

Department of Mathematical Sciences 839 Old Chemistry Building PO Box 210025 Phone (513) 556-4075 Cincinnati OH 45221-0025 Fax (513) 556-3417

COMPLEX ANALYSIS HOMEWORK PROBLEMS AUTUMN QUARTER 2009

Please provide plenty of details! Pix are definitely kewl $(\ddot{\circ})$.

- (1) Read chapter one in Ahlfors. Please be sure to look at (and work) the suggested problems from Ahlfors; these are listed on the web page.
- (2) Verify the 'parallelogram law' for complex numbers z, w :

$$
|z+w|^2 + |z-w|^2 = 2|z|^2 + 2|w|^2.
$$

- (3) Given complex numbers z, w , prove that $|z + w| \leq |z| + |w|$ and that equality holds for $z \neq 0 \neq w$ if and only if $w = tz$ for some $t > 0$.
- (4) Let $c \in \mathbb{D}$. Demonstrate that $|z + c| \leq |1 + \overline{c}z|$ if and only if $|z| \leq 1$, with equality holding if and only if $|z|=1$.
- (5) Provide geometric descriptions for the following subsets of \mathbb{C} : (a) $\{z : |z-1| = \Re(z)\}\)$. (b) $\{z : |z-i| + |z+i| = 4\}$. (c) $\{z : |z-i|^2 + |z+i|^2 = 4\}$.

Give both a written/verbal description and a pictorial description.

(6) Consider the equation

 $r|z|^2 + cz + \bar{c}\bar{z} + s = 0$ where $r, s \in \mathbb{R}, c \in \mathbb{C}$ and $|c|^2 > rs$.

Demonstrate that this is the equation of a line when $r = 0$ and a circle when $r \neq 0$. Give the standard equations in each case; especially, when this equation describes a circle, what are its center and radius? Also, verify that every line or circle can be described by such an equation.

- (7) Consider the equation $a z + b \bar{z} + c = 0$ where $a, b, c \in \mathbb{C}$. We want to understand the possible solution set for such an equation.
	- (a) What are the 'trivial' cases?
	- (b) Determine when this equation has a unique solution z , and give z .

(c) Determine when this equation represents a straight line, and find a 'standard' equation for this line.

- (d) What can you say about all other cases?
- (8) Verify the formulas

 $arg(1/z) = -arg(z)$, $arg(zw) = arg(z) + arg(w)$

and explain precisely what these actually mean. Find z, w that satisfy

 $Arg(1/z) \neq -Arg(z)$ and $Arg(zw) \neq Arg(z) + Arg(w)$.

Date: December 3, 2009.

Can you determine when we do have

 $Arg(1/z) = -Arg(z)$ or $Arg(zw) = Arg(z) + Arg(w)$?

- (9) Prove that there does not exist a continuous branch of the argument function in \mathbb{C}_* .
- (10) Show that when $|z| = 1$ and $z \neq -1$, $Arg(z) = 2 Arg(z + 1)$. (Hint: What is $\{z+1 : |z|=1\}$?)
- (11) Give examples to illustrate that, in general, $\sqrt[p]{zw} \neq \sqrt[p]{z} \sqrt[p]{w}$, where $\sqrt[p]{z}$ stands for the principal value of the square root of z. Confirm that equality does hold provided either z or w is a positive real number.
- (12) (a) Clearly, for any $z \in \mathbb{C}$, $\sqrt[p \sqrt[n]{z^2}$ is either z or $-z$. For which z is which true? (b) For which complex numbers is it true that $\sqrt[p]{z/\bar{z}} = z/|z|$?
- (13) Prove Proposition 1.3 in the notes.
- (14) (a) Prove that the map $T(z) := (1-z)/(1+z)$ is a bijection between $\mathbb D$ and $\mathbb H$. (b) Find a formula for the inverse map T^{-1} .
- (15) Determine the images of the sets \mathbb{R} , $i\mathbb{R}$, $\{x + y = 1\}$, \mathbb{D} , \mathbb{H} under the complex linear map $L(z) := (1 + i\sqrt{3})z + 2$.
- (16) Recall that z is a *fixed point* of the map f if $f(z) = z$. Let $L(z) := az + b$.
	- (a) Prove that L has no fixed points if and only if $a = 1$ and $b \neq 0$.
	- (b) Suppose L has a fixed point. Describe the set of all fixed points of L .
- (17) Suppose the complex linear map $L(z) := az + b$ has a unique fixed point c. Confirm that L can be expressed as $L(z) = c + a(z - c)$. Use this representation to explain the geometric effect of the mapping L ; you should be able to describe L in terms of standard dilations and rotations but now with respect to the fixed point (instead of with respect to the origin).
- (18) Let K and K' be two lines in $\mathbb C$. Does there necessarily exist a complex linear map L with $L(K) = K'$? If so, is L unique? If L is not unique, what else can you say? What if K , K' are two circles?
- (19) Explain why and how each complex linear map L induces maps $\mathcal{L} \stackrel{\Phi}{\rightarrow} \mathcal{L}$ and $\mathcal{C} \stackrel{\Psi}{\rightarrow} \mathcal{C}$. Are these maps injective or surjective? (See the end of §1.3 in the notes for the notation.)
- (20) Let L be a complex linear map. Verify that L transforms every polygon $\Pi \subset \mathbb{C}$ into a polygon $\Pi' := L(\Pi)$ which is similar to Π . What can you say about the image, under L , of a conic section (i.e., an ellipse, parabola, or hyperbola)?
- (21) Show that given any points $z_1, w_1 \in \mathbb{C}$, there are many complex linear maps L with $L(z_1) = w_1$. What can you say about *n* pairs of points z_1, \ldots, z_n and w_1, \ldots, w_n in C: When does there exist a complex linear map L with $L(z_i) = w_i$ for all $1 \leq i \leq n$? And when is such an L unique?
- (22) Let Lin denote the family of all non-constant complex linear maps $\mathbb{C} \to \mathbb{C}$.
	- (a) Confirm that Lin is a group (with product given by composition). Is it abelian?
	- (b) Find two elements of Lin, one with finite order and one with infinite order.
	- (c) Check that the family **Tran** of pure translations is a normal subgroup of Lin .
	- (d) Identify the quotient group Lin/Tran .

(e) Is the family Rotn of pure rotations a subgroup of Lin? (A pure rotation about $a \in \mathbb{C}$ is a map of the form $z \mapsto c(z - a) + a$ where $c \in \mathbb{T}$.)

Hint: Problems $\#(16, 17)$ might prove useful here.

Recall that a map f is an *isometry* (or *similarity*) if it preserves (dilates) all distances; i.e.,

 $\forall z, w : |f(z) - f(w)| = |z - w|$ (or $|f(z) - f(w)| = \sigma |z - w|$ for some constant $\sigma > 0$).

- (23) Prove that the only isometry of C that fixes three non-collinear points is the identity map. (Hints: What can you say about a if there are distinct z, z' with $|z-a| = |z'-a|$? Deduce that if $a, b, c \in \mathbb{C}$ are non-collinear, then each $z \in \mathbb{C}$ is uniquely determined by the numbers $|z-a|, |z-b|, |z-c|$.
- (24) (a) Suppose $\mathbb{C} \stackrel{f}{\to} \mathbb{C}$ is an isometry with $f(0) = 0$. Demonstrate that there exist $c \in \mathbb{T}$ such that f can be expressed as $f(z) = cz$ or $f(z) = c\overline{z}$. (Hint: What if $f(1) = 1$?) (b) Determine the general form of an isometry $\mathbb{C} \to \mathbb{C}$. (c) Determine the general form of a similarity $\mathbb{C} \to \mathbb{C}$. (Hint: Look at $g := [f - f(0)]/[f(1) - f(0)].$)
- (25) Consider the map $z \mapsto a\overline{z} + b$ where $a \in \mathbb{C}_*$ and $b \in \mathbb{C}$ are constants. Which of the many properties for complex linear maps continue to hold for such a map? Which properties fail to hold?
- (26) Describe the geometric effect of the map $z \mapsto a\overline{z} + b$, where $a \in \mathbb{C}_*$ and $b \in \mathbb{C}$ are constants.
- (27) Determine the fixed points of the map $z \mapsto a\overline{z} + b$, where $a \in \mathbb{C}_*$ and $b \in \mathbb{C}$ are constants. (Hint: Recall problem $#(7)$.)

Two points z and z^* are said to be *symmetric with respect to a line K* if K is the perpendicular bisector of the segment $[z, z^*]$.

- (28) (a) Show that z and \bar{z} are symmetric with respect to R.
	- (b) Verify that if a and b are symmetric with respect to a line K , then

$$
dist(a, K) = \frac{1}{2} |a - b| = dist(b, K).
$$

(c) Demonstrate that a and b are symmetric with respect to a line K if and only if

$$
\forall z \in K , \quad |z - a| = |z - b|.
$$

(29) Let K be a line in C. Suppose L is a complex linear map with $L(K) = \mathbb{R}$. Verify that for each $z \in \mathbb{C}$, $z^* := L^{-1}(\overline{L(z)})$ enjoys the property that z and z^* are symmetric with respect to K .

FIGURE 1. Reflection across K

(30) Let K be a line in \mathbb{C} . Prove that for each $z \in \mathbb{C}$ there is a unique $z^* \in \mathbb{C}$ such that z and z^* are symmetric with respect to K. Provide a formula for z^* . (Suggestion: Start with a standard equation for K such as $\Re\epsilon((z-a)\bar{v})=0$ or $cz+\bar{c}\bar{z}+s=0$.)

Given a line K, the map $\mathbb{C} \stackrel{\rho_K}{\to} \mathbb{C}$ defined by $z \mapsto \rho_K(z) := z^*$, where z^* is the unique point such that z and z^* are symmetric with respect to K , is called *reflection across* the line K . See Figure 1.

- (31) (a) Prove that complex linear maps preserve symmetric points. That is, if z, z^* are symmetric with respect to a line K, and w, w^*, K' are the images of z, z^*, K under a complex linear map, then w, w^* are symmetric with respect to K' .
	- (b) Let K be a line in \mathbb{C} and $\mathbb{C} \stackrel{L}{\to} \mathbb{C}$ be a complex linear map. Put

$$
K' := L(K) \,, \quad \rho := \rho_K \,, \quad \rho' := \rho_{K'} \,;
$$

so K' is another line and ρ and ρ' are reflections across K and K' respectively. Deduce that $L \circ \rho = \rho' \circ L$, so the pictured diagram commutes.

$$
\begin{array}{ccc}\n\mathbb{C} & \xrightarrow{\rho} & \mathbb{C} \\
\downarrow L & & \downarrow L \\
\mathbb{C} & \xrightarrow{\rho'} & \mathbb{C}\n\end{array}
$$

(Hint: All of the above actually hold for any similarity L , right?)

- (32) Find the image of T under the map $z \mapsto w := az + b\overline{z}$ where $a, b \in \mathbb{C}$ and $|a| > |b|$. (Suggestions: Start by looking at, e.g., $2z + \bar{z}$ or—even better— $r z + s \bar{z}$ where $r > s > 0$. What are max |w| and min |w| where z varies over T? Consider a change of variables $Z := e^{i\varphi} z$, $W := e^{i\psi} w$ (for appropriate φ, ψ) and the map $Z \mapsto W$.)
- (33) Let H be one of the open half-planes determined by some line passing thru the origin. Confirm that $f(z) := z^2$ is injective on H. What is $f(H)$?
- (34) Determine all preimages of horizontal and vertical lines under the map $f(z) := z²$.
- (35) Using cartesian coordinates (instead of polar coordinates), analyze the map $f(z) := z^2$ and find:
	- (a) $f(\mathbb{R})$ and $f(i\mathbb{R})$.
	- (b) $f({x + imx : x \in \mathbb{R}})$ where $m \in \mathbb{R}$. What role does m play?
- (36) Let K be any line in $\mathbb C$ that does not pass through the origin. Determine the image of K under the squaring map $z \mapsto z^2$. (Hint: Notice that $e^{-2i\varphi}(e^{i\varphi}z)^2 = z^2$. Consider a change of variables $Z := e^{i\varphi} z$, $W := e^{i\psi} w$ (for appropriate φ, ψ) and the map $Z \mapsto W.$

FIGURE 2. A standard cardioid

- (37) Recall the picture for the 'standard' cardioid; this is the plane curve given by the polar equation $r = 1 + \cos \theta$. See Figure 2. Let's call any plane curve a *cardioid* if it is similar to the 'standard' cardioid. Prove the the image of any circle in $\mathbb C$ that passes through the origin under the squaring map $z \mapsto z^2$ is a cardioid. (Hint: Start with the circle $C(1, 1)$. Next, notice that the circle with center a that passes through the origin is $C(a; |a|) = \{a + ae^{it} \mid -\pi/2 < t \leq \pi/2\}$. Consider a change of variables $Z := e^{i\varphi} z$, $W := e^{i\psi} w$ (for appropriate φ, ψ) and the map $Z \mapsto W$.)
- (38) Determine the images of the following lines under the map $w = \sqrt{z}$.
	- (a) A horizontal line.
	- (b) A vertical line.
	- (c) The line with equation $y = \sqrt{3}x$.
- (39) Consider the map $f(z) := z + 1/z$ for $z \in \mathbb{C}_*$. Find:
	- (a) $f((0, 1]), f([-1, 0)), f((0, i])$ and $f((0, -i]).$
	- (b) $f({re^{i\theta_0}: r > 1})$ where $\theta_0 \in (0, \pi/2)$ is fixed.
	- (c) How does your answer to (b) change if you replace θ_0 by $-\theta_0$, $\pi \theta_0$, or $\theta_0 \pi$?.
	- (d) How does your answer to (b) change if you replace $r > 1$ with $0 < r < 1$?
- (40) Prove that for all $z, w \in \mathbb{C}$: $e^z e^w = e^{z+w}, e^{-z} = 1/e^z, \forall n \in \mathbb{N}$: $(e^z)^n = e^{nz}$.
- (41) Find the image of the line $\{x + imx : x \in \mathbb{R}\}\$ (where $m \in \mathbb{R}$) under the map $w = e^z$. What role does m play?
- (42) Determine the real and imaginary parts of $\exp(e^z)$.
- (43) Find examples to illustrate that in general, $\text{Log}(ab) \neq \text{Log}(a) + \text{Log}(b)$. For a given $a \in \mathbb{C}_{*}$, determine the set of all z with $\text{Log}(az) = \text{Log}(a) + \text{Log}(z)$.
- (44) Prove that for all $z \in \mathbb{D}$, $\text{Log}(1-z^2) = \text{Log}(1-z) + \text{Log}(1+z)$. What can you say about $\text{Log}[(1-z)/(1+z)]$ for $z \in \mathbb{D}$? (Hint: Recall problem $\#(14)$.)
- (45) Put $\Omega := \mathbb{C} \setminus S$ where S is the spiral $S = \{e^{(1+i)t} : t \in \mathbb{R}\}$. Let $\lambda(z)$ be the branch of log(z) defined in Ω that satisfies $\lambda(e) = 1$. Calculate $\lambda(e^6)$, $\lambda(-e^{-8})$, $\lambda(ie^{\pi k})$ where k is an integer. Also, determine the range of λ .
- (46) Establish the following facts concerning complex powers a^b where $a \in \mathbb{C}_*$ and $b \in \mathbb{C}$. (a) If $b \in \mathbb{Z}$, then a^b is a single value.

(b) If $b = p/q \in \mathbb{Q}$ is rational, say with $p \in \mathbb{Z}$, $q \in \mathbb{N}$ and p, q having no common factors, then there are q distinct complex values of a^b and these are symmetrically located around the circle $|w| = |a|^b$.

(c) If $b \in \mathbb{R} \setminus \mathbb{Q}$ is irrational, then a^b consists of infinitely many complex values located around the circle $|w| = |a|^b$.

Everywhere above $|a|^b$ stands for the principle value of the b^{th} power of $|a|$; that is, $|a|^b := \exp(b \operatorname{Log} |a|).$

- (47) Find an example to illustrate that, in general, the 'law of exponents' $a^b a^c = a^{b+c}$ fails to hold, even when this is considered as a set equality.
- (48) When is it true that $|a^b| = |a|^{b}$? (Hint: Consider when a or b is real.)
- (49) Determine the real and imaginary parts of z^z .
- (50) Prove that a subset of $\mathbb C$ is open if and only if it can be written as a union of open sets if and only if it can be written as a union of open disks. What can you say about the above statement if every occurrence of the word *open* is replaced by *closed*?
- (51) Recall that the *distance from a point z to a set* $A \subset \mathbb{C}$ is defined by

$$
dist(z, A) := \inf_{a \in A} |z - a|.
$$

Prove that the following are equivalent.

- (a) The set A is closed.
- (b) For all $z \notin A$, dist $(z, A) > 0$.
- (c) For each convergent sequence $(a_n)_{n=1}^{\infty}$ with $a_n \in A$ for all n , $\lim_{n \to \infty} a_n \in A$.
- (52) We can also define the *distance between two sets* $A, B \subset \mathbb{C}$ by

$$
dist(A, B) := \inf\{|a - b| : a \in A, b \in B\}.
$$

Demonstrate that for $C \subset \mathbb{C}$ closed and $K \subset \mathbb{C}$ compact,

$$
C \cap K = \emptyset \iff \text{dist}(C, K) > 0.
$$

Is this result still true if we merely assume that C and K are both closed?

- (53) Let $E \subset \mathbb{C}_*$ be connected. Suppose λ and λ' are (single-valued continuous) branches of the logarithm in E. Prove that there is a constant $k \in \mathbb{Z}$ such that for all $z \in E$, $\lambda(z) = \lambda'(z) + 2k\pi i$. (Hint: What can you say about a continuous map from a connected set into Z?)
- (54) Let $\mathbb{C} \stackrel{f}{\to} \mathbb{C}$ be continuous. Suppose $K \subset \mathbb{C}$ is compact.

(a) Explain why there exists a point $a \in K$ such that for all $z \in K$, $|f(z)| \leq |f(a)|$. Is this necessarily true when K is not compact?

(b) Assume that for all $z \in K$, $f(z) \neq 0$. Confirm that there exists $\varepsilon > 0$ such that for all $z \in K$, $|f(z)| \geq \varepsilon$. Is this necessarily true when K is not compact?

- (55) Demonstrate that a function f is continuous if and only if both $\Re(\epsilon f)$ and $\Im(\epsilon f)$ are continuous. Establish a similar result involving continuity of $|f|$ and $\arg(f)$.
- (56) Let $\mathbb{C} \supset \Omega \xrightarrow{f} \mathbb{C}$ with Ω open. Suppose that f is (complex) differentiable at $a \in \Omega$. Prove that f is continuous at a .
- (57) Let $\Omega \subset \mathbb{C}$ be open, $a \in \Omega$, and $\Omega \to \mathbb{C}$. Demonstrate that the following are equivalent.
	- (a) f is (complex) differentiable at the point a .
- (b) $\exists c \in \mathbb{C}$ and $\Omega \stackrel{\varepsilon}{\rightarrow} \mathbb{C}$ such that $\lim_{z \to a} \frac{\varepsilon(z)}{z a}$ $z - a$ $= 0$ and $\forall z \in \Omega$, $f(z) = f(a) + c(z - a) + \varepsilon(z)$.
- (c) $\exists \Omega \stackrel{\varphi}{\rightarrow} \mathbb{C}$ that is continuous at $z = a$ and such that

$$
\forall z \in \Omega, \quad f(z) = f(a) + (z - a)\varphi(z).
$$

In (b), $L(z) := f(a) + c(z - a)$ is called the *(complex) linear* (or *first-order*) approx*imation of f near* $z = a$. In (c): What is $\varphi(a)$?

(58) Let $\mathbb{C} \supset \Omega \stackrel{f}{\to} \mathbb{C}$ with Ω open. Suppose $f \in C^1(\Omega)$. Show that

$$
\frac{\partial f}{\partial r} = D_{e^{i\theta}} f = \cos \theta \frac{\partial f}{\partial x} + \sin \theta \frac{\partial f}{\partial y}
$$

and

$$
\frac{\partial f}{\partial \theta} = D_{ie^{i\theta}} f = -r \sin \theta \frac{\partial f}{\partial x} + r \cos \theta \frac{\partial f}{\partial y}
$$

(59) Let $\Omega \subset \mathbb{C}$ be open and $\Omega \stackrel{f}{\to} \mathbb{C}$. Suppose that f is (complex) differentiable at the point $a \in \Omega$. Write $f = u + iv$, $z = x + iy$ and examine the difference quotients

$$
\frac{f(z) - f(a)}{z - a} = \frac{u(z) - u(a)}{z - a} + i \frac{v(z) - v(a)}{z - a}.
$$

(a) Keeping $y = \Im \mathfrak{m}(z) = \Im \mathfrak{m}(a)$ fixed and letting $x = \Re(\epsilon z)$ vary, what do you get when you take a limit as $x \to \Re(\alpha)$?

(b) Keeping $x = \Re(\epsilon) = \Re(\epsilon)$ fixed and letting $y = \Im(\epsilon)$ vary, what do you get when you take a limit as $y \to \Im \mathfrak{m}(a)$?

What do you conclude?

- (60) Let $\mathbb{C} \supset \Omega \stackrel{u}{\rightarrow} \mathbb{R}$ with Ω open and connected. Suppose u has the property that for each disk $\Delta \subset \Omega$, $u|_{\Delta}$ is a constant. Prove that u is a constant function.
- (61) Let $\mathbb{C} \supset \Omega \stackrel{u}{\rightarrow} \mathbb{R}$ with Ω open and connected. Assume that u has first-order partial derivatives at each point of Ω . Suppose that for all $z \in \Omega$, $\nabla u(z) = 0$. Prove that u is a constant function.
- (62) Let $\mathbb{C} \supset \Omega \stackrel{f}{\to} \mathbb{C}$ be holomorphic with Ω a domain (i.e., open and connected). Suppose that for all $z \in \Omega$, $f'(z) = 0$. Prove that f is a constant map.
- (63) Let f be holomorphic in some domain $\Omega \subset \mathbb{C}$ with $|f|$ constant. Confirm that f is a constant map.
- (64) Let f be holomorphic in some open disk D. Suppose that $f(D)$ is contained in some line or some circle. Demonstrate that f must be a constant map.
- (65) Find a polynomial function of x and y that is complex differentiable at each point of the parabola with equation $y = x^2$, but at no other point.
- (66) When is the map $z \mapsto az + b\overline{z}$ complex differentiable?
- (67) Let $\mathbb{C} \stackrel{f}{\to} \mathbb{C}$ and define $\mathbb{C} \stackrel{g}{\to} \mathbb{C}$ by $g(z) := \overline{f(\overline{z})}$. Prove that f is holomorphic if and only if q is holomorphic.
- (68) Let $f := u + iv$ where $z := x + iy$, $u(z) := x^3 + axy^2$, and $v(z) := bx^2y + cy^3 + 1$. Determine $a, b, c \in \mathbb{R}$ so that f is an entire function. Then express f as a complex polynomial; that is, as a function involving only powers of z.
- (69) Find the entire function $f := u + iv$ satisfying $f(0) = 2$ and such that for $z := x + iy$, $v(z) := (x \sin y + \sin y + y \cos y)e^x$. Try to express f as a function of z—instead of x and y —but note that this may require some clever factoring!
- (70) A function $\mathbb{C} \supset \Omega \stackrel{u}{\to} \mathbb{R}$ (with Ω open) is said to be *harmonic* in Ω if $u \in C^2(\Omega;\mathbb{R})$ (i.e., u has continuous second-order partial derivatives) and satisfies Laplace's equation

$$
\forall z \in \Omega: \qquad \Delta u(z) = \frac{\partial^2 u}{\partial x^2}(z) + \frac{\partial^2 u}{\partial y^2}(z) = 0.
$$

Prove that the real and imaginary parts of every holomorphic map are harmonic. (Assume you know that holomorphic maps are \mathcal{C}^2 .)

(71) A pair of harmonic functions $\mathbb{C} \supset \Omega \stackrel{u,v}{\rightarrow} \mathbb{R}$ are said to be *harmonic conjugates* if they satisfy the Cauchy Riemann equations in Ω ; that is,

$$
\forall z \in \Omega : \frac{\partial u}{\partial x}(z) = \frac{\partial v}{\partial y}(z)
$$
 and $\frac{\partial u}{\partial y}(z) = -\frac{\partial v}{\partial x}(z)$.

Prove that if u, v are harmonic conjugates in Ω , then $f := u + iv$ is holomorphic in Ω.

- (72) Let $f \in \mathcal{H}(\Omega)$ and assume $f \in \mathcal{C}^2(\Omega)$. Demonstrate that $f' \in \mathcal{H}(\Omega)$. Conclude that each function $f \in \mathcal{H}(\Omega) \cap \mathcal{C}^{\infty}(\Omega)$ is infinitely complex differentiable in Ω ; that is, for each $n \in \mathbb{N}$, $f^{(n)}$ exists and moreover is holomorphic in Ω .
- (73) Suppose there is an $n \in \mathbb{N}$ such that $\mathbb{C} \supset \Omega \stackrel{f}{\to} \mathbb{C}$ is *n*-times complex differentiable in the open and connected set Ω . Suppose that for all $z \in \Omega$, $f^{(n)}(z) = 0$. Prove that f is a complex polynomial of degree at most $n-1$. (Suggestion: First, look at functions f with $f' = 0$ [and recall problem $\#(62)$]. Next, consider f with $f'' = 0$. Etc.)
- (74) Suppose $\mathbb{C} \supset \Omega \stackrel{f}{\to} \mathbb{C}$ is a polynomial in x and y. That is, suppose there are constants $c_{ij} \in \mathbb{C}$ such that, when $z := x + iy$, we have

$$
f(z) = c_{00} + c_{10}x + c_{01}y + c_{20}x^{2} + c_{11}xy + c_{02}y^{2} + \cdots + c_{n0}x^{n} + \cdots + c_{0n}y^{n}
$$

Assuming that f is holomorphic, confirm that f must be a complex polynomial. What is the degree of f ?

.

- (75) (a) Show that $f(z) := \sqrt{z}$ (the principal value of the square root) is holomorphic in $\mathbb{C} \setminus (-\infty, 0]$ and calculate its derivative. (Hint: First show that f is continuous in this region. Then use the standard calculus trick.)
	- (b) Now find a holomorphic branch of the square root function in $\mathbb{C} \setminus [0, +\infty)$.
- (76) (a) Exhibit all branches of the cube root function in the domain $\mathbb{C} \setminus (-\infty, 0]$. (b) Let $\Delta := \mathbb{C} \setminus [0, +\infty)$ and define $f : \Delta \to \mathbb{C}$ by $f(z) := \sqrt[3]{z}$ for $\Im \mathfrak{m}(z) \geq 0$ and $f(z) := \omega \sqrt[3]{z}$ for $\Im m(z) < 0$, where $\omega := (-1 + i\sqrt{3})/2$. Verify that f is indeed a branch of the cube root in Δ and calculate f'. Identify all other branches of the cube root function in Δ .
- (77) (a)Define a function g which is holomorphic in the slit plane $\mathbb{C}_{\text{slit}} := \mathbb{C} \setminus (-\infty, 0]$ and satisfies both $g(1) = i$ and $g(z)^4 = z$ for all $z \in \mathbb{C}_{\text{slit}}$. Find $g(\mathbb{C}_{\text{slit}})$.
	- (b) Find a similar function h satisfying $h(1) = -i$.

(c) What if we replace the domain \mathbb{C}_{slit} with $\mathbb{C} \setminus [0, +\infty)$? (Of course we need, e.g., $g(-1) = e^{i \pi/4}.$

- (78) Verify that $f(z) := \cos(\sqrt{z})$ defines an entire function whereas $\sin(\sqrt{z})$ does not. Here \sqrt{z} denotes the principle value of the square root of $z \in \mathbb{C}$. Note that \sqrt{z} is not even continuous in C, so you really have to prove something here! (Suggestion: You can try to show that f_x and f_y exist and are continuous in \mathbb{C} , but a more clever approach is much easier. First explain why f is holomorphic in \mathbb{C}_* . Then demonstrate that f is differentiable at the origin. A helpful observation \vert that requires proof might be that when $h : \mathbb{C} \to \mathbb{C}$ is continuous and even [i.e., $h(-z) = h(z)$], the function $k(z) := h(\sqrt{z})$ is well-defined and continuous.)
- (79) Let $\Delta := \mathbb{C} \setminus [0, +\infty)$ and define $\vartheta : \Delta \to \mathbb{R}$ by $\vartheta(z) := \text{Arg}(-z) + \pi$. Confirm that ϑ is a branch of the argument function in Δ . Find $\vartheta(\Delta)$. Find formulas for the branch of $\log(z)$ in Δ corresponding to ϑ as well as the branch of the complex c-power function $z \mapsto z^c$.
- (80) Suppose that g is a (single-valued) branch of the inverse tangent function in some domain Δ . State precisely what this means. Prove that g is holomorphic in Δ with $g'(z) = (1 + z^2)^{-1}$ for all $z \in \Delta$. Demonstrate that if h is any other branch of the inverse tangent function in Δ , then there is some $k \in \mathbb{Z}$ such that for all $z \in \Delta$, $h(z) = g(z) + k\pi.$

Recall that the complex differential operators are defined by

$$
\frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \quad \text{and} \quad \frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \, .
$$

- (81) Let $\mathbb{C} \supset \Omega \stackrel{f}{\to} \mathbb{C}$ be a \mathcal{C}^1 mapping. Define $\Omega \stackrel{\bar{f}}{\to} \mathbb{C}$ by $\bar{f}(z) := \overline{f(z)}$. Prove that $\partial \bar{f}$ $\partial \bar z$ = $\overline{\frac{\partial f}{\partial z}}$ and $\frac{\partial \bar{f}}{\partial z}$ $rac{\delta}{\partial z}$ = ∂f $\partial \bar z$.
- (82) State and prove the Chain Rules for the partial differential operators $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$. (What are $(g \circ f)_z$ and $(g \circ f)_{\bar{z}}$?)
- (83) Express the partial differential operators $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$ in polar notation. Answer:

$$
\frac{\partial}{\partial z} = \frac{e^{-i\theta}}{2} \left(\frac{\partial}{\partial r} - \frac{i}{r} \frac{\partial}{\partial \theta} \right) \quad \text{and} \quad \frac{\partial}{\partial \bar{z}} = \frac{e^{i\theta}}{2} \left(\frac{\partial}{\partial r} + \frac{i}{r} \frac{\partial}{\partial \theta} \right) .
$$

What are the Cauchy-Riemann equations in polar coordinates?

(84) Assume that f is a \mathcal{C}^1 mapping. Use the partial differential operators $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$ to demonstrate that f is holomorphic if and only if g is holomorphic where $g(z) := f(\overline{z})$. (See problem $\#(67)$.)

(85) Assuming that $\mathbb{C} \stackrel{u}{\rightarrow} \mathbb{R}$ is a \mathcal{C}^2 function, confirm that $\Delta u = 4 \frac{\partial^2 u}{\partial z \partial \bar{z}}$ ∂z∂z¯ . Thus the Laplace differential operator is

.

$$
\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \overline{z}} = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}
$$

- (86) Assume that f is a \mathcal{C}^1 mapping. Prove that the Jacobian of f is given by $Jf = |f_z|^2 - |f_{\bar{z}}|^2$.
- (87) Let $f := u + iv$ where $u(x + iy) = x^2 + y^2 + \frac{x^2 y^2}{2}$ $rac{x^2 - y^2}{x^2 + y^2}$ and $v(x + iy) = \frac{2xy}{x^2 + y^2}$ $\frac{2xy}{x^2+y^2}.$ Determine precisely where f is (complex) differentiable. (Suggestion: Write f in terms of z and \bar{z} and compute $f_{\bar{z}}$.)
- (88) Let $\mathbb{C} \stackrel{F}{\rightarrow} \mathbb{C}$ be a polynomial in x and y (or equivalently, in z and \bar{z}). Suppose that $F_{zz}(z) = 0$ for all $z \in \mathbb{C}$. Prove that there exist complex polynomials (i.e., holomorphic polys) P and Q such that for all $z \in \mathbb{C}$, $F(z, \bar{z}) = zP(\bar{z}) + Q(\bar{z})$.
- (89) Let $\mathbb{C} \stackrel{F}{\rightarrow} \mathbb{C}$ be a polynomial in x and y (or equivalently, in z and \overline{z}). Suppose that for all $z \in \mathbb{C}$, $(F^2)_{\bar{z}}(z) = 0$. What can you deduce about F? (Hint: F must be holomorphic!)
- (90) Recall that the directional derivative of f in the direction $e^{i\theta}$ at $z = a$ is

$$
D_{e^{i\theta}}f(a) := \lim_{r \searrow 0} \frac{f(a + re^{i\theta}) - f(a)}{r},
$$

provided this limit exists. Here $\mathbb{C} \supset \Omega \stackrel{f}{\to} \mathbb{C}$ and $a \in \Omega$. Assume that f is realdifferentiable at a. Prove that

$$
D_{e^{i\theta}}f(a) = e^{i\theta}f_z(a) + e^{-i\theta}f_{\bar{z}}(a).
$$

Conclude that

$$
\max_{-\pi < \theta \leq \pi} |D_{e^{i\theta}} f(a)| = |f_z(a)| + |f_{\bar{z}}(a)|
$$

and that

$$
\min_{-\pi < \theta \leq \pi} |D_{e^{i\theta}} f(a)| = ||f_z(a)| - |f_{\bar{z}}(a)||.
$$

Can you determine where these extreme values occur? (See problem $\#(32)$.)

(91) Suppose that $\Omega \stackrel{f}{\rightarrow} \mathbb{C}$ is real-differentiable at the point $z = a$ in Ω . Let $Df(a)$ denote the complex real-derivative of f at $z = a$,

$$
Df(a)\zeta = f_z(a)\,\zeta + f_{\bar{z}}(a)\,\bar{\zeta} \,.
$$

Prove that the following are equivalent:

- (a) f is complex differentiable at $z = a$.
- (b) $Df(a): \mathbb{C} \to \mathbb{C}$ is complex linear.

Prove that either of (a) or (b) implies

(c) f satisfies the Cauchy-Riemann equations at $z = a$.

When does (c) imply (a) or (b)?

- (92) Let $c, d \in \mathbb{C}$ with $|c| \neq |d|$. Define $f(z) := cz + d\overline{z}$. Verify that f is a \mathcal{C}^1 diffeomorphism of the plane $\mathbb C$ onto itself. Determine f^{-1} . What conditions on c, d ensure that f is orientation preserving (i.e., that $Jf > 0$)?
- (93) Let $\lambda \in \mathbb{R} \setminus \{0\}$ and define $f(z) := |z|^{\lambda 1} z$. Verify that f is a \mathcal{C}^1 -diffeomorphism of the punctured plane \mathbb{C}_* onto itself. Determine f^{-1} . When will f be orientation preserving (i.e., $Jf > 0$)? (Here $|z|^{\lambda-1}$ stands for the principle value of the $(\lambda - 1)$ st power of |z|; that is, $|z|^{\lambda-1} := \exp[(\lambda - 1) \text{ Log } |z|].$
- (94) Let $\Omega \stackrel{f}{\rightarrow} \Omega'$ be a \mathcal{C}^1 -diffeomorphism of domains $\Omega, \Omega' \subset \mathbb{C}$. Prove that f is isogonal (or conformal) at a point $a \in \Omega$ precisely when $Df(a) : \mathbb{C} \to \mathbb{C}$ is an isogonal (or conformal, respectively) real linear transformation.
- (95) Let $\Omega \stackrel{f}{\rightarrow} \Omega'$ be a \mathcal{C}^1 -diffeomorphism. Prove that f is conformal at a point $a \in \Omega$ if and only if f is isogonal at a with $Jf(a) > 0$. (Note: This is the (b) \Leftrightarrow (c) part of the 'Main Theorem', so you cannot appeal to this theorem.)
- (96) Decide whether or not there exists a holomorphic \mathcal{C}^1 -diffeomorphism f defined in a domain which contains the line $L = \{x + ix : x \in \mathbb{R}\}\$ and satisfies $f(z) = \sqrt{z}$ for all $z \in L$. (Hint: What is the image of L under the map $z \mapsto \sqrt{z}$?)
- (97) Suppose that $\Omega \xrightarrow{f} \Omega'$ is a \mathcal{C}^1 -diffeomorphism of domains $\Omega, \Omega' \subset \mathbb{C}$. Let $a \in \Omega$. Prove that the following are equivalent:
	- (a) f is anti-conformal at a .
	- (b) \bar{f} is conformal at a.
	- (c) \bar{f} is (complex) differentiable at $z = a$.
	- (d) $f_z(a) = 0$.
- (98) Suppose that $\Omega \xrightarrow{f} \Omega'$ is a \mathcal{C}^1 -diffeomorphism of domains $\Omega, \Omega' \subset \mathbb{C}$. Let $a \in \Omega$. Prove that the following are equivalent:
	- (a) f is isogonal at a .
	- (b) Either f is conformal at a or f is anti-conformal at a.
	- (c) There exists $\lim_{z\to a}$ $|f(z) - f(a)|$ $|z-a|$. (Hints: That (a) \Leftrightarrow (b) \Rightarrow (c) is straightforward. To establish (c) \Rightarrow (b), use problem $\#(90).$
- (99) Prove that points z and w in $\mathbb C$ correspond to diametrically opposite points on the Riemann sphere if and only if $z\bar{w} = -1$.
- (100) Suppose that a cube has its vertices on the sphere S and its edges parallel to the coordinate axes. Determine the stereographic projections of the vertices.
- (101) Do the same problem for a regular tetrahedron in regular position.
- (102) Let $\mathbb{C} \stackrel{L}{\rightarrow} \mathbb{C}$ be a complex linear map. Extend the definition of L to all of $\hat{\mathbb{C}}$ by setting $L(\infty) := \infty$. Verify that this makes L a continuous bijection, in fact a homeomorphism, from $\hat{\mathbb{C}}$ onto itself, except for certain 'special cases'. What are these 'special cases'? What is the 'correct' extension for L in these 'special cases'?
- (103) Let $J(z) := 1/z$ be the complex inversion map. Extend the definition of J to all of $\mathbb C$ by setting $J(0) := \infty$ and $J(\infty) := 0$. Prove that this makes J a continuous bijection from $\hat{\mathbb{C}}$ onto itself. In fact, show that $J : (\hat{\mathbb{C}}, \chi) \to (\hat{\mathbb{C}}, \chi)$ is an isometry.
- (104) Let $S(z) := z + 1/z$ be the complex 'squash' map. Extend the definition of S to all of $\hat{\mathbb{C}}$ by setting $S(0) := \infty$ and $S(\infty) := \infty$. Prove that this makes S a continuous surjection from $\hat{\mathbb{C}}$ onto itself. What are $S(\mathbb{D})$ and $S(\hat{\mathbb{C}} \setminus \overline{\mathbb{D}})$?
- (105) Consider the self-maps J and K of \mathbb{C}_* and \mathbb{C} given by $z \mapsto 1/z$ and $z \mapsto \overline{z}$. How should these maps be defined to obtain continuous maps of $\hat{\mathbb{C}}$? What are the corresponding maps of S? That is, exhibit formulas for the maps $\Pi^{-1} \circ J \circ \Pi$ and $\Pi^{-1} \circ K \circ \Pi$.
- (106) Determine self-maps of $\hat{\mathbb{C}}$ which correspond to the following self-maps of S:

$$
(x_1, x_2, x_3) \mapsto (-x_1, x_2, x_3), \quad (x_1, x_2, x_3) \mapsto (-x_1, -x_2, x_3), \quad (x_1, x_2, x_3) \mapsto -(x_1, x_2, x_3).
$$

- (107) Let $c \in \hat{\mathbb{C}}$ and $t > 0$. Describe when $D_{\chi}(c; t) \subset \mathbb{C}$. In this case, find $a \in \mathbb{C}$ and $r > 0$ so that $D_{\gamma}(c;t) = D(a;r)$.
- (108) Let $a \in \mathbb{C}$ and $r > 0$. Find $c \in \hat{\mathbb{C}}$ and $t > 0$ so that $D_{\chi}(c; t) = D(a; r)$.
- (109) Let $L \subset \mathbb{C}$ be the line with equation $ax + by = c$ (so $a, b, c \in \mathbb{R}$ and one of a, b is non-zero). Describe the stereographic pre-image of $\hat{L} = L \cup \{\infty\}$. Find $\zeta \in \mathbb{C}$ and $r > 0$ so that $\hat{L} = \{z \in \hat{\mathbb{C}} : \chi(z, \zeta) = r\}.$
- (110) Let $\Phi = \Pi^{-1} : \hat{\mathbb{C}} \to \mathbb{S}$ be the inverse of the stereographic projection; thus for $z = x+iy$

$$
(x_1, x_2, x_3) = \Phi(z) = \left(\frac{2x}{|z|^2 + 1}, \frac{2y}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1}\right)
$$

Consider the map $F(z) := \Phi(e^z)$, so $F : \hat{\mathbb{C}} \to \mathbb{S} \subset \mathbb{R}^3$. Let Σ be any horizontal strip in C of width 2π , say $\Sigma = \{z \in \mathbb{C} : |\Im(z) - y_0| < 2\pi\}$ for some fixed $y_0 \in \mathbb{R}$. Confirm that $F|_{\Sigma}$ is an isogonal diffeomorphism. (The inverse of this map...)

.

- (111) Prove that every Möbius transformation is a self-homeomorphism of the Riemann sphere $\hat{\mathbb{C}}$. (Recall that when $T(z) = \frac{az+b}{z}$ $\frac{a\infty + 0}{cz + d}$ and $c \neq 0$, we have defined $T(-d/c) := \infty$ and $T(\infty) := a/c$.
- (112) Suppose T is a Möbius transformation that maps the extended real line $\mathbb{\hat{R}}$ into itself. Confirm that there exist $a, b, c, d \in \mathbb{R}$ such that for all $z \in \mathbb{C}$, $T(z) = \frac{az + b}{cz + d}$.
- (113) Confirm that a map of the form $w =$ $a\bar{z}+b$ $\frac{az + b}{c\overline{z} + d}$ (with $a, b, c, d \in \mathbb{C}$ and $ad \neq bc$) is an orientation reversing isogonal diffeomorphism of $\mathbb{C} \setminus \{-\overline{(d/c)}\}$ onto $\mathbb{C} \setminus \{a/c\}$.
- (114) Calculate the following cross ratios: (a) $[1, i, -1, -i]$ (b) $[0, a, \infty, b]$ for $a, b \in \mathbb{C}_*$ with $a \neq b$ (c) $[0, c, 1/c, 1]$ for $c \in \mathbb{C}_* \setminus \{\pm 1\}$ (d) $[\infty, z, 1/z, \overline{z}]$ for $z \in \mathbb{C} \setminus (\mathbb{R} \cup \mathbb{T})$
- (115) Let $a, b, c, d \in \mathbb{C}$ be distinct. Put $z := [a, b, c, d]$. Express, in terms of z, the twentyfour possible values of the cross ratios of a, b, c, d when all possible permutations are considered. (In fact, there are only six different values which arise. Hint: Explain why it suffices to consider the points $b = 0, c = \infty, d = 1$, and then use this fact to answer the problem.)
- (116) Prove that four distinct points $a, b, c, d \in \mathbb{C}$ lie on a circle in \mathbb{C} if and only if $[a, b, c, d]$ is real. Determine a condition that characterizes precisely when the points a, c will separate the points b, d on the circle. (Hint: The desired condition is that $|[a, b, c, d]|$ + $|[a, d, c, b]| = 1.$
- (117) Let A and B be *oriented* circles that intersect. Express $\Theta(A, B)$ in terms of a cross ratio of points on A and B. (Answer: $\Theta(A, B) = \text{Arg}[b, c, d, a]$ where: c, d are the points of $A \cap B$ and $a \in A$, $b \in B$ are chosen so that the orientations of A, B agree with the orderings c, a, d and c, b, d .
- (118) Find the images of each of

 $\hat{\mathbb{R}}$, $i\hat{\mathbb{R}}$, $K_1 = \{z : |z - 1| = 1\}$, $K_2 = \{z : |z - i| = 1\}$ under the mapping $w = T(z) := \frac{z}{\sqrt{1-z^2}}$ $z - (1 + i)$ of $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$.

- (119) Let K be a circle in $\hat{\mathbb{C}}$. Fix distinct points $a, b \in \hat{\mathbb{C}} \setminus K$. Prove that a and b are symmetric with respect to K if and only if every circle in $\hat{\mathbb{C}}$ which passes though both a, b is orthogonal to K. (Suggestion: First consider the case when K is an extended line.)
- (120) Let a, b, c be distinct points in \hat{C} . Demonstrate that there exists a unique circle K in $\hat{\mathbb{C}}$ which passes though c and has the property that a and b are symmetric with respect to K.
- (121) Find the general form of any Möbius transformation which maps the unit disk $\mathbb D$ onto the upper half-plane. Suppose we add the requirement that the origin should be mapped to i: What changes?
- (122) Find a Möbius transformation that maps the unit disk D onto itself and sends the circle $C(1/4; 1/4)$ onto $C(0; r)$ for some $r > 0$.
- (123) Let K_1 and K_2 be two arbitrary disjoint circles in $\hat{\mathbb{C}}$. Prove that there exists a unique pair of points a, a^* with the property that these points are symmetric with respect to both circles K_1 and K_2 . (Hint: By using a preliminary Möbius transformation, reduce to the case where $K_1 = \mathbb{T}$ and K_2 is some vertical line $\Re(z) = x_0 > 1$.) What can you say about the images of K_1 and K_2 under the map $T(z) = (z - a)/(z - a^*)$? If A is the region bounded by K_1 and K_2 , what is $T(A)$?

(124) Let
$$
\omega := e^{\pi i/3}
$$
 and put $g(z) := \frac{z - \omega}{z - \overline{w}}$. Find the image $g(\Omega)$ of $\Omega := \{z : |z| < 1, |z - 1| < 1, \Im(\Omega) > 0\}$.

- (125) Let K and K' be circles in $\hat{\mathbb{C}}$. Suppose $a \in K$, $a' \in K'$, $b \in \hat{\mathbb{C}} \setminus K$, $b' \in \hat{\mathbb{C}} \setminus K'$. Demonstrate that there exists a unique Möbius transformation that maps K , a , b to K' , a' , b' respectively.
- (126) Let $t \in (0,1)$ and fix two points $a, b \in \mathbb{C}$. Prove that $K := \{z \in \mathbb{C} : |z-a| = t |z-b|\}$ is a circle. Find $c \in \mathbb{C}$ and $r > 0$ so that $K = C(c; r) = \{z \in \mathbb{C} : |z - c| = r\}$. Which of the points a, b is inside $K?$
- (127) Find a conformal map from the quarter plane $\{x + iy : x > 0, y > 0\}$ onto the unit disk D.
- (128) Find a conformal mapping from the domain $\Delta := D(1,1) \cap D(i,1)$ onto the unit disk which maps the segment $(0, 1 + i)$ onto the real diameter $(-1, 1)$. What is the preimage of the origin?
- (129) Here we scrutinize the complex cosine function $cos(z) := \frac{e^{iz} + e^{-iz}}{2i}$ 2 .
	- (a) Confirm that the cosine function is periodic with period 2π ; i.e., show that

$$
\forall z \in \mathbb{C} \; : \cos(z + 2\pi) = \cos(z) \, .
$$

(b) Prove that the cosine function $\mathbb{C} \stackrel{\cos}{\rightarrow} \mathbb{C}$ is surjective.

(c) Find the image of the semi-infinite strip $T := \{x + iy : |x| < \pi, y < 0\}$ under the map $z \mapsto w = \cos(z)$. (Hints: First note that the cosine is injective in T. Why is this important? Now start by examining $\zeta = e^{\tau}$ where $\tau = iz$. How can you write $w = \cos(z)$ in terms of ζ ?

(d) Use your work in part (c), together with the fact that the cosine function is even, to calculate the image of the infinite strip $S = \{x + iy : 0 < x < \pi, y \in \mathbb{R}\}\$ under the map $z \mapsto w = \cos(z)$.

(e) In Freshman Calculus we define the inverse cosine function for $t \in [-1, 1]$ by

$$
\theta := \cos^{-1}(t) = \arccos(t) \iff \theta \in [0, \pi] \text{ and } \cos(\theta) = t.
$$

In particular, $arccos(0) = \pi/2$. Let's do a similar thing for the complex-valued cosine function. Prove that there is a domain Δ which contains $(-1, 1)$ and a function g which is a holomorphic branch of the inverse cosine function in Δ and satisfies $q(0) = \pi/2$. What is the largest possible such domain Δ , and what is $q(\Delta)$? Provide an explicit formula for q —you probably came close to doing this in part (b)! (Your answer will involve logarithms and a square root, so be explicit and be careful.) Calculate g' . Finally, what are the other possible branches of the inverse cosine function? For example, what if we want such a function h with $h(0) = 3\pi/2$?

(130) Please be sure to look at all the suggested problems from Ahlfors; these are listed on the web page.

> Department of Mathematics, University of Cincinnati, OH 45221 E-mail address: David.Herron@math.UC.edu