
− 1/2

z + 1
have a holomorphic anti-derivative?)

(18) Confirm that

∫

C(a;r)

dζ

ζ − z
=

{

2πi if |z − a| < r ,

0 if |z − a| > r .

(Hint: Find a region in which
1

ζ − z
− 1

ζ − a
has a holomorphic anti-derivative.)

(19) Let f ∈ H(Ω) ∩ C1(Ω) with |f − 1| < 1. Prove that for every piecewise smooth loop
Γ in Ω,

∫

Γ

f ′(z)

f(z)
dz = 0 .
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(20) Let f ∈ H(Ω) ∩ C1(Ω). Show that for each piecewise smooth loop Γ in Ω,
∫

Γ

f(z)f ′(z) dz

is purely imaginary.

(21) Let P be a complex polynomial. Evaluate

∫

C(a;r)

P (z) dz̄ .

(22) Let f(z) = z2. Calculate

∫ 2π

0

f(2+ eiθ) dθ (and confirm that it is non-zero). Doesn’t

Cauchy’s Theorem say that

∫

|z−2|=1

f(z) dz = 0 ?? Explain!

(23) Evaluate

∫

T

|z − 1| |dz| .

(24) Let γ be a piecewise smooth path and |γ| f→ C be continuous. Prove that
∣

∣

∣

∣

∫

γ

f(z) dz

∣

∣

∣

∣

≤ max
z∈|γ|

|f(z)| · ℓ(γ) .

(25) Let [0, π]
γ→ C be the path γ(t) := exp(1 + it). Prove that

∣

∣

∣

∣

∫

γ

dz

Log z

∣

∣

∣

∣

≤ e Log(π +
√

π2 + 1) .

(26) Find a function f that has the following properties:

• f is C1 in some open set Ω with D̄ ⊂ Ω.

•
∫

T

f(z) dz = 0 .

• f fails to be holomorphic at any point of Ω.

(27) Suppose that f is continuous in D and for all 0 < r < 1,

∫

|z|=r

f(z) dz = 0 .

Must f be holomorphic in D? Must either f or f̄ be holomorphic in D?

(28) Suppose f ∈ H(C∗). Let S be the unit square S = {z : | ℜe(z)| ≤ 1, | ℑm(z)| ≤ 1}.
Use Cauchy’s Theorem (in a disk—or in several disks) to demonstrate that

∫

∂S

f(z) dz =

∫

T

f(z) dz .

(29) Here are two more ways to calculate the integral in HW#(18) (so don’t use your
solution from there!). First, as in the problem directly above, use Cauchy’s Theorem
(in a disk—or in several disks). This is easy when |z−a| > r. For the case |z−a| < r,
explain why

∫

C(a;r)

dζ

ζ − z
=

∫

C(z;r−|z−a|)

dζ

ζ − z
= 2πi .

Second, define C \ C(a; r)
I→ C by I(z) :=

∫

C(a;r)

dζ

ζ − z
.
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Examine the difference quotient

I(z + h) − I(z)

h
and verify that

lim
h→0

∣

∣

∣

∣

I(z + h) − I(z)

h
−

∫

C(a;r)

dζ

(ζ − z)2

∣

∣

∣

∣

= 0 .

(Be sure to give all the details!) Explain why I is holomorphic in C\C(a; r) and give
I ′(z). Using your formula for I ′, show that I ′ is some constant. Use this information
to calculate I(z). (What are I(a) and lim

z→∞
I(z)?)

(30) Suppose f is holomorphic in some open set Ω that contains the closed disk D[a; r].
Let z be a fixed (but arbitrary) point in the open disk D(a; r). Using Cauchy’s
Integral Formula (for the circle C(a; r)), calculate

f(z + h) − f(z)

h
and verify that

lim
h→0

∣

∣

∣

∣

f(z + h) − f(z)

h
− 1

2πi

∫

C(a;r)

f(ζ)

(ζ − z)2
dζ

∣

∣

∣

∣

= 0 .

(Be sure to give all the details!) What can you now conclude?

(31) Let γ be a piecewise smooth path in the plane C. Suppose |γ| ϕ→ C is continuous.
Define Φ : C \ |γ| → C by

Φ(z) :=

∫

γ

ϕ(ζ)

ζ − z
dζ for z ∈ C \ |γ| .

In class we proved a fancy Proposition about Φ. Here we’ll do less, but with our
‘bare hands’. By looking at a difference quotient (the same argument as for the
above problem), it is straightforward to show that Φ ∈ H(C \ |γ|) with

Φ′(z) =

∫

γ

ϕ(ζ)

ζ − z

2

dζ for z ∈ C \ |γ| .

In a similar way, prove that Φ′ ∈ H(C \ |γ|) with

Φ′′(z) = 2

∫

γ

ϕ(ζ)

(ζ − z)3
dζ for z ∈ C \ |γ| .

(32) Calculate the following integrals (using HW#(18) and partial fractions):
∫

C(0;4)

dζ

(ζ − 1)(ζ − 2i)
,

∫

C(1;5)

ζ2 + ζ

(ζ − 2i)(ζ + 3)
dζ .

(33) Let f ∈ H(Ω) and suppose D[a; r] ⊂ Ω. Confirm that

f(a) =
1

2π

∫ 2π

0

f(a + reiθ) dθ .

Derive a similar formula for f (n)(a).



6 COMPLEX ANALYSIS HOMEWORK PROBLEMS WINTER QUARTER 2010

(34) Calculate the following integrals:
∫

T

ez

z
dz ,

∫

T

ez

zn
dz ,

∫

C(0;2)

dz

z2 + 1
,

∫

C(0;2)

zn(1 − z)m dz (m, n ∈ Z) .

(35) Calculate the following integrals, assuming that r 6= |a|:
∫

C(0;r)

|dz|
|z − a|2 ,

∫

C(0;r)

|dz|
|z − a|4 .

(36) Let K be any line or circle in C. Suppose that C ⊃ Ω
f→ C is continuous with

f ∈ H(Ω \ K). Prove that f ∈ H(Ω). (Thus lines and circles are removable sets for
holomorphicity.)

(37) Let f be holomorphic in D[0; R] with |f | ≤ M on C(0; R). Fix r ∈ (0, R). Give a
uniform upper bound for |f (n)(z)| that is valid for all z ∈ D[0; r].

(38) Let f be holomorphic in D. Suppose that for all z ∈ D, |f(z)| ≤ 1/(1 − |z|). Find
the best upper bound for |f (n)(0)| that is obtainable by using a Cauchy estimate.

(39) Let f ∈ H(Ω). Fix a point a ∈ Ω. Prove that the derivatives f (n) cannot satisfy
|f (n)(a)| > n! nn (for all n ∈ N). Formulate, and prove, a sharper theorem with a
similar result.

(40) Prove that an entire function whose real part is always non-negative must be a
constant. Conclude that any entire function that maps the plane into some half-
plane must be a constant.

(41) Suppose C
f→ C is a non-constant entire function. Demonstrate that f(C) is dense in

C. (That is, f(C) = C; i.e., if U ⊂ C is any non-empty open set, then U ∩f(C) 6= ∅.)
(42) Let f be an entire function. Suppose there are constants k > 0 and R > 0 and some

n ∈ N such that for all z ∈ C, |z| ≥ R =⇒ |f(z)| ≤ k|z|n. Prove that f must be a
polynomial. What is the maximum possible degree of f?

(43) Prove that a complex polynomial P of degree n can be factored in the form

P (z) := b (z − a1)(z − a2) . . . (z − an) for some b, a1, a2, . . . , an ∈ C .

Deduce that a complex polynomial of degree n has exactly n zeroes (provided the
zeroes are counted according to multiplicity).

(44) Let P be a (complex) polynomial. Fix a ∈ C, r > 0 and assume that for all
z ∈ C(a; r), P (z) 6= 0. Calculate

∫

C(a;r)

P ′(z)

P (z)
dz .

(45) Let R be a (complex) rational function. Fix a ∈ C, r > 0 and assume that for all
z ∈ C(a; r), R(z) is defined with R(z) 6= 0. Calculate

∫

C(a;r)

R′(z)

R(z)
dz .

(46) In Ahlfors, do the following problems on p.37: #’s 1-5.
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(47) Prove that for each z ∈ D, limn→∞ zn = 0. Demonstrate that, however, the function
sequence (zn)∞1 does not converge uniformly to 0 in D. What can you say about its
convergence on a compact subset of D?

(48) Demonstrate that a uniform limit of continuous functions is continuous.

(49) Let γ be a piecewise smooth path in C. Let (fn)∞1 be a sequence of continuous
functions fn : |γ| → C. Suppose that (fn)∞1 converges uniformly on |γ|. Prove that

lim
n→∞

∫

γ

fn(z) dz =

∫

γ

(

lim
n→∞

fn(z)
)

dz .

(50) Prove the Limit Comparison Test :
Let (an)∞1 , (bn)∞1 be sequences of positive real numbers. Define

L := lim sup
n→∞

an

bn

and ℓ := lim inf
n→∞

an

bn

.

Then:
(a) If L < ∞ and

∑∞
1 bn converges, then so does

∑∞
1 an.

(b) If ℓ > 0 and
∑∞

1 an converges, then so does
∑∞

1 bn.
(c) Deduce that when 0 < ℓ and L < ∞, the series

∑∞
1 an and

∑∞
1 bn

either both converge or both diverge.

Here’s an easier version to ‘warm-up’ with. Suppose that L := limn→∞(an/bn) exists
in [0, +∞]. Show that when L < ∞, convergence of

∑∞
1 bn implies convergence

of
∑∞

1 an; and, when L > 0, convergence of
∑∞

1 an implies convergence of
∑∞

1 bn.
Deduce that 0 < L < ∞ implies that the series

∑∞
1 an and

∑∞
1 bn either both

converge or both diverge.

(51) Prove the Geometric Series Test :

The infinite series
∞

∑

0

zn:
(a) converges to (1 − z)−1 for each z ∈ D ;

(b) converges, in Ĉ, to ∞ for each z ∈ C \ D̄ ;
(c) does not converge for any z ∈ T.

(52) Prove that, in its disk of convergence, a power series is continuous. (Do not use the
fact that power series are holomorphic in their disk of convergence!)

(53) In Ahlfors, do the following problems on p.41: #’s 1-9.

(54) Determine the set of all z ∈ C with

∞
∑

n=1

zn

1 + z2n
convergent.

Discuss where we do, or do not, get absolute and/or uniform convergence.

(55) Let R := P/Q be a complex rational function with P and Q complex polynomials
having no common zeroes. Let Z := {z ∈ C : Q(z) = 0} and put Ω := C \ Z. Prove
that for each a ∈ Ω, the radius of convergence for the Taylor series for R centered
at the point a is precisely dist(a, Z). (Suggestion: Look first at the special case
R(z) = 1/(z− b) where b is a point in Z with |a− b| = dist(a, Z).) Please do not use
Taylor’s Theorem here, in any way.

(56) Let h be any holomorphic branch of the logarithm function in Ω := C\ [0, +∞). Find
the Taylor series for h with center a := 1 + i. Prove that the radius of convergence
R for this power series satisfies R > dist(a, ∂Ω). Find a point z ∈ Ω ∩ D(a; R) such
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that at z the series converges to something different from h(z). Can you determine
exactly what the series does converge to in D(a; R)?

(57) Let C ⊃ Ω
f→ C be continuous. Let [0, 1]

γn−→ Ω be piecewise smooth paths that
converge uniformly to γ. Assume that γ is also a piecewise smooth path and that
γ̇n → γ̇ uniformly. (How much of these latter hypotheses are actually needed? Check
out http://www.mathcs.org/analysis/reals/funseq/uconv.html) Prove that

lim
n→∞

∫

γn

f(z) dz =

∫

γ

f(z) dz .

(58) Let (ϕn)∞1 be a sequence of continuous maps defined on a compact set K ⊂ C.
Suppose that for each z ∈ K, (|ϕn(z)|)∞1 is a decreasing sequence that converges
to zero. Prove that (ϕn)∞1 converges uniformly to zero on K. (Hint: Given ε > 0,
consider the sets Kn := {z ∈ K | |ϕn(z)| ≥ ε}. Explain why

⋂

n Kn = ∅, and use
this to assert the existence of an N ∈ N with KN = ∅. Recall that a decreasing
sequence of non-empty compact sets has a non-empty intersection, right?) Can you
find an example of a sequence (ϕn)∞1 of continuous maps on a compact set K ⊂ C

that converges to zero but not uniformly?

(59) Let (fn)∞1 be a sequence of continuous maps defined on an open set Ω ⊂ C. Suppose
that

∑∞
1 |fn| converges pointwise in Ω to a continuous function g. Prove that

∑∞
1 fn

converges normally in Ω. (Hint: Use the previous problem with ϕn := g − ∑n
1 |fk|.)

(60) Prove that normal convergence in an open set Ω is equivalent to uniform convergence
on every closed disk in Ω.

(61) Let (fn)∞1 be a sequence of continuous functions defined in some open set Ω, and let
γ be a piecewise smooth path in Ω. Suppose that (fn)∞1 converges normally in Ω.
Demonstrate that limn→∞ fn is continuous in Ω and that

lim
n→∞

∫

γ

fn(z) dz =

∫

γ

lim
n→∞

fn(z) dz .

(62) Let (fn)∞1 be a sequence of continuous functions defined in some open set Ω, and let
γ be a piecewise smooth path in Ω. Suppose that

∑∞
n=1 fn converges normally in Ω.

Demonstrate that
∑∞

n=1 fn is continuous in Ω and that

∫

γ

∞
∑

n=1

fn(z) dz =

∞
∑

n=1

∫

γ

fn(z) dz .

(63) Let (fn)∞n=1 be a sequence of functions that are continuous in Ω ⊂ C. Assume that
(fn)∞n=1 converges normally in Ω to some function f . Suppose (zn)∞n=1 is a sequence
of points in Ω that converges to a point a ∈ Ω. Prove that the sequence (fn(zn))∞n=1

converges to f(a). Suppose that in addition, each fn ∈ H(Ω). Demonstrate that for

each k ∈ N, (f
(k)
n )∞1 converges to f (k)(a).

(64) Let (fn)∞n=1 be a sequence of functions that are holomorphic in D := D(a; r) and
continuous in D̄. Suppose that ϕ is continuous on C := ∂D = C(a; r), that (fn)∞n=1
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converges pointwise to ϕ on C, and that
∫

C
|fn(ζ)− ϕ(ζ)||dζ | → 0 as n → ∞. Prove

that (fn)∞n=1 converges normally in D to the function f given by

f(z) :=
1

2πi

∫

C

ϕ(ζ)

ζ − z
dζ .

(65) Prove that
∑∞

n=0 cos(nz)/n! converges normally in C, and find the entire function
given by this sum.

(66) Given t > 0, verify that the series
∑∞

n=0(1 − z)n(1 + z)−n converges absolutely and
uniformly on the set At := {z ∈ C | ℜe(z) ≥ t, |z| ≤ 1/t}. Conclude that the series
converges absolutely and normally in the right half-plane H, and find its sum there.
Show that the series fails to converge at every other z ∈ C \ (H ∪ {−1}).

(67) Given λ ∈ C, consider the doubly infinite power series
∑+∞

−∞ λ|n|zn. Find the set Λ of
all λ for which this series has a non-empty annulus of convergence. For each λ ∈ Λ,
identify the function represented by the associated series.

(68) Let f ∈ H(Ω) ∩ C(Ω̄). Fix a, b ∈ C and R > 0. Assume that Ω ∩D(0; R) 6= ∅. Prove
that there is a point ζ ∈ ∂Ω ∩D[0; r] such that |a f(ζ) + b| = sup

z∈Ω∩D(0;R)

|a f(z) + b| .

(69) Let Ω be a bounded plane domain. Suppose that f ∈ H(Ω) ∩ C(Ω̄) with |f(z)| = 1
for each z ∈ ∂Ω. Prove that either f is a constant function or there exists a point
a ∈ Ω such that f(a) = 0

(70) Let Ω be a bounded plane domain. Suppose that f ∈ H(Ω) ∩ C(Ω̄) with |f(z)| = 1
for each z ∈ ∂Ω. Prove that either f is a constant function or that f(Ω) = D.
(Hint: Given b ∈ D, consider g := T ◦ f where T (w) = (w − b)/(1 − b̄w).)

(71) Let f ∈ H(D) ∩ C(D̄). Suppose there are A, B ≥ 0 such that for all z ∈ T,

ℑm(z) ≥ 0 =⇒ |f(z)| ≤ A and ℑm(z) ≤ 0 =⇒ |f(z)| ≤ B .

Demonstrate that |f(0)| ≤
√

AB. (Suggestion: consider also g(z) := f(−z).)

(72) Let f ∈ H(Ω) ∩ C(Ω̄) with Ω unbounded. Suppose that

(⋆) lim
Ω∋z→∞

f(z) = 0 .

Determine whether or not there exists a point ζ ∈ ∂Ω such that |f(ζ)| = supz∈Ω |f(z)|.
(Either prove that this is so, or provide a counter-example.) What happens if we
replace the condition (⋆) with limΩ∋z→∞ |f(z)| = L for some L > 0? What are the
corresponding results when we replace “sup” with “inf”?

(73) Let f ∈ H(D) with |f ′| ≤ 1 and f(0) = f ′(0) = 0. Demonstrate that for all z ∈ D,
|f(z)| ≤ |z|2/2. For which functions does equality hold at some z ? What is the
generalization of this when f(0) = f ′(0) = f ′′(0) = · · · = f (n)(0) = 0 and |f (n)| ≤ 1?

(74) Let f be holomorphic in a region Ω with f(a) = 0 for some point a ∈ Ω. Suppose
D(a; d) ⊂ Ω and f 6≡ 0 in D(a; d). Prove that there is a unique m ∈ N and a unique
F ∈ H(Ω) with F (a) 6= 0 and such that for all z ∈ Ω, f(z) = (z−a)mF (z). Conclude
that there exists 0 < r < d such that for all 0 < |z − a| < r, f(z) 6= 0.

(75) Read pp.134-136 in Ahlfors and do problems #’d 1-5 on p.136.
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(76) State and prove a Schwarz Lemma type result for holomorphic D
f→ H̄ with f(0) = 1.

(77) Let f ∈ H(D) ∩ C(D̄). Suppose that for all z ∈ T with ℑm(z) ≥ 0, f(z) = 0. Prove
that f ≡ 0. (Hint: Consider f(−z) along with f(z). Use HW#(84).)

(78) Let f be holomorphic and bounded in S := {z : | ℜe(z)| < 1, | ℑm(z)| < 1} (i.e., the
open ‘unit’ square centered at the origin). Let E denote one of the closed edges of
∂S (so E includes its endpoints). Suppose that for all w ∈ E,

lim
S∋z→w

f(z) = 0 .

Prove that f ≡ 0. What can you say if f is not assumed to be bounded?

(79) Let A ⊂ C. Recall that A′ denotes the set of accumulation points of A. Verify that

z ∈ A′ ⇐⇒ ∃ (an)∞1 in A \ {z} with an → z .

Deduce that A′ is always a closed set (regardless of A).

(80) Let A ⊂ Ω with Ω an open subset of C. Demonstrate that A is discrete in Ω if and
only if for each z ∈ Ω there exists an r > 0 such that D(z; r) ∩ A ⊂ {z}.

(81) Let A ⊂ Ω with Ω an open subset of C. Suppose that A is discrete in Ω. Prove that:
(a) Ω \ A is open.
(b) If Ω is a domain (i.e., an open connected set), then so is Ω \ A.
(c) If K is a compact subset of Ω, then A ∩ K is a finite set.

(82) Let C ⊃ Ω
f→ C and C ⊃ Ω′ g→ C be non-constant holomorphic maps with Ω′ ⊃ Ω.

Suppose that the multiplicity of f at a is m, and the multiplicity of g at b := f(a) is
n. Prove that the multiplicity of g ◦ f at a is mn.

(83) Does there exist a non-constant f ∈ H(H) with f(1/n) = 2 for each n ∈ N? Either
produce an example of such a function, or prove that none exists.

(84) Let f, g be functions that are both holomorphic in some domain Ω. Suppose that for
all z ∈ Ω, f(z)g(z) = 0. Verify that either f ≡ 0 in Ω or g ≡ 0 in Ω.

(85) Let f ∈ H(D) ∩ C(D̄) be non-constant. Suppose that for all z ∈ T = ∂D, |f(z)| = 1.
Demonstrate that f has the form

∀z ∈ D , f(z) = c

k
∏

i=1

(

z − ai

1 − āiz

)mi

where c ∈ T, a1, . . . , ak ∈ D are distinct, and m1, . . . , mk ∈ N. (Recall HW#s(69,70).)

(86) Suppose f is entire and non-constant and satisfies f(T) ⊂ T. Prove that there exists
c ∈ T and m ∈ N such that for all z ∈ C, f(z) = c zm.

(87) Suppose that the power series
∑∞

0 cnzn has radius of convergence 1. Let f denote
the holomorphic map given by this series. Prove that there exists a point ζ ∈ T such
that there is no r > 0 with the property that f can be extended to a holomorphic
map in D ∪ D(ζ ; r).

(88) Read pp.30-32 in Ahlfors and do problems 2,4,5,6 on pp.32-33.
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(89) Prove the Factor Theorem for Poles: Let f be holomorphic in Ω \ {a}. Suppose that
f has a pole at a. Then there is a unique m ∈ N and a unique F ∈ H(Ω) with
F (a) 6= 0 and such that for all z ∈ Ω, f(z) = F (z)/(z − a)m.

(90) Read pp.124-129 in Ahlfors and do problems 2-6 on p.130.

(91) Suppose that f and g have poles of orders m and n respectively at the point z = a.
Provide as much information as you can about the nature of the singularity at z = a
for the maps: (i) f + g, (ii) fg, (iii) f/g.

(92) Suppose f has a pole of order m at z = a. Confirm that f ′ has a pole of order m + 1
at z = a.

(93) Let f ∈ H(C∗). Suppose there exists an M > 0 such that

∀z ∈ C∗ , |f(z)| ≤ M |z||Log(z)| .
Prove that f = 0.

(94) Let f ∈ H(D∗(a; r)) for some a ∈ C and r > 0. For those z ∈ D∗(a; r) with f(z) 6= 0,
define g(z) := 1/f(z). Discuss the holomorphicity of g. (Where is g holomorphic?
Does g have any isolated singularities? If so, classify each of them.)

(95) Let f be non-constant and meromorphic in C. Suppose that for all z ∈ T = ∂D,
|f(z)| = 1. Demonstrate that f has the form

f(z) = c
k

∏

i=1

(

z − ai

1 − āiz

)mi l
∏

j=1

(

1 − b̄jz

z − bj

)nj

where c ∈ T, a1, . . . , ak ∈ D are the distinct zeroes of f in D with respective multi-
plicities m1, . . . , mk ∈ N, and b1, . . . , bl ∈ D are the distinct poles of f in D with their
multiplicities n1, . . . , nl ∈ N. (If f is zero free in D, then the first product is missing;
if f has no poles in D, then the second product is missing.)

(96) Let f be meromorphic in all of C. Suppose there exist circles K and K ′ on Ĉ such
that f(K) ⊂ K ′. Prove that f is in fact a rational function.

(97) Let f ∈ H(Ω). Suppose that g is a branch of the logarithm of f in Ω. Prove that
g ∈ H(Ω).

(98) Let R be a rational function. State and prove necessary and sufficient conditions for
there to be a holomorphic branch of the logarithm of R in some domain Ω.

(99) For which of the following sets A does there exist a holomorphic branch of the log-
arithm of z−2(z + 1)−1(z2 + 1) in Ω := C \ A? (i) A := (−∞,−1] ∪ [0,∞) ∪ {iy :
y ∈ R, |y| ≥ 1}, (ii) A := (−∞,−1] ∪ {iy :∈ R, |y| ≤ 1}, (iii) A := (−∞, 0] ∪ {eit :
−π/2 ≤ t ≤ π/2}, (iv) A := {eit : π/2 ≤ t ≤ π} ∪ {iy : y ≤ 0}.
Let p ∈ N (with p ≥ 2) and Ω

f→ C be continuous. We call Ω
g→ C a branch of the

pth-root of f in Ω provide g is continuous and for all z ∈ Ω, [g(z)]p = f(z) (briefly,
gp = f in Ω).

(100) Let f ∈ H(Ω). Suppose that g is a branch of the pth-root of f in Ω. Prove that
g ∈ H(Ω).
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(101) Let f be a quadratic polynomial with distinct zeroes a, b.
(a) Show that the existence of a square root of f in Ω implies that {a, b} ∩ Ω = ∅.

What if a = b?
(b) Demonstrate that the hypothesis

∀ PSL Γ in Ω , n(Γ; a) = n(Γ; b)

guarantees the existence of a square root of f in Ω.
(c) Prove that the existence of a square root of f in Ω implies that

∀ PSL Γ in Ω , n(f ◦ Γ; 0) ∈ 2 Z .

(Hints for (b): First look at f(z) = z2 − 1. Explain why there is a square root S of
T where T (z) := (z − a)/(z − b). Then examine g(z) = (z − b)S(z).)

(102) For which of the following does there exist a holomorphic branch of the pth-root of f
in the domain Ω := C\A? (i) p = 3, f(z) := z(z−1)(z+1), A := (−∞,−1]∪[0, 1]; (ii)
p = 2, f(z) = z2−2z, A := [0, 2]; (iii) p = 4, f(z) := z3 +z, A := (−∞, 0]∪ [1, +∞)∪
{eit : −π/2 ≤ t ≤ π/2}; (iv) p = 3, f(z) := z3+z2+z+1, A := {eit : π/2 ≤ t ≤ 3π/2}.

(103) Explain why there is a branch g of the square root of f(z) := (z − 1)(z − 2)(z + 2)
in the domain Ω := C \ ((−∞,−2] ∪ [1, 2]) with g(0) = 2. Find a formula for g in

terms of elementary functions. (NB The function z 7→
√

(z − 1)(z − 2)(z + 2) does
not meet the requirements, because it is not even continuous in Ω.)

(104) Let f ∈ H(Ω). State a necessary condition for there to be a holomorphic branch of
the pth-root of f in domain Ω.

(105) Let f be an entire function. Suppose that g(z) =
√

f(z) also defines an entire
function (where

√
w denotes the principal value of the square root of w). What can

you deduce about f?

(106) Read pp.1-136 in Ahlfors and do problems 1-4 on p.133.

(107) Let Ω be a bounded plane domain containing the origin. Suppose Ω
f→ Ω is holomor-

phic with f(0) = 0 and f ′(0) = 1. Prove that for all z ∈ Ω, f(z) = z. (Hints: It suf-
fices to show that f(z) = z for all z ∈ ∆ where ∆ := D(0; r) and 0 < r < dist(0, ∂Ω).
Look at the Maclaurin series for f , say f(z) = z +amzm + . . . . Use Cauchy estimates
to find a bound for |am|. Assume that am 6= 0 and examine the Maclaurin series for
the k-fold composition f ◦ f ◦ . . . ◦ f and consider ‘what happens’ as k → ∞.)
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