

 Department of Mathematical Sciences
 839 Old Chemistry Building

 PO Box 210025
 Phone
 (513) 556-4075

 Cincinnati OH 45221-0025
 Fax
 (513) 556-3417

COMPLEX ANALYSIS HOMEWORK PROBLEMS AUTUMN QUARTER 2009

Please provide plenty of details! Pix are definitely kewl ($\ddot{\smile}$).

- (1) Read chapter one in Ahlfors. Please be sure to look at (and work) the suggested problems from Ahlfors; these are listed on the web page.
- (2) Verify the 'parallelogram law' for complex numbers z, w:

$$|z + w|^{2} + |z - w|^{2} = 2|z|^{2} + 2|w|^{2}$$
.

- (3) Given complex numbers z, w, prove that $|z + w| \le |z| + |w|$ and that equality holds for $z \ne 0 \ne w$ if and only if w = tz for some t > 0.
- (4) Let $c \in \mathbb{D}$. Demonstrate that $|z + c| \leq |1 + \overline{c}z|$ if and only if $|z| \leq 1$, with equality holding if and only if |z| = 1.
- (5) Provide geometric descriptions for the following subsets of \mathbb{C} : (a) $\{z : |z-1| = \Re \mathfrak{e}(z)\}$. (b) $\{z : |z-i|+|z+i|=4\}$. (c) $\{z : |z-i|^2+|z+i|^2=4\}$.

Give both a written/verbal description and a pictorial description.

(6) Consider the equation

$$|z|^2 + cz + \bar{c}\bar{z} + s = 0$$
 where $r, s \in \mathbb{R}, c \in \mathbb{C}$ and $|c|^2 > rs$.

Demonstrate that this is the equation of a line when r = 0 and a circle when $r \neq 0$. Give the standard equations in each case; especially, when this equation describes a circle, what are its center and radius? Also, verify that every line or circle can be described by such an equation.

- (7) Consider the equation $a z + b \overline{z} + c = 0$ where $a, b, c \in \mathbb{C}$. We want to understand the possible solution set for such an equation.
 - (a) What are the 'trivial' cases?
 - (b) Determine when this equation has a unique solution z, and give z.

(c) Determine when this equation represents a straight line, and find a 'standard' equation for this line.

- (d) What can you say about all other cases?
- (8) Verify the formulas

 $\arg(1/z) = -\arg(z)$, $\arg(zw) = \arg(z) + \arg(w)$

and explain precisely what these actually mean. Find z, w that satisfy

 $\operatorname{Arg}(1/z) \neq -\operatorname{Arg}(z)$ and $\operatorname{Arg}(zw) \neq \operatorname{Arg}(z) + \operatorname{Arg}(w)$.

Date: December 3, 2009.

Can you determine when we do have

 $\operatorname{Arg}(1/z) = -\operatorname{Arg}(z)$ or $\operatorname{Arg}(zw) = \operatorname{Arg}(z) + \operatorname{Arg}(w)$?

- (9) Prove that there does not exist a continuous branch of the argument function in \mathbb{C}_* .
- (10) Show that when |z| = 1 and $z \neq -1$, $\operatorname{Arg}(z) = 2\operatorname{Arg}(z+1)$. (Hint: What is $\{z+1 : |z| = 1\}$?)
- (11) Give examples to illustrate that, in general, $\sqrt[pv]{zw} \neq \sqrt[pv]{z} \sqrt[pv]{w}$, where $\sqrt[pv]{z}$ stands for the principal value of the square root of z. Confirm that equality does hold provided either z or w is a positive real number.
- (12) (a) Clearly, for any $z \in \mathbb{C}$, $\sqrt[pv]{z^2}$ is either z or -z. For which z is which true? (b) For which complex numbers is it true that $\sqrt[pv]{z/\overline{z}} = z/|z|$?
- (13) Prove Proposition 1.3 in the notes.
- (14) (a) Prove that the map T(z) := (1 − z)/(1 + z) is a bijection between D and H.
 (b) Find a formula for the inverse map T⁻¹.
- (15) Determine the images of the sets \mathbb{R} , $i\mathbb{R}$, $\{x+y=1\}$, \mathbb{D} , \mathbb{H} under the complex linear map $L(z) := (1+i\sqrt{3})z+2$.
- (16) Recall that z is a fixed point of the map f if f(z) = z. Let L(z) := az + b.
 - (a) Prove that L has no fixed points if and only if a = 1 and $b \neq 0$.
 - (b) Suppose L has a fixed point. Describe the set of all fixed points of L.
- (17) Suppose the complex linear map L(z) := az + b has a unique fixed point c. Confirm that L can be expressed as L(z) = c + a(z c). Use this representation to explain the geometric effect of the mapping L; you should be able to describe L in terms of standard dilations and rotations but now with respect to the fixed point (instead of with respect to the origin).
- (18) Let K and K' be two lines in \mathbb{C} . Does there necessarily exist a complex linear map L with L(K) = K'? If so, is L unique? If L is not unique, what else can you say? What if K, K' are two circles?
- (19) Explain why and how each complex linear map L induces maps $\mathcal{L} \xrightarrow{\Phi} \mathcal{L}$ and $\mathcal{C} \xrightarrow{\Psi} \mathcal{C}$. Are these maps injective or surjective? (See the end of §1.3 in the notes for the notation.)
- (20) Let L be a complex linear map. Verify that L transforms every polygon $\Pi \subset \mathbb{C}$ into a polygon $\Pi' := L(\Pi)$ which is similar to Π . What can you say about the image, under L, of a conic section (i.e., an ellipse, parabola, or hyperbola)?
- (21) Show that given any points $z_1, w_1 \in \mathbb{C}$, there are many complex linear maps L with $L(z_1) = w_1$. What can you say about n pairs of points z_1, \ldots, z_n and w_1, \ldots, w_n in \mathbb{C} : When does there exist a complex linear map L with $L(z_i) = w_i$ for all $1 \le i \le n$? And when is such an L unique?

- (22) Let Lin denote the family of all non-constant complex linear maps $\mathbb{C} \to \mathbb{C}$.
 - (a) Confirm that **Lin** is a group (with product given by composition). Is it abelian?
 - (b) Find two elements of **Lin**, one with finite order and one with infinite order.
 - (c) Check that the family **Tran** of pure translations is a normal subgroup of **Lin**.
 - (d) Identify the quotient group Lin/Tran.

(e) Is the family **Rotn** of pure rotations a subgroup of **Lin**? (A *pure rotation about* $a \in \mathbb{C}$ is a map of the form $z \mapsto c(z-a) + a$ where $c \in \mathbb{T}$.)

Hint: Problems #(16, 17) might prove useful here.

Recall that a map f is an *isometry* (or *similarity*) if it preserves (dilates) all distances; i.e.,

 $\forall z,w: \quad |f(z) - f(w)| = |z - w| \text{ (or } |f(z) - f(w)| = \sigma |z - w| \text{ for some constant } \sigma > 0) \,.$

- (23) Prove that the only isometry of \mathbb{C} that fixes three non-collinear points is the identity map. (Hints: What can you say about a if there are distinct z, z' with |z-a| = |z'-a|? Deduce that if $a, b, c \in \mathbb{C}$ are non-collinear, then each $z \in \mathbb{C}$ is uniquely determined by the numbers |z-a|, |z-b|, |z-c|.)
- (24) (a) Suppose C → C is an isometry with f(0) = 0. Demonstrate that there exist c ∈ T such that f can be expressed as f(z) = cz or f(z) = cz̄. (Hint: What if f(1) = 1?)
 (b) Determine the general form of an isometry C → C.
 (c) Determine the general form of a similarity C → C.
 - (Hint: Look at g := [f f(0)]/[f(1) f(0)].)
- (25) Consider the map $z \mapsto a\overline{z} + b$ where $a \in \mathbb{C}_*$ and $b \in \mathbb{C}$ are constants. Which of the many properties for complex linear maps continue to hold for such a map? Which properties fail to hold?
- (26) Describe the geometric effect of the map $z \mapsto a\overline{z} + b$, where $a \in \mathbb{C}_*$ and $b \in \mathbb{C}$ are constants.
- (27) Determine the fixed points of the map $z \mapsto a\overline{z} + b$, where $a \in \mathbb{C}_*$ and $b \in \mathbb{C}$ are constants. (Hint: Recall problem #(7).)

Two points z and z^* are said to be symmetric with respect to a line K if K is the perpendicular bisector of the segment $[z, z^*]$.

- (28) (a) Show that z and \overline{z} are symmetric with respect to \mathbb{R} .
 - (b) Verify that if a and b are symmetric with respect to a line K, then

$$dist(a, K) = \frac{1}{2} |a - b| = dist(b, K).$$

(c) Demonstrate that a and b are symmetric with respect to a line K if and only if

$$\forall z \in K, \quad |z-a| = |z-b|.$$

(29) Let K be a line in \mathbb{C} . Suppose L is a complex linear map with $L(K) = \mathbb{R}$. Verify that for each $z \in \mathbb{C}$, $z^* := L^{-1}(\overline{L(z)})$ enjoys the property that z and z^* are symmetric with respect to K.

FIGURE 1. Reflection across K

(30) Let K be a line in \mathbb{C} . Prove that for each $z \in \mathbb{C}$ there is a unique $z^* \in \mathbb{C}$ such that z and z^* are symmetric with respect to K. **Provide** a formula for z^* . (Suggestion: Start with a standard equation for K such as $\Re \mathfrak{e}((z-a)\bar{\nu}) = 0$ or $cz + \bar{c}\bar{z} + s = 0$.)

Given a line K, the map $\mathbb{C} \xrightarrow{\rho_K} \mathbb{C}$ defined by $z \mapsto \rho_K(z) := z^*$, where z^* is the unique point such that z and z^* are symmetric with respect to K, is called *reflection across* the line K. See Figure 1.

- (31) (a) Prove that complex linear maps preserve symmetric points. That is, if z, z^* are symmetric with respect to a line K, and w, w^*, K' are the images of z, z^*, K under a complex linear map, then w, w^* are symmetric with respect to K'.
 - (b) Let K be a line in \mathbb{C} and $\mathbb{C} \xrightarrow{L} \mathbb{C}$ be a complex linear map. Put

$$K' := L(K), \quad \rho := \rho_K, \quad \rho' := \rho_{K'};$$

so K' is another line and ρ and ρ' are reflections across K and K' respectively. Deduce that $L \circ \rho = \rho' \circ L$, so the pictured diagram commutes.

$$\begin{array}{cccc}
\mathbb{C} & \xrightarrow{\rho} & \mathbb{C} \\
\downarrow_L & & \downarrow_L \\
\mathbb{C} & \xrightarrow{\rho'} & \mathbb{C}
\end{array}$$

(Hint: All of the above actually hold for any similarity L, right?)

- (32) Find the image of \mathbb{T} under the map $z \mapsto w := az + b\bar{z}$ where $a, b \in \mathbb{C}$ and |a| > |b|. (Suggestions: Start by looking at, e.g., $2z + \bar{z}$ or—even better— $rz + s\bar{z}$ where r > s > 0. What are max |w| and min |w| where z varies over \mathbb{T} ? Consider a change of variables $Z := e^{i\varphi}z, W := e^{i\psi}w$ (for appropriate φ, ψ) and the map $Z \mapsto W$.)
- (33) Let H be one of the open half-planes determined by some line passing thru the origin. Confirm that $f(z) := z^2$ is injective on H. What is f(H)?
- (34) Determine all preimages of horizontal and vertical lines under the map $f(z) := z^2$.
- (35) Using cartesian coordinates (instead of polar coordinates), analyze the map $f(z) := z^2$ and find:
 - (a) $f(\mathbb{R})$ and $f(i\mathbb{R})$.
 - (b) $f({x + imx : x \in \mathbb{R}})$ where $m \in \mathbb{R}$. What role does m play?
- (36) Let K be any line in \mathbb{C} that does not pass through the origin. Determine the image of K under the squaring map $z \mapsto z^2$. (Hint: Notice that $e^{-2i\varphi}(e^{i\varphi}z)^2 = z^2$. Consider a change of variables $Z := e^{i\varphi}z$, $W := e^{i\psi}w$ (for appropriate φ, ψ) and the map $Z \mapsto W$.)

FIGURE 2. A standard cardioid

- (37) Recall the picture for the 'standard' cardioid; this is the plane curve given by the polar equation $r = 1 + \cos \theta$. See Figure 2. Let's call any plane curve a *cardioid* if it is similar to the 'standard' cardioid. Prove the the image of any circle in \mathbb{C} that passes through the origin under the squaring map $z \mapsto z^2$ is a cardioid. (Hint: Start with the circle C(1; 1). Next, notice that the circle with center *a* that passes through the origin is $C(a; |a|) = \{a + ae^{it} \mid -\pi/2 < t \le \pi/2\}$. Consider a change of variables $Z := e^{i\varphi}z, W := e^{i\psi}w$ (for appropriate φ, ψ) and the map $Z \mapsto W$.)
- (38) Determine the images of the following lines under the map $w = \sqrt{z}$.
 - (a) A horizontal line.
 - (b) A vertical line.
 - (c) The line with equation $y = \sqrt{3}x$.
- (39) Consider the map f(z) := z + 1/z for $z \in \mathbb{C}_*$. Find:
 - (a) f((0,1]), f([-1,0)), f((0,i]) and f((0,-i]).
 - (b) $f(\{re^{i\theta_0} : r > 1\})$ where $\theta_0 \in (0, \pi/2)$ is fixed.
 - (c) How does your answer to (b) change if you replace θ_0 by $-\theta_0$, $\pi \theta_0$, or $\theta_0 \pi$?
 - (d) How does your answer to (b) change if you replace r > 1 with 0 < r < 1?
- (40) Prove that for all $z, w \in \mathbb{C}$: $e^z e^w = e^{z+w}$, $e^{-z} = 1/e^z$, $\forall n \in \mathbb{N} : (e^z)^n = e^{nz}$.
- (41) Find the image of the line $\{x + imx : x \in \mathbb{R}\}$ (where $m \in \mathbb{R}$) under the map $w = e^z$. What role does m play?
- (42) Determine the real and imaginary parts of $\exp(e^z)$.
- (43) Find examples to illustrate that in general, $\text{Log}(ab) \neq \text{Log}(a) + \text{Log}(b)$. For a given $a \in \mathbb{C}_*$, determine the set of all z with Log(az) = Log(a) + Log(z).
- (44) Prove that for all $z \in \mathbb{D}$, $\text{Log}(1 z^2) = \text{Log}(1 z) + \text{Log}(1 + z)$. What can you say about Log[(1 z)/(1 + z)] for $z \in \mathbb{D}$? (Hint: Recall problem #(14).)
- (45) Put $\Omega := \mathbb{C} \setminus S$ where S is the spiral $S = \{e^{(1+i)t} : t \in \mathbb{R}\}$. Let $\lambda(z)$ be the branch of $\log(z)$ defined in Ω that satisfies $\lambda(e) = 1$. Calculate $\lambda(e^6)$, $\lambda(-e^{-8})$, $\lambda(ie^{\pi k})$ where k is an integer. Also, determine the range of λ .
- (46) Establish the following facts concerning complex powers a^b where a ∈ C_{*} and b ∈ C.
 (a) If b ∈ Z, then a^b is a single value.

(b) If $b = p/q \in \mathbb{Q}$ is rational, say with $p \in \mathbb{Z}$, $q \in \mathbb{N}$ and p, q having no common factors, then there are q distinct complex values of a^b and these are symmetrically located around the circle $|w| = |a|^b$.

(c) If $b \in \mathbb{R} \setminus \mathbb{Q}$ is irrational, then a^b consists of infinitely many complex values located around the circle $|w| = |a|^b$.

Everywhere above $|a|^b$ stands for the principle value of the b^{th} power of |a|; that is, $|a|^b := \exp(b \log |a|)$.

- (47) Find an example to illustrate that, in general, the 'law of exponents' $a^b a^c = a^{b+c}$ fails to hold, even when this is considered as a set equality.
- (48) When is it true that $|a^b| = |a|^b$? (Hint: Consider when a or b is real.)
- (49) Determine the real and imaginary parts of z^z .
- (50) Prove that a subset of \mathbb{C} is open if and only if it can be written as a union of open sets if and only if it can be written as a union of open disks. What can you say about the above statement if every occurrence of the word *open* is replaced by *closed*?
- (51) Recall that the distance from a point z to a set $A \subset \mathbb{C}$ is defined by

$$\operatorname{dist}(z,A) := \inf_{a \in A} |z - a|.$$

Prove that the following are equivalent.

- (a) The set A is closed.
- (b) For all $z \notin A$, dist(z, A) > 0.
- (c) For each convergent sequence $(a_n)_{n=1}^{\infty}$ with $a_n \in A$ for all n, $\lim_{n\to\infty} a_n \in A$.
- (52) We can also define the distance between two sets $A, B \subset \mathbb{C}$ by

$$\operatorname{dist}(A, B) := \inf\{|a - b| : a \in A, b \in B\}.$$

Demonstrate that for $C \subset \mathbb{C}$ closed and $K \subset \mathbb{C}$ compact,

 $C \cap K = \emptyset \iff \operatorname{dist}(C, K) > 0.$

Is this result still true if we merely assume that C and K are both closed?

- (53) Let $E \subset \mathbb{C}_*$ be connected. Suppose λ and λ' are (single-valued continuous) branches of the logarithm in E. Prove that there is a constant $k \in \mathbb{Z}$ such that for all $z \in E$, $\lambda(z) = \lambda'(z) + 2k\pi i$. (Hint: What can you say about a continuous map from a connected set into \mathbb{Z} ?)
- (54) Let $\mathbb{C} \xrightarrow{f} \mathbb{C}$ be continuous. Suppose $K \subset \mathbb{C}$ is compact.

(a) Explain why there exists a point $a \in K$ such that for all $z \in K$, $|f(z)| \leq |f(a)|$. Is this necessarily true when K is not compact?

(b) Assume that for all $z \in K$, $f(z) \neq 0$. Confirm that there exists $\varepsilon > 0$ such that for all $z \in K$, $|f(z)| \ge \varepsilon$. Is this necessarily true when K is not compact?

- (55) Demonstrate that a function f is continuous if and only if both $\Re \mathfrak{e}(f)$ and $\Im \mathfrak{m}(f)$ are continuous. Establish a similar result involving continuity of |f| and $\arg(f)$.
- (56) Let $\mathbb{C} \supset \Omega \xrightarrow{f} \mathbb{C}$ with Ω open. Suppose that f is (complex) differentiable at $a \in \Omega$. Prove that f is continuous at a.
- (57) Let $\Omega \subset \mathbb{C}$ be open, $a \in \Omega$, and $\Omega \xrightarrow{f} \mathbb{C}$. Demonstrate that the following are equivalent.
 - (a) f is (complex) differentiable at the point a.

- (b) $\exists c \in \mathbb{C}$ and $\Omega \xrightarrow{\varepsilon} \mathbb{C}$ such that $\lim_{z \to a} \frac{\varepsilon(z)}{z-a} = 0$ and $\forall z \in \Omega, \quad f(z) = f(a) + c(z-a) + \varepsilon(z).$
- (c) $\exists \Omega \xrightarrow{\varphi} \mathbb{C}$ that is continuous at z = a and such that

$$\forall \ z \in \Omega \,, \quad f(z) = f(a) + (z - a)\varphi(z) \,.$$

In (b), L(z) := f(a) + c(z - a) is called the *(complex) linear* (or *first-order*) approximation of f near z = a. In (c): What is $\varphi(a)$?

(58) Let $\mathbb{C} \supset \Omega \xrightarrow{f} \mathbb{C}$ with Ω open. Suppose $f \in \mathcal{C}^1(\Omega)$. Show that

$$\frac{\partial f}{\partial r} = D_{e^{i\theta}}f = \cos\theta \frac{\partial f}{\partial x} + \sin\theta \frac{\partial f}{\partial y}$$

and

$$\frac{\partial f}{\partial \theta} = D_{i e^{i\theta}} f = -r \sin \theta \, \frac{\partial f}{\partial x} + r \, \cos \theta \, \frac{\partial f}{\partial y}$$

(59) Let $\Omega \subset \mathbb{C}$ be open and $\Omega \xrightarrow{f} \mathbb{C}$. Suppose that f is (complex) differentiable at the point $a \in \Omega$. Write f = u + iv, z = x + iy and examine the difference quotients

$$\frac{f(z) - f(a)}{z - a} = \frac{u(z) - u(a)}{z - a} + i \frac{v(z) - v(a)}{z - a}.$$

(a) Keeping $y = \Im \mathfrak{m}(z) = \Im \mathfrak{m}(a)$ fixed and letting $x = \Re \mathfrak{e}(z)$ vary, what do you get when you take a limit as $x \to \Re \mathfrak{e}(a)$?

(b) Keeping $x = \Re \mathfrak{e}(z) = \Re \mathfrak{e}(a)$ fixed and letting $y = \Im \mathfrak{m}(z)$ vary, what do you get when you take a limit as $y \to \Im \mathfrak{m}(a)$?

What do you conclude?

- (60) Let $\mathbb{C} \supset \Omega \xrightarrow{u} \mathbb{R}$ with Ω open and connected. Suppose u has the property that for each disk $\Delta \subset \Omega$, $u|_{\Delta}$ is a constant. Prove that u is a constant function.
- (61) Let $\mathbb{C} \supset \Omega \xrightarrow{u} \mathbb{R}$ with Ω open and connected. Assume that u has first-order partial derivatives at each point of Ω . Suppose that for all $z \in \Omega$, $\nabla u(z) = 0$. Prove that u is a constant function.
- (62) Let $\mathbb{C} \supset \Omega \xrightarrow{f} \mathbb{C}$ be holomorphic with Ω a domain (i.e., open and connected). Suppose that for all $z \in \Omega$, f'(z) = 0. Prove that f is a constant map.
- (63) Let f be holomorphic in some domain $\Omega \subset \mathbb{C}$ with |f| constant. Confirm that f is a constant map.
- (64) Let f be holomorphic in some open disk D. Suppose that f(D) is contained in some line or some circle. Demonstrate that f must be a constant map.
- (65) Find a polynomial function of x and y that is complex differentiable at each point of the parabola with equation $y = x^2$, but at no other point.
- (66) When is the map $z \mapsto az + b\overline{z}$ complex differentiable?
- (67) Let $\mathbb{C} \xrightarrow{f} \mathbb{C}$ and define $\mathbb{C} \xrightarrow{g} \mathbb{C}$ by $g(z) := \overline{f(\overline{z})}$. Prove that f is holomorphic if and only if g is holomorphic.

- (68) Let f := u + iv where z := x + iy, $u(z) := x^3 + axy^2$, and $v(z) := bx^2y + cy^3 + 1$. Determine $a, b, c \in \mathbb{R}$ so that f is an entire function. Then express f as a complex polynomial; that is, as a function involving only powers of z.
- (69) Find the entire function f := u + iv satisfying f(0) = 2 and such that for z := x + iy, $v(z) := (x \sin y + \sin y + y \cos y)e^x$. Try to express f as a function of z—instead of x and y—but note that this may require some clever factoring!
- (70) A function $\mathbb{C} \supset \Omega \xrightarrow{u} \mathbb{R}$ (with Ω open) is said to be *harmonic* in Ω if $u \in \mathcal{C}^2(\Omega; \mathbb{R})$ (i.e., u has continuous second-order partial derivatives) and satisfies Laplace's equation

$$\forall z \in \Omega : \qquad \Delta u(z) = \frac{\partial^2 u}{\partial x^2}(z) + \frac{\partial^2 u}{\partial y^2}(z) = 0.$$

Prove that the real and imaginary parts of every holomorphic map are harmonic. (Assume you know that holomorphic maps are C^2 .)

(71) A pair of harmonic functions $\mathbb{C} \supset \Omega \xrightarrow{u,v} \mathbb{R}$ are said to be *harmonic conjugates* if they satisfy the Cauchy Riemann equations in Ω ; that is,

$$\forall z \in \Omega : \frac{\partial u}{\partial x}(z) = \frac{\partial v}{\partial y}(z) \text{ and } \frac{\partial u}{\partial y}(z) = -\frac{\partial v}{\partial x}(z).$$

Prove that if u, v are harmonic conjugates in Ω , then f := u + iv is holomorphic in Ω .

- (72) Let $f \in \mathcal{H}(\Omega)$ and assume $f \in \mathcal{C}^2(\Omega)$. Demonstrate that $f' \in \mathcal{H}(\Omega)$. Conclude that each function $f \in \mathcal{H}(\Omega) \cap \mathcal{C}^{\infty}(\Omega)$ is infinitely complex differentiable in Ω ; that is, for each $n \in \mathbb{N}$, $f^{(n)}$ exists and moreover is holomorphic in Ω .
- (73) Suppose there is an $n \in \mathbb{N}$ such that $\mathbb{C} \supset \Omega \xrightarrow{f} \mathbb{C}$ is *n*-times complex differentiable in the open and connected set Ω . Suppose that for all $z \in \Omega$, $f^{(n)}(z) = 0$. Prove that f is a complex polynomial of degree at most n - 1. (Suggestion: First, look at functions f with f' = 0 [and recall problem #(62)]. Next, consider f with f'' = 0. Etc.)
- (74) Suppose $\mathbb{C} \supset \Omega \xrightarrow{f} \mathbb{C}$ is a polynomial in x and y. That is, suppose there are constants $c_{ij} \in \mathbb{C}$ such that, when z := x + iy, we have

$$f(z) = c_{00} + c_{10}x + c_{01}y + c_{20}x^2 + c_{11}xy + c_{02}y^2 + \dots + c_{n0}x^n + \dots + c_{0n}y^n$$

Assuming that f is holomorphic, confirm that f must be a complex polynomial. What is the degree of f?

- (75) (a) Show that $f(z) := \sqrt{z}$ (the principal value of the square root) is holomorphic in $\mathbb{C} \setminus (-\infty, 0]$ and calculate its derivative. (Hint: First show that f is continuous in this region. Then use the standard calculus trick.)
 - (b) Now find a holomorphic branch of the square root function in $\mathbb{C} \setminus [0, +\infty)$.
- (76) (a) Exhibit all branches of the cube root function in the domain $\mathbb{C} \setminus (-\infty, 0]$. (b) Let $\Delta := \mathbb{C} \setminus [0, +\infty)$ and define $f : \Delta \to \mathbb{C}$ by $f(z) := \sqrt[3]{z}$ for $\Im \mathfrak{m}(z) \ge 0$ and $f(z) := \omega \sqrt[3]{z}$ for $\Im \mathfrak{m}(z) < 0$, where $\omega := (-1 + i\sqrt{3})/2$. Verify that f is indeed a branch of the cube root in Δ and calculate f'. Identify all other branches of the cube root function in Δ .

- (77) (a)Define a function g which is holomorphic in the slit plane $\mathbb{C}_{\text{slit}} := \mathbb{C} \setminus (-\infty, 0]$ and satisfies both g(1) = i and $g(z)^4 = z$ for all $z \in \mathbb{C}_{\text{slit}}$. Find $g(\mathbb{C}_{\text{slit}})$.
 - (b) Find a similar function h satisfying h(1) = -i.

(c) What if we replace the domain \mathbb{C}_{slit} with $\mathbb{C} \setminus [0, +\infty)$? (Of course we need, e.g., $g(-1) = e^{i\pi/4}$.)

- (78) Verify that $f(z) := \cos(\sqrt{z})$ defines an entire function whereas $\sin(\sqrt{z})$ does not. Here \sqrt{z} denotes the principle value of the square root of $z \in \mathbb{C}$. Note that \sqrt{z} is not even continuous in \mathbb{C} , so you really have to prove something here! (Suggestion: You can try to show that f_x and f_y exist and are continuous in \mathbb{C} , but a more clever approach is much easier. First explain why f is holomorphic in \mathbb{C}_* . Then demonstrate that f is differentiable at the origin. A helpful observation [that requires proof] might be that when $h : \mathbb{C} \to \mathbb{C}$ is continuous and even [i.e., h(-z) = h(z)], the function $k(z) := h(\sqrt{z})$ is well-defined and continuous.)
- (79) Let $\Delta := \mathbb{C} \setminus [0, +\infty)$ and define $\vartheta : \Delta \to \mathbb{R}$ by $\vartheta(z) := \operatorname{Arg}(-z) + \pi$. Confirm that ϑ is a branch of the argument function in Δ . Find $\vartheta(\Delta)$. Find formulas for the branch of $\log(z)$ in Δ corresponding to ϑ as well as the branch of the complex *c*-power function $z \mapsto z^c$.
- (80) Suppose that g is a (single-valued) branch of the inverse tangent function in some domain Δ . State precisely what this means. Prove that g is holomorphic in Δ with $g'(z) = (1 + z^2)^{-1}$ for all $z \in \Delta$. Demonstrate that if h is any other branch of the inverse tangent function in Δ , then there is some $k \in \mathbb{Z}$ such that for all $z \in \Delta$, $h(z) = g(z) + k\pi$.

Recall that the complex differential operators are defined by

$$\frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \quad \text{and} \quad \frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \,.$$

- (81) Let $\mathbb{C} \supset \Omega \xrightarrow{f} \mathbb{C}$ be a \mathcal{C}^1 mapping. Define $\Omega \xrightarrow{\bar{f}} \mathbb{C}$ by $\bar{f}(z) := \overline{f(z)}$. Prove that $\frac{\partial \bar{f}}{\partial \bar{z}} = \overline{\frac{\partial f}{\partial z}}$ and $\frac{\partial \bar{f}}{\partial z} = \overline{\frac{\partial f}{\partial \bar{z}}}$.
- (82) State and prove the Chain Rules for the partial differential operators $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$. (What are $(g \circ f)_z$ and $(g \circ f)_{\bar{z}}$?)
- (83) Express the partial differential operators $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$ in polar notation. Answer:

$$\frac{\partial}{\partial z} = \frac{e^{-i\theta}}{2} \left(\frac{\partial}{\partial r} - \frac{i}{r} \frac{\partial}{\partial \theta} \right) \quad \text{and} \quad \frac{\partial}{\partial \bar{z}} = \frac{e^{i\theta}}{2} \left(\frac{\partial}{\partial r} + \frac{i}{r} \frac{\partial}{\partial \theta} \right) \,.$$

What are the Cauchy-Riemann equations in polar coordinates?

(84) Assume that f is a C^1 mapping. Use the partial differential operators $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \overline{z}}$ to demonstrate that f is holomorphic if and only if g is holomorphic where $g(z) := \overline{f(\overline{z})}$. (See problem #(67).)

(85) Assuming that $\mathbb{C} \xrightarrow{u} \mathbb{R}$ is a \mathcal{C}^2 function, confirm that $\Delta u = 4 \frac{\partial^2 u}{\partial z \partial \bar{z}}$. Thus the Laplace differential operator is

$$\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \bar{z}} = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$$

(86) Assume that f is a \mathcal{C}^1 mapping. Prove that the Jacobian of f is given by

$$Jf = |f_z|^2 - |f_{\bar{z}}|^2 \,.$$

- (87) Let f := u + iv where $u(x + iy) = x^2 + y^2 + \frac{x^2 y^2}{x^2 + y^2}$ and $v(x + iy) = \frac{2xy}{x^2 + y^2}$. Determine precisely where f is (complex) differentiable. (Suggestion: Write f in terms of z and \bar{z} and compute $f_{\bar{z}}$.)
- (88) Let $\mathbb{C} \xrightarrow{F} \mathbb{C}$ be a polynomial in x and y (or equivalently, in z and \overline{z}). Suppose that $F_{zz}(z) = 0$ for all $z \in \mathbb{C}$. Prove that there exist complex polynomials (i.e., holomorphic polys) P and Q such that for all $z \in \mathbb{C}$, $F(z, \overline{z}) = zP(\overline{z}) + Q(\overline{z})$.
- (89) Let $\mathbb{C} \xrightarrow{F} \mathbb{C}$ be a polynomial in x and y (or equivalently, in z and \overline{z}). Suppose that for all $z \in \mathbb{C}$, $(F^2)_{\overline{z}}(z) = 0$. What can you deduce about F? (Hint: F must be holomorphic!)
- (90) Recall that the directional derivative of f in the direction $e^{i\theta}$ at z = a is

$$D_{e^{i\theta}}f(a) := \lim_{r \searrow 0} \frac{f(a + re^{i\theta}) - f(a)}{r},$$

provided this limit exists. Here $\mathbb{C} \supset \Omega \xrightarrow{f} \mathbb{C}$ and $a \in \Omega$. Assume that f is realdifferentiable at a. Prove that

$$D_{e^{i\theta}}f(a) = e^{i\theta}f_z(a) + e^{-i\theta}f_{\bar{z}}(a).$$

Conclude that

$$\max_{-\pi < \theta \le \pi} |D_{e^{i\theta}} f(a)| = |f_z(a)| + |f_{\bar{z}}(a)|$$

and that

$$\min_{\pi < \theta \le \pi} |D_{e^{i\theta}} f(a)| = ||f_z(a)| - |f_{\bar{z}}(a)||.$$

Can you determine where these extreme values occur? (See problem #(32).)

(91) Suppose that $\Omega \xrightarrow{f} \mathbb{C}$ is real-differentiable at the point z = a in Ω . Let Df(a) denote the complex real-derivative of f at z = a,

$$Df(a)\zeta = f_z(a)\,\zeta + f_{\bar{z}}(a)\,\bar{\zeta}\,.$$

Prove that the following are equivalent:

- (a) f is complex differentiable at z = a.
- (b) $Df(a) : \mathbb{C} \to \mathbb{C}$ is complex linear.

Prove that either of (a) or (b) implies

(c) f satisfies the Cauchy-Riemann equations at z = a.

When does (c) imply (a) or (b)?

- (92) Let $c, d \in \mathbb{C}$ with $|c| \neq |d|$. Define $f(z) := cz + d\overline{z}$. Verify that f is a \mathcal{C}^1 -diffeomorphism of the plane \mathbb{C} onto itself. Determine f^{-1} . What conditions on c, d ensure that f is orientation preserving (i.e., that Jf > 0)?
- (93) Let $\lambda \in \mathbb{R} \setminus \{0\}$ and define $f(z) := |z|^{\lambda-1}z$. Verify that f is a \mathcal{C}^1 -diffeomorphism of the punctured plane \mathbb{C}_* onto itself. Determine f^{-1} . When will f be orientation preserving (i.e., Jf > 0)? (Here $|z|^{\lambda-1}$ stands for the principle value of the $(\lambda - 1)^{\text{st}}$ power of |z|; that is, $|z|^{\lambda-1} := \exp[(\lambda - 1) \log |z|]$.)
- (94) Let $\Omega \xrightarrow{f} \Omega'$ be a \mathcal{C}^1 -diffeomorphism of domains $\Omega, \Omega' \subset \mathbb{C}$. Prove that f is isogonal (or conformal) at a point $a \in \Omega$ precisely when $Df(a) : \mathbb{C} \to \mathbb{C}$ is an isogonal (or conformal, respectively) real linear transformation.
- (95) Let $\Omega \xrightarrow{f} \Omega'$ be a \mathcal{C}^1 -diffeomorphism. Prove that f is conformal at a point $a \in \Omega$ if and only if f is isogonal at a with Jf(a) > 0. (Note: This is the (b) \Leftrightarrow (c) part of the 'Main Theorem', so you cannot appeal to this theorem.)
- (96) Decide whether or not there exists a holomorphic C^1 -diffeomorphism f defined in a domain which contains the line $L = \{x + ix : x \in \mathbb{R}\}$ and satisfies $f(z) = \sqrt{z}$ for all $z \in L$. (Hint: What is the image of L under the map $z \mapsto \sqrt{z}$?)
- (97) Suppose that $\Omega \xrightarrow{f} \Omega'$ is a \mathcal{C}^1 -diffeomorphism of domains $\Omega, \Omega' \subset \mathbb{C}$. Let $a \in \Omega$. Prove that the following are equivalent:
 - (a) f is anti-conformal at a.
 - (b) \overline{f} is conformal at a.
 - (c) \bar{f} is (complex) differentiable at z = a.
 - (d) $f_z(a) = 0$.
- (98) Suppose that $\Omega \xrightarrow{f} \Omega'$ is a \mathcal{C}^1 -diffeomorphism of domains $\Omega, \Omega' \subset \mathbb{C}$. Let $a \in \Omega$. Prove that the following are equivalent:
 - (a) f is isogonal at a.
 - (b) Either f is conformal at a or f is anti-conformal at a.
 - (c) There exists $\lim_{z\to a} \frac{|f(z) f(a)|}{|z a|}$. (Hints: That (a) \Leftrightarrow (b) \Rightarrow (c) is straightforward. To establish (c) \Rightarrow (b), use problem #(90).)
- (99) Prove that points z and w in \mathbb{C} correspond to diametrically opposite points on the Riemann sphere if and only if $z\bar{w} = -1$.
- (100) Suppose that a cube has its vertices on the sphere S and its edges parallel to the coordinate axes. Determine the stereographic projections of the vertices.
- (101) Do the same problem for a regular tetrahedron in regular position.
- (102) Let $\mathbb{C} \xrightarrow{L} \mathbb{C}$ be a complex linear map. Extend the definition of L to all of $\hat{\mathbb{C}}$ by setting $L(\infty) := \infty$. Verify that this makes L a continuous bijection, in fact a homeomorphism, from $\hat{\mathbb{C}}$ onto itself, except for certain 'special cases'. What are these 'special cases'? What is the 'correct' extension for L in these 'special cases'?

- (103) Let J(z) := 1/z be the complex inversion map. Extend the definition of J to all of $\hat{\mathbb{C}}$ by setting $J(0) := \infty$ and $J(\infty) := 0$. Prove that this makes J a continuous bijection from $\hat{\mathbb{C}}$ onto itself. In fact, show that $J : (\hat{\mathbb{C}}, \chi) \to (\hat{\mathbb{C}}, \chi)$ is an isometry.
- (104) Let S(z) := z + 1/z be the complex 'squash' map. Extend the definition of S to all of $\hat{\mathbb{C}}$ by setting $S(0) := \infty$ and $S(\infty) := \infty$. Prove that this makes S a continuous surjection from $\hat{\mathbb{C}}$ onto itself. What are $S(\mathbb{D})$ and $S(\hat{\mathbb{C}} \setminus \overline{\mathbb{D}})$?
- (105) Consider the self-maps J and K of \mathbb{C}_* and \mathbb{C} given by $z \mapsto 1/z$ and $z \mapsto \overline{z}$. How should these maps be defined to obtain continuous maps of \mathbb{C} ? What are the corresponding maps of \mathbb{S} ? That is, exhibit formulas for the maps $\Pi^{-1} \circ J \circ \Pi$ and $\Pi^{-1} \circ K \circ \Pi$.
- (106) Determine self-maps of $\hat{\mathbb{C}}$ which correspond to the following self-maps of \mathbb{S} :

$$(x_1, x_2, x_3) \mapsto (-x_1, x_2, x_3), \quad (x_1, x_2, x_3) \mapsto (-x_1, -x_2, x_3), \quad (x_1, x_2, x_3) \mapsto -(x_1, x_2, x_3).$$

- (107) Let $c \in \hat{\mathbb{C}}$ and t > 0. Describe when $D_{\chi}(c;t) \subset \mathbb{C}$. In this case, find $a \in \mathbb{C}$ and r > 0 so that $D_{\chi}(c;t) = D(a;r)$.
- (108) Let $a \in \mathbb{C}$ and r > 0. Find $c \in \hat{\mathbb{C}}$ and t > 0 so that $D_{\chi}(c;t) = D(a;r)$.
- (109) Let $L \subset \mathbb{C}$ be the line with equation ax + by = c (so $a, b, c \in \mathbb{R}$ and one of a, b is non-zero). Describe the stereographic pre-image of $\hat{L} = L \cup \{\infty\}$. Find $\zeta \in \mathbb{C}$ and r > 0 so that $\hat{L} = \{z \in \hat{\mathbb{C}} : \chi(z, \zeta) = r\}.$

(110) Let $\Phi = \Pi^{-1} : \hat{\mathbb{C}} \to \mathbb{S}$ be the inverse of the stereographic projection; thus for z = x + iy

$$(x_1, x_2, x_3) = \Phi(z) = \left(\frac{2x}{|z|^2 + 1}, \frac{2y}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1}\right)$$

Consider the map $F(z) := \Phi(e^z)$, so $F : \mathbb{C} \to \mathbb{S} \subset \mathbb{R}^3$. Let Σ be any horizontal strip in \mathbb{C} of width 2π , say $\Sigma = \{z \in \mathbb{C} : |\Im(z) - y_0| < 2\pi\}$ for some fixed $y_0 \in \mathbb{R}$. Confirm that $F|_{\Sigma}$ is an isogonal diffeomorphism. (The inverse of this map...)

- (111) Prove that every Möbius transformation is a self-homeomorphism of the Riemann sphere $\hat{\mathbb{C}}$. (Recall that when $T(z) = \frac{az+b}{cz+d}$ and $c \neq 0$, we have defined $T(-d/c) := \infty$ and $T(\infty) := a/c$).
- (112) Suppose T is a Möbius transformation that maps the extended real line $\hat{\mathbb{R}}$ into itself. Confirm that there exist $a, b, c, d \in \mathbb{R}$ such that for all $z \in \mathbb{C}$, $T(z) = \frac{az+b}{cz+d}$.
- (113) Confirm that a map of the form $w = \frac{a\overline{z} + b}{c\overline{z} + d}$ (with $a, b, c, d \in \mathbb{C}$ and $ad \neq bc$) is an orientation reversing isogonal diffeomorphism of $\mathbb{C} \setminus \{-\overline{(d/c)}\}$ onto $\mathbb{C} \setminus \{a/c\}$.
- (114) Calculate the following cross ratios: (a) [1, i, -1, -i] (b) $[0, a, \infty, b]$ for $a, b \in \mathbb{C}_*$ with $a \neq b$ (c) [0, c, 1/c, 1] for $c \in \mathbb{C}_* \setminus \{\pm 1\}$ (d) $[\infty, z, 1/z, \overline{z}]$ for $z \in \mathbb{C} \setminus (\mathbb{R} \cup \mathbb{T})$
- (115) Let $a, b, c, d \in \hat{\mathbb{C}}$ be distinct. Put z := [a, b, c, d]. Express, in terms of z, the twentyfour possible values of the cross ratios of a, b, c, d when all possible permutations are considered. (In fact, there are only six different values which arise. Hint: Explain why it suffices to consider the points $b = 0, c = \infty, d = 1$, and then use this fact to answer the problem.)

- (116) Prove that four distinct points $a, b, c, d \in \hat{\mathbb{C}}$ lie on a circle in $\hat{\mathbb{C}}$ if and only if [a, b, c, d] is real. Determine a condition that characterizes precisely when the points a, c will separate the points b, d on the circle. (Hint: The desired condition is that |[a, b, c, d]| + |[a, d, c, b]| = 1.)
- (117) Let A and B be oriented circles that intersect. Express $\Theta(A, B)$ in terms of a cross ratio of points on A and B. (Answer: $\Theta(A, B) = \operatorname{Arg}[b, c, d, a]$ where: c, d are the points of $A \cap B$ and $a \in A, b \in B$ are chosen so that the orientations of A, B agree with the orderings c, a, d and c, b, d.)
- (118) Find the images of each of

 $\hat{\mathbb{R}}$, $i\hat{\mathbb{R}}$, $K_1 = \{z : |z-1| = 1\}$, $K_2 = \{z : |z-i| = 1\}$ under the mapping $w = T(z) := \frac{z}{z - (1+i)}$ of $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$.

- (119) Let K be a circle in $\hat{\mathbb{C}}$. Fix distinct points $a, b \in \hat{\mathbb{C}} \setminus K$. Prove that a and b are symmetric with respect to K if and only if every circle in $\hat{\mathbb{C}}$ which passes though both a, b is orthogonal to K. (Suggestion: First consider the case when K is an extended line.)
- (120) Let a, b, c be distinct points in $\hat{\mathbb{C}}$. Demonstrate that there exists a unique circle K in $\hat{\mathbb{C}}$ which passes though c and has the property that a and b are symmetric with respect to K.
- (121) Find the general form of any Möbius transformation which maps the unit disk \mathbb{D} onto the upper half-plane. Suppose we add the requirement that the origin should be mapped to *i*: What changes?
- (122) Find a Möbius transformation that maps the unit disk \mathbb{D} onto itself and sends the circle C(1/4; 1/4) onto C(0; r) for some r > 0.
- (123) Let K_1 and K_2 be two arbitrary disjoint circles in $\hat{\mathbb{C}}$. Prove that there exists a unique pair of points a, a^* with the property that these points are symmetric with respect to both circles K_1 and K_2 . (Hint: By using a preliminary Möbius transformation, reduce to the case where $K_1 = \mathbb{T}$ and K_2 is some vertical line $\Re \mathfrak{e}(z) = x_0 > 1$.) What can you say about the images of K_1 and K_2 under the map $T(z) = (z-a)/(z-a^*)$? If A is the region bounded by K_1 and K_2 , what is T(A)?

(124) Let
$$\omega := e^{\pi i/3}$$
 and put $g(z) := \frac{z - \omega}{z - \overline{w}}$. Find the image $g(\Omega)$ of

$$\Omega := \{z : |z| < 1, |z - 1| < 1, \Im \mathfrak{m}(z) > 0\}.$$

- (125) Let K and K' be circles in $\hat{\mathbb{C}}$. Suppose $a \in K$, $a' \in K'$, $b \in \hat{\mathbb{C}} \setminus K$, $b' \in \hat{\mathbb{C}} \setminus K'$. Demonstrate that there exists a unique Möbius transformation that maps K, a, b to K', a', b' respectively.
- (126) Let $t \in (0, 1)$ and fix two points $a, b \in \mathbb{C}$. Prove that $K := \{z \in \mathbb{C} : |z a| = t|z b|\}$ is a circle. Find $c \in \mathbb{C}$ and r > 0 so that $K = C(c; r) = \{z \in \mathbb{C} : |z c| = r\}$. Which of the points a, b is inside K?
- (127) Find a conformal map from the quarter plane $\{x + iy : x > 0, y > 0\}$ onto the unit disk \mathbb{D} .

- (128) Find a conformal mapping from the domain $\Delta := D(1;1) \cap D(i;1)$ onto the unit disk which maps the segment (0, 1+i) onto the real diameter (-1, 1). What is the preimage of the origin?
- (129) Here we scrutinize the complex cosine function $\cos(z) := \frac{e^{iz} + e^{-iz}}{2}$.
 - (a) Confirm that the cosine function is periodic with period 2π ; i.e., show that

$$\forall z \in \mathbb{C} : \cos(z + 2\pi) = \cos(z).$$

(b) Prove that the cosine function $\mathbb{C} \xrightarrow{\cos} \mathbb{C}$ is surjective.

(c) Find the image of the semi-infinite strip $T := \{x + iy : |x| < \pi, y < 0\}$ under the map $z \mapsto w = \cos(z)$. (Hints: First note that the cosine is injective in T. Why is this important? Now start by examining $\zeta = e^{\tau}$ where $\tau = iz$. How can you write $w = \cos(z)$ in terms of ζ ?)

(d) Use your work in part (c), together with the fact that the cosine function is even, to calculate the image of the infinite strip $S = \{x + iy : 0 < x < \pi, y \in \mathbb{R}\}$ under the map $z \mapsto w = \cos(z)$.

(e) In Freshman Calculus we define the inverse cosine function for $t \in [-1, 1]$ by

$$\theta := \cos^{-1}(t) = \arccos(t) \iff \theta \in [0, \pi] \text{ and } \cos(\theta) = t$$
.

In particular, $\arccos(0) = \pi/2$. Let's do a similar thing for the complex-valued cosine function. Prove that there is a domain Δ which contains (-1, 1) and a function g which is a holomorphic branch of the inverse cosine function in Δ and satisfies $g(0) = \pi/2$. What is the largest possible such domain Δ , and what is $g(\Delta)$? Provide an explicit formula for g—you probably came close to doing this in part (b)! (Your answer will involve logarithms and a square root, so be explicit and be careful.) Calculate g'. Finally, what are the other possible branches of the inverse cosine function? For example, what if we want such a function h with $h(0) = 3\pi/2$?

(130) Please be sure to look at all the suggested problems from Ahlfors; these are listed on the web page.

Department of Mathematics, University of Cincinnati, OH 45221 E-mail address: David.Herron@math.UC.edu