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Preface

Complex analysis is a branch of mathematics that involves functions of
complex numbers. It provides an extremely powerful tool with an unex-
pectedly large number of applications, including in number theory, applied
mathematics, physics, hydrodynamics, thermodynamics, and electrical en-
gineering. Rapid growth in the theory of complex analysis and in its appli-
cations has resulted in continued interest in its study by students in many
disciplines. This has given complex analysis a distinct place in mathematics
curricula all over the world, and it is now being taught at various levels in
almost every institution.

Although several excellent books on complex analysis have been written,
the present rigorous and perspicuous introductory text can be used directly
in class for students of applied sciences. In fact, in an effort to bring the
subject to a wider audience, we provide a compact, but thorough, intro-
duction to the subject in An Introduction to Complex Analysis. This
book is intended for readers who have had a course in calculus, and hence
it can be used for a senior undergraduate course. It should also be suitable
for a beginning graduate course because in undergraduate courses students
do not have any exposure to various intricate concepts, perhaps due to an
inadequate level of mathematical sophistication.

The subject matter has been organized in the form of theorems and
their proofs, and the presentation is rather unconventional. It comprises
50 class tested lectures that we have given mostly to math majors and en-
gineering students at various institutions all over the globe over a period
of almost 40 years. These lectures provide flexibility in the choice of ma-
terial for a particular one-semester course. It is our belief that the content
in a particular lecture, together with the problems therein, provides fairly
adequate coverage of the topic under study.

A brief description of the topics covered in this book follows: In Lec-
ture 1 we first define complex numbers (imaginary numbers) and then for
such numbers introduce basic operations–addition, subtraction, multipli-
cation, division, modulus, and conjugate. We also show how the complex
numbers can be represented on the xy-plane. In Lecture 2, we show that
complex numbers can be viewed as two-dimensional vectors, which leads
to the triangle inequality. We also express complex numbers in polar form.
In Lecture 3, we first show that every complex number can be written
in exponential form and then use this form to raise a rational power to a
given complex number. We also extract roots of a complex number and
prove that complex numbers cannot be totally ordered. In Lecture 4, we
collect some essential definitions about sets in the complex plane. We also
introduce stereographic projection and define the Riemann sphere. This
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ensures that in the complex plane there is only one point at infinity.

In Lecture 5, first we introduce a complex-valued function of a com-
plex variable and then for such functions define the concept of limit and
continuity at a point. In Lectures 6 and 7, we define the differentia-
tion of complex functions. This leads to a special class of functions known
as analytic functions. These functions are of great importance in theory
as well as applications, and constitute a major part of complex analysis.
We also develop the Cauchy-Riemann equations, which provide an easier
test to verify the analyticity of a function. We also show that the real
and imaginary parts of an analytic function are solutions of the Laplace
equation.

In Lectures 8 and 9, we define the exponential function, provide some
of its basic properties, and then use it to introduce complex trigonometric
and hyperbolic functions. Next, we define the logarithmic function, study
some of its properties, and then introduce complex powers and inverse
trigonometric functions. In Lectures 10 and 11, we present graphical
representations of some elementary functions. Specially, we study graphical
representations of the Möbius transformation, the trigonometric mapping
sin z, and the function z1/2.

In Lecture 12, we collect a few items that are used repeatedly in
complex integration. We also state Jordan’s Curve Theorem, which seems
to be quite obvious; however, its proof is rather complicated. In Lecture
13, we introduce integration of complex-valued functions along a directed
contour. We also prove an inequality that plays a fundamental role in our
later lectures. In Lecture 14, we provide conditions on functions so that
their contour integral is independent of the path joining the initial and
terminal points. This result, in particular, helps in computing the contour
integrals rather easily. In Lecture 15, we prove that the integral of an
analytic function over a simple closed contour is zero. This is one of the
fundamental theorems of complex analysis. In Lecture 16, we show that
the integral of a given function along some given path can be replaced by
the integral of the same function along a more amenable path. In Lecture
17, we present Cauchy’s integral formula, which expresses the value of an
analytic function at any point of a domain in terms of the values on the
boundary of this domain. This is the most fundamental theorem of complex
analysis, as it has numerous applications. In Lecture 18, we show that
for an analytic function in a given domain all the derivatives exist and are
analytic. Here we also prove Morera’s Theorem and establish Cauchy’s
inequality for the derivatives, which plays an important role in proving
Liouville’s Theorem.

In Lecture 19, we prove the Fundamental Theorem of Algebra, which
states that every nonconstant polynomial with complex coefficients has at
least one zero. Here, for a given polynomial, we also provide some bounds
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on its zeros in terms of the coefficients. In Lecture 20, we prove that a
function analytic in a bounded domain and continuous up to and including
its boundary attains its maximum modulus on the boundary. This result
has direct applications to harmonic functions.

In Lectures 21 and 22, we collect several results for complex sequences
and series of numbers and functions. These results are needed repeatedly
in later lectures. In Lecture 23, we introduce a power series and show
how to compute its radius of convergence. We also show that within its
radius of convergence a power series can be integrated and differentiated
term-by-term. In Lecture 24, we prove Taylor’s Theorem, which expands
a given analytic function in an infinite power series at each of its points
of analyticity. In Lecture 25, we expand a function that is analytic in
an annulus domain. The resulting expansion, known as Laurent’s series,
involves positive as well as negative integral powers of (z − z0). From ap-
plications point of view, such an expansion is very useful. In Lecture 26,
we use Taylor’s series to study zeros of analytic functions. We also show
that the zeros of an analytic function are isolated. In Lecture 27, we in-
troduce a technique known as analytic continuation, whose principal task
is to extend the domain of a given analytic function. In Lecture 28, we
define the concept of symmetry of two points with respect to a line or a
circle. We shall also prove Schwarz’s Reflection Principle, which is of great
practical importance for analytic continuation.

In Lectures 29 and 30, we define, classify, characterize singular points
of complex functions, and study their behavior in the neighborhoods of
singularities. We also discuss zeros and singularities of analytic functions
at infinity.

The value of an iterated integral depends on the order in which the
integration is performed, the difference being called the residue. In Lecture
31, we use Laurent’s expansion to establish Cauchy’s Residue Theorem,
which has far-reaching applications. In particular, integrals that have a
finite number of isolated singularities inside a contour can be integrated
rather easily. In Lectures 32-35, we show how the theory of residues can
be applied to compute certain types of definite as well as improper real
integrals. For this, depending on the complexity of an integrand, one needs
to choose a contour cleverly. In Lecture 36, Cauchy’s Residue Theorem
is further applied to find sums of certain series.

In Lecture 37, we prove three important results, known as the Argu-
ment Principle, Rouché’s Theorem, and Hurwitz’s Theorem. We also show
that Rouché’s Theorem provides locations of the zeros and poles of mero-
morphic functions. In Lecture 38, we further use Rouché’s Theorem to
investigate the behavior of the mapping f generated by an analytic func-
tion w = f(z). Then we study some properties of the inverse mapping f−1.
We also discuss functions that map the boundaries of their domains to the
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boundaries of their ranges. Such results are very important for constructing
solutions of Laplace’s equation with boundary conditions.

In Lecture 39, we study conformal mappings that have the angle-
preserving property, and in Lecture 40 we employ these mappings to es-
tablish some basic properties of harmonic functions. In Lecture 41, we
provide an explicit formula for the derivative of a conformal mapping that
maps the upper half-plane onto a given bounded or unbounded polygonal
region. The integration of this formula, known as the Schwarz-Christoffel
transformation, is often applied in physical problems such as heat conduc-
tion, fluid mechanics, and electrostatics.

In Lecture 42, we introduce infinite products of complex numbers and
functions and provide necessary and sufficient conditions for their conver-
gence, whereas in Lecture 43 we provide representations of entire functions
as finite/infinite products involving their finite/infinite zeros. In Lecture
44, we construct a meromorphic function in the entire complex plane with
preassigned poles and the corresponding principal parts.

Periodicity of analytic/meromorphic functions is examined in Lecture
45. Here, doubly periodic (elliptic) functions are also introduced. The
Riemann zeta function is one of the most important functions of classical
mathematics, with a variety of applications in analytic number theory. In
Lecture 46, we study some of its elementary properties. Lecture 47 is
devoted to Bieberbach’s conjecture (now theorem), which had been a chal-
lenge to the mathematical community for almost 68 years. A Riemann
surface is an ingenious construct for visualizing a multi-valued function.
These surfaces have proved to be of inestimable value, especially in the
study of algebraic functions. In Lecture 48, we construct Riemann sur-
faces for some simple functions. In Lecture 49, we discuss the geometric
and topological features of the complex plane associated with dynamical
systems, whose evolution is governed by some simple iterative schemes.
This work, initiated by Julia and Mandelbrot, has recently found applica-
tions in physical, engineering, medical, and aesthetic problems; specially
those exhibiting chaotic behavior.

Finally, in Lecture 50, we give a brief history of complex numbers.
The road had been very slippery, full of confusions and superstitions; how-
ever, complex numbers forced their entry into mathematics. In fact, there
is really nothing imaginary about imaginary numbers and complex about
complex numbers.

Two types of problems are included in this book, those that illustrate the
general theory and others designed to fill out text material. The problems
form an integral part of the book, and every reader is urged to attempt
most, if not all of them. For the convenience of the reader, we have provided
answers or hints to all the problems.
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In writing a book of this nature, no originality can be claimed, only a
humble attempt has been made to present the subject as simply, clearly, and
accurately as possible. The illustrative examples are usually very simple,
keeping in mind an average student.

It is earnestly hoped that An Introduction to Complex Analysis
will serve an inquisitive reader as a starting point in this rich, vast, and
ever-expanding field of knowledge.

We would like to express our appreciation to Professors Hassan Azad,
Siegfried Carl, Eugene Dshalalow, Mohamed A. El-Gebeily, Kunquan Lan,
Radu Precup, Patricia J.Y. Wong, Agacik Zafer, Yong Zhou, and Changrong
Zhu for their suggestions and criticisms. We also thank Ms. Vaishali Damle
at Springer New York for her support and cooperation.

Ravi P Agarwal
Kanishka Perera
Sandra Pinelas
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Lecture 1
Complex Numbers I

We begin this lecture with the definition of complex numbers and then
introduce basic operations-addition, subtraction, multiplication, and divi-
sion of complex numbers. Next, we shall show how the complex numbers
can be represented on the xy-plane. Finally, we shall define the modulus
and conjugate of a complex number.

Throughout these lectures, the following well-known notations will be
used:

IN = {1, 2, · · ·}, the set of all natural numbers;

Z = {· · · ,−2,−1, 0, 1, 2, · · ·}, the set of all integers;

Q = {m/n : m, n ∈ Z, n ̸= 0}, the set of all rational numbers;

IR = the set of all real numbers.

A complex number is an expression of the form a + ib, where a and
b ∈ IR, and i (sometimes j) is just a symbol.

C = {a+ ib : a, b ∈ IR}, the set of all complex numbers.

It is clear that IN ⊂ Z ⊂ Q ⊂ IR ⊂ C.

For a complex number, z = a + ib, Re(z) = a is the real part of z, and
Im(z) = b is the imaginary part of z. If a = 0, then z is said to be a purely
imaginary number. Two complex numbers, z and w are equal; i.e., z = w,
if and only if, Re(z) = Re(w) and Im(z) = Im(w). Clearly, z = 0 is the
only number that is real as well as purely imaginary.

The following operations are defined on the complex number system:

(i). Addition: (a + bi) + (c+ di) = (a+ c) + (b+ d)i.

(ii). Subtraction: (a+ bi)− (c+ di) = (a− c) + (b− d)i.

(iii). Multiplication: (a+ bi)(c+ di) = (ac− bd) + (bc+ ad)i.

As in real number system, 0 = 0 + 0i is a complex number such that
z + 0 = z. There is obviously a unique complex number 0 that possesses
this property.

From (iii), it is clear that i2 = −1, and hence, formally, i =
√
−1. Thus,

except for zero, positive real numbers have real square roots, and negative
real numbers have purely imaginary square roots.

1R.P. Agarwal et al., An Introduction to Complex Analysis, 
DOI 10.1007/978-1-4614-0195-7_1, © Springer Science+Business Media, LLC 2011 



2 Lecture 1

For complex numbers z1, z2, z3 we have the following easily verifiable
properties:

(I). Commutativity of addition: z1 + z2 = z2 + z1.

(II). Commutativity of multiplication: z1z2 = z2z1.

(III). Associativity of addition: z1 + (z2 + z3) = (z1 + z2) + z3.

(IV). Associativity of multiplication: z1(z2z3) = (z1z2)z3.

(V). Distributive law: (z1 + z2)z3 = z1z3 + z2z3.

As an illustration, we shall show only (I). Let z1 = a1+b1i, z2 = a2+b2i
then

z1 + z2 = (a1 + a2) + (b1 + b2)i = (a2 + a1) + (b2 + b1)i

= (a2 + b2i) + (a1 + b1i) = z2 + z1.

Clearly, C with addition and multiplication forms a field.

We also note that, for any integer k,

i4k = 1, i4k+1 = i, i4k+2 = − 1, i4k+3 = − i.

The rule for division is derived as

a+ bi

c+ di
=

a+ bi

c+ di
· c− di

c− di
=

ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i, c2 + d2 ̸= 0.

Example 1.1. Find the quotient
(6 + 2i)− (1 + 3i)

−1 + i− 2
.

(6 + 2i)− (1 + 3i)

−1 + i− 2
=

5− i

−3 + i
=

(5− i)

(−3 + i)

(−3− i)

(−3− i)

=
−15− 1− 5i+ 3i

9 + 1
= − 8

5
− 1

5
i.

Geometrically, we can represent complex numbers as points in the xy-
plane by associating to each complex number a+ bi the point (a, b) in the
xy-plane (also known as an Argand diagram). The plane is referred to
as the complex plane. The x-axis is called the real axis, and the y-axis is
called the imaginary axis. The number z = 0 corresponds to the origin of
the plane. This establishes a one-to-one correspondence between the set of
all complex numbers and the set of all points in the complex plane.
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Figure 1.1

x

y

1 2 3 4-1-2-3-4

i

2i

-i

-2i

0
·2 + i

·−3− 2i

We can justify the above representation of complex numbers as follows:
Let A be a point on the real axis such that OA = a. Since i ·i a = i2 a = −a,
we can conclude that twice multiplication of the real number a by i amounts
to the rotation of OA through two right angles to the position OA′′. Thus,
it naturally follows that the multiplication by i is equivalent to the rotation
of OA through one right angle to the position OA′. Hence, if y′Oy is a
line perpendicular to the real axis x′Ox, then all imaginary numbers are
represented by points on y′Oy.

Figure 1.2
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0
x′

y′

×

××
AA′′

A′

The absolute value or modulus of the number z = a + ib is denoted
by |z| and given by |z| =

√
a2 + b2. Since a ≤ |a| =

√
a2 ≤

√
a2 + b2

and b ≤ |b| =
√
b2 ≤

√
a2 + b2, it follows that Re(z) ≤ |Re(z)| ≤ |z| and

Im(z) ≤ |Im(z)| ≤ |z|. Now, let z1 = a1 + b1i and z2 = a2 + b2i then

|z1 − z2| =
√

(a1 − a2)2 + (b1 − b2)2.

Hence, |z1− z2| is just the distance between the points z1 and z2. This fact
is useful in describing certain curves in the plane.
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Figure 1.3
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Example 1.2. The equation |z−1+3i| = 2 represents the circle whose
center is z0 = 1− 3i and radius is R = 2.

Figure 1.4

x

y

−3i

0

·
1− 3i

2

Example 1.3. The equation |z+2| = |z− 1| represents the perpendic-
ular bisector of the line segment joining −2 and 1; i.e., the line x = −1/2.

Figure 1.5
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|z + 2| |z − 1|
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The complex conjugate of the number z = a + bi is denoted by z and
given by z = a− bi. Geometrically, z is the reflection of the point z about
the real axis.

Figure 1.6

x

y

0

a+ ib

a− ib

·

·

The following relations are immediate:

1. |z1z2| = |z1||z2|,
∣∣∣∣
z1
z2

∣∣∣∣ =
|z1|
|z2|

, (z2 ̸= 0).

2. |z| ≥ 0, and |z| = 0, if and only if z = 0.

3. z = z, if and only if z ∈ IR.

4. z = −z, if and only if z = bi for some b ∈ IR.

5. z1 ± z2 = z1 ± z2.

6. z1z2 = (z1)(z2).

7.

(
z1
z2

)
=

z1
z2

, z2 ̸= 0.

8. Re(z) =
z + z

2
, Im(z) =

z − z

2i
.

9. z = z.

10. |z| = |z|, zz = |z|2.

As an illustration, we shall show only relation 6. Let z1 = a1+b1i, z2 =
a2 + b2i. Then

z1z2 = (a1 + b1i)(a2 + b2i)

= (a1a2 − b1b2) + i(a1b2 + b1a2)

= (a1a2 − b1b2)− i(a1b2 + b1a2)

= (a1 − b1i)(a2 − b2i) = (z1)(z2).



Lecture 2
Complex Numbers II

In this lecture, we shall first show that complex numbers can be viewed
as two-dimensional vectors, which leads to the triangle inequality. Next,
we shall express complex numbers in polar form, which helps in reducing
the computation in tedious expressions.

For each point (number) z in the complex plane, we can associate a
vector, namely the directed line segment from the origin to the point z; i.e.,
z = a+ bi←→ −→v = (a, b). Thus, complex numbers can also be interpreted
as two-dimensional ordered pairs. The length of the vector associated with
z is |z|. If z1 = a1+ b1i ←→ −→v 1 = (a1, b1) and z2 = a2+ b2i ←→ −→v 2 =
(a2, b2), then z1 + z2 ←→ −→v 1 +−→v 2.

Figure 2.1

x

y

0

z1

z2
z1 + z2

−→v 1

−→v 2

−→v 1+−→v 2

Using this correspondence and the fact that the length of any side of
a triangle is less than or equal to the sum of the lengths of the two other
sides, we have

|z1 + z2| ≤ |z1|+ |z2| (2.1)

for any two complex numbers z1 and z2. This inequality also follows from

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2)

= z1z1 + z1z2 + z2z1 + z2z2

= |z1|2 + (z1z2 + z1z2) + |z2|2

= |z1|2 + 2Re(z1z2) + |z2|2

≤ |z1|2 + 2|z1z2| + |z2|2 = (|z1|+ |z2|)2.

Applying the inequality (2.1) to the complex numbers z2 − z1 and z1,

R.P. Agarwal et al., An Introduction to Complex Analysis, 
DOI 10.1007/978-1-4614-0195-7_2, © Springer Science+Business Media, LLC 2011 
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we get
|z2| = |z2 − z1 + z1| ≤ |z2 − z1|+ |z1|,

and hence
|z2|− |z1| ≤ |z2 − z1|. (2.2)

Similarly, we have
|z1|− |z2| ≤ |z1 − z2|. (2.3)

Combining inequalities (2.2) and (2.3), we obtain

||z1|− |z2|| ≤ |z1 − z2|. (2.4)

Each of the inequalities (2.1)-(2.4) will be called a triangle inequality. In-
equality (2.4) tells us that the length of one side of a triangle is greater
than or equal to the difference of the lengths of the two other sides. From
(2.1) and an easy induction, we get the generalized triangle inequality

|z1 + z2 + · · ·+ zn| ≤ |z1| + |z2|+ · · ·+ |zn|. (2.5)

From the demonstration above, it is clear that, in (2.1), equality holds
if and only if Re(z1z2) = |z1z2|; i.e., z1z2 is real and nonnegative. If z2 ̸= 0,
then since z1z2 = z1|z2|2/z2, this condition is equivalent to z1/z2 ≥ 0. Now
we shall show that equality holds in (2.5) if and only if the ratio of any two
nonzero terms is positive. For this, if equality holds in (2.5), then, since

|z1 + z2 + z3 + · · ·+ zn| = |(z1 + z2) + z3 + · · · + zn|
≤ |z1 + z2|+ |z3| + · · ·+ |zn|
≤ |z1|+ |z2|+ |z3|+ · · ·+ |zn|,

we must have |z1 + z2| = |z1| + |z2|. But, this holds only when z1/z2 ≥ 0,
provided z2 ̸= 0. Since the numbering of the terms is arbitrary, the ratio
of any two nonzero terms must be positive. Conversely, suppose that the
ratio of any two nonzero terms is positive. Then, if z1 ̸= 0, we have

|z1 + z2 + · · ·+ zn| = |z1|
∣∣∣∣1 +

z2
z1

+ · · ·+ zn
z1

∣∣∣∣

= |z1|
(
1 +

z2
z1

+ · · ·+ zn
z1

)

= |z1|
(
1 +

|z2|
|z1|

+ · · ·+ |zn|
|z1|

)

= |z1| + |z2|+ · · ·+ |zn|.

Example 2.1. If |z| = 1, then, from (2.5), it follows that

|z2 + 2z + 6 + 8i| ≤ |z|2 + 2|z|+ |6 + 8i| = 1 + 2 +
√
36 + 64 = 13.
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Similarly, from (2.1) and (2.4), we find

2 ≤ |z2 − 3| ≤ 4.

Note that the product of two complex numbers z1 and z2 is a new
complex number that can be represented by a vector in the same plane as
the vectors for z1 and z2. However, this product is neither the scalar (dot)
nor the vector (cross) product used in ordinary vector analysis.

Now let z = x+ yi, r = |z| =
√

x2 + y2, and θ be a number satisfying

cos θ =
x

r
and sin θ =

y

r
.

Then, z can be expressed in polar (trigonometric) form as

z = r(cos θ + i sin θ).

Figure 2.2

x

y

0 x

y

z = x+ iy

θ

r

To find θ, we usually compute tan−1(y/x) and adjust the quadrant prob-
lem by adding or subtracting π when appropriate. Recall that tan−1(y/x) ∈
(−π/2,π/2).

Figure 2.3

x

y

0

π/6

−π/6

√
3 + i

−
√
3− i

√
3− i

−
√
3 + i

tan−1(y/x) + π

tan−1(y/x)− π

Example 2.2. Express 1−i in polar form. Here r =
√
2 and θ = −π/4,

and hence
1− i =

√
2
[
cos
(
−π
4

)
+ i sin

(
−π
4

)]
.
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Figure 2.4

x

y

0

1− i
·

−π/4

We observe that any one of the values θ = −(π/4)± 2nπ, n = 0, 1, · · · ,
can be used here. The number θ is called an argument of z, and we write
θ = arg z. Geometrically, arg z denotes the angle measured in radians that
the vector corresponds to z makes with the positive real axis. The argument
of 0 is not defined. The pair (r, arg z) is called the polar coordinates of the
complex number z.

The principal value of arg z, denoted by Arg z, is defined as that unique
value of arg z such that −π < arg z ≤ π.

If we let z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2), then

z1z2 = r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)]

= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

Thus, |z1z2| = |z1||z2|, arg(z1z2) = arg z1 + arg z2.

Figure 2.5

x

y

0

·
·

·

z1

z2

z1z2

θ1 θ2 θ1+θ2

r1

r2

r1r2

For the division, we have
z1
z2

=
r1
r2

[cos(θ1 − θ2) + i sin(θ1 − θ2)],
∣∣∣∣
z1
z2

∣∣∣∣ =
|z1|
|z2|

, arg

(
z1
z2

)
= arg z1 − arg z2.
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Example 2.3. Write the quotient
1 + i√
3− i

in polar form. Since the

polar forms of 1 + i and
√
3− i are

1+i =
√
2
(
cos

π

4
+ i sin

π

4

)
and

√
3−i = 2

(
cos
(
−π
6

)
+ i sin

(
−π
6

))
,

it follows that

1 + i√
3− i

=

√
2

2

{
cos
[π
4
−
(
−π
6

)]
+ i sin

[π
4
−
(
−π
6

)]}

=

√
2

2

{
cos

(
5π

12

)
+ i sin

(
5π

12

)}
.

Recall that, geometrically, the point z is the reflection in the real axis
of the point z. Hence, arg z = −arg z.



Lecture 3
Complex Numbers III

In this lecture, we shall first show that every complex number can be
written in exponential form, and then use this form to raise a rational
power to a given complex number. We shall also extract roots of a complex
number. Finally, we shall prove that complex numbers cannot be ordered.

If z = x+ iy, then ez is defined to be the complex number

ez = ex(cos y + i sin y). (3.1)

This number ez satisfies the usual algebraic properties of the exponential
function. For example,

ez1ez2 = ez1+z2 and
ez1

ez2
= ez1−z2 .

In fact, if z1 = x1 + iy1 and z2 = x2 + iy2, then, in view of Lecture 2, we
have

ez1ez2 = ex1(cos y1 + i sin y1)ex2(cos y2 + i sin y2)

= ex1+x2(cos(y1 + y2) + i sin(y1 + y2))

= e(x1+x2)+i(y1+y2) = ez1+z2 .

In particular, for z = iy, the definition above gives one of the most impor-
tant formulas of Euler

eiy = cos y + i sin y, (3.2)

which immediately leads to the following identities:

cos y = Re(eiy) =
eiy + e−iy

2
, sin y = Im(eiy) =

eiy − e−iy

2i
.

When y = π, formula (3.2) reduces to the amazing equality eπi = −1.
In this relation, the transcendental number e comes from calculus, the tran-
scendental number π comes from geometry, and i comes from algebra, and
the combination eπi gives −1, the basic unit for generating the arithmetic
system for counting numbers.

Using Euler’s formula, we can express a complex number z = r(cos θ +
i sin θ) in exponential form; i.e.,

z = r(cos θ + i sin θ) = reiθ. (3.3)

R.P. Agarwal et al., An Introduction to Complex Analysis, 
DOI 10.1007/978-1-4614-0195-7_3, © Springer Science+Business Media, LLC 2011 

11
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The rules for multiplying and dividing complex numbers in exponential
form are given by

z1z2 = (r1e
iθ1)(r2e

iθ2) = (r1r2)e
i(θ1+θ2),

z1
z2

=
r1eiθ1

r2eiθ2
=

(
r1
r2

)
ei(θ1−θ2).

Finally, the complex conjugate of the complex number z = reiθ is given by
z = re−iθ .

Example 3.1. Compute (1).
1 + i√
3− i

and (2). (1 + i)24.

(1). We have 1 + i =
√
2eiπ/4,

√
3− i = 2e−iπ/6, and therefore

1 + i√
3− i

=

√
2eiπ/4

2e−iπ/6
=

√
2

2
ei5π/12.

(2). (1 + i)24 = (
√
2eiπ/4)24 = 212ei6π = 212.

From the exponential representation of complex numbers, De Moivre’s
formula

(cos θ + i sin θ)n = cosnθ + i sinnθ, n = 1, 2, · · · , (3.4)

follows immediately. In fact, we have

(cos θ + i sin θ)n = (eiθ)n = eiθ · eiθ · · · eiθ

= eiθ+iθ+···+iθ

= einθ = cosnθ + i sinnθ.

From (3.4), it is immediate to deduce that

(
1 + i tan θ

1− i tan θ

)n

=
1 + i tannθ

1− i tannθ
.

Similarly, since

1 + sin θ ± i cos θ = 2 cos

(
π

4
− θ

2

)[
cos

(
π

4
− θ

2

)
± i sin

(
π

4
− θ

2

)]
,

it follows that
[
1 + sin θ + i cos θ

1 + sin θ − i cos θ

]n
= cos

(nπ
2
− nθ

)
+ i sin

(nπ
2
− nθ

)
.
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Example 3.2. Express cos 3θ in terms of cos θ. We have

cos 3θ = Re(cos 3θ + i sin 3θ) = Re(cos θ + i sin θ)3

= Re[cos3 θ + 3 cos2 θ(i sin θ) + 3 cos θ(− sin2 θ)− i sin3 θ]

= cos3 θ − 3 cos θ sin2 θ = 4 cos3 θ − 3 cos θ.

Now, let z = reiθ = r(cos θ + i sin θ). By using the multiplicative prop-
erty of the exponential function, we get

zn = rneinθ (3.5)

for any positive integer n. If n = −1,−2, · · · , we define zn by zn = (z−1)−n.
If z = reiθ , then z−1 = e−iθ/r. Hence,

zn = (z−1)−n =

[
1

r
ei(−θ)

]−n

=

(
1

r

)−n

ei(−n)(−θ) = rneinθ.

Hence, formula (3.5) is also valid for negative integers n.

Now we shall see if (3.5) holds for n = 1/m. If we let

ξ = m
√
reiθ/m, (3.6)

then ξ certainly satisfies ξm = z. But it is well-known that the equation
ξm = z has more than one solution. To obtain all the mth roots of z, we
must apply formula (3.5) to every polar representation of z. For example,
let us find all the mth roots of unity. Since

1 = e2kπi, k = 0,±1,±2, · · · ,

applying formula (3.5) to every polar representation of 1, we see that the
complex numbers

z = e(2kπi)/m, k = 0,±1,±2, · · · ,

are mth roots of unity. All these roots lie on the unit circle centered at the
origin and are equally spaced around the circle every 2π/m radians.

Figure 3.1

0
m = 6

π/3
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Hence, all of the distinct m roots of unity are obtained by writing

z = e(2kπi)/m, k = 0, 1, · · · ,m− 1. (3.7)

In the general case, the m distinct roots of a complex number z = reiθ

are given by

z1/m = m
√
rei(θ+2kπ)/m, k = 0, 1, · · · ,m− 1.

Example 3.3. Find all the cube roots of
√
2 + i

√
2. In polar form, we

have
√
2 + i

√
2 = 2eiπ/4. Hence,

(
√
2 + i

√
2)1/3 = 3

√
2ei(

π
12+

2kπ
3 ), k = 0, 1, 2;

i.e.,

3
√
2
(
cos

π

12
+ i sin

π

12

)
,

3
√
2

(
cos

3π

4
+ i sin

3π

4

)
,

3
√
2

(
cos

17π

12
+ i sin

17π

12

)
,

are the cube roots of
√
2 + i

√
2.

Example 3.4. Solve the equation (z+1)5 = z5.We rewrite the equation

as

(
z + 1

z

)5

= 1. Hence,

z + 1

z
= e2kπi/5, k = 0, 1, 2, 3, 4,

or

z =
1

e2kπi/5 − 1
= − 1

2

(
1 + i cot

πk

5

)
, k = 0, 1, 2, 3, 4.

Similarly, for any natural number n, the roots of the equation (z+1)n+
zn = 0 are

z = − 1

2

(
1 + i cot

π + 2kπ

n

)
, k = 0, 1, · · · , n− 1.

We conclude this lecture by proving that complex numbers cannot be
ordered. (Recall that the definition of the order relation denoted by > in
the real number system is based on the existence of a subset P (the positive
reals) having the following properties: (i) For any number α ̸= 0, either α
or −α (but not both) belongs to P . (ii) If α and β belong to P , so does
α+β. (iii) If α and β belong to P , so does α ·β. When such a set P exists,
we write α > β if and only if α− β belongs to P .) Indeed, suppose there is
a nonempty subset P of the complex numbers satisfying (i), (ii), and (iii).
Assume that i ∈ P. Then, by (iii), i2 = −1 ∈ P and (−1)i = −i ∈ P . This



Complex Numbers III 15

violates (i). Similarly, (i) is violated by assuming −i ∈ P . Therefore, the
words positive and negative are never applied to complex numbers.

Problems

3.1. Express each of the following complex numbers in the form x+ iy :

(a). (
√
2− i)− i(1−

√
2i), (b). (2− 3i)(−2 + i), (c). (1− i)(2− i)(3− i),

(d).
4 + 3i

3− 4i
, (e).

1 + i

i
+

i

1− i
, (f).

1 + 2i

3− 4i
+

2− i

5i
,

(g). (1 +
√
3 i)−10, (h). (−1 + i)7, (i). (1 − i)4.

3.2. Describe the following loci or regions:

(a). |z − z0| = |z − z0|, where Im z0 ̸= 0,

(b). |z − z0| = |z + z0|, where Re z0 ̸= 0,

(c). |z − z0| = |z − z1|, where z0 ̸= z1,

(d). |z − 1| = 1,

(e). |z − 2| = 2|z − 2i|,

(f).

∣∣∣∣
z − z0
z − z1

∣∣∣∣ = c, where z0 ̸= z1 and c ̸= 1,

(g). 0 < Im z < 2π,

(h).
Re z

|z − 1| > 1, Im z < 3,

(i). |z − z1|+ |z − z2| = 2a,

(j). azz + kz + kz + d = 0, k ∈ C, a, d ∈ IR, and |k|2 > ad.

3.3. Let α, β ∈ C. Prove that

|α + β|2 + |α− β|2 = 2(|α|2 + |β|2),

and deduce that

|α+
√
α2 − β2|+ |α−

√
α2 − β2| = |α+ β| + |α− β|.

3.4. Use the properties of conjugates to show that

(a). (z)4 = (z4), (b).

(
z1
z2z3

)
=

z1
z2z3

.

3.5. If |z| = 1, then show that
∣∣∣∣
az + b

bz + a

∣∣∣∣ = 1
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for all complex numbers a and b.

3.6. If |z| = 2, use the triangle inequality to show that

|Im(1− z + z2)| ≤ 7 and |z4 − 4z2 + 3| ≥ 3.

3.7. Prove that if |z| = 3, then

5

13
≤
∣∣∣∣
2z − 1

4 + z2

∣∣∣∣ ≤
7

5
.

3.8. Let z and w be such that zw ̸= 1, |z| ≤ 1, and |w| ≤ 1. Prove that
∣∣∣∣
z − w

1− zw

∣∣∣∣ ≤ 1.

Determine when equality holds.

3.9. (a). Prove that z is either real or purely imaginary if and only if
(z)2 = z2.

(b). Prove that
√
2|z| ≥ |Re z|+ |Im z|.

3.10. Show that there are complex numbers z satisfying |z−a|+|z+a| =
2|b| if and only if |a| ≤ |b|. If this condition holds, find the largest and
smallest values of |z|.

3.11. Let z1, z2, · · · , zn and w1, w2, · · · , wn be complex numbers. Estab-
lish Lagrange’s identity

∣∣∣∣∣

n∑

k=1

zkwk

∣∣∣∣∣

2

=

(
n∑

k=1

|zk|2
)(

n∑

k=1

|wk|2
)

−
∑

k<ℓ

|zkwℓ − zℓwk|2,

and deduce Cauchy’s inequality

∣∣∣∣∣

n∑

k=1

zkwk

∣∣∣∣∣

2

≤
(

n∑

k=1

|zk|2
)(

n∑

k=1

|wk|2
)

.

3.12. Express the following in the form r(cos θ+ i sin θ), −π < θ ≤ π :

(a).
(1− i)(

√
3 + i)

(1 + i)(
√
3− i)

, (b). −8 + 4

i
+

25

3− 4i
.

3.13. Find the principal argument (Arg) for each of the following com-
plex numbers:

(a). 5
(
cos

π

8
− i sin

π

8

)
, (b). −3 +

√
3i, (c). − 2

1 +
√
3i
, (d). (

√
3− i)6.
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3.14. Given z1z2 ̸= 0, prove that

Re z1z2 = |z1||z2| if and only if Arg z1 = Arg z2.

Hence, show that

|z1 + z2| = |z1|+ |z2| if and only if Arg z1 = Arg z2.

3.15. What is wrong in the following?

1 =
√
1 =

√
(−1)(−1) =

√
−1
√
−1 = i i = − 1.

3.16. Show that

(1− i)49
(
cos π

40 + i sin π
40

)10

(8i− 8
√
3)6

= −
√
2.

3.17. Let z = reiθ and w = Reiφ, where 0 < r < R. Show that

Re

(
w + z

w − z

)
=

R2 − r2

R2 − 2Rr cos(θ − φ) + r2
.

3.18. Solve the following equations:

(a). z2 = 2i, (b). z2 = 1−
√
3i, (c). z4 = −16, (d). z4 = −8− 8

√
3i.

3.19. For the root of unity z = e2πi/m, m > 1, show that

1 + z + z2 + · · · + zm−1 = 0.

3.20. Let a and b be two real constants and n be a positive integer.
Prove that all roots of the equation

(
1 + iz

1− iz

)n

= a+ ib

are real if and only if a2 + b2 = 1.

3.21. A quarternion is an ordered pair of complex numbers; e.g., ((1, 2),
(3, 4)) and (2+i, 1−i). The sum of quarternions (A,B) and (C,D) is defined
as (A + C,B + D). Thus, ((1, 2), (3, 4)) + ((5, 6), (7, 8)) = ((6, 8), (10, 12))
and (1 − i, 4 + i) + (7 + 2i,−5 + i) = (8 + i,−1 + 2i). Similarly, the scalar
multiplication by a complex number A of a quaternion (B,C) is defined by
the quadternion (AB,AC). Show that the addition and scalar multiplica-
tion of quaternions satisfy all the properties of addition and multiplication
of real numbers.

3.22. Observe that:
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(a). If x = 0 and y > 0 (y < 0), then Arg z = π/2 (−π/2).
(b). If x > 0, then Arg z = tan−1(y/x) ∈ (−π/2,π/2).
(c). If x < 0 and y > 0 (y < 0), then Arg z = tan−1(y/x)+π (tan−1(y/x)−
π).

(d). Arg (z1z2) = Arg z1 + Arg z2 + 2mπ for some integer m. This m is
uniquely chosen so that the LHS ∈ (−π,π]. In particular, let z1 = −1, z2 =
−1, so that Arg z1 = Arg z2 = π and Arg (z1z2) = Arg(1) = 0. Thus the
relation holds with m = −1.
(e). Arg(z1/z2) = Arg z1 − Arg z2 + 2mπ for some integer m. This m is
uniquely chosen so that the LHS ∈ (−π,π].

Answers or Hints

3.1. (a). −2i, (b). −1 + 8i, (c). −10i, (d). i, (e). (1 − i)/2, (f). −2/5,
(g). 2−11(−1 +

√
3i), (h). −8(1 + i), (i). −4.

3.2. (a). Real axis, (b). imaginary axis, (c). perpendicular bisector (pass-
ing through the origin) of the line segment joining the points z0 and z1,
(d). circle center z = 1, radius 1; i.e., (x − 1)2 + y2 = 1, (e). circle
center (−2/3, 8/3), radius

√
32/3, (f). circle, (g). 0 < y < 2π, infinite

strip, (h). region interior to parabola y2 = 2(x − 1/2) but below the line
y = 3, (i). ellipse with foci at z1, z2 and major axis 2a (j). circle.
3.3. Use |z|2 = zz.

3.4. (a). z4 = zzzz = z z z z = (z)4, (b).
(

z1
z2z3

)
= z1

z2z3
= z1

z2z3
.

3.5. If |z| = 1, then z = z−1.
3.6. |Im (1− z + z2)| ≤ |1− z + z2| ≤ |1|+ |z|+ |z2| ≤ 7, |z4 − 4z2 + 3| =
|z2 − 3||z2 − 1| ≥ (|z2|− 3)(|z2|− 1).
3.7. We have ∣∣∣∣

2z − 1

4 + z2

∣∣∣∣ ≤
2|z|+ 1

|4− |z|2| =
2 · 3 + 1

|4− 32| =
7

5

and ∣∣∣∣
2z − 1

4 + z2

∣∣∣∣ ≥
|2|z|− 1|
|4 + |z|2|

=
2 · 3− 1

4 + 32
=

5

13
.

3.8. We shall prove that |1− zw| ≥ |z−w|. We have |1− zw|2− |z−w|2 =
(1−zw)(1−zw)−(z−w)(z−w) = 1−zw−zw+zwzw−zz+zw+wz−ww =
1− |z|2− |w|2+ |z|2|w|2 = (1− |z|2)(1− |w|2) ≥ 0 since |z| ≤ 1 and |w| ≤ 1.
Equality holds when |z| = |w| = 1.
3.9. (a). (z)2 = z2 iff z2 − (z)2 = 0 iff (z + z)(z − z) = 0 iff either
2Re(z) = z + z = 0 or 2iIm(z) = z − z = 0 iff z is purely imaginary or z is
real. (b). Write z = x+iy. Consider 2|z|2−(|Re z|+ |Im z|)2 = 2(x2+y2)−
(|x|+|y|)2 = 2x2+2y2−(x2+y2+2|x|y|) = x2+y2−2|x||y| = (|x|−|y|)2 ≥ 0.
3.10. Use the triangle inequality.
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3.11. We have
∣∣∣∣∣

n∑

k=1

zkwk

∣∣∣∣∣

2

=

(
n∑

k=1

zkwk

)(
n∑

ℓ=1

zℓwℓ

)
=

n∑

k=1

|zk|2|wk|2 +
∑

k ̸=ℓ

zkwkzℓwℓ

=

(
n∑

k=1

|zk|2
)(

n∑

k=1

|wk|2
)
−
∑

k ̸=ℓ

|zk|2|wℓ|2 +
∑

k ̸=ℓ

zkwkzℓwℓ

=

(
n∑

k=1

|zk|2
)(

n∑

k=1

|wk|2
)

−
∑

k<ℓ

|zkwℓ − zℓwk|2.

3.12. (a). cos(−π/6) + i sin(−π/6), (b). 5(cosπ + i sinπ).
3.13. (a). −π/8, (b). 5π/6, (c). 2π/3, (d). π.
3.14. Let z1 = r1eiθ1 , z2 = r2eiθ2 . Then, z1z2 = r1r2ei(θ1−θ2). Re(z1z2) =
r1r2 cos(θ1 − θ2) = r1r2 if and only if θ1 − θ2 = 2kπ, k ∈ Z. Thus, if and
only if Arg z1-Arg z2 = 2kπ, k ∈ Z. But for −π < Arg z1, Arg z2 ≤ π,
the only possibility is Arg z1=Arg z2. Conversely, if Arg z1=Arg z2, then
Re (z1z2) = r1r2 = |z1||z2|. Now, |z1 + z2| = |z1|+ |z2| ⇐⇒ z1z1 + z2z2 +
z1z2 + z2z1 = |z1|2 + |z2|2 + 2|z1|z2| ⇐⇒ z1z2 + z2z1 = 2|z1||z2| ⇐⇒
Re(z1z2+z2z1) = Re(z1z2)+Re(z2z1) = 2|z1||z2| ⇐⇒ Re(z1z2) = |z1||z2|
and Re(z1z2) = |z1||z2| ⇐⇒ Arg (z1) = Arg (z2).
3.15. If a is a positive real number, then

√
a denotes the positive square

root of a. However, if w is a complex number, what is the meaning of√
w? Let us try to find a reasonable definition of

√
w. We know that the

equation z2 = w has two solutions, namely z = ±
√

|w|ei(Argw)/2. If we

want
√
−1 = i, then we need to define

√
w =

√
|w|ei(Argw)/2. However,

with this definition, the expression
√
w
√
w =

√
w2 will not hold in general.

In particular, this does not hold for w = −1.
3.16. Use 1 − i =

√
2
[
cos
(
−π

4

)
+ i sin

(
−π

4

)]
and 8i − 8

√
3 = 16

[
cos 5π

6

+i sin 5π
6

]
.

3.17. Use |w − z|2 = (w − z)(w − z).
3.18. (a). z2 = 2i = 2eiπ/2, z =

√
2eiπ/4,

√
2 exp

[
i
2

(
π
2 + 2π

)]
,

(b). z2 = 1−
√
3i = 2e−iπ/3, z =

√
2e−iπ/6,

√
2ei5π/6,

(c). z4 = −16 = 24eiπ, z = 2 exp
[
i
(
π+2kπ

4

)]
, k = 0, 1, 2, 3,

(d). z4 = −8− 8
√
3i = 16ei4π/3, z = 2 exp

[
i
4

(
4π
3 + 2kπ

)]
, k = 0, 1, 2, 3.

3.19. Multiply 1 + z + z2 + · · ·+ zm−1 by 1− z.
3.20. Suppose all the roots are real. Let z = x be a real root. Then

a + ib =
(

1+ix
1−ix

)n
implies that |a + ib|2 =

∣∣∣ 1+ix
1−ix

∣∣∣
2n

=
(

1+x2

1+x2

)n
= 1, and

hence a2 + b2 = 1. Conversely, suppose a2 + b2 = 1. Let z = x + iy be a

root. Then we have 1 = a2+ b2 = |a+ ib|2 =
∣∣∣ (1−y)+ix
(1+y)−ix

∣∣∣
2n

=
(

(1−y)2+x2

(1+y)2+x2

)n
,

and hence (1 + y)2 + x2 = (1 − y)2 + x2, which implies that y = 0.
3.21. Verify directly.



Lecture 4
Set Theory

in the Complex Plane

In this lecture, we collect some essential definitions about sets in the
complex plane. These definitions will be used throughout without further
mention.

The set S of all points that satisfy the inequality |z− z0| < ϵ, where ϵ is
a positive real number, is called an open disk centered at z0 with radius ϵ
and denoted as B(z0, ϵ). It is also called the ϵ-neighborhood of z0, or simply
a neighborhood of z0. In Figure 4.1, the dashed boundary curve means that
the boundary points do not belong to the set. The neighborhood |z| < 1 is
called the open unit disk.

Figure 4.1

z0·
z· ϵ Dotted boundary curve

means the boundary
points do not belong to S

A point z0 that lies in the set S is called an interior point of S if there
is a neighborhood of z0 that is completely contained in S.

Example 4.1. Every point z in an open disk B(z0, ϵ) is an interior
point.

Example 4.2. If S is the right half-plane Re(z) > 0 and z0 = 0.01,
then z0 is an interior point of S.

Figure 4.2

z0 ··
.02
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Example 4.3. If S = {z : |z| ≤ 1}, then every complex number z such
that |z| = 1 is not an interior point, whereas every complex number z such
that |z| < 1 is an interior point.

If every point of a set S is an interior point of S, we say that S is an
open set. Note that the empty set and the set of all complex numbers are
open, whereas a finite set of points is not open.

It is often convenient to add the element ∞ to C. The enlarged set
C ∪ {∞} is called the extended complex plane. Unlike the extended real
line, there is no −∞. For this, we identify the complex plane with the xy-
plane of IR3, let S denote the sphere with radius 1 centered at the origin
of IR3, and call the point N = (0, 0, 1) on the sphere the north pole. Now,
from a point P in the complex plane, we draw a line through N. Then,
the point P is mapped to the point P ′ on the surface of S, where this
line intersects the sphere. This is clearly a one-to-one and onto (bijective)
correspondence between points on S and the extended complex plane. In
fact, the open disk B(0, 1) is mapped onto the southern hemisphere, the
circle |z| = 1 onto the equator, the exterior |z| > 1 onto the northern
hemisphere, and the north pole N corresponds to ∞. Here, S is called the
Riemann sphere and the correspondence is called a stereographic projection
(see Figure 4.3). Thus, the sets of the form {z : |z − z0| > r > 0} are open
and called neighborhoods of ∞. In what follows we shall make the following
conventions: z1 +∞ =∞+ z1 =∞ for all z1 ∈ C, z2 ×∞ =∞× z2 =∞
for all z2 ∈ C but z2 ̸= 0, z1/0 = ∞ for all z1 ̸= 0, and z2/∞ = 0 for
z2 ̸=∞.

Figure 4.3

•(0, 0, 1)

•

• (ξ, η, ζ)

z = x+ iy

ξ2 + η2 + ζ2 = 1

N

P

P ′

S

A point z0 is called an exterior point of S if there is some neighborhood
of z0 that does not contain any points of S. A point z0 is said to be a



22 Lecture 4

boundary point of a set S if every neighborhood of z0 contains at least one
point of S and at least one point not in S. Thus, a boundary point is neither
an interior point nor an exterior point. The set of all boundary points of
S denoted as ∂S is called the boundary or frontier of S. In Figure 4.4, the
solid boundary curve means the boundary points belong to S.

Figure 4.4

·
S

z0 ∂S

Solid boundary curve
means the boundary
points belong to S

Example 4.4. Let 0 < ρ1 < ρ2 and S = {z : ρ1 < |z| ≤ ρ2}. Clearly,
the circular annulus S is neither open nor closed. The boundary of S is the
set {z : |z| = ρ2} ∪ {z : |z| = ρ1}.

Figure 4.5

ρ2
ρ1·

A set S is said to be closed if it contains all of its boundary points; i.e.,
∂S ⊆ S. It follows that S is open if and only if its complement C − S is
closed. The sets C and ∅ are both open and closed. The closure of S is
the set S = S ∪ ∂S. For example, the closure of the open disk B(z0, r) is
the closed disk B(z0, r) = {z : |z − z0| ≤ r}. A point z∗ is said to be an
accumulation point (limit point) of the set S if every neighborhood of z∗

contains infinitely many points of the set S. It follows that a set S is closed
if it contains all its accumulation points. A set of points S is said to be
bounded if there exists a positive real number R such that |z| < R for every
z in S. An unbounded set is one that is not bounded.
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Figure 4.6

Unbounded

S

S

Bounded

Let S be a subset of complex numbers. The diameter of S, denoted as
diamS, is defined as

diamS = sup
z,w∈S

|z − w|.

Clearly, S is bounded if and only if diamS < ∞. The following result,
known as the Nested Closed Sets Theorem, is very useful.

Theorem 4.1 (Cantor). Suppose that S1, S2, · · · is a sequence of
nonempty closed subsets of C satisfying

1. Sn ⊃ Sn+1, n = 1, 2, · · · ,
2. diamSn → 0 as n→∞.

Then,
⋂∞

n=1 Sn contains precisely one point.

Theorem 4.1 is often used to prove the following well-known result.

Theorem 4.2 (Bolzano-Weierstrass). If S is an infinite bounded
set of complex numbers, then S has at least one accumulation point.

A set is called compact if it is closed and bounded. Clearly, all closed
disksB(z0, r) are compact, whereas every open disk B(z0, r) is not compact.
For compact sets, the following result is fundamental.

Theorem 4.3. Let S be a compact set and r > 0. Then, there exists
a finite number of open disks of radius r whose union contains S.

Let S ⊂ C and {Sα : α ∈ Λ} be a family of open subsets of C, where Λ
is any indexing set. If S ⊆

⋃
α∈Λ Sα, we say that the family {Sα : α ∈ Λ}

covers S. If Λ′ ⊂ Λ, we call the family {Sα : α ∈ Λ′} a subfamily, and if it
covers S, we call it a subcovering of S.

Theorem 4.4. Let S ⊂ C be a compact set, and let {Sα : α ∈ Λ} be
an open covering of S. Then, there exists a finite subcovering; i.e., a finite
number of open sets S1, · · · , Sn whose union covers S. Conversely, if every
open covering of S has a finite subcovering, then S is compact.
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Let z1 and z2 be two points in the complex plane. The line segment ℓ
joining z1 and z2 is the set {w ∈ C : w = z1 + t(z2 − z1), 0 ≤ t ≤ 1}.

Figure 4.7

·
·

ℓ

Segment [z1, z2]

z1

z2

Now let z1, z2, · · · , zn+1 be n+ 1 points in the complex plane. For each
k = 1, 2, · · · , n, let ℓk denote the line segment joining zk to zk+1. Then the
successive line segments ℓ1, ℓ2, · · · , ℓn form a continuous chain known as a
polygonal path joining z1 to zn+1.

Figure 4.8

x

y

0

· ·
·

·
·

·

z1

z2

z3 zn

zn+1

ℓ1 ℓ2

ℓn

An open set S is said to be connected if every pair of points z1, z2 in
S can be joined by a polygonal path that lies entirely in S. The polygonal
path may contain line segments that are either horizontal or vertical. An
open connected set is called a domain. Clearly, all open disks are domains.
If S is a domain and S = A ∪ B, where A and B are open and disjoint;
i.e., A∩B = ∅, then either A = ∅ or B = ∅. A domain together with some,
none, or all of its boundary points is called a region.

· ·
·
··

z2

z1

Connected

z2

·

·

z1

Not connected
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z1 z2
· ·

Connected

·
Not connected

z1 z2
·

Figure 4.9

A set S is said to be convex if each pair of points P and Q can be joined
by a line segment PQ such that every point in the line segment also lies in
S. For example, open disks and closed disks are convex; however, the union
of two intersecting discs, while neither lies inside the other, is not convex.
Clearly, every convex set is necessarily connected. Furthermore, it follows
that the intersection of two or more convex sets is also convex.

Problems

4.1. Shade the following regions and determine whether they are open
and connected:

(a). {z ∈ C : −π/3 ≤ arg z < π/2},
(b). {z ∈ C : |z − 1| < |z + 1|},
(c). {z ∈ C : |z − 1|+ |z − i| < 2

√
2},

(d). {z ∈ C : 1/2 < |z − 1| <
√
2}
⋃
{z ∈ C : 1/2 < |z + 1| <

√
2}.

4.2. Let S be the open set consisting of all points z such that |z| < 1
or |z − 2| < 1. Show that S is not connected.

4.3. Show that:

(a). If S1, · · · , Sn are open sets in C, then so is
⋂n

k=1 Sk.

(b). If {Sα : α ∈ Λ} is a collection of open sets in C, where Λ is any
indexing set, then S =

⋃
α∈Λ Sα is also open.

(c). The intersection of an arbitrary family of open sets in C need not be
open.

4.4. Let S be a nonempty set. Suppose that to each ordered pair
(x, y) ∈ S × S a nonnegative real number d(x, y) is assigned that satisfies
the following conditions:

(i). d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,
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(ii). d(x, y) = d(y, x) for all x, y ∈ S,

(iii). d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S.

Then, d(x, y) is called a metric on S. The set S with metric d is called
a metric space and is denoted as (S, d). Show that in C the following are
metrics:

(a). d(z, w) = |z − w|,

(b). d(z, w) =
|z − w|

1 + |z − w| ,

(c). d(z, w) =

{
0 if z = w
1 if z ̸= w.

4.5. Let the point z = x + iy correspond to the point (ξ, η, ζ) on the
Riemann sphere (see Figure 4.3). Show that

ξ =
2Re z

|z|2 + 1
, η =

2 Im z

|z|2 + 1
, ζ =

|z|2 − 1

|z|2 + 1
,

and

Re z =
ξ

1− ζ
, Im =

η

1− ζ
.

4.6. Show that if z1 and z2 are finite points in the complex plane C,
then the distance between their stereographic projection is given by

d(z1, z2) =
2|z1 − z2|√

1 + |z1|2
√
1 + |z2|2

.

This distance is called the spherical distance or chordal distance between
z1 and z2. Also, show that if z2 = ∞, then the corresponding distance is
given by

d(z1,∞) =
2√

1 + |z1|2
.

Answers or Hints

4.1.

(a).

Not open

−π/3
(b).

Open connected
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(c).

Open connected (ellipse)

•
• (d).

Open connected

· ·

4.2. Points 0 and 2 cannot be connected by a polygonal line.

0 2· x

y

4.3. (a). Let w ∈ ∩nk=1Sk. Then w ∈ Sk, k = 1, · · · , n. Since each Sk is
open, there is an rk > 0 such that {z : |z − w| < rk} ⊂ Sk, k = 1, · · · , n.
Let r = min{r1, · · · , rn}. Then {z : |z − w| < r} ⊆ {z : |z − w| < rk} ⊂
Sk, k = 1, · · · , n. Thus, {z : |z − w| < r} ⊂ ∩nk=1Sk.
(b). Use the property of open sets.
(c). ∩∞n=1{z : |z| < 1/n} = {0}.
4.4. (a). Verify directly. (b). For a, b, c ≥ 0 and c ≤ a + b, use c

1+c ≤
a

1+a + b
1+b . (c). Verify directly.

4.5. The straight line passing through (x, y, 0) and (0, 0, 1) in parametric
form is (tx, ty, 1 − t). This line also passes through the point (ξ, η, ζ) on
the Riemann sphere, provided t2x2 + t2y2 + (1− t)2 = 1. This gives t = 0
and t = 2/(x2 + y2 + 1). The value t = 0 gives the north pole, whereas

t = 2/(x2 + y2 + 1) gives (ξ, η, ζ) =
(

2x
x2+y2+1 ,

2y
x2+y2+1 ,

x2+y2−1
x2+y2+1

)
. From

this, it also follows that |z|2 + 1 = 2
1−ζ .

4.6. If (ξ1, η1, ζ1) and (ξ2, η2, ζ2) are the points on S corresponding to
z1 and z2, then d(z1, z2) = [(ξ1 − ξ2)2 + (η1 − η2)2 + (ζ1 − ζ2)2]1/2 =
[2− 2(ξ1ξ2 + η1η2 + ζ1ζ2)]1/2. Now use Problem 4.5. If z2 =∞, then again
from Problem 4.5, we have d(z1,∞) = [ξ21+η

2
1+(ζ1−1)2]1/2 = [2−2ζ1]1/2 =

[2− 2(|z1|2 − 1)/(|z1|2 + 1)]1/2 = 2/(|z1|2 + 1)1/2.



Lecture 5
Complex Functions

In this lecture, first we shall introduce a complex-valued function of a
complex variable, and then for such a function define the concept of limit
and continuity at a point.

Let S be a set of complex numbers. A complex function (complex-valued
of a complex variable) f defined on S is a rule that assigns to each z = x+iy
in S a unique complex number w = u+ iv and written as f : S → C. The
number w is called the value of f at z and is denoted by f(z); i.e., w = f(z).
The set S is called the domain of f, the set W = {f(z) : z ∈ S}, often
denoted as f(S), is called the range or image of f, and f is said to map S
onto W. The function w = f(z) is said to be from S into W if the range of
S under f is a subset of W . When a function is given by a formula and the
domain is not specified, the domain is taken to be the largest set on which
the formula is defined. A function f is called one-to-one (or univalent, or
injective) on a set S if the equation f(z1) = f(z2), where z1 and z2 are in S,
implies that z1 = z2. The function f(z) = iz is one-to-one, but f(z) = z2

is not one-to-one since f(i) = f(−i) = −1. A one-to-one and onto function
is called bijective. We shall also consider multi-valued functions: a multi-
valued function is a rule that assigns a finite or infinite non-empty subset
of C for each element of its domain S. In Lecture 2, we have already seen
that the function f(z) = arg z is multi-valued.

As every complex number z is characterized by a pair of real numbers
x and y, a complex function f of the complex variable z can be specified
by two real functions u = u(x, y) and v = v(x, y). It is customary to write
w = f(z) = u(x, y)+iv(x, y). The functions u and v, respectively, are called
the real and imaginary parts of f. The common domain of the functions u
and v corresponds to the domain of the function f.

Example 5.1. For the function w = f(z) = 3z2 + 7z, we have

f(x+ iy) = 3(x+ iy)2 + 7(x+ iy) = (3x2 − 3y2 + 7x) + i(6xy + 7y),

and hence u = 3x2− 3y2+7x and v = 6xy+7y. Similarly, for the function
w = f(z) = |z|2, we find

f(x+ iy) = |x+ iy|2 = x2 + y2,

and hence u = x2 + y2 and v = 0. Thus, this function is a real-valued func-
tion of a complex variable. Clearly, the domain of both of these functions is

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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C. For the function w = f(z) = z/|z|, the domain is C\{0}, and its range
is |z| = 1.

Example 5.2. The complex exponential function f(z) = ez is defined
by the formula (3.1). Clearly, for this function, u = ex cos y and v = ex sin y,
which are defined for all (x, y) ∈ IR2. Thus, for the function ez the domain
is C. The exponential function provides a basic tool for the application of
complex variables to electrical circuits, control systems, wave propagation,
and time-invariant physical systems.

Recall that a vector-valued function of two real variables F(x, y) =
(P (x, y), Q(x, y)) is also called a two-dimensional vector filed. Using the
standard orthogonal unit basis vectors i and j, we can express this vector
field as F(x, y) = P (x, y)i + Q(x, y)j. There is a natural way to represent
this vector field with a complex function f(z). In fact, we can use the
functions P and Q as the real and imaginary parts of f, in which case we
say that the complex function f(z) = P (x, y) + iQ(x, y) is the complex
representation of the vector field F(x, y) = P (x, y)i+Q(x, y)j. Conversely,
any complex function f(z) = u(x, y) + iv(x, y) has an associated vector
field F(x, y) = u(x, y)i + v(x, y)j. From this point of view, both F(x, y) =
P (x, y)i+Q(x, y)j and f(z) = u(x, y) + iv(x, y) can be called vector fields.
This interpretation is often used to study various applications of complex
functions in applied mathematical problems.

Let f be a function defined in some neighborhood of z0, with the possible
exception of the point z0 itself. We say that the limit of f(z) as z approaches
z0 (independent of the path) is the number w0 if |f(z)−w0|→ 0 as |z−z0|→
0 and we write limz→z0 f(z) = w0. Hence, f(z) can be made arbitrarily close
to w0 if we choose z sufficiently close to z0. Equivalently, we say that w0 is
the limit of f as z approaches z0 if, for any given ϵ > 0, there exists a δ > 0
such that

0 < |z − z0| < δ =⇒ |f(z)− w0| < ϵ.

Figure 5.1

x

y

z0
··

0

z

u

v

0

f(z)

w0

·

Example 5.3. By definition, we shall show that (i) limz→1−i(z2−2) =
−2 + 2i and (ii) limz→1−i |z2 − 2| =

√
8.
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(i). Given any ϵ > 0, we have

|z2 − 2− (−2 + 2i)| = |z2 − 2i| = |z2 + 2i| = |z2 + 2i|
= |z − (1− i)||z + (1− i)|
≤ |z − (1− i)|(|z − (1− i)| + 2|1− i|)
≤ |z − (1− i)|(1 + 2

√
2) if |z − (1− i)| < 1

< ϵ if |z − (1− i)| < min

{
1,

ϵ

1 + 2
√
2

}
.

(ii). Given any ϵ > 0, from (i) we have

||z2 − 2|−
√
8| = ||z2 − 2|− |− 2 + 2i||
≤ |z2 − 2− (−2 + 2i)|

< ϵ if |z − (1− i)| < min

{
1,

ϵ

1 + 2
√
2

}
.

Example 5.4. (i). Clearly, limz→z0 z = z0. (ii). From the inequalities

|Re(z − z0)| ≤ [(Re(z − z0))2 + (Im(z − z0))2]1/2 = |z − z0|,
|Im(z − z0)| ≤ |z − z0|,

it follows that limz→z0 Re z = Re z0, limz→z0 Im z = Im z0.

Example 5.5. limz→0(z/z) does not exist. Indeed, we have

lim
z → 0

along x-axis

z

z
= lim

x→0

x+ i0

x− i0
= 1,

lim
z → 0

along y-axis

z

z
= lim

y→0

0 + iy

0− iy
= − 1.

The following result relates real limits of u(x, y) and v(x, y) with the
complex limit of f(z) = u(x, y) + iv(x, y).

Theorem 5.1. Let f(z) = u(x, y) + iv(x, y), z0 = x0 + iy0, and w0 =
u0+ iv0. Then, limz→z0 f(z) = w0 if and only if limx→x0, y→y0 u(x, y) = u0

and limx→x0, y→y0 v(x, y) = v0.

In view of Theorem 5.1 and the standard results in calculus, the follow-
ing theorem is immediate.

Theorem 5.2. If limz→z0 f(z) = A and limz→z0 g(z) = B, then
(i) limz→z0(f(z) ± g(z)) = A ± B, (ii) limz→z0 f(z)g(z) = AB, and

(iii) limz→z0
f(z)

g(z)
=

A

B
if B ̸= 0.
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For the composition of two functions f and g denoted and defined as
(f ◦ g)(z) = f(g(z)), we have the following result.

Theorem 5.3. If limz→z0 g(z) = w0 and limw→w0 f(w) = A, then

lim
z→z0

f(g(z)) = A = f

(
lim
z→z0

g(z)

)
.

Now we shall define limits that involve∞. For this, we note that z →∞
means |z|→∞, and similarly, f(z)→∞ means |f(z)|→∞.

The statement limz→z0 f(z) = ∞ means that for any M > 0 there is a
δ > 0 such that 0 < |z − z0| < δ implies |f(z)| > M and is equivalent to
limz→z0 1/f(z) = 0.

The statement limz→∞ f(z) = w0 means that for any ϵ > 0 there is
an R > 0 such that |z| > R implies |f(z) − w0| < ϵ, and is equivalent to
limz→0 f(1/z) = w0.

The statement limz→∞ f(z) =∞ means that for any M > 0 there is an
R > 0 such that |z| > R implies |f(z)| > M.

Example 5.6. Since

2z + 3

3z + 2
=

2 + 3/z

3 + 2/z
,

limz→∞(2z + 3)/(3z + 2) = 2/3. Similarly, limz→∞(2z + 3)/(3z2 + 2) = 0
and limz→∞(2z2 + 3)/(3z + 2) =∞.

Let f be a function defined in a neighborhood of z0. Then, f is contin-
uous at z0 if limz→z0 f(z) = f(z0). Equivalently, f is continuous at z0 if for
any given ϵ > 0, there exists a δ > 0 such that

|z − z0| < δ =⇒ |f(z)− f(z0)| < ϵ.

A function f is said to be continuous on a set S if it is continuous at each
point of S.

Example 5.7. The functions f(z) = Re (z) and g(z) = Im (z) are
continuous for all z.

Example 5.8. The function f(z) = |z| is continuous for all z. For this,
let z0 be given. Then

lim
z→z0

|z| = lim
z→z0

√
(Re z)2 + (Im z)2 =

√
(Re z0)2 + (Im z0)2 = |z0|.

Hence, f(z) is continuous at z0. Since z0 is arbitrary, we conclude that f(z)
is continuous for all z.



32 Lecture 5

It follows from Theorem 5.1 that a function f(z) = u(x, y) + iv(x, y)
of a complex variable is continuous at a point z0 = x0 + iy0 if and only if
u(x, y) and v(x, y) are continuous at (x0, y0).

Example 5.9. The exponential function f(z) = ez is continuous on
the whole complex plane since ex cos y and ex sin y both are continuous for
all (x, y) ∈ IR2.

The following result is an immediate consequence of Theorem 5.2.

Theorem 5.4. If f(z) and g(z) are continuous at z0, then so are
(i) f(z)± g(z), (ii) f(z)g(z), and (iii) f(z)/g(z) provided g(z0) ̸= 0.

Now let f : S → W, S1 ⊂ S, and W1 ⊂ W. The inverse image denoted
as f−1(W1) consists of all z ∈ S such that f(z) ∈ W1. It follows that
f(f−1(W1)) ⊂ W1 and f−1(f(S1)) ⊃ S1. By definition, in terms of inverse
image continuous functions can be characterized as follows: A function
is continuous if and only if the inverse image of every open set is open.
Similarly, a function is continuous if and only if the inverse image of every
closed set is closed.

For continuous functions we also have the following result.

Theorem 5.5. Let f : S → C be continuous. Then,

(i). a compact set of S is mapped onto a compact set in f(S), and

(ii). a connected set of S is mapped onto a connected set of f(S).

It is easy to see that the constant function and the function f(z) = z
are continuous on the whole plane. Thus, from Theorem 5.4, we deduce
that the polynomial functions; i.e., functions of the form

P (z) = a0 + a1z + a2z
2 + · · ·+ anz

n, (5.1)

where ai, 0 ≤ i ≤ n are constants, are also continuous on the whole plane.
Rational functions in z, which are defined as quotients of polynomials; i.e.,

P (z)

Q(z)
=

a0 + a1z + · · ·+ anzn

b0 + b1z + · · ·+ bmzm
, (5.2)

are therefore continuous at each point where the denominator does not
vanish.

Example 5.10. We shall find the limits as z → 2i of the functions

f1(z) = z2 − 2z + 1, f2(z) =
z + 2i

z
, f3(z) =

z2 + 4

z(z − 2i)
.

Since f1(z) and f2(z) are continuous at z = 2i, we have limz→2i f1(z) =
f1(2i) = −3 − 4i, limz→2i f2(z) = f2(2i) = 2. Since f3(z) is not defined at
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z = 2i, it is not continuous. However, for z ̸= 2i and z ̸= 0, we have

f3(z) =
(z + 2i)(z − 2i)

z(z − 2i)
=

z + 2i

z
= f2(z)

and so limz→2i f3(z) = limz→2i f2(z) = 2. Thus, the discontinuity of f3(z)
at z = 2i can be removed by setting f2(2i) = 2. The function f3(z) is said
to have a removable discontinuity at z = 2i.

Problems

5.1. For each of the following functions, describe the domain of defini-
tion that is understood:

(a). f(z) =
z

z2 + 3
, (b). f(z) =

z

z + z
, (c). f(z) =

1

1− |z|2 .

5.2. (a). Write the function f(z) = z3 + 2z + 1 in the form f(z) =
u(x, y) + iv(x, y).

(b). Suppose that f(z) = x2−y2−2y+ i(2x−2xy). Express f(z) in terms
of z.

5.3. Show that when a limit of a function f(z) exists at a point z0, it
is unique.

5.4. Use the definition of limit to prove that:

(a). lim
z→z0

(z2 + 5) = z20 + 5, (b). lim
z→1−i

z2 = (1 + i)2,

(c). lim
z→z0

z = z0, (d). lim
z→2−i

(2z + 1) = 5− 2i.

5.5. Find each of the following limits:

(a). lim
z→2+3i

(z − 5i)2, (b). lim
z→2

z2 + 3

iz
, (c). lim

z→3i

z2 + 9

z − 3i
,

(d). lim
z→i

z2 + 1

z4 − 1
, (e). lim

z→∞

z2 + 1

z2 + z + 1− i
, (f). lim

z→∞

z3 + 3iz2 + 7

z2 − i
.

5.6. Prove that:

(a). lim
z→0

(z
z

)2
does not exist, (b). lim

z→0

z2

z
= 0.

5.7. Show that if lim
z→z0

f(z) = 0 and there exists a positive num-

ber M such that |g(z)| ≤ M for all z in some neighborhood of z0, then
lim
z→z0

f(z)g(z) = 0. Use this result to show that limz→0 zei/|z| = 0.
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5.8. Show that if lim
z→z0

f(z) = w0, then lim
z→z0

|f(z)| = |w0|.

5.9. Suppose that f is continuous at z0 and g is continuous at w0 =
f(z0). Prove that the composite function g ◦ f is continuous at z0.

5.10. Discuss the continuity of the function

f(z) =

⎧
⎨

⎩

z3 − 1

z − 1
, |z| ̸= 1

3, |z| = 1

at the points 1, − 1, i, and −i.

5.11. Prove that the function f(z) = Arg(z) is discontinuous at each
point on the nonpositive real axis.

5.12 (Cauchy’s Criterion). Show that limz→z0 f(z) = w0 if and only
if for a given ϵ > 0 there exists a δ > 0 such that for any z, z′ satisfying
|z − z0| < δ, |z′ − z0| < δ, the inequality |f(z)− f(z′)| < ϵ holds.

5.13. Prove Theorem 5.5.

5.14. The function f : S → C is said to be uniformly continuous on S if
for every given ϵ > 0 there exists a δ = δ(ϵ) > 0 such that |f(z1)−f(z2)| < ϵ
for all z1, z2 ∈ S with |z1 − z2| < δ. Show that on a compact set every
continuous function is uniformly continuous.

Answers or Hints

5.1. (a). z2 ̸= −3 ⇐⇒ z ̸= ±
√
3i, (b). z + z ̸= 0 ⇐⇒ z is not purely

imaginary; i.e., Re(z) ̸= 0, (c). |z|2 ̸= 1 ⇐⇒ |z| ≠ 1.
5.2. (a). (x+ iy)3+2(x+ iy)+1 = (x3−3xy2+2x+1)+ i(3x2y−y3+2y).
(b). Use x = (z + z)/2, y = (z − z)/2i to obtain f(z) = z2 + 2iz.
5.3. Suppose that limz→z0 f(z) = w0 and limz→z0 f(z) = w1. Then, for
any positive number ϵ, there are positive numbers δ0 and δ1 such that
|f(z) − w0| < ϵ whenever 0 < |z − z0| < δ0 and |f(z)− w1| < ϵ whenever
0 < |z − z0| < δ1. So, if 0 < |z − z0| < δ = min{δ0, δ1}, then |w0 − w1| =
| − (f(z) − w0) + (f(z) − w1)| ≤ |f(z) − w0| + |f(z) − w1| < 2ϵ; i.e.,
|w0−w1| < 2ϵ. But, ϵ can be chosen arbitrarily small. Hence, w0−w1 = 0,
or w0 = w1.
5.4. (a). |z2 + 5− (z20 + 5)| = |z − z0||z + z0| ≤ |z − z0|(|z − z0|+ 2|z0|)

≤ (1 + 2|z0|)|z − z0| if |z − z0| < 1

< ϵ if 0 < |z − z0| < min
{

ϵ
1+2|z0| , 1

}
,

(b). |z2 − (1 + i)2| = |z2 − (1− i)2| ≤ |z − (1− i)||z + (1− i)|
≤ |z−(1−i)|(|z−(1−i)|+2|1−i|) < 5|z−(1−i)| if |z−(1−i)| < 1
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< ϵ if |z − (1− i)| < min{1, ϵ/5},
(c). |z − z0| = |z − z0| < ϵ if |z − z0| < ϵ,
(d). |2z+1−(5−2i)| = |2z−(4−2i)| = 2|z−(2−i)| < ϵ if |z−(2−i)| < ϵ/2.
5.5. (a). −8i, (b). −7i/2, (c). 6i, (d). −1/2, (e). 1, (f). ∞.
5.6. (a). limz→0,z=x(z/z)2 = 1, limz→0,y=x(z/z)2 = −1.
(b). Let ϵ > 0. Choose δ = ϵ. Then, 0 < |z − 0| < δ implies |z2/z − 0| =
|z| < ϵ.
5.7. Since limz→z0 f(z) = 0, given any ϵ > 0, there exists δ > 0 such that
|f(z)−0| < ϵ/M whenever |z−z0| < δ. Thus, |f(z)g(z)−0| = |f(z)||g(z)| ≤
M |f(z)| < ϵ if |z − z0| < δ.
5.8. Use the fact ||f(z)|− |w0|| ≤ |f(z)− w0|.
5.9. Let ϵ > 0. Since g is continuous at w0, there exists a δ1 > 0 such that
|w − w0| < δ1 implies that |g(w)− g(w0)| < ϵ. Now, f is continuous at z0,
so there exists a δ2 > 0 such that |z − z0| < δ2 implies |f(z)− f(z0)| < δ1.
Combining these, we find that |z − z0| < δ2 implies |f(z) − f(z0)| < δ1,
which in turn implies |(g ◦ f)(z)− (g ◦ f)(z0)| = |g[f(z)]− g[f(z0)]| < ϵ.
5.10. Continuous at 1, discontinuous at −1, i,−i.
5.11. f is not continuous at z0 if there exists ϵ0 > 0 with the following
property: For every δ > 0, there exists zδ such that |zδ − z0| < δ and
|f(zδ)− f(z0)| ≥ ϵ0. Now let z0 = x0 < 0. Take ϵ0 = 3π/2. For each δ > 0,
let zδ = x0 − i(δ/2). Then, |zδ − z0| = |iδ/2| = δ/2 < δ, −π < f(zδ) <
−π/2, f(z0) = π, so |f(zδ) − f(z0)| > 3π/2 = ϵ0, and f is not continuous
at z0. Thus, f is not continuous at every point on the negative real axis. It
is also not continuous at z = 0 because it is not defined there.
5.12. If f is continuous at z0, then given ϵ > 0 there exists a δ > 0 such
that |z1 − z0| < δ/2 ⇒ |f(z1) − f(z0)| < ϵ/2 and |z2 − z0| < δ/2 ⇒
|f(z2) − f(z0)| < ϵ/2. But then |z1 − z2| ≤ |z1 − z0| + |z0 − z2| < δ ⇒
|f(z1)− f(z2)| ≤ |f(z1)− f(z0)|+ |f(z2)− f(z0)| < ϵ. For the converse, we
assume that 0 < |z−z0| < δ, 0 < |z′−z0| < δ; otherwise, we can take z′ = z0
and then there is nothing to prove. Let zn → z0, zn ̸= z0, and ϵ > 0. There
is a δ > 0 such that 0 < |z− z0| < δ, |z′− z0| < δ implies |f(z)−f(z′)| < ϵ,
and there is an N such that n ≥ N implies 0 < |zn − z0| < δ. Then, for
m,n ≥ N, we have |f(zm)− f(zn)| < ϵ. So, w0 = limn→∞ f(zn) exists. To
see that limz→z0 f(z) = w0, take a δ1 > 0 such that 0 < |z − z0| < δ1, 0 <
|z′ − z0| < δ1 implies |f(z) − f(z′)| < ϵ/2, and an N1 such that n ≥ N1

implies 0 < |zn − z0| < δ1 and |f(zn)− w0| < ϵ/2. Then, 0 < |z − z0| < δ1
implies |f(z)− w0| ≤ |f(z)− f(zN1)|+ |f(zN1)− w0| < ϵ.
5.13. (i). Suppose that f : U → C is continuous and U is compact. Con-
sider a covering of f(U) to be open sets V. The inverse images f−1(V ) are
open and form a covering of U. Since U is compact, by Theorem 4.4 we
can select a finite subcovering such that U ⊂ f−1(V1) ∪ · · · ∪ f−1(Vn). It
follows that f(U) ⊂ V1 ∪ · · · ∪ Vn, which in view of Theorem 4.4 implies
that f(U) is compact. (ii). Suppose that f : U → C is continuous and U
is connected. If f(U) = A ∪B where A and B are open and disjoint, then
U = f−1(A) ∪ f−1(B), which is a union of disjoint and open sets. Since U
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is connected, either f−1(A) = ∅ or f−1(B) = ∅, and hence either A = ∅ or
B = ∅. This implies that f(U) is connected.
5.14. Use Theorem 4.4.



Lecture 6
Analytic Functions I

In this lecture, using the fundamental notion of limit, we shall define
the differentiation of complex functions. This leads to a special class of
functions known as analytic functions. These functions are of great im-
portance in theory as well as applications, and constitute a major part of
complex analysis. We shall also develop the Cauchy-Riemann equations
which provide an easier test to verify the analyticity of a function.

Let f be a function defined in a neighborhood of a point z0. Then, the
derivative of f at z0 is given by

df

dz
(z0) = f ′(z0) = lim

∆z→0

f(z0 +∆z)− f(z0)

∆z
, (6.1)

provided this limit exists. Such a function f is said to be differentiable at
the point z0. Alternatively, f is differentiable at z0 if and only if it can be
written as

f(z) = f(z0) +A(z − z0) + η(z)(z − z0); (6.2)

here, A = f ′(z0) and η(z) → 0 as z → z0. Clearly, in (6.1), ∆z can go to
zero in infinite different ways.

Example 6.1. Show that, for any positive integer n,
d

dz
zn = nzn−1.

Using the binomial formula, we find

(z +∆z)n − zn

∆z
=

(
n

1

)
zn−1∆z +

(
n

2

)
zn−2(∆z)2 + · · ·+

(
n

n

)
(∆z)n

∆z

= nzn−1 +
n(n− 1)

2
zn−2∆z + · · ·+ (∆z)n−1.

Thus,
d

dz
zn = lim

∆z→0

(z +∆z)n − zn

∆z
= nzn−1.

Example 6.2. Clearly, the function f(z) = z is continuous for all z.
We shall show that it is nowhere differentiable. Since

f(z0 +∆z)− f(z0)

∆z
=

(z0 +∆z) − z0
∆z

=
∆z

∆z
.
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If ∆z is real, then ∆z = ∆z and the difference quotient is 1. If ∆z is
purely imaginary, then ∆z = −∆z and the quotient is −1. Hence, the limit
does not exist as ∆z → 0. Thus, z is not differentiable. In real analysis,
construction of functions that are continuous everywhere but differentiable
nowhere is hard.

The proof of the following results is almost the same as in calculus.

Theorem 6.1. If f and g are differentiable at a point z0, then

(i). (f ± g)′(z0) = f ′(z0)± g′(z0),

(ii). (cf)′(z0) = cf ′(z0) (c is a constant),

(iii). (fg)′(z0) = f(z0)g′(z0) + f ′(z0)g(z0),

(iv).

(
f

g

)′
(z0) =

g(z0)f ′(z0)− f(z0)g′(z0)

(g(z0))2
if g(z0) ̸= 0, and

(v). (f ◦ g)′(z0) = f ′(g(z0))g′(z0), provided f is differentiable at g(z0).

Theorem 6.2. If f is differentiable at a point z0, then f is continuous
at z0.

A function f of a complex variable is said to be analytic (or holomorphic,
or regular) in an open set S if it has a derivative at every point of S. If S is
not an open set, then we say f is analytic in S if f is analytic in an open
set containing S. We call f analytic at the point z0 if f is analytic in some
neighborhood of z0. It is important to note that while differentiability is
defined at a point, analyticity is defined on an open set. If a function f is
analytic on the whole complex plane, then it is said to be entire.

For example, all polynomial functions of z are entire. For the rational
function f(z) = P (z)/Q(z), where P (z) and Q(z) are polynomials, let
{α1,α2, · · · ,αr} be the roots of Q(z). By the quotient rule, f ′(z) exists for
all z ∈ S = C− {α1,α2, · · · ,αr}. Since S is open, f is analytic in S.

If the functions f and g are analytic in a set S, then in view of Theorem
6.1, the sum f(z) + g(z), difference f(z)− g(z), and product f(z)g(z) are
analytic in S. The quotient f(z)/g(z) is analytic provided g(z) ̸= 0 in S.

The proof of the following result is also similar to that of real-valued
functions.

Theorem 6.3 (L’Hôpital’s Rule). Suppose f and g are analytic
functions at a point z0 and f(z0) = g(z0) = 0, but g′(z0) ̸= 0. Then,

lim
z→z0

f(z)

g(z)
=

f ′(z0)

g′(z0)
.

Example 6.3. Consider the functions f(z) = z14+1 and g(z) = z7+ i.
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Clearly, f(i) = g(i) = 0, g′(i) = 7(i)6 = −7 ̸= 0, and hence

lim
z→i

z14 + 1

z7 + i
= lim

z→i

14z13

7z6
= lim

z→i
2z7 = − 2i.

If the function f(z) = u(x, y)+ iv(x, y) is differentiable at z0 = x0+ iy0,
then the limit (6.1) exists and can be computed by allowing ∆z = (∆x +
i∆y) to approach zero from any convenient direction in the complex plane.
If it approaches zero horizontally, then ∆z = ∆x and we obtain

f ′(z0)

= lim
∆x→0

1

∆x
[u(x0 +∆x, y0) + iv(x0 +∆x, y0)− u(x0, y0)− iv(x0, y0)]

= lim
∆x→0

[
u(x0+∆x, y0)−u(x0, y0)

∆x

]
+ i lim

∆x→0

[
v(x0+∆x, y0)−v(x0, y0)

∆x

]
.

Since the limits of the bracketed expressions are just the partial derivatives
of u and v with respect to x, we deduce that

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0). (6.3)

On the other hand, if ∆z approaches zero vertically, then ∆z = i∆y and
we have

f ′(z0)

= lim
∆y→0

[
u(x0, y0+∆y)−u(x0, y0)

i∆y

]
+ i lim

∆y→0

[
v(x0, y0+∆y)−v(x0, y0)

i∆y

]
,

and hence

f ′(z0) = − i
∂u

∂y
(x0, y0) +

∂v

∂y
(x0, y0). (6.4)

Equating the real and imaginary parts of (6.3) and (6.4), we see that the
equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= − ∂v

∂x
, (6.5)

must be satisfied at z0 = x0 + iy0. These equations are called the Cauchy-
Riemann equations; however, D’Alembert had stated the equations earlier
in the eighteenth century.

Theorem 6.4. A necessary condition for a function f(z) = u(x, y) +
iv(x, y) to be differentiable at a point z0 is that the Cauchy-Riemann equa-
tions hold at z0. Consequently, if f is analytic in an open set S, then the
Cauchy-Riemann equations must be satisfied at every point of S.
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Example 6.4. The function f(z) = (x2 + y) + i(y2− x) is not analytic
at any point. Since u(x, y) = x2 + y and v(x, y) = y2 − x, we have

∂u

∂x
= 2x,

∂u

∂y
= 1,

∂v

∂x
= − 1,

∂v

∂y
= 2y.

Hence, the Cauchy-Riemann equations are simultaneously satisfied only on
the line x = y and therefore in no open disk. Thus, by the theorem above,
the function f(z) is nowhere analytic.

Example 6.5. The function f(z) = Re z is not analytic at any point.

Here u(x, y) = x and v(x, y) = 0, and so
∂u

∂x
= 1,

∂u

∂y
= 0,

∂v

∂x
= 0,

∂v

∂y
= 0.

Example 6.6. The function f(z) = z is not analytic at any point. Here

u(x, y) = x and v(x, y) = −y, and so
∂u

∂x
= 1,

∂u

∂y
= 0,

∂v

∂x
= 0,

∂v

∂y
= −1.

If f is differentiable at z0, then Theorem 6.2 ensures that f is continuous
at z0. However, the following example shows that the converse is not true.

Example 6.7. The function f(z) = |z|2 = x2 + y2 is continuous
everywhere but not differentiable at all points z ̸= 0.

Example 6.7 also shows that, even if u and v have continuous partial
derivatives, f need not be differentiable.

Example 6.8. Let f = u + iv, where u =
xy

x2 + y2
for (x, y) ̸= (0, 0)

and u(0, 0) = 0, v(x, y) = 0 for all (x, y). Clearly, at (0, 0),
∂u

∂x
=
∂u

∂y
=

∂v

∂x
=
∂v

∂y
= 0; i.e., all the partial derivatives exist and satisfy the Cauchy-

Riemann equations. However, u is not continuous at (0, 0), and hence f is
not differentiable at (0, 0). Thus, even if the function f satisfies the Cauchy-
Riemann equations at a point z0, it need not be differentiable at z0.

In spite of the two examples above, we have the following result.

Theorem 6.5 (Sufficient Conditions for Differentiability). Let f(z) =
u(x, y) + iv(x, y) be defined in some open set S containing the point z0. If
the first order partial derivatives of u and v exist in S, are continuous at z0,
and satisfy the Cauchy-Riemann equations at z0, then f is differentiable at
z0. Moreover,

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

=
∂v

∂y
(x0, y0)− i

∂u

∂y
(x0, y0).
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Consequently, if the first-order partial derivatives are continuous and
satisfy the Cauchy-Riemann equations at all points of S, then f is analytic
in S. We also note that if f is differentiable only at finitely many points,
then it is nowhere analytic.



Lecture 7
Analytic Functions II

In this lecture, we shall first prove Theorem 6.5 and then through sim-
ple examples demonstrate how easily this result can be used to check the
analyticity of functions. We shall also show that the real and imaginary
parts of an analytic function are solutions of the Laplace equation.

Proof of Theorem 6.5. From calculus, the increments of the func-
tions u(x, y) and v(x, y) in the neighborhood of the point (x0, y0) can be
written as

u(x0 +∆x, y0 +∆y)− u(x0, y0) = ux(x0, y0)∆x+ uy(x0, y0)∆y+ η1(x, y)

and

v(x0 +∆x, y0 +∆y)− v(x0, y0) = vx(x0, y0)∆x+ vy(x0, y0)∆y+ η2(x, y),

where

lim
|∆z|→0

η1(x, y)

|∆z| = 0 and lim
|∆z|→0

η2(x, y)

|∆z| = 0.

Thus, in view of the Cauchy-Riemann conditions (6.5), it follows that

f(z0 +∆z)− f(z0)

∆z
= ux(x0, y0)

∆x+ i∆y

∆x+ i∆y
+ vx(x0, y0)

i∆x−∆y

∆x+ i∆y

+
η1(x, y) + iη2(x, y)

∆x+ i∆y

= [ux(x0, y0) + ivx(x0, y0)] +
η(z)

∆z
,

where η(z) = η1(x, y)+ iη2(x, y). Now, taking the limit as ∆z → 0 on both
sides and using the fact that η(z)/∆z → 0 as ∆z → 0, we obtain

f ′(z0) = ux(x0, y0) + ivx(x0, y0).

Combining Theorems 6.4 and 6.5, we find that a necessary and sufficient
condition for the analyticity of a function f(z) = u(x, y) + iv(x, y) in a
domain S is the existence of the continuous partial derivatives ux, uy, vx,
and vy, which satisfy the Cauchy-Riemann conditions (6.5). From this it
immediately follows that if f(z) is analytic in a domain S, then the function
g(z) = f(z) is not analytic in S.

R.P. Agarwal et al., An Introduction to Complex Analysis, 
DOI 10.1007/978-1-4614-0195-7_7, © Springer Science+Business Media, LLC 2011 
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Example 7.1. Consider the exponential function f(z) = ez = ex(cos y+
i sin y). Then, u(x, y) = ex cos y, v(x, y) = ex sin y, and

∂u

∂x
=

∂v

∂y
= ex cos y,

∂u

∂y
= − ∂v

∂x
= − ex sin y

everywhere, and these derivatives are everywhere continuous. Hence, f ′(z)
exists and

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= ex cos y + iex sin y = ez = f(z).

Example 7.2. The function f(z) = z3 = x3 − 3xy2 + i(3x2y − y3) is
an entire function and f ′(z) = 3z2.

Example 7.3. Consider the function f(z) = x2+y+ i(2y−x).We have
u(x, y) = x2 + y, v(x, y) = 2y− x, and ux = 2x, uy = 1, vx = −1, vy = 2.
Thus, the Cauchy-Riemann equations are satisfied when x = 1. Since all
partial derivatives of f are continuous, we conclude that f ′(z) exists only
on the line x = 1 and

f ′(1 + iy) =
∂u

∂x
(1, y) + i

∂v

∂x
(1, y) = 2− i.

Example 7.4. Let f(z) = ze−|z|2 . Determine the points at which

f ′(z) exists, and find f ′(z) at these points. Since f(z) = (x− iy)e−(x2+y2),

u(x, y) = xe−(x2+y2), v(x, y) = −ye−(x2+y2), and

∂u

∂x
= e−(x2+y2) − 2x2e−(x2+y2),

∂u

∂y
= − 2xye−(x2+y2),

∂v

∂x
= 2xye−(x2+y2),

∂v

∂y
= − e−(x2+y2) + 2y2e−(x2+y2).

Thus,
∂u

∂y
= −∂v

∂x
is always satisfied, and

∂u

∂x
=
∂v

∂y
holds, if and only if

2e−(x2+y2) − 2x2e−(x2+y2) − 2y2e−(x2+y2) = 0,

or
2e−(x2+y2)(1− x2 − y2) = 0,

or x2 + y2 = 1. Since all the partial derivatives of f are continuous, we
conclude that f ′(z) exists on the unit circle |z| = 1. Furthermore, on |z| = 1,

f ′(x+ iy) =
∂u

∂x
(x, y) + i

∂v

∂x
(x, y)

= e−(x2+y2) − 2x2e−(x2+y2) + 2ixye−(x2+y2)

= e−1(1− 2x2 + 2xyi).
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Now recall the following result from calculus.

Theorem 7.1. Suppose φ(x, y) is a real-valued function defined in a
domain S. If φx = φy = 0 at all points in S, then φ is a constant in S.

Analogously, for an analytic function, we have the following theorem.

Theorem 7.2. If f(z) is analytic in a domain S and if f ′(z) = 0
everywhere in S, then f(z) is a constant in S.

Proof. Since f ′(z) = 0 in S, all first-order partial derivatives of u and
v vanish in S; i.e., ux = uy = vx = vy = 0. Now, since S is connected, we
have u = a constant and v = a constant in S. Consequently, f = u + iv is
also a constant in S.

Remark 7.1. The connectedness property of S is essential. In fact, if

f(z) is defined by f(z) =

{
1 if |z| < 1
2 if |z| > 2,

then f is analytic and f ′(z) = 0

on its domain of definition, but f is not a constant.

Theorem 7.3. If f is analytic in a domain S and if |f | is constant
there, then f is constant.

Proof. As usual, let f(z) = u(x, y) + iv(x, y). If |f | = 0, then f = 0.
Otherwise, |f |2 = u2 + v2 ≡ c ̸= 0. Taking the partial derivatives with
respect to x and y, we have

uux + vvx = 0 and uuy + vvy = 0.

Using the Cauchy-Riemann equations, we find

uux − vuy = 0 and vux + uuy = 0

so that
(u2 + v2)ux = 0 and (u2 + v2)uy = 0,

and hence ux = uy = 0. Similarly, we have vx = vy = 0. Thus, f is a
constant.

Next, let f(z) = u(x, y)+iv(x, y) be an analytic function in a domain S,
so that the Cauchy-Riemann equations ux = vy and uy = −vx are satisfied.
Differentiating both sides of these equations with respect to x (assuming
that the functions u and v are twice continuously differentiable, although
we shall see in Lecture 18 that this assumption is superfluous), we get

∂2u

∂x2
=

∂2v

∂x∂y
and

∂2u

∂x∂y
= − ∂2v

∂x2
.

Similarly, differentiation with respect to y yields

∂2u

∂y∂x
=

∂2v

∂y2
and

∂2u

∂y2
= − ∂2v

∂y∂x
.
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Hence, it follows that
∂2u

∂x2
+
∂2u

∂y2
= 0 (7.1)

and
∂2v

∂x2
+
∂2v

∂y2
= 0. (7.2)

The partial differential equation (7.1) ((7.2)) is called the Laplace equation.
It occurs in the study of problems dealing with electric and magnetic fields,
stationary states, hydrodynamics, diffusion, and so on.

A real-valued function φ(x, y) is said to be harmonic in a domain S if
all its second-order partial derivatives are continuous in S and it satisfies
φxx + φyy = 0 at each point of S.

Theorem 7.4. If f(z) = u(x, y) + iv(x, y) is analytic in a domain S,
then each of the functions u(x, y) and v(x, y) is harmonic in S.

Example 7.5. Does there exist an analytic function on the complex
plane whose real part is given by u(x, y) = 3x2 + xy + y2? Clearly, uxx =
6, uyy = 2, and hence uxx+uyy ̸= 0; i.e., u is not harmonic. Thus, no such
analytic function exists.

Let u(x, y) and v(x, y) be two functions harmonic in a domain S that
satisfy the Cauchy-Riemann equations at every point of S. Then, u(x, y)
and v(x, y) are called harmonic conjugates of each other. Knowing one of
them, we can reconstruct the other to within an arbitrary constant.

Example 7.6. Construct an analytic function whose real part is
u(x, y) = x3 − 3xy2 + 7y. Since uxx + uyy = 6x− 6x = 0, u is harmonic in
the whole plane. We have to find a function v(x, y) so that u and v satisfy
the Cauchy-Riemann equations; i.e.,

vy = ux = 3x2 − 3y2 (7.3)

and
vx = − uy = 6xy − 7. (7.4)

Integrating (7.3) with respect to y, we get

v(x, y) = 3x2y − y3 + ψ(x).

Substituting this expression into (7.4), we obtain

vx = 6xy + ψ′(x) = 6xy − 7,

and hence ψ′(x) = −7, which implies that ψ(x) = −7x+a, where a is some
constant. It follows that v(x, y) = 3x2y − y3 − 7x + a. Thus, the required
analytic function is

f(z) = x3 − 3xy2 + 7y + i(3x2y − y3 − 7x+ a).
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Example 7.7. Find an analytic function f whose imaginary part is
given by e−y sinx. Let v(x, y) = e−y sinx. Then it is easy to check that
vxx + vyy = 0. We have to find a function u(x, y) such that

ux = vy = − e−y sinx, (7.5)

uy = − vx = − e−y cosx. (7.6)

From (7.5), we get u(x, y) = e−y cosx + φ(y). Substituting this expression
in (7.6), we obtain

−e−y sinx+ φ′(y) = − e−y sinx.

Hence, φ′(y) = 0; i.e., φ(y) = c for some constant c. Thus, u(x, y) =
e−y cosx+ c and

f(z) = e−y cosx+ c+ ie−y sinx = e−y+ix + c.

Problems

7.1. Find f ′(z) when

(a). f(z) =
z − 1

2z + 1
(z ̸= −1/2), (b). f(z) = ez

3
,

(c). f(z) =
(1 + z2)4

z4
(z ̸= 0), (d). f(z) = z3 + z.

7.2. Use the definition to find f ′(z) when

(a). f(z) =
1

z
(z ̸= 0), (b). f(z) = z2 − z.

7.3. Show that

(a). f(z) = x− iy2 is differentiable only at y = −1/2 and f ′(z) = 1,

(b). f(z) = x2 + iy2 is differentiable only when x = y and f ′(z) = 2x,

(c). f(z) = yx+ iy2 is differentiable only at x = y = 0 and f ′(z) = 0,

(d). f(z) = x3+i(1−y)3 is differentiable only at x = 0, y = 1 and f ′(z) = 0.

7.4. For each of the following functions, determine the set of points at
which it is (i) differentiable and (ii) analytic. Find the derivative where it
exists.

(a). f(z) = (x3 + 3xy2 − 3x) + i(y3 + 3x2y − 3y),

(b). f(z) = 6z2 − 2z − 4i|z|2,
(c). f(z) = (3x2 + 2x− 3y2 − 1) + i(6xy + 2y),
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(d). f(z) =
2z2 + 6

z(z2 + 4)
,

(e). f(z) = ey
2−x2

(cos(2xy)− i sin(2xy)).

7.5. Find a, b, c so that the function w = (ay3 + ix3) + xy(bx+ icy)
is analytic. If z = x+ iy, express dw/dz in the form φ(z).

7.6. Show that there are no analytic functions of the form f = u+ iv
with u = x2 + y2.

7.7. Let f(z) be an analytic function in a domain S. Show that
(
∂2

∂x2
+

∂2

∂y2

)
|f(z)|2 = 4|f ′(z)|2.

7.8. Let f : C→ C be defined by

f(z) =

⎧
⎨

⎩

z2

z
if z ̸= 0

0 if z = 0.

(a). Verify that the Cauchy-Riemann equations for f are satisfied at z = 0.

(b). Show that f ′(0) does not exist.

This problem shows that satisfaction of the Cauchy-Riemann equations at
a point alone is not enough to ensure that the function is differentiable
there.

7.9. Let D and S be domains, and let f : D → C and g : S → C be
analytic functions such that f(D) ⊆ S. Show that g◦f : D → C is analytic.

7.10. In polar coordinates x = r cos θ, y = r sin θ, the function f(z) =
u(r, θ)+ iv(r, θ). Show that the Cauchy-Riemann conditions can be written
as

∂u

∂r
=

1

r

∂v

∂θ
,

1

r

∂u

∂θ
= − ∂v

∂r
, (7.7)

and
f ′(z) = e−iθ(ur + ivr). (7.8)

In particular, show that f(z) =
√
reiθ/2 is differentiable at all z except

z = 0 and f ′(z) = (1/2
√
r)e−iθ/2.

7.11. Show that the Cauchy-Riemann conditions are equivalent to wz =
0. Hence, deduce that the function w = f(z) = ze−|z|2 is not analytic.

7.12. Let w = f(z) be analytic in a neighborhood of z0, and w0 =
f(z0), f ′(z0) ̸= 0. Show that f defines a one-to-one mapping of a neigh-
borhood of z0 onto a neighborhood of w0.
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7.13. Use L’Hôpital’s Rule to find the following limits:

(a). lim
z→i

z7 + i

z14 + 1
, (b). lim

z→3i

z4 − 81

z2 + 9
, (c). lim

1+i
√
3

z6 − 64

z3 + 8
.

7.14. Show that if f = u+iv is analytic in a region S and u is a constant
function (i.e., independent of x and y), then f is a constant.

7.15. Show that if h : IR2 → IR and f = 2h3 + ih is an entire function,
then h is a constant.

7.16. Suppose f is a real-valued function defined in a domain S ⊆ C.
If f is complex differentiable at z0 ∈ S, show that f ′(z0) = 0.

7.17. Suppose that f = u + iv is analytic in a rectangle with sides
parallel to the coordinate axes and satisfies the relation ux + vy = 0 for all
x and y. Show that there exist a real constant c and a complex constant d
such that f(z) = −icz + d.

7.18. Show that the functions

(a). u(x, y) = e−x sin y, (b). v(x, y) = cosx cosh y,

are harmonic, and find the corresponding analytic function u+ iv in each
case.

7.19. Suppose that u is harmonic in a domain S. Show that:

(a). If v is a harmonic conjugate of u, then −u is a harmonic conjugate of
v.

(b). If v1 and v2 are harmonic conjugates of u, then v1 and v2 differ by a
real constant.

(c). If v is a harmonic conjugate of u, then v is also a harmonic conjugate
of u+ c, where c is any real constant.

7.20. Show that a necessary and sufficient condition for a function
f(z) = u(x, y) + iv(x, y) to be analytic in a domain S is that its real part
u(x, y) and imaginary part v(x, y) be conjugate harmonic functions in S.

7.21. Let f(z) = u(r, θ) + iv(r, θ) be analytic in a domain S that does
not include the point z = 0. Use (7.7) to show that both u and v satisfy
the Laplace equation in polar coordinates

r2
∂2φ

∂r2
+ r

∂φ

∂r
+
∂2φ

∂θ2
= 0.
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7.22. Use f(t) =
t

t2 + 1
= Re

(
1

t− i

)
to show that

f (n)(t) =
(−1)nn!(n+ 1)!

(t2 + 1)n+1

[(n+1)/2]∑

k=0

(−1)ktn+1−2k

(2k)!(n+ 1− 2k)!
.

7.23 (a). If f(x+ iy) = Reiφ is analytic, show that
∂R

∂x
= R

∂φ

∂y
.

(b). Consider the two annulus domains Da = {z : a < |z| < 1} and
Db = {z : b < |z| < 1}. Define f : Da → Db by

f
(
reiθ

)
=

[(
1− b

1− a

)
r +

b− a

1− a

]
eiθ.

Show that (i) f is bijective and (ii) f is analytic if and only if a = b.

7.24. Let f(z) = u(x, y) + iv(x, y) be an analytic function. Show that
level curves of the family u(x, y) = c are orthogonal to the level curves of
the family v(x, y) = d; i.e., the intersection of a member of one family with
that of another takes place at a 90o angle, except possibly at a point where
f ′(z) = 0. Verify this result for the function f(z) = z2.

Answers or Hints

7.1. (a). 3/(2z+ 1)2, (b). 3z2ez
3
, (c). 4(1 + z2)3(z2 − 1)/z5, (d). 3z2 +1.

7.2. (a). f ′(z) = lim∆z→0

1
z+∆z−

1
z

∆z = lim∆z→0
z−(z+∆z)

(∆z)(z+∆z)z = − 1
z2 ,

(b). f ′(z) = lim∆z→0
(z+∆z)2−(z+∆z)−(z2−z)

∆z = lim∆z→0
2z∆z+(∆z)2−∆z

∆z =
2z − 1.
7.3. (a). Since u = x, v = −y2, ux = 1, uy = 0, vx = 0, vy = −2y,
the function is differentiable only when 1 = −2y or y = −1/2, and f ′ =
ux+ ivx = 1. (b). Since u = x2, v = y2, ux = 2x, uy = 0, vx = 0, vy = 2y,
the function is differentiable only when 2x = 2y and f ′(z) = 2x. (c). Since
u = yx, v = y2, ux = y, uy = x, vx = 0, vy = 2y, the function is
differentiable only when y = 2y, x = 0 or x = 0, y = 0, and f ′(z) = 0.
(d). Since u = x3, v = (1−y)3, ux = 3x2, uy = 0, vx = 0, vy = −3(1−y)2

the function is differentiable only when 3x2 = −3(1− y)2 or x = 0, y = 1,
and f ′(z) = 0.
7.4. (a). f is differentiable at every point on the x and y axes, f ′(x +
i0) = 3x2 − 3, f ′(0 + iy) = 3y2 − 3, not analytic anywhere. (b). f is
differentiable only at the point z = 3

16 −
1
16 i, f

′( 3
16 −

1
16 i) = 1

4 −
3
4 i, not

analytic anywhere. (c). f is differentiable everywhere, f ′(z) = (6x+ 2) +
i(6y), analytic everywhere (entire). (d). f is differentiable for all z ̸= 0,±2i,
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f ′(z) = −2(z4 + 5z2 + 12)/[z2(z2 + 4)2], analytic in C− {0,±2i}. (e). f is

differentiable everywhere, f ′(z) = −2ze−z2

, analytic everywhere (entire).
7.5. a = 1, b = −3, c = −3, y = 0 gives f(x) = ix3, and hence f(z) = iz3

and dw/dz = 3iz2.
7.6. ux = 2x, uy = 2y ⇒ vy = 2x and vx = −2y ⇒ v = 2xy + f(y) and
v = −2xy + g(x), which is impossible.
7.7. LHS = 2(u2

x + u2
y) + 2(v2x + v2y).

7.8. (a). u(x, y) =

{
(x3 − 3xy2)/(x2 + y2), (x, y) ̸= (0, 0)
0, (x, y) = (0, 0)

and v(x, y) =
{

(y3 − 3x2y)/(x2 + y2), (x, y) ̸= (0, 0)
0, (x, y) = (0, 0).

ux(0, 0) = 1, uy(0, 0) = 0,

vx(0, 0) = 0, vy(0, 0) = 1. (b). For z ̸= 0, (f(z)− f(0))/(z − 0) = (z/z)2.
Now see Problem 5.6 (a).
7.9. Use rules for differentiation.
7.10. Since ur = uxxr + uyyr, uθ = uxxθ + uyyθ, we have

ur = ux cos θ + uy sin θ, uθ = −uxr sin θ + uyr cos θ (7.9)
and

vr = vx cos θ + vy sin θ, vθ = −vxr sin θ + vyr cos θ,
which in view of (6.5) is the same as

vr = −uy cos θ + ux sin θ, vθ = uyr sin θ + uxr cos θ. (7.10)
From (7.9) and (7.10), the Cauchy-Riemann conditions (7.7) are immediate.
Now, since f ′(z) = ux+ ivx and ux = ur cos θ−uθ

sin θ
r = ur cos θ+ vr sin θ,

vx = vr cos θ− vθ
sin θ
r = vr cos θ−ur sin θ, it follows that f ′(z) = ur(cos θ−

i sin θ) + ivr(cos θ − i sin θ) = e−iθ(ur + ivr).
Since u =

√
r cos θ

2 , v =
√
r sin θ

2 , ur = 1
2
√
r
cos θ

2 , uθ = − 1
2

√
r sin θ

2 , vr

= 1
2
√
r
sin θ

2 , vθ = 1
2

√
r cos θ

2 , and hence conditions (7.7) are satisfied. Thus,

f is differentiable at all z except z = 0. Furthermore, from (7.8) it follows
that f ′(z) = e−iθ 1

2
√
r
(cos θ

2 + i sin θ
2 ) =

1
2
√
z
.

7.11. Since x = (z + z)/2 and y = (z − z)/2i, u and v may be regarded as
functions of z and z. Thus, condition wz = 0 is the same as ∂u

∂x
∂x
∂z +

∂u
∂y

∂y
∂z +

i
(

∂v
∂x

∂x
∂z + ∂v

∂y
∂y
∂z

)
= 0, which is the same as 1

2
∂u
∂x −

1
2i

∂u
∂y + i

2
∂v
∂x −

1
2
∂v
∂y = 0.

Now compare the real and imaginary parts.
7.12. Let f = u + iv. From calculus, it suffices to show that Jacobian

J(x0, y0) =

∣∣∣∣
ux vx
uy vy

∣∣∣∣ (x0, y0) ̸= 0. Now use (6.5) and (6.3) to obtain

J(x0, y0) = u2
x(x0, y0) + v2x(x0, y0) = |f ′(z0)|2 ̸= 0.

7.13. (a). i/2, (b). −18, (c). −16.
7.14. f = u + iv, u = c ⇒ ux = uy = 0 ⇒ vx = vy = 0 ⇒ v is also a
constant, and hence f is a constant.
7.15. If f = u+ iv, then u = 2h3 and v = h. Now, by the Cauchy-Riemann
conditions, we have 6h2hx = hy and −6h2hy = hx. Thus, −12h4hx = hx,
or hx(12h4 + 1) = 0, which implies that hx = 0, and from this hy = 0.
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7.16. In (6.1), if we allow ∆z → 0 along the x-axis, then f ′(z0) is real.
However, if we allow ∆z → 0 along the y-axis, then f ′(z0) is purely imagi-
nary.
7.17. ux + vy = 0 and ux = vy imply that ux = vy = 0. Thus, u =
φ(y), v = ψ(x). Now, uy = −vx implies that φ′(y) = −ψ′(x) = c. Hence,
u = φ(y) = cy + d1, v = ψ(x) = −cx + d2, where d1 and d2 are real
constants. Thus, f = u+ iv = −icz + d, where d = d1 + id2.
7.18. (a). ie−z + ia, (b). sinx sinh y + i cosx cosh y + a.
7.19. (a). Since f = u + iv is analytic, (−i)f = v − iu is analytic. Thus,
−u is a harmonic conjugate of v.
7.20. The necessary part is Theorem 7.4. To show the sufficiency part, we
note that if u(x, y) and v(x, y) are conjugate harmonic functions, then, in
particular, they have continuous first derivatives in S, and hence are dif-
ferentiable in S. Since u(x, y) and v(x, y) also satisfy the Cauchy-Riemann
equations in S, it follows that f(z) is analytic in S.
7.21. Verify directly.

7.22. Use f (n)(t) = Re dn

dtn

(
1

t−i

)
and the binomial theorem.

7.23. (a). f = Reiφ = R cosφ+iR sinφ. By the Cauchy-Riemann equations
∂R
∂x cosφ−R sinφ∂φ

∂x = ∂R
∂y sinφ+R cosφ∂φ

∂y ,
∂R
∂y cosφ−R sinφ∂φ

∂y = −∂R
∂x sinφ−R cosφ∂φ

∂x ;
i.e.,

∂R
∂x cosφ− ∂R

∂y sinφ = R sinφ∂φ
∂x +R cosφ∂φ

∂y , (7.11)
∂R
∂y cosφ+ ∂R

∂x sinφ = R sinφ∂φ
∂y −R cosφ∂φ

∂x . (7.12)

Now (7.11) cosφ + (7.12) sinφ gives the result. (b). Let z1 = r1eiθ1 , z2 =
r2eiθ2 . Then f(z1) = f(z2) implies that[(

1−b
1−a

)
r1 +

b−a
1−a

]
eiθ1 =

[(
1−b
1−a

)
r2 +

b−a
1−a

]
eiθ2 ;

i.e., 1−b
1−ar1 + b−a

1−a = 1−b
1−ar2 + b−a

1−a and eiθ1 = eiθ2 , and hence r1 = r2 and

θ1 = θ2. Therefore, f is one-to-one. Now, for any z ∈ Db, let z = ρeiθ.
Then b < ρ < 1. Consider ρ = 1−b

1−ar +
b−a
1−a so that r = 1−a

1−b ρ +
a−b
1−b . Since

dr
dρ = 1−a

1−b > 0, r is an increasing function of ρ. When ρ = b, r = a and

when ρ = 1, r = 1, so a < r < 1; hence reiθ ∈ Da and f
(
reiθ

)
= ρeiθ = z;

i.e., f is onto. Now suppose f is analytic then, from part (a), we have
∂
∂x

(
1−b
1−ar +

b−a
1−a

)
= 1−b

1−a
∂r
∂x = ∂θ

∂y

(
1−b
1−ar +

b−a
1−a

)
.

From x = r cos θ, y = r sin θ, we have ∂r
∂x = cos θ, ∂θ

∂y = cos θ
r , and hence

1−b
1−a cos θ = cos θ

r

(
1−b
1−ar +

b−a
1−a

)
, which implies that b−a

1−a = 0, and hence

b = a. Conversely, if b = a, then f(reiθ) = reiθ and so f is analytic.
7.24. Since ux + uydy/dx = 0 and vx + vydy/dx = 0, we have dy/dx =
−ux/uy and dy/dx = −vx/vy. Thus, at a point of intersection (x0, y0),
from the Cauchy-Riemann conditions and the fact that f ′(x0 + iy0) ̸= 0 it
follows that (−ux/uy)(−vx/vy) = −1.



Lecture 8
Elementary Functions I

We have already seen that the complex exponential function ez =
ex(cos y + i sin y) is entire, and d(ez)/dz = ez. In this lecture, we shall
first provide some further properties of the exponential function, and then
define complex trigonometric and hyperbolic functions in terms of ez.

Let w = f(z) be an analytic function in a domain S. Then, in view of
Problem 7.9 and the fact that the exponential function is entire, it follows
that the composite function ew is also analytic in S. Thus, for all z ∈ S, we
have

d

dz
ew =

dw

dz
ew.

Hence, in particular, the function ez
2−iz+7 is entire, and

d

dz
ez

2−iz+7 = (2z − i)ez
2−iz+7.

The polar components of ez are given by

|ez| = ex, arg ez = y + 2kπ, k = 0,±1,±2, · · · .

Since ex is never zero, it follows that ez is also never zero. However, ez

does assume every other complex value.

In calculus, it is shown that the exponential function is one-to-one on
the real axis. However, it is not one-to-one on the complex plane. In fact,
we have the following result.

Theorem 8.1. (i). ez = 1 if and only if z = 2kπi, where k is an
integer. (ii). ez1 = ez2 if and only if z1 = z2 + 2kπi, where k is an integer.

Proof. (i). Suppose that ez = 1 with z = x + iy. Then, we must have
|ez| = |ex+iy| = |exeiy| = ex = 1, and so x = 0. This implies that ez =
eiy = cos y + i sin y = 1. Equating the real and imaginary parts, we have
cos y = 1, sin y = 0. These two simultaneous equations are satisfied only
when y = 2kπ for some integer k; i.e., z = 2kπi. Conversely, if z = 2kπi,
where k is an integer, then ez = e2kπi = e0(cos 2kπ + i sin 2kπ) = 1.

(ii). We have ez1 = ez2 if and only if ez1−z2 = 1, and hence, from (i)
z1 − z2 = 2kπi, where k is an integer.

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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A function f is said to be periodic in a domain D if there exists a
constant ω such that f(z + ω) = f(z) for every z in D. Any constant ω
with this property is called a period of f.

Since, for all z, ez+2kπi = ez, we find that ez is periodic with complex
period 2πi.Consequently, if we divide the z-plane into the infinite horizontal
strips

Sn = {x+iy : −∞ < x <∞, (2n−1)π < y ≤ (2n+1)π, n = 0,±1,±2, · · ·}

then ez will behave in the same manner on each strip.

Figure 8.1

Sn

(2n − 1)π

(2n + 1)π

2π

⎧
⎪⎨

⎪⎩

From part (ii) of Theorem 8.1, we see that ez is one-to-one on each strip
Sn. Finally, for the function ez, we note that ez = ez.

Now, for any given complex number z, we define

sin z =
eiz − e−iz

2i
, cos z =

eiz + e−iz

2
.

Since eiz and e−iz are entire functions, so are sin z and cos z. In fact,

d

dz
sin z =

d

dz

(
eiz − e−iz

2i

)
=

1

2i

(
ieiz − (−i)e−iz

)
= cos z.

Similarly,

d

dz
cos z = − sin z.

Also, sin z = sin z, cos z = cos z.

The usual trigonometric identities remain valid with complex variables:

sin(z + 2π) = sin z, cos(z + 2π) = cos z. (8.1)
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sin(z + π) = − sin z, cos(z + π) = − cos z, sin(π/2− z) = cos z,

sin(−z) = − sin z, cos(−z) = cos z, sin2 z + cos2 z = 1,

sin(z1 ± z2) = sin z1 cos z2 ± cos z1 sin z2,

cos(z1 ± z2) = cos z1 cos z2 ∓ sin z1 sin z2,

sin 2z = 2 sin z cos z, cos 2z = cos2 z − sin2 z,

2 sin(z1 + z2) sin(z1 − z2) = cos 2z2 − cos 2z1,

2 cos(z1 + z2) sin(z1 − z2) = sin 2z1 − sin 2z2.

Equation (8.1) implies that sin z and cos z are both periodic with period
2π.

Example 8.1. sin z = 0 if and only if z = kπ, where k is an integer.
Indeed, if z = kπ, then clearly sin z = 0. Conversely, if sin z = 0, then we
have (1/2i)(eiz − e−iz) = 0; i.e., eiz = e−iz , and hence iz = −iz + 2kπi,
which implies that z = kπ for some integer k. Thus, the only zeros of sin z
are real zeros. The same is true for the function cos z; i.e., cos z = 0 if and
only if z = (π/2) + kπ.

The four other complex trigonometric functions are defined by

tan z =
sin z

cos z
, cot z =

cos z

sin z
, sec z =

1

cos z
, cosec z =

1

sin z
.

The functions cot z and cosec z are analytic for all z except at the points
z = kπ, whereas the functions tan z and sec z are analytic for all z except
at the points z = (π/2)+kπ, where k is an integer. Furthermore, the usual
rules for differentiation remain valid for these functions:

d

dz
tan z = sec2 z,

d

dz
sec z = sec z tan z,

d

dz
cot z = −cosec2z, d

dz
cosec z = −cosec z cot z.

For any complex number z, we define

sinh z =
ez − e−z

2
, cosh z =

ez + e−z

2
.

The functions sinh z and cosh z are entire and

d

dz
sinh z = cosh z,

d

dz
cosh z = sinh z.

For real x, coshx ≥ 1. Since d(sinh x)/dx = coshx, sinhx is an in-
creasing function.
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By comparing the definitions of hyperbolic sine and cosine functions
with those of trigonometric functions, we find

cosh(iz) = cos z, cos(iz) = cosh z, sinh(iz) = i sin z, sin(iz) = i sinh z.
(8.2)

Using relations (8.2) and the trigonometric identities, we can show that
the following hyperbolic identities are valid in the complex case:

sinh(−z) = − sinh z, cosh(−z) = cosh z, cosh2 z − sinh2 z = 1,

sinh(z1 ± z2) = sinh z1 cosh z2 ± cosh z1 sinh z2,

cosh(z1 ± z2) = cosh z1 cosh z2 ± sinh z1 sinh z2,

sinh 2z = 2 sinh z cosh z.

From relations (8.2), it follows that sinh z and cosh z are both periodic
with period 2πi. Furthermore, the zeros of sinh z are z = kπi and the zeros
of cosh z are z = (k + 1/2)πi, where k is an integer.

The four remaining complex hyperbolic functions are given by

tanh z =
sinh z

cosh z
, coth z =

cosh z

sinh z
, sech z =

1

cosh z
, cosech z =

1

sinh z
.

The functions coth z and cosech z are analytic for all z except at the points
z = kπi, whereas the functions tanh z and sech z are analytic for all z except
at the points z = (k+1/2)πi, where k is an integer. Furthermore, for these
functions also, the usual rules for differentiation remain valid:

d

dz
tanh z = sech2z,

d

dz
sech z = −sech z tanh z,

d

dz
coth z = −cosech2z,

d

dz
cosech z = −cosech z coth z.

Example 8.2. Show that | sin z|2 = sin2 x+ sinh2 y. Since

sin z = sin(x+ iy) = sinx cos(iy) + cosx sin(iy)

= sinx cosh y + i cosx sinh y,

it follows that

| sin z|2 = sin2 x cosh2 y + cos2 x sinh2 y

= sin2 x cosh2 y + (1− sin2 x) sinh2 y

= sin2 x(cosh2 y − sinh2 y) + sinh2 y = sin2 x+ sinh2 y.

Similarly, in view of

cos z = cosx cosh y − i sinx sinh y,
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one can show that | cos z|2 = cos2 x+ sinh2 y.

Example 8.3. As in Example 8.2, we have

sinh z = sinhx cos y + i coshx sin y,

cosh z = coshx cos y + i sinhx sin y.

Thus, it follows that

| sinh z|2 = sinh2 x+ sin2 y,

| cosh z|2 = sinh2 x+ cos2 y.

Example 8.4. From the various relations given above, it follows that

tan z = tan(x+ iy) =
sin(x+ iy)

cos(x+ iy)

=
sinx cosh y + i cosx sinh y

cosx cosh y − i sinx sinh y

=
cosx sinx+ i cosh y sinh y

cos2 x cosh2 y + sin2 x sinh2 y

=
sin 2x

cos 2x+ cosh 2y
+ i

sinh 2y

cos 2x+ cosh 2y
.



Lecture 9
Elementary Functions II

In this lecture, we shall introduce the complex logarithmic function,
study some of its properties, and then use it to define complex powers and
inverse trigonometric functions.

Let Log r = ln r denote the natural logarithm of a positive real number
r. If z ̸= 0, then we define log z to be any of the infinitely many values

log z = Log |z|+ i arg z

= Log |z|+ iArg z + 2kπi, k = 0,±1,±2, · · · .

Example 9.1. We have

log 3 = Log 3 + i arg 3 = (1.098 · · ·) + 2kπi,

log(−1) = Log 1 + i arg(−1) = (2k + 1)πi,

log(1 + i) = Log |1 + i|+ i arg(1 + i) = Log
√
2 + i

(π
4
+ 2kπ

)
,

where k = 0,±1,±2, · · · .

Now we shall show the following properties of the logarithmic function:

(i). If z ̸= 0, then z = elog z. Let z = reiθ . Then, |z| = r and arg z = θ.
Hence, log z = Log r + iθ. Thus,

elog z = e(Log r+iθ) = eLog reiθ = reiθ = z.

(ii). log ez = z + 2kπi, k = 0,±1,±2, · · · . Let z = x + iy. Then |ez| =
ex, arg ez = y + 2kπ. Hence,

log ez = Log |ez|+ i arg ez = Log ex + i(y + 2kπ)

= x+ iy + 2kπi = z + 2kπi.

(iii). log z1z2 = log z1 + log z2 (9.1)

log

(
z1
z2

)
= log z1 − log z2. (9.2)

Indeed, we have

log z1z2 = Log |z1z2|+ i arg z1z2

= Log|z1|+ Log |z2|+ i arg z1 + i arg z2

= log z1 + log z2.
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As log z is a multi-valued function, we must interpret (9.1) and (9.2) to
mean that if particular values are assigned to any two of their terms, then
one can find a value of the third term so that the equation is satisfied.

Example 9.2. Let z1 = z2 = −1. Then, z1z2 = 1. Thus, log z1 =
(2k1 + 1)πi, log z2 = (2k2 + 1)πi, and log 1 = 2k3πi where k1, k2, and
k3 are integers. If we select πi to be the value of log z1 and log z2, then
equation (9.1) will be satisfied if we use 2πi for log 1. If we select 0 and πi
to be the values of log 1 and log z1, respectively, then equation (9.1) will be
satisfied if we use −πi for log z2.

A branch of a multi-valued function is a single-valued function analytic
in some domain. The principal value or branch of the logarithm, denoted
by Log z, is the value inherited from the principal value of the argument:

Log z = Log |z|+ iArg z.

The value of Arg z jumps by 2πi as z crosses the negative real axis. There-
fore, Log z is not continuous at any point on the nonpositive real axis.
However, at all points off the nonpositive real axis, Log z is continuous.

Theorem 9.1. The function Log z is analytic in the domain D∗ consist-
ing of all points of the complex plane except those lying on the nonpositive
real axis; i.e., D∗ = C− (−∞, 0). Furthermore,

d

dz
Log z =

1

z
for z in D∗.

Figure 9.1

x

y

0

D∗

Proof. Set w = Log z. Let z0 ∈ D∗ and w0 = Log z0. We have to show
that the

lim
z→z0

Log z − Log z0
z − z0

exists and is equal to 1/z0. Since Log z is continuous, w = Log z → w0 =
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Log z0 as z → z0. Thus,

lim
z→z0

Log z − Log z0
z − z0

= lim
w→w0

w − w0

ew − ew0
= lim

w→w0

1
ew − ew0

w − w0

=
1

ew0
=

1

eLog z0
=

1

z0
.

(9.3)

Note that (9.3) is meaningful since, for z ̸= z0, w will not coincide with

w0. This follows from the fact that z = eLog z = ew. Thus, w = Log z is
differentiable at every point in D∗, and hence is analytic there.

A line used to create a domain of analyticity is called a branch line or
branch cut. Any point that must lie on a branch cut-no matter what branch
is used-is called a branch point of a multi-valued function. For example, the
nonpositive real axis shown in Figure 9.1 is a branch cut for Log z, and the
point z = 0 is a branch point.

If α is a complex constant and z ̸= 0, then we define zα by zα = eα log z.
Powers of z are, in general, multi-valued.

Example 9.3. Find all values of 1i. Since log 1 = Log 1+2kπi = 2kπi,
we have 1i = ei log 1 = e−2kπ, where k = 0,±1,±2, · · · .

Example 9.4. Find all values of (−2)i. Since log(−2) = Log 2 +

(π + 2kπ)i, we have (−2)i = ei log(−2) = eiLog 2e−(π+2kπ), where k =
0,±1,±2, · · · . Thus, (−2)i has infinitely many values.

Example 9.5. Find all values of i−2i. Since log i = Log 1+
(
2k + 1

2

)
πi =(

2k + 1
2

)
πi, we have i−2i = e−2i log i = e−2i(2k+1/2)πi = e(4k+1)π , where

k = 0,±1,±2, · · · .

Since log z = Log |z|+ iArg z + 2kπi, we can write

zα = eα(Log|z|+iArg z+2kπi) = eα(Log |z|+iArg z) eα2kπi, (9.4)

where k = 0,±1,±2, · · · . The value of zα obtained by taking k = k1 and
k = k2(̸= k1) in equation (9.4) will be the same when eα2k1πi = eα2k2πi.
This occurs if and only if α2k1πi = α2k2πi + 2mπi (m is an integer); i.e.,
α = m/(k1 − k2). Hence, formula (9.4) yields some identical values of zα

only when α is a real rational number. Consequently, if α is not a real
rational number, we obtain infinitely many different values of zα, one for
each choice of the integer k in (9.4).

On the other hand, if α = m/n, where m and n > 0 are integers having
no common factor, then there are exactly n distinct values (branches) of
zm/n, namely

zm/n = e(m/n)Log |z| e(m(Arg z+2kπ)i)/n, k = 0, 1, · · · , n− 1.



60 Lecture 9

In summary, we find:

1. zα is single-valued when α is a real integer.

2. zα takes finitely many values when α is a real rational number.

3. zα takes infinitely many values in all other cases.

If we use the principal value of log z, we obtain the principal branch of

zα, namely eαLog z.

Example 9.6. The principal value of (−i)i is eiLog (−i) = ei(−πi/2) =
eπ/2.

Since ez is entire and Log z is analytic in the domain D∗ = C\(−∞, 0],
the chain rule implies that the principal branch of zα is also analytic in D∗.
Furthermore, for z in D∗, we have

d

dz

(
eαLog z

)
= eαLog z d

dz
(αLog z) = eαLog z

(α
z

)
.

Now we shall use logarithms to describe the inverse of the trigonomet-
ric and hyperbolic functions. For this, we recall that if f is a one-to-one
complex function with domain S and range S′, then the inverse function
of f, denoted as f−1, is the function with domain S′ and range S defined
by f−1(w) = z if f(z) = w. It is clear that if the function f is bijective,
then f−1 maps S′ onto S. Furthermore, both the compositions f ◦ f−1 and
f−1 ◦ f are the identity function. For example, the inverse of the function
f(z) = ax+ b, a ̸= 0, is f−1(z) = (z − b)/a.

The inverse sine function w = sin−1 z is defined by the equation z =
sinw. We shall show that sin−1 z is a multi-valued function given by

sin−1 z = − i log[iz + (1− z2)1/2]. (9.5)

From the equation

z = sinw =
eiw − e−iw

2i
,

we have 2iz = eiw − e−iw. Multiplying both sides by e−iw, we deduce that

e2iw − 2izeiw − 1 = 0,

which is quadratic in eiw. Solving for eiw, we find

eiw = iz + (1− z2)1/2, (9.6)

where (1−z2)1/2 is a double-valued function of z. Taking logarithms of each
side of (9.6) and recalling that w = sin−1 z, we arrive at the representation
(9.5).
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Example 9.7. From (9.5), we have

sin−1(−i) = − i log(1 ±
√
2).

However, since

log(1 +
√
2) = Log (1 +

√
2) + 2kπi, k = 0,±1,±2, · · · , (9.7)

log(1−
√
2) = Log (

√
2− 1) + (2k + 1)πi, k = 0,±1,±2, · · · , (9.8)

and

Log(
√
2− 1) = Log

1

1 +
√
2

= − Log (1 +
√
2),

the lists (9.7) and (9.8) can be combined in one list as

(−1)kLog (1 +
√
2) + kπi, k = 0,±1,±2, · · · .

Thus, it follows that

sin−1(−i) = kπ + i(−1)k+1Log(1 +
√
2), k = 0,±1,±2, · · · .

Similar to the expression for sin−1 z in (9.5), it is easy to show that

cos−1 z = − i log[z + i(1− z2)1/2]

and

tan−1 z =
i

2
log

i+ z

i− z
. (9.9)

Clearly, the functions cos−1 z and tan−1 z are also multi-valued.

The derivatives of these three functions are readily obtained from the
representations above and appear as

d

dz
sin−1 z =

1

(1−z2)1/2
,

d

dz
cos−1 z = − 1

(1−z2)1/2
,

d

dz
tan−1 z =

1

1+z2
.

Finally, we note that the inverse hyperbolic functions can be treated in
a corresponding manner. It turns out that

sinh−1 z = log[z + (z2 + 1)1/2],

cosh−1 z = log[z + (z2 − 1)1/2],

tanh−1 z =
1

2
log

1 + z

1− z
,

and
d

dz
sinh−1 z =

1

(z2 + 1)1/2
,

d

dz
cosh−1 z =

1

(z2 − 1)1/2
,

d

dz
tanh−1 z =

1

1− z2
.
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Problems

9.1. Find all values of z such that

(a). ez = −2, (b). ez = 1+
√
3i, (c). exp(2z − 1) = 1, (d). sin z = 2.

9.2. If z1, z2 ̸= (π/2) + kπ, show that tan z1 = tan z2 if and only if
z1 = z2 + kπ, where k is an integer.

9.3. Use (7.7) and (7.8) to prove Theorem 9.1.

9.4. Evaluate the following:

(a). Log(−ei), (b). Log(1− i), (c). log(−1 +
√
3i).

9.5. Show that

(a). Log(1 + i)2 = 2Log(1 + i) but (b). Log(−1 + i)2 ̸= 2Log(−1 + i).

9.6. Find the limit limy→0+ [Log(a + iy)− Log(a− iy)] when a > 0,
and when a < 0.

9.7. Evaluate the following and find their principal values:

(a). (1 + i)i, (b). (−1)π, (c). (1− i)4i, (d). (−1 + i
√
3)3/2.

9.8. Establish (9.9).

9.9. Evaluate the following:

(a). sin−1
√
5, (b). sinh−1 i.

9.10. Prove the following inequalities:

e−2y

1 + e−2y
< | tan(x+ iy)− i| <

e−2y

1− e−2y
, y > 0

e−2y

1 + e−2y
< | cot(x+ iy) + i| <

e−2y

1− e−2y
, y > 0

e2y

1 + e2y
< | tan(x+ iy) + i| <

e2y

1− e2y
, y < 0

e2y

1 + e2y
< | cot(x+ iy)− i| <

e2y

1− e2y
, y > 0

Answers or Hints

9.1. (a). ez = −2 iff ez = eln(2)eiπ iff z = ln 2 + iπ + i(2kπ), k ∈ Z, (b).
ez = 1+

√
3i = 2eiπ/3 iff z = ln 2 + iπ3 + i(2kπ), k ∈ Z, (c). e2z−1 = ei0 iff
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2z − 1 = i(2kπ) iff z = 1
2 + i(kπ), k ∈ Z, (d). sin z = 2 iff eiz − e−iz = 4i

iff e2iz − 4ieiz − 1 = 0 iff eiz = (4i ±
√
−16 + 4)/2 = (4i ±

√
12i)/2 =

(2±
√
3)i = (2+

√
3)eiπ/2, (2−

√
3)eiπ/2 so z = ln(2+

√
3) + i

(
π
2 + 2kπ

)
,

or ln(2−
√
3) + i

(
π
2 + 2kπ

)
, k ∈ Z.

9.2. tan z1 − tan z2 = 0 if and only if sin(z1 − z2) = 0.
9.3. If Log z = Log |z|+ iArg z = Log r+ iΘ, then u = Log r, v = Θ. Thus,
ur = 1/r, uΘ = 0, vr = 0, vΘ = 1.
9.4. (a). Log(−ei) = ln e + i(−π/2) = 1 − iπ/2, (b). Log(1 − i) =
ln
√
2− iπ/4, (c). log(−1 +

√
3i) = ln 2 + i2π3 + 2kπi, k ∈ Z.

9.5. (a). Log(1 + i)2 = Log(2i) = ln 2 + iπ2 = 2
(
ln
√
2 + iπ4

)
= 2Log(1 +

i), (b). Log(−1 + i)2 = Log(−2i) = ln 2 − iπ/2 and 2Log(−1 + i) =
2
(
ln
√
2 + i 3π4

)
= ln 2 + i 3π2 .

9.6. 0 when a > 0, and 2πi when a < 0.
9.7. (a). (1 + i)i = ei log(1+i) = ei(ln

√
2+i(π/4+2kπ)) = e−(π/4+2kπ)ei ln

√
2,

k ∈ Z, (b). (−1)π = eπ log(−1) = eπ(ln 1+i(π+2kπ)) = eiπ
2(1+2k), k ∈ Z,

(c). eπei(2 ln 2), (d). e3/2(ln 2+i2π/3) = 2
√
2eiπ = −2

√
2.

9.8. 1 + i tanw = 2eiw/(eiw + e−iw), 1− i tanw = 2e−iw/(eiw + e−iw).
9.9. (a). (4k + 1)π/2± iLog(

√
5 + 2), (b). (4k + 1)πi/2.

9.10. Follow the same method as in Example 8.2.



Lecture 10
Mappings by Functions I

In this lecture, we shall present a graphical representation of some ele-
mentary functions. For this, we will need two complex planes representing,
respectively, the domain and the image of the function.

Consider z- and w-planes with the points as usual denoted as z = x+ iy
and w = u + iv. We shall visualize the function w = f(z) as a mapping
(transformation) from a subset of the z-plane (domain of f) to the w-plane
(range of f).

The mapping
w = Az (10.1)

is known as dilation. Here, A is a nonzero complex constant and z ̸= 0. We
write A and z in exponential form; i.e., A = aeiα, z = reiθ. Then,

w = (ar)ei(α+θ). (10.2)

From (10.2), it follows that the transformation (10.1) expands or contracts
the radius vector representing z by the factor a = |A| and rotates it through
an angle α = argA about the origin. The image of a given region is therefore
geometrically similar to that region. Thus, in particular, a dilation maps a
straight line onto a straight line and a circle onto a circle.

The mapping
w = z +B (10.3)

is known as translation; here, B is any complex constant. It is a translation,
as can be seen by means of the vector representation of B; i.e., if w =
u+ iv, z = x+ iy, and B = b1 + ib2, then the image of any point (x, y) in
the z-plane is the point (u, v) = (x+ b1, y + b2) in the w-plane. Since each
point in any given region of the z-plane is mapped into the w-plane in this
manner, the image region is geometrically congruent to the original one.
Thus, in particular, a translation also maps a straight line onto a straight
line and a circle onto a circle.

The general linear mapping

w = Az +B, A ̸= 0, (10.4)

is an expansion or contraction and a rotation, followed by a translation.

R.P. Agarwal et al., An Introduction to Complex Analysis, 
DOI 10.1007/978-1-4614-0195-7_10, © Springer Science+Business Media, LLC 2011 

64



Mappings by Functions I 65

Example 10.1. The mapping w = (1+i)z+2 transforms the rectangu-
lar region in Figure 10.1 into the rectangular region shown in the w-plane.
This is clear by writing it as a composition of the transformations

Z = (1 + i)z and w = Z + 2.

Since 1+i =
√
2 exp(iπ/4), the first of these transformations is an expansion

by the factor
√
2 and a rotation through the angle π/4. The second is a

translation two units to the right.

x

y

A

1 + 2i
B

0
X

Y

π/4

0

A′

−1 + 3i

B′

u

v

0

π/4

2

A′′

1 + 3i

B′′

Figure 10.1

The mapping
w = zn, n ∈ IN, (10.5)

in polar coordinates can be written as

ρeiφ = rneinθ.

Thus, it maps the annular region r ≥ 0, 0 ≤ θ ≤ π/n, of the z-plane onto
the upper half ρ ≥ 0, 0 ≤ φ ≤ π, of the w-plane. Clearly, this mapping is
one-to-one.

Example 10.2. Let S be the sector S = {z : |z| ≤ 2, 0 ≤ arg z ≤ π/6}.
Find the image of S under the mapping w = f(z) = z3. Clearly, we have

f(S) = {w : |w| ≤ 8, 0 ≤ argw ≤ π/2}.

Example 10.3. Let S be the vertical strip S = {z = x+iy : 2 ≤ x ≤ 3}.
Find the image of S under the mapping w = f(z) = z2. Since w = x2 −
y2 + 2ixy, a point (x, y) of the z-plane maps into (u, v) = (x2 − y2, 2xy)
in the w-plane. Now, eliminating y from the equations u = x2 − y2 and
v = 2xy, we get

u = x2 − v2

4x2
.

Thus, a vertical line in the z-plane; i.e., x = x0 fixed, maps into a leftward-
facing parabola with the vertex at (x2

0, 0) and v-intercepts at (0,±2x20).
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Hence, as 2 ≤ x ≤ 3, the corresponding parabolas in the w-plane describe
a parabolic region

f(S) =

{
w = u+ iv : 4− v2

16
≤ u ≤ 9− v2

36

}
.

The mapping

w =
1

z
(10.6)

establishes a one-to-one correspondence between the nonzero points of the
z- and w-planes. Since zz = |z|2, the mapping can be described by means
of the successive transformations

Z =
1

|z|2 z, w = Z. (10.7)

The first of these transformations is an inversion with respect to the
unit circle |z| = 1; i.e., the image of a nonzero point z is the point Z with
the properties

|Z| =
1

|z| and argZ = arg z.

Thus, the points exterior to the circle |z| = 1 are mapped onto the nonzero
points interior to it, and conversely. Any point on the circle is mapped onto
itself. The second transformation in (10.7) is simply a reflection in the real
axis.

x

y

0

·
·

·w

z

Z

1

Figure 10.2

Since limz→0 1/z = ∞ and limz→∞ 1/z = 0, we can define a one-to-
one transformation w = T (z) from the extended z-plane onto the extended
w-plane by writing

T (z) =

⎧
⎪⎪⎨

⎪⎪⎩

∞, z = 0,
0, z =∞,

1

z
, otherwise.
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Clearly, T is then continuous throughout the extended z-plane.

When a point w = u + iv is the image of a nonzero point z = x + iy

under the transformation w =
1

z
=

z

z2
, then

u =
x

x2 + y2
, v =

−y
x2 + y2

. (10.8)

Also, since z =
1

w
=

w

|w|2 ,

x =
u

u2 + v2
, y =

−v
u2 + v2

. (10.9)

Let A, B, C, and D be real numbers such that

B2 + C2 > 4AD. (10.10)

The equation
A(x2 + y2) +Bx+ Cy +D = 0 (10.11)

represents an arbitrary circle or line according to whether A ̸= 0 or A = 0.
Since (10.11) is the same as

(
x+

B

2A

)2

+

(
y +

C

2A

)2

=

(√
B2 + C2 − 4AD

2A

)2

,

condition (10.10) is clear when A ̸= 0. Also, when A = 0, condition (10.10)
reduces to B2 + C2 > 0, which means B and C are not both zero.

Now, if x and y satisfy equation (10.11), we can use (10.9) to obtain the
equation

D(u2 + v2) +Bu − Cv + A = 0, (10.12)

which also represents a circle or line. Conversely, if u and v satisfy equation
(10.12), it follows from relations (10.8) that x and y satisfy equation (10.11).

From (10.11) and (10.12), it is clear that:

(1). A circle (A ̸= 0) not passing through the origin (D ̸= 0) in the z-plane
is transformed into a circle not passing through the origin in the w-plane.

(2). A circle (A ̸= 0) through the origin (D = 0) in the z-plane is trans-
formed into a line that does not pass through the origin in the w-plane.

(3). A line (A = 0) not passing through the origin (D ̸= 0) in the z-plane
is transformed into a circle through the origin in the w-plane.

(4). A line (A = 0) through the origin D = 0 in the z-plane is transformed
into a line through the origin in the w-plane.



68 Lecture 10

Example 10.4. In view of (10.11) and (10.12), a vertical line x =
c1 (c1 ̸= 0) is transformed by w = 1/z into the circle −c1(u2 + v2) + u = 0,
or (

u− 1

2c1

)2

+ v2 =

(
1

2c1

)2

,

which is centered on the u-axis and tangent to the v-axis.

Example 10.5. The transformation w = 1/z maps a horizontal line
y = c2 (c2 ̸= 0) onto the circle

u2 +

(
v +

1

2c2

)2

=

(
1

2c2

)2

,

which is centered on the v-axis and tangent to the u-axis.

Example 10.6. When w = 1/z, the half-plane x ≥ c1 (c1 > 0) is
mapped onto the disk

(
u−

1

2c1

)2

+ v2 ≤
(

1

2c1

)2

.



Lecture 11
Mappings by Functions II

In this lecture, we shall study graphical representations of the Möbius
transformation, the trigonometric mapping sin z, and the function z1/2.

The transformation

w =
az + b

cz + d
, ad− bc ̸= 0, (11.1)

where a, b, c, and d are complex numbers, is called a linear fractional
transformation or Möbius transformation. Clearly, (11.1) can be written as

Azw +Bz + Cw +D = 0, AD −BC ̸= 0, (11.2)

and, conversely, any equation of type (11.2) can be put in the form (11.1).
Since (11.2) is linear in z and linear in w, or bilinear in z and w, another
name for a linear fractional transformation is bilinear transformation.

When c = 0, the condition ad − bc ̸= 0 reduces to ad ̸= 0 and (11.1)
becomes a nonconstant linear function. When c ̸= 0, (11.1) can be written
as

w =
a

c
+

bc− ad

c

1

cz + d
, ad− bc ̸= 0. (11.3)

Once again, the condition bc−ad ̸= 0 ensures that we do not have a constant
function.

Equation (11.3) reveals that, when c ̸= 0, a linear transformation is a
composition of the mappings

Z = cz + d, W =
1

Z
, w =

a

c
+

bc− ad

c
W, ad− bc ̸= 0.

Thus, a linear fractional transformation always transforms circles and lines
into circles and lines because these special linear fractional transformations
do this.

Solving (11.1) for z, we find

z =
−dw + b

cw − a
, ad− bc ̸= 0. (11.4)

Thus, when a given point w is the image of some point z under transforma-
tion (11.1), the point z is retrieved by means of equation (11.4). If c = 0,
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so that a and d are both nonzero, each point in the w-plane is evidently the
image of one and only one point in the z-plane. The same is true if c ̸= 0,
except when w = a/c, since the denominator in equation (11.4) vanishes
if w has that value. We can, however, enlarge the domain of definition of
(11.1) in order to define a linear fractional transformation T on the ex-
tended z-plane such that the point w = a/c is the image of z = ∞ when
c ̸= 0. We first write

T (z) =
az + b

cz + d
, ad− bc ̸= 0. (11.5)

We then write T (∞) = ∞ if c = 0 and T (∞) = a/c and T (−d/c) = ∞ if
c ̸= 0.

It can be shown that T is continuous on the extended z-plane. It also
agrees with the way in which we enlarged the domain of definition of the
transformation w = 1/z.

When its domain of definition is enlarged in this way, the linear trans-
formation (11.5) is a one-to-one mapping of the extended z-plane onto the
extended w-plane. Hence, associated with the transformation T there is
an inverse transformation T−1 that is defined on the extended w-plane as
follows: T−1(w) = z if and only if T (z) = w. From (11.4), we have

T−1(w) =
−dw + b

cw − a
, ad− bc ̸= 0. (11.6)

Clearly, T−1 is itself a linear fractional transformation, where T−1(∞) =∞
if c = 0 and T−1(a/c) =∞ and T−1(∞) = −d/c if c ̸= 0.

If T and T ′ are two linear fractional transformations given by

T (z) =
a1z + b1
c1z + d1

and T ′(z) =
a2z + b2
c2z + d2

,

where a1d1 − b1c1 ̸= 0 and a2d2 − b2c2 ̸= 0, then their composition,

T ′[T (z)] =
(a1a2 + c1b2)z + (a2b1 + d1b2)

(a1c2 + c1d2)z + (c2b1 + d1d2)
, (a1d1−b1c1)(a2d2−b2c2) ̸= 0,

is also a linear fractional transformation. Note that, in particular, T−1[T (z)] =
z for each point z in the extended plane.

There is always a linear fractional transformation that maps three given
distinct points z1, z2 and z3 onto three specified distinct points w1, w2,
and w3, respectively. In fact, it can be written as

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
. (11.7)
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To verify this, we write (11.7) as

(z− z3)(z2 − z1)(w−w1)(w2 −w3) = (z− z1)(z2 − z3)(w−w3)(w2 −w1).
(11.8)

If z = z1, the right-hand side of (11.8) is zero and it follows that w = w1.
Similarly, if z = z3, the left-hand side of (11.8) is zero and we get w = w3.
If z = z2, we have the equation

(w − w1)(w2 − w3) = (w − w3)(w2 − w1),

whose unique solution is w = w2. One can see that the mapping defined by
equation (11.7) is actually a linear fractional transformation by expanding
the products in (11.8) and writing the result in the form

Azw +Bz + Cw +D = 0. (11.9)

The condition AD−BC ̸= 0, which is needed with (11.9), is clearly satisfied
because (11.7) does not define a constant function. We also note that (11.7)
defines the only linear fractional transformation mapping the points z1, z2,
and z3 onto w1, w2, and w3, respectively.

Example 11.1. Find the bilinear transformation that maps the points
z1 = −1, z2 = 0, and z3 = 1 onto the points w1 = −i, w2 = 1, and w3 = i.
Using equation (11.7), we have

(w + i)(1− i)

(w − i)(1 + i)
=

(z + 1)(0− 1)

(z − 1)(0 + 1)
,

which on solving for w in terms of z gives the transformation

w =
i− z

i+ z
.

If (11.7) is modified properly, it can also be used when the point at
infinity is one of the prescribed points in either the (extended) z- or w-
plane. Suppose, for example, that z1 = ∞. Since any linear fractional
transformation is continuous on the extended plane, we need only replace
z1 on the right-hand side of (11.7) by 1/z1, clear fractions, and let z1 tend
to zero

lim
z1→0

(z − 1/z1)(z2 − z3)

(z − z3)(z2 − 1/z1)

z1
z1

= lim
z1→0

(z1z − 1)(z2 − z3)

(z − z3)(z1z2 − 1)
=

z2 − z3
z − z3

.

Thus, the desired modification of (11.7) is

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

z2 − z3
z − z3

. (11.10)
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Note that this modification is obtained by simply deleting the factors in-
volving z1 in (11.7). Furthermore, the same formal approach applies when
any of the other prescribed points is ∞.

Example 11.2. Find the bilinear transformation that maps the points
z1 = 1, z2 = 0, and z3 = −1 onto the points w1 = i, w2 =∞, and w3 = 1.
In this case, we use the modification

w − w1

w − w3
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)

to obtain
w − i

w − 1
=

(z − 1)(0 + 1)

(z + 1)(0− 1)
,

which gives

w =
(i + 1)z + (i− 1)

2z
.

Now let S be the semi-infinite strip S = {z = x + iy : −π/2 ≤ x ≤
π/2, y ≥ 0}. We shall find the image of S under the mapping w = f(z) =
sin z. For this, since

w = u+ iv = sinx cosh y + i cosx sinh y,

we have
u = sinx cosh y and v = cosx sinh y. (11.11)

Thus, if y = 0, then v = 0 and u = sinx, and hence w = sin z maps the
interval −π/2 ≤ x ≤ π/2 into the interval −1 ≤ u ≤ 1. If x = π/2, then
u = cosh y and v = 0, and hence w = sin z maps the positive-vertical line
x = π/2 onto the part u ≥ 1 of the real axis of the w-plane. Similarly, if
x = −π/2, then w = sin z maps the positive-vertical line x = −π/2 onto
the part u ≤ −1 of the real axis of the w-plane. Hence, under the mapping
w = sin z, the boundary of S is mapped to the entire u-axis. If y = y0 > 0
and −π/2 ≤ x ≤ π/2, equations (11.11) imply that v ≥ 0 and

u2

cosh2 y0
+

v2

sinh2 y0
= 1, (11.12)

and hence w = sin z maps the interval −π/2 ≤ x ≤ π/2 into the up-
per semi-ellipse. The u-intercepts of this ellipse are at ± cosh y0, and
the v-intercept is at sinh y0. Since limy0→0 sinh y0 = 0, limy0→0 cosh y0 =
1, limy0→∞ sinh y0 = ∞, and limy0→∞ cosh y0 = ∞, as y0 varies in the
interval 0 < y0 < ∞, the upper semi-ellipses fill the upper half w-plane.
Thus, the image of S under the mapping w = sin z is the upper half w-plane
including the u-axis.
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From the considerations above it is clear that the image of the infinite
strip {z = x + iy : −π/2 ≤ x ≤ π/2, −∞ < y < ∞} under the mapping
w = sin z is the entire w-plane.

Finally, we shall consider the mapping w = f(z) = z1/2. For this, we
recall that the mapping g(z) = z2 is not one-to-one; however, if we restrict
the domain of g to S = {z : −π/2 < arg z ≤ π/2}, then it is one-to-one.
To see this, let z1, z2 ∈ S. If z21 = z22 ; i.e., z

2
1 − z22 = (z1 − z2)(z1 + z2) = 0,

then either z1 = z2 or z1 = −z2. Since for z = 0 the arg z is not defined,
both z1 and z2 cannot be zero. Furthermore, since the points z and −z are
symmetric about the origin, if z2 ∈ S, then −z2 ̸∈ S. Hence, z1 ̸= −z2, and
we must have z1 = z2. Thus, the mapping g(z) = z2 is one-to-one on S to
C − {0}, and therefore the inverse function g−1(z) = f(z) = z1/2 exists.
The domain of g−1 is thus C − {0} and the range is the domain of g; i.e.,
S. In conclusion, if z = reiθ , then the principal branch f1 of the function
w = f(z) = z1/2 is

f1(z) =
√
reiθ/2, r > 0, − π < θ ≤ π,

and it takes the square root of the modulus of a point and halves the
principal argument. In particular, under this mapping the image of the
sector {z : |z| ≤ 4, π/3 ≤ arg z ≤ π/2} is the sector {z : |z| ≤ 2, π/6 ≤
arg z ≤ π/4}.

From the arguments above it is clear that the principal branch f1 of the
function w = f(z) = z1/n is

f1(z) = r1/neiθ/n, r > 0, − π < θ ≤ π,

and it takes the nth root of the modulus of a point and divides the principal
argument by n.

Problems

11.1. Find images of the following sets under the mapping w = ez :

(a). the vertical line segment x = a, − π < y ≤ π,
(b). the horizontal line −∞ < x <∞, y = b,

(c). the rectangular area −1 ≤ x ≤ 1, 0 ≤ y ≤ π,
(d). the region −∞ < x <∞, − π < y ≤ π.

11.2. Find images of the following sets under the mapping w = 1/z :

(a). {z : 0 < |z| < 1, 0 ≤ arg z ≤ π/2},
(b). {z : 3 ≤ |z|, 0 ≤ arg z ≤ π}.
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11.3. Find images of the following sets under the mapping w = Log z :

(a). {z : |z| > 0}, (b). {z : |z| = r},
(c). {z : arg z = θ}, (d). {z : 2 ≤ |z| ≤ 5}.

11.4. Show that as z moves on the real axis from −1 to +1 the point

w =
1− iz

z − i
moves on part of the unit circle with center (0, 0) and radius 1.

11.5. Show that when
z − i

z − 1
is purely imaginary, the locus of z is a

circle with center at (1/2, 1/2) and radius 1/
√
2, but when it is purely real

the locus is a straight line.

11.6. A point α ∈ C is called a fixed point of the mapping f provided
f(α) = α.

(a). Show that except the unit mapping w = z, (11.1) can have at most
two fixed points.

(b). If (11.1) has two distinct fixed points, α and β, then

w − α
w − β =

z − α
z − β

a− cα

a− cβ
.

(c). If (11.1) has only one fixed point, α, then

1

w − α
=

1

z − α
+

c

a− cα
.

(d). Find the fixed points of
z − 1

z + 1
and

5z + 3

2z − 1
.

11.7. Find the entire linear transformation with fixed point 1+2i that
maps the point i into the point −i.

11.8. Show that a necessary and sufficient condition for two Möbius
transformations

T1(z) =
a1z + b1
c1z + d1

and T2(z) =
a2z + b2
c2z + d2

to be identical is that a2 = λa1, b2 = λb1, c2 = λc1, d2 = λd1, λ ̸= 0.

11.9. For any four complex numbers z1, z2, z3, z4 in the extended plane,
the cross ratio is denoted and defined as

(z1, z2, z3, z4) =
z4 − z1
z4 − z3

:
z2 − z1
z2 − z3

=
(z4 − z1)(z2 − z3)

(z4 − z3)(z2 − z1)
.

Show that
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(a). the cross ratio is invariant under any linear fractional transformation
T ; i.e.,

(T (z1), T (z2), T (z3), T (z4)) = (z1, z2, z3, z4),

(b). the complex numbers z1, z2, z3, z4 lie on a line or a circle in the complex
plane if and only if their cross ratio is a real number.

11.10. Show that the image of the vertical line x = x0, where −π/2 <
x0 < π/2, under the mapping w = sin z is the right-half of the hyperbola

u2

sin2 x0
− v2

cos2 x0
= 1

if x0 > 0 and the left-half if x0 < 0.

11.11. Find the image of the rectangle S = {z = x+ iy : −π/2 ≤ x ≤
π/2, 0 < c ≤ y ≤ d} under the mapping w = sin z.

11.12. Find the image of the semi-infinite strip S = {z = x + iy : 0 ≤
x ≤ π/2, y ≥ 0} under the mapping w = cos z.

Answers or Hints

11.1. (a). circle |w| = ea, (b). ray argw = b, (c). semi-annular area between
semi-circles of radii e−1 and e with center at 0, (d). C− {0}.
11.2. (a). {w : 1 < |w|, − π/2 ≤ argw ≤ 0}, (b). {w : 0 < |w| <
1/3, − π ≤ argw ≤ 0}.
11.3. (a). {w : −∞ < u <∞, − π < v ≤ π}, (b). {w : u = Log r, − π <
v ≤ π}, (c). {w : −∞ < u < ∞, v = θ}, (d). {w : Log 2 ≤ u ≤
Log 5, − π < v ≤ π}.
11.4. w = 2x

x2+(y−1)2 + i 1−x2−y2

x2+(y−1)2 = u+ iv. On the real axis, y = 0, − 1 ≤

x ≤ 1, u = 2x
x2+1 , v = 1−x2

1+x2 , and hence u2 + v2 = 4x2+(1+x4−2x2)
(1+x2)2 = 1. If

x = −1, then u = −1, v = 0; if x = 0, then u = 0, v = 1; if x = 1 then
u = 1, v = 0. Hence, w moves on the upper half of the unit circle.
11.5. w = x(x−1)+y(y−1)+i(1−x−y)

(x−1)2+y2 , and hence w is imaginary provided

x2 − x + y2 − y = 0; i.e., (x − 1/2)2 + (y − 1/2)2 = 1/2 and w is real if
x+ y = 1.
11.6. (a). Find all possible solutions of z = (az + b)/(cz + d). (b). Verify
directly. (c). Verify directly. (d). ±i and (3±

√
15)/2.

11.7. w = (2 + i)z + 1− 3i.
11.8. The sufficiency is obvious. If T1(z) = T2(z), then in particular
T1(0) = T2(0), T1(1) = T2(1), T1(∞) = T2(∞), which give

b1
d1

=
b2
d2

= µ,
a1 + b1
c1 + d1

=
a2 + b2
c2 + d2

,
a1
c1

=
a2
c2

= ν.
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Substituting b1 = µd1, b2 = µd2, a1 = νc1, and a2 = νc2 in the second
relation, we find (c1d2 − c2d1)(ν − µ) = 0. But ν ̸= µ, since otherwise
a1/c1 = b1/d1; i.e., a1d1 − b1c1 = 0. Thus, c1/d1 = c2/d2.
11.9. (a). Define T ′ by (T (z1), T (z2), T (z3), w) = (z1, z2, z3, z), that maps
zj to T (zj), j = 1, 2, 3. But T (z) itself also maps zj to T (zj). By uniqueness,
w = T ′(z) = T (z). Therefore, this equality holds for w = T (z) also. In par-
ticular, it holds for z = z4 and w = T (z4). (b). Suppose that z1, z2, z3, z4 lie
on a line or circle γ. We can find a linear fractional transformation w = f(z)
that maps γ onto the real axis. Then, each wj = f(zj) will be real. Conse-
quently, the cross ratio (w1, w2, w3, w4) will be real. But then, from (11.7),
(z1, z2, z3, z4) must also be real. Conversely, suppose that (z1, z2, z3, z4) is
real. We need to show that the points z1, z2, z3, z4 lie on some line or circle.
Clearly, any three points lie on some line or circle (a line if the points are
collinear, a circle otherwise). Hence, there is a unique line or circle γ1 pass-
ing through the points z1, z2, z3. Therefore, it suffices to show that z4 also
lies on γ1. Let w = g(z) be a linear fractional transformation that maps γ1
to the real axis, and let wj = g(zj). Since z1, z2, z3 lie on γ1, w1, w2, w3 will
be on the real axis. Now, since (w1, w2, w3, w4) = (z1, z2, z3, z4) is real, we
can solve it for w4 in terms of (z1, z2, z3, z4) and w1, w2, w3, and hence w4

must also be real. Finally, since w = g(z) is one-to-one, the only values in
the z-plane that can map to the real axis in the w-plane are on γ1. Hence,
z4 = g−1(w4) is on γ1.
11.10. Use (11.11).
11.11. The region between upper semi-ellipses given by (11.12) with y0 = c
and y0 = d.
11.12. Since u = cosx cosh y, v = − sinx sinh y, the image region is {w =
u+ iv : u ≥ 0, v ≤ 0}.



Lecture 12
Curves, Contours, and

Simply Connected Domains

In this lecture, we define a few terms that will be used repeatedly in
complex integration. We shall also state Jordan’s Curve Theorem, which
seems to be quite obvious; however, its proof is rather complicated.

Let x(t) and y(t) be continuous real-valued functions defined on [a, b].
A curve or path γ in the complex plane is the range of the continuous
function z : [a, b] → C given by z(t) = x(t) + iy(t), t ∈ [a, b]. The curve
γ begins with its initial point z(a) = x(a) + iy(a) and goes all the way
to its terminal point z(b) = x(b) + iy(b). If we write the function z(t) in
its parametric form; i.e., z(t) = (x(t), y(t)), then the curve γ is the set of
points {z(t) = (x(t), y(t)) : t ∈ [a, b]}. This set is called the track of γ, and
is denoted as {γ}.

Figure 12.1

·
·

Initial point

Terminal point

z(t)

γ

z(a)

z(b)

The curve γ is said to be simple if for all different t1, t2 ∈ [a, b], z(t1) ̸=
z(t2); i.e., γ does not cross itself.

Figure 12.2

· ·
Simple Not simple

·

·

The curve γ is said to be closed if z(a) = z(b). The interior of a closed
curve γ is denoted as I(γ). The curve γ is called a simple closed curve (or
Jordan curve) if it is closed and a < t1 < t2 < b implies that z(t1) ̸= z(t2);
i.e., γ does not cross itself except at the end points.

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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Example 12.1. Let z1, z2 ∈ C be different points. The line segment
γ1, denoted as [z1, z2] and given by

z(t) = z1 + t(z2 − z1), 0 ≤ t ≤ 1,

is a simple curve.

Figure 12.3

·
·

γ1

z1

z2

Example 12.2. The unit circle γ2 given by

z(t) = eit = cos t+ i sin t, 0 ≤ t ≤ 2π

is a simple closed curve.

Figure 12.4

·1 z(0) = z(2π)γ2

Example 12.3. Consider the functions z1(t) = eit, t ∈ [0, 2π] and
z2(t) = e2πit, t ∈ [0, 1]. Both curves trace the unit circle. Thus, different
functions may represent the same curve.

A curve γ given by the range of z : [a, b]→ C is called smooth if

(i). z′(t) = x′(t) + iy′(t) exists and is continuous on [a, b],

(ii). z′(t) ̸= 0 for all t ∈ (a, b).

Example 12.4. Clearly, the curves γ1 and γ2 are smooth; however,
the curve γ3 given by

z(t) =

{
t+ 2ti, 0 ≤ t ≤ 1

t+ 2i, 1 ≤ t ≤ 2

is simple but not smooth.
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Figure 12.5

x

y

1 2

i

2i ·
γ3

y = 2x

0

A curve γ given by the range of z : [a, b] → C is said to be piecewise
continuous if

(i). z(t) exists and is continuous for all but finitely many points in (a, b),

(ii). at any point c ∈ (a, b) where z fails to be continuous, both the left
limit limt→c− z(t) and the right limit limt→c+ z(t) exist and are finite, and

(iii). at the end points the right limit limt→a+ z(t) and the left limit limt→b− z(t)
exist and are finite.

The curve γ is called piecewise smooth if z and z′ both are piecewise
continuous.

A contour γ is a sequence of smooth curves {γ1, · · · , γn} such that the
terminal point of γk coincides with the initial point of γk+1 for 1 ≤ k ≤ n−1.
In this case, we write

γ = γ1 + γ2 + · · ·+ γn.

It is clear that a contour is a continuous piecewise smooth curve.

Figure 12.6

·
·

γ1

·
γ2

·
γ3

·
· ·

γn

γ

The opposite contour of γ is

−γ = (−γn) + (−γn−1) + · · ·+ (−γ1).

Example 12.5. Let γ1 be the curve z1(t) = t+ 2ti, 0 ≤ t ≤ 1, and γ2
be the curve z2 = t + 2i, 1 ≤ t ≤ 2. Then, γ = γ1 + γ2 is a contour (see
Figure 12.5).
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Now consider any partition a = t0 < t1 < · · · < tn−1 < tn = b of
the interval [a, b]. Then, the line segments [z(tj−1), z(tj)], j = 1, 2, · · · , n
form a polygonal contour σ that is inscribed in the curve γ. Clearly, such
an inscribed polygon a contour σ has a finite length, which we denote and
define as

ℓσ =
n∑

j=1

[
(x(tj)− x(tj−1))

2 + (y(tj) − y(tj−1))
2
]1/2

.

A curve γ is said to be rectifiable if the lengths ℓσ of all inscribed poly-
gons σ are bounded. The length ℓ of γ is defined as ℓ = supσ ℓσ. If γ is
a piecewise smooth curve, then the Mean Value Theorem ensures that the
curve γ is rectifiable.

A simple closed contour γ is called positively oriented (anticlockwise) if
the interior domain lies to the left of an observer tracing out the points in
order; otherwise it is negatively oriented (clockwise). With this convention,
it is clear that the positive direction of traversing a curve surrounding the
point at infinity is the clockwise direction. A simple open contour γ is said
to be positively oriented if we traverse it from its initial point to its terminal
point.

Figure 12.7

Positively
oriented

Theorem 12.1 (Jordan Curve Theorem). The points on any
simple closed curve or simple closed contour γ are boundary points of two
distinct domains, one of which is the interior of γ and is bounded. The
other, which is the exterior of γ, is unbounded.

Example 12.6. Consider the disjoint open disks S1 = {z : |z−z0| < r}
and S2 = {z : |z − z0| > r}. Clearly, the circle γ = {z : |z − z0| = r} is a
closed contour, and the points on γ are the boundary points of S1 and S2.
The interior of γ is S1, which is bounded, and the exterior of γ is S2, which
is unbounded.

A simply connected domain S is a domain having the following property:
If γ is any simple closed contour lying in S, then the domain interior to γ
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lies wholly in S. An immediate consequence of Theorem 12.1 is that the
interior of a simple closed curve is simply connected. A domain that is not
simply connected is called multiply connected.

Simply connected Not simply connected

Simply connected Not simply connected

Figure 12.8

Problems

12.1. For each of the following domains, determine whether it is simply
connected, multiply connected, or neither (not connected):

(a). A = {z : 0 < |2z − 1| < 3},
(b). B = {z : Arg z ̸= 0},
(c). C = {z : |z − i| > 1, |z − 3| > 3 and |z| < 10},
(d). D = {z : Im z ̸= 0},
(e). E = {z : |z| < 1 and Re z < 0},
(f). F = C− {x+ iy : 0 ≤ x ≤ 3}.

12.2. Let γ = A0A1 · · ·An−1An be a closed polygonal Jordan curve
with interior I(γ). Show that the following are equivalent:
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(a). The polygon I(γ) is convex.

(b). For j = 1, · · · , n, the line Lj containing Aj−1Aj does not intersect
I(γ).

(c). I(γ) is the intersection of a finite number of closed half-planes.

12.3. Show that every convex domain is simply connected.

12.4. Let S ⊂ C be an open set, and let f : S → C be a continuous
function. Show that if S is connected, then f(S) is also connected.

Answers or Hints

12.1. (a). Multiply-connected, (b). simply connected, (c). multiply-
connected, (d). not connected, (e). simply connected, (f). not connected.
12.2. (a). ⇒ (b). Since I(γ) and Lj are convex, so is Ij := I(γ) ∩ Lj ,

which must then be a line segment since it is a subset of a line. Since I(γ)
is convex, the interior angles at Aj−1 and Aj are less than π, so points on

Lj\Aj−1Aj that are sufficiently close to Aj−1 or Aj are not in I(γ) and
therefore also not in Ij . This implies that Ij = Aj−1Aj since it is a line
segment containing Aj−1Aj .

(b). ⇒ (c). For j = 1, . . . , n, I(γ) is entirely on one side of Lj , so I(γ) is in a

closed half-plane Hj that has Lj as its boundary. Then I(γ) ⊂
⋂n

j=1 Hj =:

C. We claim that I(γ) = C. If not, there is some point z0 ∈ C\I(γ). Let
z1 be any point in I(γ). By Theorem 12.1, the line segment joining z0 and
z1 intersects γ at some point. This point is on Aj0−1Aj0 for some j0, and
then z0 and z1 are on opposite sides of Lj0 . Since z1 ∈ I(γ) ⊂ Hj0 , then
z0 /∈ Hj0 , which is a contradiction since z0 ∈ C.
(c). ⇒ (a). This follows since every closed half-plane is convex and an
intersection of convex sets is convex.
12.3. Let S be a convex domain and γ a simple closed curve lying in S.
We want to show that the domain I(γ) interior to γ lies in S. If not, there
is some point z0 ∈ I(γ)\S. Let L be any line through z0. Since I(γ) is
bounded, we can take two points z1 and z2 on L\I(γ) such that z0 is on the
line segment joining z1 and z2. By Theorem 12.1, the line segment joining
z0 and z1 (resp. z0 and z2) intersects γ at some point z′1 (resp. z′2). Then
z′1 and z′2 are in S and z0 is on the line segment joining them, so z0 ∈ S
since S is convex, a contradiction.
12.4. Let w1, w2 ∈ f(S). Then, there exist z1, z2 ∈ S such that w1 =
f(z1), w2 = f(z2). Since S is connected, there exists a curve γ in S
connecting z1 and z2. Suppose z = z(t), a ≤ t ≤ b represents γ. Then,
f(z(t)), a ≤ t ≤ b defines a curve in f(S) connecting w1 and w2.



Lecture 13
Complex Integration

In this lecture, we shall introduce integration of complex-valued func-
tions along a directed contour. For this, we shall begin with the integration
of complex-valued functions of a real variable. Our approach is based on
Riemann integration from calculus. We shall also prove an inequality that
plays a fundamental role in our later lectures.

Recall that a complex-valued function w of a real variable t ∈ [a, b] ⊂ IR
is defined as w(t) = u(t) + iv(t); i.e., w : [a, b] ⊂ IR→ C. The derivative of
w(t) at a point t is defined as

d

dt
w(t) = w′(t) = u′(t) + iv′(t),

provided each of the derivatives u′ and v′ exists at t. Similarly, the integral
of w(t) over [a, b] is defined as

∫ b

a
w(t)dt =

∫ b

a
u(t)dt+ i

∫ b

a
v(t)dt

provided the individual integrals on the right exist. For this, it is sufficient
to assume that the functions u and v are piecewise continuous in [a, b]. The
following properties of differentiation and integration hold:

(i).
d

dt
[w1(t) + w2(t)] = w′

1(t) + w′
2(t).

(ii).
d

dt
[z0w1(t)] = z0

d

dt
w1(t), z0 ∈ C.

(iii).

∫ b

a
[w1(t) + w2(t)]dt =

∫ b

a
w1(t)dt+

∫ b

a
w2(t)dt.

(iv).

∫ b

a
z0w1(t)dt = z0

∫ b

a
w1(t)dt, z0 ∈ C.

(v). Re

∫ b

a
w1(t)dt =

∫ b

a
Re[w1(t)]dt, Im

∫ b

a
w1(t)dt =

∫ b

a
Im[w1(t)]dt.

Here we shall show only (iv). For this, let z0 = x0 + iy0 and w1(t) =
u1(t) + iv1(t). Then, we have

z0w1(t) = [x0u1(t) − y0v1(t)] + i[x0v1(t) + y0u1(t)]

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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and
∫ b

a
z0w1(t)dt =

∫ b

a
[x0u1(t) − y0v1(t)]dt+ i

∫ b

a
[x0v1(t) + y0u1(t)]dt

=

[
x0

∫ b

a
u1(t)dt − y0

∫ b

a
v1(t)dt

]

+i

[
x0

∫ b

a
v1(t)dt + y0

∫ b

a
u1(t)dt

]

= (x0 + iy0)

[∫ b

a
u1(t)dt+ i

∫ b

a
v1(t)dt

]

= z0

∫ b

a
w1(t)dt.

Example 13.1. Suppose w(t) is continuous on [a, b] and w′(t) exists on
(a, b). For such functions, the Mean Value Theorem for derivatives no longer
applies; i.e., it is not necessarily true that there is a number c ∈ (a, b) such
that w′(c) = (w(b)−w(a))/(b− a). To show this, we consider the function
w(t) = eit, 0 ≤ t ≤ 2π. Clearly, |w′(t)| = |ieit| = 1, and hence w′(t) is
never zero, while w(2π)− w(0) = 0.

We recall that if f : [a, b] → IR, then |
∫ b
a f(x)dx| ≤

∫ b
a |f(x)|dx. We

shall now show that the same inequality holds for w : [a, b]→ C; i.e.,
∣∣∣∣∣

∫ b

a
w(t)dt

∣∣∣∣∣ ≤
∫ b

a
|w(t)|dt, a ≤ b <∞.

For this, let |
∫ b
a w(t)dt| = r, so that

∫ b
a w(t)dt = reiθ in polar form. Now

we have

r = e−iθ

∫ b

a
w(t)dt =

∫ b

a
e−iθw(t)dt

=

∫ b

a
Re
[
e−iθw(t)

]
dt+ i

∫ b

a
Im
[
e−iθw(t)

]
dt

(= 0 since LHS is real)

=

∫ b

a
Re
[
e−iθw(t)

]
dt

≤

∣∣∣∣∣

∫ b

a
Re
[
e−iθw(t)

]
dt

∣∣∣∣∣ ≤
∫ b

a

∣∣Re
[
e−iθw(t)

]∣∣ dt

≤
∫ b

a

∣∣e−iθw(t)
∣∣ dt =

∫ b

a
|w(t)|dt (since |e−iθ| = 1).
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We note that the Fundamental Theorem of Calculus also holds: If
W (t) = U(t) + iV (t), w(t) = u(t) + iv(t) and W ′(t) = w(t), t ∈ [a, b],
then ∫ b

a
w(t)dt = W (b) −W (a).

Thus, in particular, we have
∫ b

a
ez0tdt =

1

z0
ez0t

∣∣∣∣
b

a

=
1

z0

(
ez0b − zz0a

)
, z0 ̸= 0.

The length of a smooth curve γ given by the range of z : [a, b] → C is
defined by

L(γ) =

∫ b

a
|z′(t)|dt.

Example 13.2. For z(t) = z1 + t(z2 − z1), 0 ≤ t ≤ 1, we have

z′(t) = z2 − z1, and hence L(γ) =

∫ 1

0
|z2 − z1|dt = |z2 − z1|.

Example 13.3. For z(t) = z0 + reit, 0 ≤ t ≤ 2π, we have

z′(t) = ireit, and hence L(γ) =

∫ 2π

0
|ireit|dt = 2πr.

Now let S be an open set, and let γ, given by the range of z : [a, b]→ C,
be a smooth curve in S. If f : S → C is continuous, then the integral of f
along γ is defined by

∫

γ
f(z)dz =

∫ b

a
f(z(t))z′(t)dt.

Figure 13.1

S·
·γ

The following properties of the integration above are immediate:
∫

γ
[f(z)± g(z)]dz =

∫

γ
f(z)dz ±

∫

γ
g(z)dz,

∫

γ
z0f(z)dz = z0

∫

γ
f(z)dz, z0 ∈ C,

∫

−γ
f(z)dz = −

∫

γ
f(z)dz.
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Example 13.4. Let f(z) = z − 1 and let γ be the curve given by
z(t) = t+ it2, 0 ≤ t ≤ 1. Clearly, γ is smooth and

∫

γ
f(z)dz =

∫ 1

0
f(z(t))z′(t)dt =

∫ 1

0
(t+ it2 − 1)(1 + 2it)dt

=

∫ 1

0
(t− 1− 2t3)dt + i

∫ 1

0
(2t(t− 1) + t2)dt,

which can now be easily evaluated.

Example 13.5. Let f(z) = z + (1/z) for z ̸= 0 and γ be the upper
semi-circle at the origin of radius 1; i.e., z(t) = eπit, 0 ≤ t ≤ 1. Clearly, γ
is smooth and

∫

γ
f(z)dz =

∫ 1

0
πi
(
eπit + e−πit

)
eπitdt = πi.

The length of a contour γ = γ1 + · · ·+ γn is defined by

L(γ) =
n∑

j=1

(length of γj) =
n∑

j=1

L(γj).

If f : S → C is continuous on {γ}, then the contour integral of f along
γ is defined by ∫

γ
f(z)dz =

n∑

j=1

∫

γj

f(z)dz.

Example 13.6. Let f(z) = z − 1 and γ = γ1 + γ2, where γ1 is given
by z1(t) = t, 0 ≤ t ≤ 1 and γ2 is given by z2(t) = 1 + i(t− 1), 1 ≤ t ≤ 2.
Clearly, the contour γ is piecewise smooth, and

∫

γ
f(z)dz =

∫ 1

0
f(z1(t))z

′
1(t)dt +

∫ 2

1
f(z2(t))z

′
2(t)dt

=

∫ 1

0
(t− 1)dt +

∫ 2

1
i(t− 1)idt,

which can be evaluated.

Theorem 13.1 (ML-Inequality). Suppose that f is continuous
on an open set containing a contour γ, and |f(z)| ≤ M for all z ∈ {γ}.
Then, the following inequality holds

∣∣∣∣

∫

γ
f(z)dz

∣∣∣∣ ≤ ML,
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where L is the length of γ.

Proof. First assume that γ given by the range of z : [a, b] → C is a
smooth curve. Then, we have

∣∣∣∣
∫

γ
f(z)dz

∣∣∣∣ =

∣∣∣∣∣

∫ b

a
f(z(t))z′(t)dt

∣∣∣∣∣ ≤
∫ b

a
|f(z(t))||z′(t)|dt

≤ M

∫ b

a
|z′(t)|dt = ML.

If γ = γ1 + γ2 + · · ·+ γn, where γ1, γ2, · · · , γn are smooth, then we find

∣∣∣∣

∫

γ
f(z)dz

∣∣∣∣ =

∣∣∣∣∣∣

n∑

j=1

∫

γj

f(z)dz

∣∣∣∣∣∣
≤

n∑

j=1

∣∣∣∣∣

∫

γj

f(z)dz

∣∣∣∣∣

≤
n∑

j=1

ML(γj) = ML(γ).

Example 13.7. Let γ be given by z(t) = 2eit, 0 ≤ t ≤ 2π. Show that
∣∣∣∣
∫

γ

ez

z2 + 1
dz

∣∣∣∣ ≤
4πe2

3
.

Since |ez| = ex ≤ e2 and |z2 + 1| ≥ ||z2|− 1| = |4− 1| = 3, it follows that
∣∣∣∣

∫

γ

ez

z2 + 1
dz

∣∣∣∣ ≤
e2

3
× 2× 2π =

4πe2

3
.

Problems

13.1. Evaluate the following integrals

(a).

∫ 1

0
(1 + it2)dt, (b).

∫ π/4

−π
te−it2dt,

(c).

∫ π

0
(sin 2t+ i cos 2t)dt, (d).

∫ 2

1
Log(1 + it)dt.

13.2. Find the length of the arch of the cycloid given by z(t) = a(t−
sin t) + a i(1− cos t), 0 ≤ t ≤ 2π where a is a positive real number.

13.3. Let γ be the curve given by z(t) = t+ it2, 0 ≤ t ≤ 2π. Evaluate∫

γ
|z|2dz.
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13.4. Let f(z) = y−x− 3ix2 and γ be given by the line segment z = 0

to z = 1 + i. Evaluate

∫

γ
f(z)dz.

13.5. Let γ be given by the semicircle z = 2eiθ, 0 ≤ θ ≤ π. Evaluate∫

γ

z − 2

z
dz and

∫

−γ
|z1/2| exp(iArg z)dz.

13.6. Show that if m and n are integers, then
∫ 2π

0
eimθe−inθdθ =

{
0 when m ̸= n
2π when m = n.

Hence, evaluate

∫

γ
zmzndz, where γ is the circle given by z = cos t +

i sin t, 0 ≤ t ≤ 2π.

13.7. Let γ be the positively oriented ellipse
x2

a2
+
y2

b2
= 1 with a2−b2 =

1. Show that ∫

γ

dz√
1− z2

= ± 2π,

where a continuous branch of the integrand is chosen.

13.8. Let z1(t), a ≤ t ≤ b and z2(t), c ≤ t ≤ d be equivalent param-
eterizations of the same curve γ; i.e., there is an increasing continuously
differentiable function φ : [c, d] → [a, b] such that φ(c) = a and φ(d) = b
and z2(t) = z1 ◦ φ(t) for all t ∈ [c, d]. Show that if f is continuous on an
open set containing γ, then

∫ b

a
f(z1(t))z

′
1(t)dt =

∫ d

c
f(z2(t))z

′
2(t)dt.

13.9. Let γ be the arc of the circle |z| = 2 from z = 2 to z = 2i that
lies in the first quadrant. Without evaluating the integral, show that

∣∣∣∣
∫

γ

dz

z2 − 1

∣∣∣∣ ≤
π

3
.

13.10. Let γ be the circle |z| = 2. Show that
∣∣∣∣
∫

γ

1

z2 − 1
dz

∣∣∣∣ ≤
4π

3
.

13.11. Show that if γ is the boundary of the triangle with vertices at
z = 0, z = 3i, and z = −4 oriented in the counterclockwise direction, then

∣∣∣∣
∫

γ
(ez − z)dz

∣∣∣∣ ≤ 48.
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13.12. Let γR be the circle |z| = R described in the counterclockwise
direction, where R > 0. Suppose Log z is the principal branch of the loga-
rithm function. Show that

∣∣∣∣

∫

γR

Log z

z2
dz

∣∣∣∣ ≤ 2π

(
π + LogR

R

)
.

13.13. Let γR be the circle |z| = R described in the counterclockwise
direction, where R > 2. Suppose Log z is the principal branch of the loga-
rithm function. Show that

∣∣∣∣

∫

γR

Log z2

z2 + z + 1
dz

∣∣∣∣ ≤ 2πR

(
π + 2LogR

R2 −R − 1

)
.

13.14. Let S be an open connected set and γ a closed curve in S.
Suppose f(z) is analytic on S and the derivative f ′(z) is continuous on S.
Show that

I =

∫

γ
f(z)f ′(z)dz

is purely imaginary.

13.15. Let f(z) be a continuous function in the region |z| ≥ 1, and
suppose the limit limz→∞ zf(z) = A exists. Let α be a fixed real number
such that 0 < α ≤ 2π. Denote by γR the circular arc given by parametric

equation z = Reiθ, 0 ≤ θ ≤ α with R ≥ 1. Find lim
R→∞

∫

γR

f(z)dz.

Answers or Hints

13.1. (a). 1 + i 13 , (b).
i
2

(
e−iπ2/16 − e−iπ2

)
, (c). 0, (d).

∫ 2
1

1
2 ln(1 +

t2)dt + i
∫ 2
1 tan−1 tdt.

13.2. 8a.
13.3.

∫
γ |z|

2dz =
∫ 2π
0 |t+ it2|2(1 + 2ti)dt =

∫ 2π
0 (t2 + t4)(1 + 2ti)dt.

13.4.
∫
γ(y − x − 3ix2)dz =

∫ 1
0 (t − t − 3it2)(1 + i)dt = 1 − i (γ(t) =

(1 + i)t, t ∈ [0, 1]).

13.5.
∫
γ

z−2
z dz =

∫ π
0

2eiθ−2
2eiθ 2ieiθdθ = −4− 2iπ,

∫
−γ |z|

1/2 exp (iArg z)dz =

−
∫ π
0 |2eiθ|1/2eiθ2ieiθdθ = −

√
2e2iθ

∣∣π
0
= 0.

13.6.
∫ 2π
0 ei(m−n)θdθ = 2π if m = n and =

{
ei(m−n)θ/i(m− n)

}∣∣2π
0

= 0 if

m ̸= n. Now
∫
γ z

mzndz =
∫ 2π
0 eimte−intieitdt = 2πi if m− n+1 = 0 and 0

if m− n+ 1 ̸= 0.



90 Lecture 13

13.7. In parametric form, the equation of ellipse is x = a cos t, y =
b sin t, t ∈ [0, 2π]. Thus, z(t) = a cos t + ib sin t. Since a2 − b2 = 1, we
find
√
1− z2 = ±(a sin t− ib cos t) and z′(t) = −a sin t+ ib cos t.

13.8.
∫ d
c f(z2(t))z

′
2(t)dt =

∫ d
c f(z1(φ(t)))z

′
1(φ(t))φ

′(t)dt =
∫ b
a f(z1(s))z

′
1(s)ds.

13.9.
∣∣∣
∫
γ

dz
z2−1

∣∣∣ ≤ ML(γ), |z| = 2, |z2 − 1| ≥ |z|2 − 1 ≥ 3, so
∣∣∣ 1
z2−1

∣∣∣ ≤ 1
3

if z ∈ γ, L(γ) = 4π
4 = π.

13.10. |z2 − 1| ≥ |z2|− 1 = 3 for |z| = 2. Thus,
∣∣∣
∫
γ

dz
z2−1

∣∣∣ ≤ 4π
3 .

13.11.
∣∣∣
∫
γ(e

z − z)dz
∣∣∣ ≤

∣∣∣
∫
γ e

zdz
∣∣∣+
∣∣∣
∫
γ zdz

∣∣∣ ≤ 0 + 4(5 + 4 + 3) = 48.

0·−4

3i
|z| = 4

13.12.
∣∣∣Log z

z2

∣∣∣ =
∣∣∣LogR+iArg z

R2

∣∣∣ ≤ |LogR|+π
R2 = LogR+π

R2 , so
∣∣∣
∫
γR

Log z
z2 dz

∣∣∣ ≤

2πR
(
LogR+π

R2

)
= 2π

(
LogR+π

R

)
.

13.13. Similar to Problem 13.12.
13.14. Let the parametric equation of γ be z = z(t), a ≤ t ≤ b. Since
γ is a closed curve, z(a) = z(b). Let f(z) = u(z) + iv(z), where u, v are

real, so f ′(z) = ux + ivx = vy − iuy. Thus, I =
∫ b
a (u(z(t))− iv(z(t)))(ux +

ivx)(xt + iyt)dt. Hence, Re I =
∫ b
a (uuxxt − uvxyt + vuxyt + vvxxt)dt =

∫ b
a [(uuxxt + uuyyt) + (vvyyt + vvxxt)]dt = (1/2)

∫ b
a [

d
dt (u

2 + v2)]dt = 0.
13.15. Clearly,

∫
γR

f(z)dz =
∫ α
0 f(Reiθ)Rieiθdθ = i

∫ α
0 Reiθf(Reiθ)dθ and

iAα = i
∫ α
0 Adθ. Hence, |

∫
γR

f(z)dz− iAα| ≤
∫ α
0 |Reiθf(Reiθ)−A|dθ. Now

since limz→∞ zf (z) = A, for any ϵ > 0 there exists a δ > 0 such that
|Reiθf(Reiθ)− A| < ϵ/α for all θ. Therefore, it follows that |

∫
γR

f(z)dz −
iAα| < ϵ, and hence limR→∞

∫
γR

f(z)dz = iAα.



Lecture 14
Independence of Path

The main result of this lecture is to provide conditions on the function f
so that its contour integral is independent of the path joining the initial and
terminal points. This result, in particular, helps in computing the contour
integrals rather easily.

Let f be a continuous function in a domain S. A function F such that
F ′(z) = f(z) for all z ∈ S is called an antiderivative of f on S. Since f
is continuous, F is analytic, and hence continuous. Furthermore, any two
antiderivatives of f differ by a constant.

Example 14.1. Clearly,

f(z) zn ez cos z sin z

F (z)
zn+1

n+ 1
+ c ez + c sin z + c − cos z + c,

where c is an arbitrary constant.

The main result of this lecture is the following.

Theorem 14.1. Suppose that the function f is continuous and has an
antiderivative F in a domain S. If α, β ∈ S and γ is a contour in S joining
α and β, then ∫

γ
f(z)dz = F (β)− F (α);

i.e., the integral only depends on the end points and not on the choice of
γ. In particular, if γ is a closed contour in S, then

∫

γ
f(z)dz = 0.

Proof. Suppose that γ = γ1+γ2+· · ·+γn,where, for each 1 ≤ j ≤ n, γj is
a smooth curve given by zj : [aj−1, aj ]→ C such that z1(a0) = α, zn(an) =
β.

Figure 14.1
·
·

γ1

·
γ2

·
γ3

·
· ·

γn

α = z1(a0) β = zn(an)
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Now, since

d

dt
F (zj(t)) = F ′(zj(t))z

′
j(t) = f(zj(t))z

′
j(t),

it follows that
∫

γj

f(z)dz =

∫ aj

aj−1

f(zj(t))z
′
j(t)dt = F (zj(t))

∣∣∣
aj

aj−1

= F (zj(aj))− F (zj(aj−1)).

Therefore, we have

∫

γ
f(z)dz =

n∑

j=1

∫

γj

f(z)dz =
n∑

j=1

{F (zj(aj))− F (zj(aj−1))}

= {F (z1(a1))− F (z1(a0))}+ · · ·+ {F (zn(an))− F (zn(an−1))}
= F (β) − F (α).

If γ is closed, then α = β, so we have
∫

γ
f(z)dz = F (β) − F (α) = 0.

Example 14.2. Compute the integral

∫

γ
(z2 − 2)dz, where γ is the

contour in Figure 14.2.

Figure 14.2

· ·
3

γ

Since z2 − 2 has the antiderivative (z3/3)− 2z, we find

∫

γ
(z2 − 2)dz =

∫ 3

0
(z2 − 2)dz =

z3

3
− 2z

∣∣∣∣
3

0

= 3.

Example 14.3. Compute the integral

∫

γ
ezdz, where γ is the part of

the unit circle joining 1 to i in the counterclockwise direction. Since ez is
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the derivative of ez, by the theorem above, we have
∫

γ
ezdz = ei − e.

Example 14.4. Compute the integral

∫

γ
sin zdz, where γ is the contour

in Figure 14.3.

Figure 14.3

·
·6 + 3i

−3 3

γ

Since sin z has the antiderivative F (z) = − cos z, by Theorem 14.1, we
have ∫

γ
sin zdz = − cosz

∣∣∣
6+3i

−3
= − cos(6 + 3i) + cos(−3).

Example 14.5. Compute

∫

γ
dz/z, where γ is the contour in Figure

14.4.

Figure 14.4

·

·

i

−i

γ

At each point of the contour γ, the function 1/z is the derivative of the
principal branch of log z. Hence, we have

∫

γ

1

z
dz = Log z

∣∣∣
−i

i
= Log (−i)− Log (i) = − π

2
i− π

2
i = − πi.

Example 14.6. Compute the integral

∫

γr

(z − z0)
ndz, where n is an

integer not equal to −1 and γr is the circle |z − z0| = r traversed once in
the counterclockwise direction.
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Let S = C − {z0}. Then, S is a domain and the function (z − z0)n

is continuous throughout S. Moreover, (z − z0)n is the derivative of the
function (z − z0)n+1/(n+ 1). Since γr is a closed contour that lies in S, we
deduce that ∫

γr

(z − z0)
ndz = 0, n ̸= −1.

We shall now prove the following theorem.

Theorem 14.2. Let f be a continuous function in a domain S. Then,
the following statements are equivalent:

(i). f has an antiderivative in S.

(ii). For any closed contour γ in S,

∫

γ
f(z) = 0.

(iii). The contour integrals of f are independent of paths in S; i.e., if
α, β ∈ S and γ1 and γ2 are contours in S joining α and β, then

∫

γ1

f(z)dz =

∫

γ2

f(z)dz.

Proof. Theorem 14.1 shows that (i) ⇒ (iii) ⇒ (ii), so we need to prove
that (ii) ⇒ (iii) ⇒ (i).

(ii) ⇒ (iii). γ1 + (−γ2) is a closed contour in S (see Figure 14.5). Hence,
∫

γ1+(−γ2)
f(z)dz =

∫

γ1

f(z)dz −
∫

γ2

f(z)dz = 0.

Figure 14.5

· ·

γ1

γ2
Figure 14.6

· · ·
z0

z1 z1+h

γ

(iii) ⇒ (i). Fix z0 ∈ S. For any z1 ∈ S, define F (z1) =

∫

γ
f(z)dz, where γ

is a contour in S joining z0 to z1. By (iii), the function F is well-defined.
Let h ∈ C be such that |h| is sufficiently small, so that [z1, z1 +h] ⊂ S (see
Figure 14.6). Then, we have

F (z1 + h)− F (z1)

h
=

1

h

[∫

γ+[z1,z1+h]
−
∫

γ

]
f(z)dz =

1

h

∫

[z1,z1+h]
f(z)dz
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and

f(z1) = f(z1)
1

h

∫

[z1,z1+h]
1dz =

1

h

∫

[z1,z1+h]
f(z1)dz.

Therefore, it follows that

F (z1 + h)− F (z1)

h
− f(z1) =

1

h

∫

[z1,z1+h]
(f(z)− f(z1))dz. (14.1)

We shall show that the right hand side of (14.1) tends to 0 as h → 0. For
this, let ϵ > 0 be given. Since f is continuous at z1, there exists a δ > 0
such that

|z − z1| < δ ⇒ |f(z)− f(z1)| < ϵ. (14.2)

Since the length of [z1, z1 + h] is equal to |h|, if |h| < δ then for all
z ∈ (z1, z1 + h], |z − z1| ≤ |h| < δ. Thus, if |h| < δ, then

∣∣∣∣
F (z1 + h)− F (z1)

h
− f(z1)

∣∣∣∣ =

∣∣∣∣∣
1

h

∫

[z1,z1+h]
(f(z)− f(z1))dz

∣∣∣∣∣

≤ 1

|h|ϵ|h| by (14.2) and the ML-inequality

= ϵ.

Thus, F ′(z1) = f(z1); i.e., F is an antiderivative of f in S.

Example 14.7. Let γ = γ1 + γ2, where γ1 and γ2 respectively are
given by z1(t) = ti and z2(t) = t + i, t ∈ [0, 1]. Furthermore, let f(z) =
(y − x) + 3ix2. It follows that

∫

γ
f(z)dz =

∫ 1

0
f(z1(t))z

′
1(t)dt +

∫ 1

0
f(z2(t))z

′
2(t)dt

=

∫ 1

0
tidt+

∫ 1

0
(1− t+ 3t2i)dt =

1

2
+

3

2
i.

Now let γ3 be given by z3(t) = i + t(1 + i), t ∈ [0, 1]. Then, for the same
function f, we have ∫

γ3

f(z)dz = 2i.

Hence, although γ and γ3 have the same end points,
∫

γ
f(z)dz ̸=

∫

γ3

f(z)dz.

Thus, from Theorem 14.2, this function f cannot have an antiderivative.



Lecture 15
Cauchy-Goursat Theorem

In this lecture, we shall prove that the integral of an analytic func-
tion over a simple closed contour is zero. This result is one of the most
fundamental theorems in complex analysis.

We begin with the following theorem from calculus.

Theorem 15.1 (Green’s Theorem). Let C be a piecewise
smooth, simple closed curve that bounds a domain D in the complex plane.
Let P and Q be two real-valued functions defined on an open set U that
contains D, and suppose that P and Q have continuous first order partial
derivatives. Then,

∫

C
Pdy −Qdx =

∫ ∫

D

(
∂P

∂x
+
∂Q

∂y

)
dxdy,

where C is taken along the positive direction.

The left-hand side of this equality is the line integral, whereas the right-
hand side is the double integral.

Now consider a function f(z) = u(x, y) + iv(x, y) that is analytic in a
simply connected domain S. Suppose that γ is a simple, closed, positively
oriented contour lying in S and given by the function z(t) = x(t)+iy(t), t ∈
[a, b]. Then, we have

∫

γ
f(z)dz =

∫ b

a
f(z(t))

dz(t)

dt
dt

=

∫ b

a
[u(x(t), y(t)) + iv(x(t), y(t))]

(
dx

dt
+ i

dy

dt

)
dt

=

∫ b

a

[
u(x(t), y(t))

dx

dt
− v(x(t), y(t))

dy

dt

]
dt

+i

∫ b

a

[
v(x(t), y(t))

dx

dt
+ u(x(t), y(t))

dy

dt

]
dt

=

∫

γ
(udx− vdy) + i

∫

γ
(vdx + udy).

Thus, if the partial derivatives of u and v are continuous, then, by Green’s
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Theorem, we have
∫

γ
f(z)dz =

∫ ∫

S′

(
−∂v
∂x
− ∂u

∂y

)
dxdy + i

∫ ∫

S′

(
∂u

∂x
− ∂v

∂y

)
dxdy,

where S ′ is the domain interior to γ. Since f(z) is analytic in S, the first
partial derivatives of u and v satisfy the Cauchy-Riemann equations. Hence,
it follows that ∫

γ
f(z)dz = 0.

Thus, we have shown that if f is analytic in a simply connected domain
and its derivative f ′(z) is continuous (recall that analyticity ensures the
existence of f ′(z); however, it does not guarantee the continuity of f ′(z)),
then its integral around any simple closed contour in the domain is zero.
Goursat was the first to prove that the condition of continuity on f ′ can be
omitted.

Theorem 15.2 (Cauchy-Goursat Theorem). If f is analytic
in a simply connected domain S and γ is any simple, closed, rectifiable

contour in S, then

∫

γ
f(z)dz = 0.

Proof. The proof is divided into the following three steps.

Step 1. If γ is the boundary ∂∆ of a triangle ∆, then
∫
∂∆ f(z)dz = 0 : We

construct four smaller triangles ∆j , j = 1, 2, 3, 4 by joining the midpoints
of the sides of ∆ by straight lines. Then, from Figure 15.1, it is clear that

∫

∂∆
f(z)dz =

4∑

j=1

∫

∂∆j

f(z)dz,

A

B C

∆

∂∆

Figure 15.1

A

B CF

E G

∆1 ∆2

∆3

∆4

which in view of the triangle inequality leads to

∣∣∣∣

∫

∂∆
f(z)dz

∣∣∣∣ ≤
4∑

j=1

∣∣∣∣∣

∫

∂∆j

f(z)dz

∣∣∣∣∣ .



98 Lecture 15

Let ∆1 be the triangle among ∆j , j = 1, 2, 3, 4 such that

∣∣∣∣
∫

∂∆1

f(z)dz

∣∣∣∣ = max
1≤j≤4

∣∣∣∣∣

∫

∂∆j

f(z)dz

∣∣∣∣∣ ,

so that ∣∣∣∣
∫

∂∆
f(z)dz

∣∣∣∣ ≤ 4

∣∣∣∣
∫

∂∆1

f(z)dz

∣∣∣∣ ,

which is the same as
∣∣∣∣
∫

∂∆1

f(z)dz

∣∣∣∣ ≥
1

4

∣∣∣∣
∫

∂∆
f(z)dz

∣∣∣∣ .

Following the process above we divide the triangle ∆1 into four smaller
triangles ∆1

j , j = 1, 2, 3, 4, and obtain the triangle ∆2 such that

∣∣∣∣

∫

∂∆2

f(z)dz

∣∣∣∣ ≥
1

4

∣∣∣∣

∫

∂∆1

f(z)dz

∣∣∣∣ ≥
1

42

∣∣∣∣

∫

∂∆
f(z)dz

∣∣∣∣ .

Continuing in this way, we obtain a sequence of triangles ∆ = ∆0 ⊃ ∆1 ⊃
∆2 ⊃ · · · such that

∣∣∣∣

∫

∂∆n

f(z)dz

∣∣∣∣ ≥
1

4

∣∣∣∣

∫

∂∆n−1

f(z)dz

∣∣∣∣

for all n ≥ 1. This inequality from induction gives
∣∣∣∣
∫

∂∆n

f(z)dz

∣∣∣∣ ≥
1

4n

∣∣∣∣
∫

∂∆
f(z)dz

∣∣∣∣ . (15.1)

We also note that the length L(∂∆n) is given by

L(∂∆n) =
1

2
L(∂∆n−1) =

1

22
L(∂∆n−2) = · · · =

1

2n
L(∂∆0), (15.2)

and hence limn→∞ diam∆n = 0. Thus, from Theorem 4.1,
⋂∞

n=0 ∆
n =

{z0}. Now, since the function f is analytic at z0, in view of (6.2), there
exists a function η(z) such that

f(z) = f(z0) + f ′(z0)(z − z0) + η(z)(z − z0), (15.3)

where limz→z0 η(z) = 0. Since the functions 1 and (z − z0) are analytic
and their derivatives are continuous,

∫
∂∆n 1 dz =

∫
∂∆n(z − z0)dz = 0, and

hence, from (15.3), we find
∫

∂∆n

f(z)dz =

∫

∂∆n

η(z)(z − z0)dz. (15.4)
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Next, since limz→z0 η(z) = 0, for a given ϵ > 0 we can find a δ > 0 such
that

|z − z0| < δ implies that |η(z)| <
2

L2(∂∆0)
ϵ. (15.5)

We choose an integer n such that ∂∆n lies in the neighborhood |z−z0| < δ,
as in Figure 15.2.

A

B C

•
z0

z•δ

∂∆

Figure 15.2

Finally, for all z ∈ ∂∆n, it is clear that

|z − z0| <
1

2
L(∂∆n),

which from (15.2) is the same as

|z − z0| <
1

2n+1
L(∂∆0). (15.6)

Now, successively from (15.1), (15.4)-(15.6), Theorem 13.1, and (15.2), we
have ∣∣∣∣

∫

∂∆
f(z)dz

∣∣∣∣ ≤ 4n
∣∣∣∣
∫

∂∆n

f(z)dz

∣∣∣∣

≤ 4n
∣∣∣∣

∫

∂∆n

η(z)(z − z0)dz

∣∣∣∣

≤ 4n
2

L2(∂∆0)
ϵ

1

2n+1
L(∂∆0)L(∂∆n)

≤ ϵ 2n
1

L(∂∆0)

1

2n
L(∂∆0) = ϵ.

Since ϵ is arbitrary, it follows that
∫
∂∆ f(z)dz = 0.

Step 2. If γ is the boundary ∂C of a polygonal contour C, then
∫
∂C f(z)dz =

0 : We can add interior edges of C so that the interior is subdivided into
a finite number of triangles (see Figure 15.3). From Step 1, the integral
around each triangle is zero, and since the sum of all these integrals is equal



100 Lecture 15

to the integral around C; i.e.,

∫

∂c
f(z)dz =

n∑

j=1

∫

∂∆j

f(z)dz,

Step 2 follows.

Figure 15.3

C

∂C
∆1

∆2
∆3

∆4

∆5

Step 3. We approximate the simple closed contour γ by a polygonal con-
tour Cn (see Figure 15.4). Then, the difference between

∫
γ f(z)dz and∫

Cn
f(z)dz can be made arbitrarily small as n→∞.

γ

Cn

Figure 15.4

Remark 15.1 (i). If γ is a closed contour but not simple, then the
integration over γ can always be decomposed into integrations over simple
closed curves.

(ii). Since the interior of a simple closed contour is a simple connected
domain, Theorem 15.2 can be stated in a more practical form: If γ is a
simple closed contour and f is analytic at each point on and inside γ, then∫
γ f(z)dz = 0.

(iii). Theorem 14.2 can be stated as follows: In a simple connected do-
main, any analytic function has an antiderivative, its contour integrals are
independent of the path, and its integrals over a closed contour vanish.

Example 15.1. Evaluate

∫

γ

ez

z2 − 16
dz where γ is the circle |z| = 2

traversed once counterclockwise. Since ez/(z2 − 16) is analytic everywhere
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except at z = ±4, where the denominator vanishes, and since these points
lie exterior to the contour, the integral is zero by Theorem 15.2.

Example 15.2. The function f(z) = ez
2
is analytic in C. The function

F (z) =
∫
[0,z] e

w2
dw, where [0, z] is the line segment joining 0 and z is an

antiderivative of f. However, we do not know how to express this as an
algebraic function of elementary functions.



Lecture 16
Deformation Theorem

In this lecture, we shall show that the integral of a given function along
some given path can be replaced by the integral of the same function along
a more amenable path.

Let γ1 be a simple closed contour that can be continuously deformed into
another simple closed contour γ2 without passing through a point where f
is not analytic. Then the value of the integral

∫
γ1

f(z)dz is the same as∫
γ2

f(z)dz. (Here, in Figure 16.1, we have taken γ2 as a circle for simplicity

and applications in mind.)

Figure 16.1

γ1γ2

We state this result precisely in the following theorem.

Theorem 16.1. Let γ1 and γ2 be positively oriented, simple, closed
contours with γ2 interior to γ1. If f is analytic on the closed region con-
taining {γ1} and {γ2} and the points between them, then

∫

γ1

f(z)dz =

∫

γ2

f(z)dz.

Proof. We draw two line segments from γ1 to γ2. Then, the end points
P1 and P2 of the segments divide γ1 into two contours, γ1a and γ1b, and
the end points P3 and P4 divide γ2 into γ2a and γ2b. Let P1P3 and P2P4

denote the line segments from P1 to P3 and P2 to P4, respectively. Now,
by Remark 15.1 (ii), we have

∫

γ1a

f(z)dz =

(∫

P1P3

+

∫

γ2a

+

∫

P4P2

)
f(z)dz

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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and ∫

γ1b

f(z)dz =

(∫

P2P4

+

∫

γ2b

+

∫

P3P1

)
f(z)dz.

Figure 16.2

P1

P2

γ2a γ2b

P3

P4

P1

P2

P3

P4

γ1a

γ1b

Adding these equations, we find

∫

γ1

f(z)dz =

(∫

γ1a

+

∫

γ1b

)
f(z)dz

=

(∫

γ2a

+

∫

γ2b

)
f(z)dz =

∫

γ2

f(z)dz.

Example 16.1. Determine the possible values of

∫

γ

1

(z − a)
dz, where

γ is any positively oriented, simple, closed contour not passing through
z = a. Observe that the function 1/(z−a) is analytic everywhere except at
the point z = a. If a lies exterior to γ, then the integral is zero by Theorem
15.2. If a lies inside γ, we choose a small circle γr centered at a and lying
within γ. Then, from Theorem 16.1, it follows that

∫

γ

dz

z − a
=

∫

γr

dz

z − a
.

Now, since, on γr, z = a+ reiθ (r is fixed), dz = rieiθdθ, and hence

∫

γr

dz

z − a
=

∫ 2π

0

1

r
e−iθrieiθdθ =

∫ 2π

0
idθ = 2πi.

Hence, we have

∫

γ

dz

z − a
=

{
2πi if a is inside γ
0 if a is outside γ.



104 Lecture 16

Example 16.2. Evaluate

∫

γ

1

z2 − 1
dz, where the contour γ is given in

Figure 16.3.

Figure 16.3

· ·γr

−1 1

γ

Clearly, the integrand 1/(z2 − 1) fails to be analytic at z = ±1. Since the
point 1 lies outside of γ, the integral over γ is the same as the integral over
that small circle γr enclosing −1. Using partial fraction expansion, we find

∫

γ

dz

z2 − 1
=

∫

γr

dz

z2 − 1
=

∫

γ

[
1

2(z − 1)
− 1

2(z + 1)

]
dz

= 0− 1

2
2πi = − πi.

Now we state the following result that extends Theorem 16.1.

Theorem 16.2. Let γ, γ1, · · · , γn be simple, closed, positively oriented
contours such that each γj , j = 1, · · · , n lies interior to γ, and the interior
of γj has no points in common with the interior of γk if j ̸= k (see Figure
16.4, where for simplicity we have taken each γj to be a circle). If f is
analytic on the closed region containing {γ}, {γ1}, · · · , {γn} and the points
between them, then

∫

γ
f(z)dz =

n∑

j=1

∫

γj

f(z)dz. (16.1)

Figure 16.4

γγ1
γ2

γ3

γn
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Proof. The proof of Theorem 16.2 is exactly the same as that of Theorem
16.1, except here we need to divide γ into several parts.

Example 16.3. Find

∫

γ

(5z − 2)

z2 − z
dz, where γ is given in Figure 16.5.

Figure 16.5

0 1
··

γ

The integrand f(z) = (5z − 2)/(z2 − z) is analytic everywhere except for
the zeros of the denominator, z = 0 and z = 1. Let γ1 and γ2 be two small
circles enclosing these points. Then, using Theorem 16.2, we get

Figure 16.6

0 1··
γ

γ1

γ2

∫

γ
f(z)dz =

∫

γ1

f(z)dz +

∫

γ2

f(z)dz.

Thus, we have

∫

γ

5z − 2

z(z − 1)
dz =

∫

γ1

(
2

z
+

3

z − 1

)
dz +

∫

γ2

(
2

z
+

3

z − 1

)
dz

= 2× 2πi+ 0 + 0 + 3× 2πi = 10πi.

Example 16.4. Let γ be a simple closed contour that contains the
distinct points z1, z2, · · · , zn in its interior. We shall show that

∫

γ

dz

(z − z1)(z − z2) · · · (z − zn)
= 0.

For this, we write the partial fractional decomposition

1

(z − z1)(z − z2) · · · (z − zn)
=

A1

z − z1
+

A2

z − z2
+ · · ·+ An

z − zn
,
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which is the same as

1 =
n∑

j=1

Aj(z − z1) · · · (z − zj−1)(z − zj+1) · · · (z − zn).

Thus, comparing the coefficients of zn−1 on both the sides, we find that
A1 + A2 + · · · + An = 0. Next, let γj , j = 1, 2, · · · , n be small circles
with center zj, that lie in the interior of γ. Then, from Theorem 16.2 and
Example 16.1, it follows that

∫

γ

dz

(z − z1)(z − z2) · · · (z − zn)
=

n∑

j=1

∫

γj

Aj

z − zj
= 2πi

n∑

j=1

Aj = 0.

Problems

16.1. Use an antiderivative to show that for every γ extending from a
point z1 to a point z2

∫

γ
zndz =

1

n+ 1

(
zn+1
2 − zn+1

1

)
for n = 0, 1, 2, · · · .

16.2. Let γ be the semicircle from −3i to 3i in anticlockwise direction.

Show that

∫

γ

dz

z
= πi.

16.3. Evaluate each of the following integrals where the path is an
arbitrary contour between the limits of integrations

(a).

∫ i/2

i
eπzdz, (b).

∫ π+2i

0
cos
(z
2

)
dz, (c).

∫ 3

1
(z − 3)3dz.

16.4. Show that if zi is the principal value, then

∫

γ
zidz =

1 + e−π

2
(1− i),

where γ is the upper semicircle from z = 1 to z = −1.

16.5. Let f ′ and g′ be analytic for all z, and let γ be any contour
joining the points z1 and z2. Show that

∫

γ
f(z)g′(z)dz = f(z2)g(z2)− f(z1)g(z1)−

∫

γ
f ′(z)g(z)dz.
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16.6. Let f = u + iv be continuous and possess continuous partial
derivatives with respect to x and y in a neighborhood of z = 0. Show that
f is differentiable at z = 0 if and only if

lim
r→0

1

πr2

∫

|z|=r
f(z)dz = 0. (16.2)

16.7. Use Green’s Theorem to show that

Area of D = − i

2

∫

C
zdz.

16.8. For each of the following functions f, describe the domain of ana-

lyticity and apply the Cauchy-Goursat Theorem to show that

∫

γ
f(z)dz =

0, where γ is the circle |z| = 1 :

(a). f(z) =
1

z2 + 2z + 2
, (b). f(z) = ze−z.

What about (c). f(z) = (2z − i)−2 ?

16.9. Let γ denote the boundary of the domain between the circle
|z| = 4 and the square whose sides lie along the lines x = ±1, y = ±1.
Assuming that γ is oriented so that the points of the domain lie to the left

of γ, state why

∫

γ
f(z)dz = 0 when

(a). f(z) =
z + 2

sin z/2
, (b). f(z) =

z

1− ez
.

16.10. Let γ denote the boundary of the domain between the circles
|z| = 1 and |z| = 2. Assuming that γ is oriented so that the points of

the domain lie to the left of γ, show that

∫

γ
f(z)dz = 0 for the following

functions:

(a). f(z) =
ez

z2 + 9
, (b). f(z) = cot z.

16.11. Let γ be the unit circle |z| = 1 traversed twice in the clockwise
direction. Evaluate

(a).

∫

γ
Log (z + 2)dz, (b).

∫

γ

dz

3z2 + 1
.

16.12. Let r, R be constants such that 0 < r < R. Denote by γr the
circle z = reiθ, 0 ≤ θ ≤ 2π. Show that

1

2πi

∫

γr

R+ z

(R − z)z
dz = 1.
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Hence, deduce that

1

2π

∫ 2π

0

R2 − r2

R2 + r2 − 2rR cos θ
dθ = 1.

16.13. Suppose that f is of the form

f(z) =
n∑

j=1

Aj

zj
+ g(z),

where g is analytic inside and on the simple, closed, positively oriented

contour γ containing 0 in its interior. Show that

∫

γ
f(z)dz = 2πiA1.

16.14. Establish the following Wallis formulas

(a).

∫ 2π

0
cos2k tdt = 2π

(2k)!

22k(k!)2
, (b).

∫ 2π

0
cos2k+1 tdt = 0,

(c).

∫ 2π

0
sin2k tdt = 2π

(2k)!

22k(k!)2
, (d).

∫ 2π

0
sin2k+1 tdt = 0.

Answers or Hints

16.1.
∫
γ z

ndz = 1
n+1 (z

n+1
2 − zn+1

1 ).

16.2.
∫
γ dz/z = Log z

∣∣∣
3i

−3i
(since d

dzLog z = 1
z on γ) = ln |3| + iπ2 −(

ln |3|− iπ
2

)
= iπ.

16.3. (a). (1 + i)/π, (b). e + e−1, (c). −4.
16.4. Principal value zi = eiLog z. Hence,

∫
γ z

idz = −
∫ 0
π ei(iθ)ieiθdθ =

− (1−i)
2 (e−π + 1).

16.5. Use [f(z)g(z)]′ = f ′(z)g(z) + f(z)g′(z).
16.6. As in Lecture 15, we have

∫
|z|=r f(z)dz =

∫ ∫
|z|≤r(−vx − uy)dxdy + i

∫ ∫
|z|≤r(ux − vy)dxdy,

and hence, from the Mean Value Theorem of integral calculus, we find

1
πr2

∫
|z|=r f(z)dz = −(vx(x, y) + uy(x, y)) + i(ux(x̂, ŷ)− vy(x̂, ŷ)),

where (x, y) and (x̂, ŷ) are suitable points. Thus, (16.2) holds if and only if
the Cauchy-Riemann conditions (6.5) hold at z = 0. Now, since the partial
derivatives of u and v are continuous, it is equivalent to the differentiability
of f at z = 0.
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16.7. In Green’s Theorem, we let P = x andQ = y, to obtain 2
∫ ∫

D dxdy =∫
C xdy − ydx, and hence 2D =

∫
C xdy − ydx. Suppose the parametric

equation of C is x = x(t), y = y(t), so that z(t) = x(t) + iy(t) and

x(a) = x(b), y(a) = y(b) (C is closed). Then 2D =
∫ b
a (xy

′ − yx′)dt.

Now
∫
C zdz =

∫ b
a (x − iy)(x′ + iy′)dt =

∫ b
a [(xx

′ + yy′) + i(xy′ − yx′)]dt =
1
2 [x

2(t) + y2(t)]
∣∣b
a
+ i
∫ b
a (xy

′ − yx′)dt = 0 + i
∫ b
a (xy

′ − yx′)dt = 2iD, and

hence D = 1
2i

∫
C zdz = − i

2

∫
C zdz.

16.8. (a). f(z) = 1
(z−(−1+i))(z−(−1−i)) and thus analytic if z ̸= −1 + i or

−1 − i; furthermore,
∫
γ

dz
z2+2z+2 = 0, (b). ze−z is entire. (c). Analytic if

z ̸= i/2, cannot apply Cauchy-Goursat Theorem; however, since f has an
antiderivative on γ,

∫
γ

dz
(2z−i)2 = 0.

16.9. (a). f ′(z) = [(sin z/2)(1)−(z+2)(1/2) cosz/2]/ sin2 z/2 if sin z/2 ̸= 0;
sin z/2 = 0 if and only if e−iz/2(eiz − 1) = 0; i.e., if and only if eiz = 1,
or z = 2kπ, k ∈ Z; none of this point is in the domain. (b). f ′(z) =
[(1−ez)−z(−ez)]/(1−ez)2 if ez ̸= 1; ez = 1 if and only if z = 2kπi, k ∈ Z;
none of this point is in the domain. Finally, note that γ = γ1 + γ2 and∫
γ1

fdz =
∫
γ2

fdz = 0.
γ1

γ2

16.10. (a). f(z) = ez/(z2 + 9) is analytic if z2 + 9 ̸= 0; i.e., z = ±3i. But
±3i are not in the domain, and hence, by the Cauchy-Goursat Theorem,∫
γ1

f(z)dz =
∫
γ2

f(z)dz = 0. Hence,
∫
γ f(z)dz = 0.

γ γ1

γ2

(b). cot z is analytic if sin z ̸= 0; i.e., z ̸= kπ, k ∈ Z. But kπ are not in the
domain for all k ∈ Z. Hence, as in (a),

∫
γ cot zdz = 0.

16.11. Let γ be the circle |z| = 1 taken in the anticlockwise direction.
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(a).
∫
γ Log (z+2)dz = 0 by the Cauchy-Goursat Theorem, (b).

∫
γ

dz
3z2+1 =

1
3

∫
γ

[ √
3

2i(z−i/
√
3)
−

√
3

2i(z+i/
√
3)

]
dz =

√
3

6i (2πi)−
√
3

6i (−2πi) = 0. Thus,

−
∫
γ Log(z+2)dz =

∫
γ Log(z+2)dz+

∫
γ Log(z+2)dz = 0 and −

∫
γ

dz
3z2+1 =∫

γ
dz

3z2+1 +
∫
γ

dz
3z2+1 = 0.

16.12. Use partial fractions. Compare the real parts.
16.13. Use Theorem 16.1 and Examples 14.6 and 16.1.
16.14. Let γ be the unit circle |z| = 1. Then, 1

2πi

∫
γ

(
z + 1

z

)n dz
z = 2n

2π×∫ 2π
0 cosn tdt. Now expand (z + 1/z)n using the binomial formula, and use
Problem 16.13.



Lecture 17
Cauchy’s Integral Formula

In this lecture, we shall present Cauchy’s integral formula that expresses
the value of an analytic function at any point of a domain in terms of the
values on the boundary of this domain, and has numerous important appli-
cations. We shall also prove a result that paves the way for the Cauchy’s
integral formula for derivatives given in the next lecture.

Theorem 17.1 (Cauchy’s Integral Formula). Let γ be a
simple, closed, positively oriented contour. If f is analytic in some simply
connected domain S containing γ and z0 is any point inside γ, then

f(z0) =
1

2πi

∫

γ

f(z)

z − z0
dz. (17.1)

Proof. The function f(z)/(z− z0) is analytic everywhere in S except at
the point z0. Hence, in view of Theorem 16.1, the integral over γ is the same
as the integral over some small positively oriented circle γr : |z − z0| = r;
i.e., ∫

γ

f(z)

z − z0
dz =

∫

γr

f(z)

z − z0
dz.

Figure 17.1

γ·z0

We write the right-hand side of the preceding equality as the sum of two
integrals as follows:

∫

γr

f(z)

z − z0
dz =

∫

γr

f(z0)

z − z0
dz +

∫

γr

f(z)− f(z0)

z − z0
dz.

However, since from Example 16.1
∫

γr

f(z0)

z − z0
dz = f(z0)

∫

γr

dz

z − z0
= f(z0) 2πi,

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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it follows that
∫

γ

f(z)

z − z0
dz = f(z0) 2πi+

∫

γr

f(z)− f(z0)

z − z0
dz.

The first two terms in the equation above are independent of r, and hence
the value of the last term does not change if we allow r → 0; i.e.,

∫

γ

f(z)

z − z0
dz = f(z0) 2πi+ lim

r→0+

∫

γr

f(z)− f(z0)

z − z0
dz. (17.2)

Let Mr = max{|f(z)− f(z0)| : z ∈ γr}. Since f is continuous, such a finite
number Mr exists, and clearly, Mr → 0 as r → 0. Now, for z on γr, we
have ∣∣∣∣

f(z)− f(z0)

z − z0

∣∣∣∣ =
|f(z)− f(z0)|

r
≤ Mr

r
.

Hence, from Theorem 13.1, we find
∣∣∣∣

∫

γr

f(z)− f(z0)

z − z0
dz

∣∣∣∣ ≤
Mr

r
L(γr) =

Mr

r
2πr = 2πMr,

which implies that

lim
r→0+

∫

γr

f(z)− f(z0)

z − z0
dz = 0.

Therefore, equation (17.2) reduces to

∫

γ

f(z)

z − z0
dz = f(z0) 2πi,

which is the same as (17.1).

Example 17.1. Compute the integral

∫

γ

e2z + sin z

z − π dz, where γ is the

circle |z − 2| = 2 traversed once in the counterclockwise direction. Since
the function f(z) = e2z + sin z is analytic inside and on γ, and the point
z0 = π lies inside γ, from (17.1) we have

∫

γ

e2z + sin z

z − π dz = 2πi f(π) = 2πie2π.

Example 17.2. Compute the integral

∫

γ

cos z + sin z

z2 − 9
dz along the

contour given in Figure 17.2. Clearly, the integrand fails to be analytic at
the points z = ±3. However, only z = 3 lies inside γ. If we write (cos z +
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sin z)/(z2 − 9) = [(cos z + sin z)/(z + 3)]/(z − 3), then we can apply (17.1)
to the function f(z) = (cos z + sin z)/(z + 3). Hence, it follows that

∫

γ

cos z + sin z

z2 − 9
dz = 2πif(3) =

1

3
πi(cos 3 + sin 3).

Figure 17.2

0 3−3 ···

Example 17.3. Compute

∫

γ

ez

z(z − 2)
dz, where γ is the following

figure-eight contour.

Figure 17.3

0 2· ·
γ

γ1 γ2

Let γ1 and γ2 be the positively oriented left lobe and the negatively oriented
right lobe, respectively. Then, we have

∫

γ

ez

z(z − 2)
dz =

∫

γ1

ez/(z − 2)

z
dz +

∫

γ2

ez/z

z − 2
dz

= 2πi
ez

z − 2

∣∣∣∣
z=0

+ (−2πi) ez

z

∣∣∣∣
z=2

= − πi − e2πi.

Example 17.4. Compute

∫

γ

ez

z(z − 2)
dz, where γ is the following

contour.

Figure 17.4

0 2· ·
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Clearly, we have

∫

γ

ez

z(z − 2)
dz =

∫

γ

ez

2(z − 2)
dz −

∫

γ

ez

2z
dz

= 2πi
ez

2

∣∣∣∣
z=2

− 2πi
ez

2

∣∣∣∣
z=0

= πie2 − πi.

Now we shall prove the following general result, which we shall need in
the next lecture.

Theorem 17.2. Let the function g be continuous on the contour γ.
For each z not on γ, we define

G(z) =

∫

γ

g(ξ)

ξ − z
dξ.

Then, the function G is analytic at each point not on γ, and its derivative
is given by

G′(z) =

∫

γ

g(ξ)

(ξ − z)2
dξ.

Proof. Let z be a fixed point not on γ. We need to show that

lim
∆z→0

G(z +∆z)−G(z)

∆z
=

∫

γ

g(ξ)

(ξ − z)2
dξ

or, equivalently, the difference

Λ =
G(z +∆z)−G(z)

∆z
−
∫

γ

g(ξ)

(ξ − z)2
dξ

approaches zero as ∆z → 0.

From the definition of G(z), we have

G(z +∆z)−G(z)

∆z
=

1

∆z

∫

γ

[
1

(ξ − (z +∆z))
− 1

(ξ − z)

]
g(ξ)dξ

=

∫

γ

g(ξ)

(ξ − z −∆z)(ξ − z)
dξ,

where ∆z is chosen sufficiently small so that z+∆z also lies off of γ. Then,
we get

Λ =

∫

γ

g(ξ)dξ

(ξ − z −∆z)(ξ − z)
−
∫

γ

g(ξ)dξ

(ξ − z)2
= ∆z

∫

γ

g(ξ)dξ

(ξ − z −∆z)(ξ − z)2
.
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Figure 17.5

z·
z +∆z

d/2

d

γ

·ξ

Let M = maxξ∈γ |g(ξ)| and let d equal the shortest distance from z to γ, so
that |ξ − z| ≥ d > 0 for all ξ on γ. Since we are letting ∆z approach zero,
we may assume that |∆z| < d/2. Then, by the triangle inequality, we have

|ξ − z −∆z| ≥ |ξ − z|− |∆z| ≥ d− (d/2) = d/2

for all ξ on γ. Hence, it follows that
∣∣∣∣

g(ξ)

(ξ − z −∆z)(ξ − z)2

∣∣∣∣ ≤
M
d
2d

2
=

2M

d3

for all ξ on γ. Now, from Theorem 13.1, we find

|Λ| =

∣∣∣∣∆z

∫

γ

g(ξ)dξ

(ξ − z −∆z)(ξ − z)2

∣∣∣∣ ≤
|∆z|2ML(γ)

d3
,

where L(γ) denotes the length of γ. Thus, Λmust approach zero as∆z → 0.
This completes the proof.



Lecture 18
Cauchy’s Integral Formula

for Derivatives

In this lecture, we shall show that, for an analytic function in a given
domain, all the derivatives exist and are analytic. This result leads to
Cauchy’s integral formula for derivatives. Next, we shall prove Morera’s
Theorem, which is a converse of the Cauchy-Goursat Theorem. We shall
also establish Cauchy’s inequality for the derivatives, which plays an im-
portant role in proving Liouville’s Theorem.

The arguments employed to prove Theorem 17.2 can be repeated. In
fact, starting with the function

H(z) =

∫

γ

g(ξ)

(ξ − z)2
dξ (z not on γ), (18.1)

it can be shown that H is analytic at each point not on γ and that

H ′(z) = 2

∫

γ

g(ξ)

(ξ − z)3
dξ (z not on γ),

which is obtained formally from (18.1) by differentiating with respect to z
under the integral sign.

Now we shall apply these results to analytic functions. Suppose that f is
analytic at some point z0. Then, f is differentiable in some neighborhood
U of z0. Choose a positively oriented circle γr : |ξ − z0| = r in U.

Figure 18.1

U

γr

·z0z··ξ

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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By Cauchy’s Integral Theorem, we have

f(z) =
1

2πi

∫

γr

f(ξ)

ξ − z
dξ (z inside γr), (18.2)

and hence it follows from Theorem 17.2 that

f ′(z) =
1

2πi

∫

γr

f(ξ)

(ξ − z)2
dξ (z inside γr). (18.3)

Clearly, the right-hand side of (18.3) is a function of the form (18.1), and
hence it has a derivative at each point inside γr. Since the domain interior
to γr is a neighborhood of z0, f ′ is analytic at z0.

We summarize these considerations in the following theorem.

Theorem 18.1 (Differentiation of Analytic Functions). If
f is analytic in a domain S, then all its derivatives f ′, f ′′, · · · , f (n), · · · exist
and are analytic in S.

Remark 18.1. The analogue of Theorem 18.1 for real functions does
not hold, for example, the function f(x) = x3/2, x ∈ IR is differentiable for
all real x, but f ′(x) = (3/2)x1/2 has no derivative at x = 0.

Now, repeated differentiation of (18.3) with respect to z under the in-
tegral sign leads to the following result.

Theorem 18.2 (Cauchy’s Integral Formula for Deriva-
tives). If f is analytic inside and on a simple, closed, positively oriented
contour γ, and if z is any point inside γ, then

f (n)(z) =
n!

2πi

∫

γ

f(ξ)

(ξ − z)n+1
dξ, n = 1, 2, · · · . (18.4)

From an applications point of view, it is better to write (18.2) and (18.4)
in the equivalent form

∫

γ

f(z)

(z − z0)n
dz =

2πi

(n− 1)!
f (n−1)(z0), n = 1, 2, · · · ; (18.5)

here, z0 is inside γ.

Example 18.1. Compute

∫

γ

sin 3z

z4
dz, where γ is the circle |z| = 1

traversed once counterclockwise. Since f(z) = sin 3z is analytic inside and
on γ, from (18.5) with z0 = 0 and n = 4, we have

∫

γ

sin 3z

z4
dz =

2πi

3!
f ′′′(0) = − 9πi.
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Example 18.2. Compute

∫

γ

3z + 1

z(z − 2)2
dz along the contour γ given in

Figure 17.3. As in Example 17.3, let γ1 and γ2 be the positively oriented
left lobe and the negatively oriented right lobe, respectively. Then, we have

∫

γ

3z + 1

z(z − 2)2
dz =

∫

γ1

(3z + 1)/(z − 2)2

z
dz +

∫

γ2

(3z + 1)/z

(z − 2)2
dz.

Applying (18.5) to the right-hand side, we get

∫

γ

3z + 1

z(z − 2)2
dz = 2πi

3z + 1

(z − 2)2

∣∣∣∣
z=0

− 2πi

1!

d

dz

(
3z + 1

z

)∣∣∣∣
z=2

=
1

2
πi+

1

2
πi = πi.

Example 18.3. Compute

∫

γ

cosh z

z(z + 1)2
dz, where the contour γ is given

in Figure 18.2.

Figure 18.2

0−1· ·
γ

Using partial fraction expansion, we have

1

z(z + 1)2
=

1

z
− 1

z + 1
− 1

(z + 1)2
,

and hence, from (18.5), it follows that
∫

γ

cosh z

z(z + 1)2
dz =

∫

γ

cosh z

z
dz −

∫

γ

cosh z

z + 1
dz −

∫

γ

cosh z

(z + 1)2
dz

= 2πi cosh z

∣∣∣∣
z=0

− 2πi cosh z

∣∣∣∣
z=−1

− 2 πi
d

dz
cosh z

∣∣∣∣
z=−1

= 2πi− 2πi cosh1 + 2πi sinh 1.

Now recall that if f(z) = u(x, y) + iv(x, y) is analytic, then

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=

∂v

∂y
− i

∂u

∂y
.
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We now know from Theorem 18.1 that f ′ is analytic, and hence continuous.
Therefore, the equations above imply that all first order partial derivatives
of u and v are continuous. Similarly, since f ′′ exists and is given by

f ′′(z) =
∂2u

∂x2
+ i

∂2v

∂x2
=

∂2v

∂y∂x
− i

∂2u

∂y∂x

=
∂2v

∂x∂y
− i

∂2u

∂x∂y
= − ∂2u

∂y2
− i

∂2v

∂y2

the continuity of f ′′ implies that all second-order partial derivatives of u
and v are continuous at the point where f is analytic. Continuing with this
process, we obtain the following interesting theorem.

Theorem 18.3. If f = u+ iv is analytic in a domain S, then all partial
derivatives of u and v exist and are continuous in S.

The following result is a converse of Theorem 15.2.

Theorem 18.4 (Morera’s Theorem). If f is continuous in

a domain S and

∫

γ
f(z)dz = 0 for every closed contour γ in S, then f is

analytic.

Proof. By Theorem 14.2, f has an antiderivative F in S; i.e., F ′(z) =
f(z), z ∈ S. This means that F (z) is analytic. But then, from Theorem
18.1, F ′(z) is analytic; i.e., f(z) is analytic.

Example 18.4. Consider the function f(z) =

∫ 1

0
e−z2tdt. Let γ be

any simple closed contour in the complex plane. Changing the order of
integration, we have

∫

γ
f(z)dz =

∫ 1

0

(∫

γ
e−z2tdz

)
dt = 0.

Hence, in view of Theorem 18.4, the function f(z) = (1− e−z2
)/z2, z ̸= 0

is analytic.

Now we shall prove the following theorem.

Theorem 18.5 (Cauchy’s Inequality). Let f be an analytic
function inside and on a circle γR of radius R centered at z0. If |f(z)| ≤M
for all z on γR, then the following inequality holds

∣∣∣f (n)(z0)
∣∣∣ ≤

n!M

Rn
, n = 1, 2, · · · .
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Proof. From (18.4), with z = z0, ξ = z, and γ = γR, assumed to be
positively oriented, we have

f (n)(z0) =
n!

2πi

∫

γR

f(z)

(z − z0)n+1
dz. (18.6)

For z on γR, the integrand is bounded by M/Rn+1 and the length of γR is
2πR. Thus, from Theorem 13.1, it follows that

∣∣∣f (n)(z0)
∣∣∣ ≤

n!

2π

M

Rn+1
2πR =

n!M

Rn
.

Finally, we shall prove the following result.

Theorem 18.6 (Liouville’s Theorem). The only bounded
entire functions are the constant functions.

Proof. Suppose f is analytic and bounded by some number M over the
whole complex plane C. By Theorem 18.5, for the case n = 1, we have
|f ′(z0)| ≤ M/R for any z0 ∈ C and for any R > 0. Letting R → ∞, we
find f ′(z0) = 0 for any z0. Hence, f ′ vanishes everywhere; i.e., f must be a
constant.

Problems

18.1. Show that the Cauchy integral formula implies the Cauchy-
Goursat Theorem.

18.2. Suppose that f is analytic in a simply connected domain S, and
let z0 ∈ S be a fixed point. Define the integral along any contour connecting

the points z0 and z ∈ S as F (z) =

∫ z

z0

f(ξ)dξ. Show that F ′(z) = f(z); i.e.,

the integral is also an analytic function of its upper limit.

18.3. Suppose that f is analytic in a domain S, and let z0 ∈ S be a
fixed point. Define

g(z) =

⎧
⎨

⎩

f(z)− f(z0)

z − z0
if z ̸= z0

f ′(z0) if z = z0.

Show that g is analytic in S. Hence, deduce that the function

g(z) =

⎧
⎨

⎩

sin z

z
if z ̸= 0

1 if z = 0
(18.7)
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is entire.

18.4. Let f be analytic within and on a positively oriented closed
contour γ, and the point z0 is not on γ. Show that

∫

γ

f(z)

(z − z0)2
dz =

∫

γ

f ′(z)

z − z0
dz.

18.5. Let u = u(x, y) be a harmonic function in a domain S. Show that
all partial derivatives ux, uy, uxx, uxy, uyy, · · · exist and are harmonic.

18.6. Let γ be a simple closed contour described in the positive sense,

and write g(z) =

∫

γ

ξ3 + 7ξ

(ξ − z)3
dξ. Show that g(z) = 6πiz when z is inside γ

and that g(z) = 0 when z is outside γ.

18.7. Let f(z) = (ez + e−z)/2. Evaluate

∫

γ

f(z)

z4
dz, where γ is any

simple closed curve enclosing 0.

18.8. (a). Let γ be the contour z = eiθ, − π ≤ θ ≤ π traversed in the

positive direction. Show that, for any real constant a,

∫

γ

eaz

z
dz = 2πi.

(b). Deduce that

∫ π

0
ea cos θ cos(a sin θ)dθ = π.

18.9. Let γ denote the boundary of the rectangle whose vertices are
−2− 2i, 2− 2i, 2 + i and −2 + i in the positive direction. Evaluate each of
the following integrals:

(a).

∫

γ

e−z

z − πi
4

dz, (b).

∫

γ

cos z

z4
dz, (c).

∫

γ

z

(2z + 1)2
dz,

(d).

∫

γ

e−z

z2 + 2
dz, (e).

∫

γ

dz

z(z + 1)
, (f).

∫

γ

[
ez sin z +

1

(z2 + 3)2

]
dz.

18.10. Let f be analytic inside and on the unit circle γ. Show that, for
0 < |z| < 1,

2πif(z) =

∫

γ

f(ξ)

ξ − z
dξ −

∫

γ

f(ξ)

ξ − 1/z
dξ.

Hence, deduce the Poisson integral formula

f(reiθ) =
1

2π

∫ 2π

0

(1− r2)

1− 2r cos(θ − t) + r2
f(eit)dt, 0 < r < 1.

18.11. If f(z) is analytic and |f(z)| ≤ 1/(1− |z|) in |z| < 1, show that
|f ′(0)| ≤ 4.
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18.12. Let the function f be entire and f(z) → ∞ as z → ∞. Show
that f must have at least one zero.

18.13. Let f(z) be an entire function such that |f ′(z)| ≤ |z|. Show that
f(z) = a+ bz2 with some constants a, b ∈ C such that |b| ≤ 1.

18.14. Suppose f(z) is an entire function with f(z) = f(z+1) = f(z+i)
for all z ∈ C. Show that f(z) is a constant.

18.15. Suppose f(z) and g(z) are entire functions, g(z) ̸= 0 and |f(z)| ≤
|g(z)|, z ∈ C. Show that there is a constant c such that f(z) = cg(z).

18.16. Show that an entire function whose real part is nonpositive is
constant.

18.17. A subset S of C is said to be dense in C if its closure S = C.
Show that the image of a nonconstant entire function is dense in C.

18.18. Suppose f(z, t) is continuous, and continuously differentiable
with respect to t, and suppose γ is a smooth curve in the domain of defi-

nition of f. Then, the function F (t) =

∫

γ
f(z, t)dz is continuously differen-

tiable with respect to t, and its derivative is

dF (t)

dt
=

∫

γ

∂f(z, t)

∂t
dz.

18.19. Let f(z,λ) be a continuous function of z on the bounded closed
region S for each value of λ in |λ− λ0| < ρ, and f(z,λ)→ F (z) uniformly
as λ→ λ0. Show that F (z) is continuous on S. Moreover, if γ is any closed
contour lying in S, then

lim
λ→λ0

∫

γ
f(z,λ)dz =

∫

γ
F (z)dz.

18.20. Let f(z,λ) be an analytic function of z on the domain S for
each value of λ in |λ− λ0| < ρ, and f(z,λ)→ F (z) uniformly as λ→ λ0 in
every closed region G of S. Show that F (z) is analytic on S. Moreover, as
λ→ λ0, ∂f(z,λ)/∂z → F ′(z) uniformly on G.

Answers or Hints

18.1. Let f be a complex function that is analytic throughout the region
enclosed by a simple closed contour γ. Let z0 be a point inside γ. Then∫
γ f(z)dz =

∫
γ

f(z)(z−z0)
z−z0

dz = 2πi(f(z0)(z0 − z0)) = 0.
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18.2. If z+∆z ∈ S, then F (z+∆z)−F (z)
∆z −f(z) = 1

∆z

∫ z+∆z
z [f(ξ)− f(z)]dξ.

Since f is continuous at z, |ξ − z| < δ, or in particular |∆z| < δ implies

|f(ξ) − f(z)| < ϵ. Thus,
∣∣∣F (z+∆z)−F (z)

∆z − f(z)
∣∣∣ < ϵ

|∆z|
∫ z+∆z
z |dξ| = ϵ.

18.3. Let B(z0, R) be an open disk contained in S. For z ̸= z0 in B(z0, R)
consider the segment ξ(t) = z0(1− t) + tz, t ∈ [0, 1]. Since f ′ is analytic in

B(z0, R) we can write g(z) as g(z) =
∫ 1
0 f ′((z − z0)t + z0)dt. This is also

defined at z = z0, in fact, g(z0) =
∫ 1
0 f ′(z0)dt = f ′(z0). Now use the fact

that f ′′ is analytic in B(z0, R).
18.4. Use (17.1) for f ′(z) and (18.6) for n = 1.
18.5. For each point z0 = (x0, y0) in S there exists a disk B(z0, R) ⊂ S.
In this disk, a conjugate harmonic function v exists, so that the function
f = u+ iv is analytic. Now use Theorem 18.1.

18.6. If z is inside γ, we have
∫
γ

ξ3+7ξ
(ξ−z)3 dξ = 2πi

2! f
′′(z) = 6πiz (f(ξ) =

ξ3 + 7ξ). If z is outside γ, then ξ3+7ξ
(ξ−z)3 is analytic throughout the region

enclosed by γ (including γ) and therefore
∫
γ

ξ3+7ξ
(ξ−z)3 dξ = 0.

18.7. 0.
18.8. (a). 2πi(ea·0), (b).

∫
γ

eaz

z dz =
∫ π
−π

ea cos θeia sin θ

eiθ ieiθdθ

=
∫ π
−π ie

a cos θ cos(a sin θ)dθ −
∫ π
−π e

a cos θ sin(a sin θ)dθ = 2πi.

18.9. (a). 2πi(e−πi/4), (b). 0, (c). πi/2, (d). −πe
√
2i/
√
2, (e). 0,

(f). −π
√
3/18.

18.10.1/z is outside γ. Take z = reiθ and ξ = eit.
18.11. For any r < 1, let γr denote the circle |z| = r. By (18.6), we have
|f ′(0)| ≤ 1

2π

∫
γr

1
(1−|z|)|z|2 |dz| ≤

1
2π

1
r2(1−r)2πr = 1

r(1−r) . Now let r = 1/2.

18.12. If f has no zero in C, then g(z) = 1/f(z) is entire and g(z) → 0
as z → ∞. Now show that g is bounded, and then apply Theorem 18.6 to
conclude that g is a constant.
18.13. Note that f ′′(z0) = 1

2πi

∫
γR

[f ′(z)/(z − z0)2]dz, where γR is the

circle |z− z0| = R taken in the positive direction. Hence, |f ′′(z0)| ≤MR/R
where MR ≥ |f ′(z)| on |z − z0| = R. Now, since |f ′(z)| ≤ |z|, it follows
that |f ′′(z0)| ≤ (R + |z0|)/R for all R. Thus, in particular, for all z0 ∈
C, |f ′′(z0)| ≤ 2. Therefore, in view of Theorem 18.6, f ′′(z) must be a
constant, and so f(z) = a + αz + bz2. However, |f ′(z)| ≤ |z| implies that
f ′(0) = 0, and hence we should have α = 0; i.e., f(z) = a + bz2. Finally,
since |f ′′(z)| = |2b| ≤ 2, |b| ≤ 1.
18.14. Observe that f(z) is bounded, and apply Theorem 18.6.
18.15. Observe that f(z)/g(z) is entire and |f(z)/g(z)| ≤ 1. Now use The-
orem 18.6.
18.16. If f = u + iv, then u ≤ 0 implies |ef | = eu ≤ 1. Thus, in view of
Theorem 18.6, ef = c. Hence, eff ′ = 0, which gives f ′ = 0.
18.17. Let f : C → C be an entire function. If f(C) is not dense in C,
then C\f(C) is open and ̸= ∅. Thus, there exist w ∈ C\f(C) and r > 0
such that B(w, r) ⊂ C\f(C). Hence, |f(z) − w| ≥ r > 0 for all z ∈ C.
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Consider the function g : C→ C defined by g(z) = 1/(f(z)− w). Clearly,
g(z) is entire since f(z) is; moreover, |g(z)| ≤ 1/r, so g(z) is bounded. By
Theorem 18.6, g(z) must be a constant, and hence f(z) must be a constant.

18.18. Consider F (t)−F (t0)
t−t0

= 1
t−t0

∫
γ [f(z, t)−f(z, t0)]dz. If f is real-valued,

then by the Mean Value Theorem we have F (t)−F (t0)
t−t0

=
∫
γ

∂f(z,t∗)
∂t dz, where

t∗ lies between t0 and t but depends on z. Thus,
∣∣∣F (t)−F (t0)

t−t0
−
∫
γ

∂f(z,t)
∂t dz

∣∣∣ ≤
∫
γ

∣∣∣∂f(z,t
∗)

∂t − ∂f(z,t)
∂t

∣∣∣ |dz|.

Now, using uniform continuity of ∂f
∂t in γ × [t0, t] and letting t → t0, the

result follows. If f is complex-valued, we use the same argument for the
real and imaginary parts separately. Finally, the continuity of ∂f

∂t implies
that of ∂F

∂t .
18.19. Since f(z,λ) is continuous, for every ϵ > 0 there exists a δ = δ(z0,λ)
such that |z − z0| < δ ⇒ |f(z,λ) − f(z0,λ)| < ϵ/3. Since f(z,λ) → F (z)
uniformly, there exists 0 < ρ′ ≤ ρ such that |λ − λ0| < ρ′ ⇒ |f(z,λ) −
F (z)| < ϵ/3. Thus, |z − z0| < δ, |λ− λ0| < ρ′ ⇒ |F (z)− F (z0)| ≤ |F (z)−
f(z,λ)|+ |f(z,λ)−f(z0,λ)|+ |f(z0,λ)−F (z0)| < ϵ. Again, since f(z,λ)→
F (z) uniformly, for every ϵ > 0 there exists 0 < ρ′ ≤ ρ such that |λ− λ0| <
ρ′ ⇒ |f(z,λ) − F (z)| < ϵ/L(γ), but then

∣∣∣
∫
γ(f(z,λ)− F (z))dz

∣∣∣ < ϵ.

18.20. Similar to that of Problem 18.19.



Lecture 19
The Fundamental Theorem

of Algebra

In this lecture, we shall prove the Fundamental Theorem of Algebra,
which states that every nonconstant polynomial with complex coefficients
has at least one zero. Then, as a consequence of this theorem, we shall
establish that every polynomial of degree n has exactly n zeros, counting
multiplicities. For a given polynomial, we shall also provide some bounds
on its zeros in terms of the coefficients.

A point z0 ∈ C is called a zero of order m for the function f if f is
analytic at z0 and f(z0) = f ′(z0) = · · · = f (m−1)(z0) = 0, f (m)(z0) ̸= 0. A
zero of order 1 is called a simple zero. The main result of this lecture is the
following theorem.

Theorem 19.1 (The Fundamental Theorem of Algebra).
Every nonconstant polynomial

Pn(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, n ≥ 1, (19.1)

where the coefficients aj , j = 0, 1, · · · , n are complex and an ̸= 0 has at
least one zero in C.

To prove this theorem, we need the following lemma.

Lemma 19.1. Let A = max
0≤j≤n

|aj |. Then, for |z| ≥ 2nA/|an|, |Pn(z)|

≥ |an||z|n/2.

Proof. Since

Pn(z) = zn
(
an +

an−1

z
+

an−2

z2
+ · · · + a0

zn

)
(19.2)

by the triangle inequality, we find
∣∣∣an +

an−1

z
+

an−2

z2
+ · · ·+ a0

zn

∣∣∣ ≥ |an|−
∣∣∣
an−1

z
+ · · ·+ a1

zn−1
+

a0
zn

∣∣∣ .
(19.3)

Now, for |z| ≥ 2nA/|an| (≥ 1, indeed A ≥ |an|, and hence A/|an| ≥ 1 and
thus obviously 2nA/|an| ≥ 1), we have

∣∣∣
an−k

zk

∣∣∣ ≤
A

|z|k ≤
A

|z| ≤
|an|
2n

.

R.P. Agarwal et al., An Introduction to Complex Analysis, 
DOI 10.1007/978-1-4614-0195-7_19, © Springer Science+Business Media, LLC 2011 

125



126 Lecture 19

Thus, it follows that
∣∣∣
an−1

z
+ · · ·+ a1

zn−1
+

a0
zn

∣∣∣ ≤
∣∣∣
an−1

z

∣∣∣+ · · ·+
∣∣∣
a1

zn−1

∣∣∣+
∣∣∣
a0
zn

∣∣∣

≤ |an|
2n

+ · · ·+ |an|
2n

+
|an|
2n

=
|an|
2

.

(19.4)
Hence, from (19.2)-(19.4), we get

|Pn(z)| = |z|n
∣∣∣an +

an−1

z
+

an−2

z2
+ · · ·+ a0

zn

∣∣∣

≥ |z|n
(
|an|−

|an|
2

)
=

|an||z|n
2

.

From Lemma 19.1, it is clear that |Pn(z)|→∞ as |z|→∞.

Proof of Theorem 19.1. Suppose to the contrary that Pn(z) has
no zeros. Then, 1/Pn(z) is an entire function. Now, for |z| ≥ 2nA/|an|, in
view of Lemma 19.1, we have

∣∣∣∣
1

Pn(z)

∣∣∣∣ ≤
1

|an||z|n/2
≤ 2|an|n−1

(2nA)n
.

Also, for |z| ≤ 2nA/|an|, 1/Pn(z) is a continuous function on a closed disk.
Hence, it is bounded there. Therefore, 1/Pn(z) is bounded on the whole
complex plane. But then, by Theorem 18.6 it must be a constant. Thus,
Pn(z) itself is a constant, which contradicts our assumption.

There are numerous other proofs of the Fundamental Theorem of Alge-
bra. In fact, we shall give another proof in Lecture 37.

Now let z1 ∈ C be a zero of Pn(z); i.e., Pn(z1) = 0. Then, we have

Pn(z) = Pn(z)−Pn(z1) = an(z
n−zn1 )+an−1(z

n−1−zn−1
1 )+· · ·+a1(z−z1),

and hence it follows that

Pn(z) = (z − z1)Pn−1(z), (19.5)

where Pn−1(z) is a polynomial of degree (n− 1). Repetition of this process
finally leads to a complete factorization

Pn(z) = an(z − z1)(z − z2) · · · (z − zn), (19.6)

where z1, z2, · · · , zn are not necessarily distinct. From (19.6), we can con-
clude that Pn(z) does not vanish for any z ̸= zj , i ≤ j ≤ n. Furthermore,
the factorization (19.5) is unique except for the order of factors. We sum-
marize these considerations in the following corollary.
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Corollary 19.1. The polynomial Pn(z) has exactly n zeros, counting
multiplicities.

Multiplying the factors in (19.6) and equating the coefficients of identical
powers of z on the left- and right-hand sides, we get the following relations
between the roots and the coefficients of Pn(z) :

z1 + z2 + · · · + zn = − an−1

an
,

z1z2 + z1z3 + · · ·+ zn−1zn =
an−2

an
,

· · · · · · · · ·

z1z2 · · · zn = (−1)n a0
an

.

(19.7)

For our next result, we shall need the following lemma.

Lemma 19.2. For any complex number c ̸= 1, the following identity
holds:

1 + c+ c2 + · · ·+ cn =
1− cn+1

1− c
. (19.8)

Proof. It suffices to observe that

(1− c)(1 + c+ c2 + · · ·+ cn)

= (1 + c+ c2 + · · ·+ cn)− (c+ c2 + · · ·+ cn+1) = 1− cn+1.

Theorem 19.2. Let B = max
0≤j≤n−1

|aj |. Then, all zeros zk, k =

1, 2, · · · , n of Pn(z) lie inside the circle

|z| = 1 +
B

|an|
= R. (19.9)

Proof. If B = 0, then the result is obviously true. So, we consider the
case when B > 0. For |z| > 1, from (19.1), the triangle inequality, and
Lemma 19.2, we have

|Pn(z)| ≥ |anzn|−
(
|an−1z

n−1|+ · · ·+ |a1z|+ |a0|
)

≥ |an||z|n −B
(
|z|n−1 + · · ·+ |z|+ 1

)

= |an||z|n −B
|z|n − 1

|z|− 1

>

(
|an|−

B

|z|− 1

)
|z|n.

Thus, if

|an|−
B

|z|− 1
≥ 0,



128 Lecture 19

which is the same as

|z| ≥ 1 +
B

|an|
= R,

then |Pn(z)| > 0; i.e., there is no zero on or outside the circle |z| = R.

Corollary 19.2. Let a0 ̸= 0 and C = max
1≤j≤n

|aj |. Then, all zeros

zk, k = 1, 2, · · · , n of Pn(z) lie outside the circle

|z| =
1

1 +
C

|a0|

= r. (19.10)

Proof. Set z = 1/w, so that Pn(z) = Qn(w)/wn, where

Qn(w) = a0w
n + a1w

n−1 + · · ·+ an−1w + an.

The zeros of Qn(w) in view of Theorem 19.2 lie inside the circle

|w| = 1 +
C

|a0|
=

1

r
.

Thus, the zeros of Pn(z) lie outside the circle |z| = r.

Remark 19.1. From Theorem 19.2 and Corollary 19.2, it follows that
all zeros zk, k = 1, 2, · · · , n of Pn(z) lie inside the annulus r ≤ |z| ≤ R; i.e.,
satisfy the inequality

1

1 +
C

|a0|

< |zk| < 1 +
B

|an|
. (19.11)

Example 19.1. For the polynomial

z3 − z2 + z − 1 = (z2 + 1)(z − 1),

we have B = C = 1, and hence, from Remark 19.1, all its zeros i,−i, 1
must lie inside the annulus 1/2 ≤ |z| ≤ 2.

Example 19.2. For the polynomial

z5 − 4z4 + z3 + 4z2 + 2z − 4,

z1 = 1 is an exact zero, and the other approximate zeros are z2 = −0.778384
−0.603392i, z3 = −0.778384 + 0.603392i, z4 = 1.245346, z5 = 3.311422.
Since for this polynomial B = C = 4, from Remark 19.1 all these zeros
must lie inside the annulus 1/2 ≤ |z| ≤ 5.
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Theorem 19.3. The smallest convex polygon that contains the zeros
of a polynomial Pn(z) also contains the zeros of P ′

n(z).

Proof. We shall prove that “If all zeros of a polynomial Pn(z) lie in a
half-plane, then all zeros of the derivative P ′

n(z) lie in the same half-plane.”
The general result will follow by considering the half-planes below (above)
every pair of adjacent vertices of the smallest convex polygon that contains
the zeros of Pn(z). From (19.6), it follows that

P ′
n(z)

Pn(z)
=

1

z − z1
+

1

z − z2
+ · · ·+ 1

z − zn
. (19.12)

Suppose that the half-plane S is defined as the part of the plane where
Im (z − a)/b < 0 (see dilation and translation in Lecture 10). If zj is in S
and z is not, then we have

Im

(
z − zj

b

)
= Im

(
z − a

b

)
− Im

(
zj − a

b

)
> 0.

But the imaginary parts of reciprocal numbers have opposite signs. There-
fore, under the same assumption, Im b(z − zj)−1 < 0. If this is true for all
j, we conclude from (19.12) that

Im
bP ′

n(z)

Pn(z)
=

n∑

j=1

Im
b

z − zj
< 0,

and hence P ′
n(z) ̸= 0.

Problems

19.1. Show that if the coefficients of the polynomial equation Pn(z) = 0
are real and if z0 is a root, then z0 is also a root.

19.2. Let P (z) and Q(z) be two polynomials of degree at most n that
agree on n+ 1 distinct points. Show that P (z) = Q(z), z ∈ C.

19.3. Show that if the coefficients of the polynomial equation

Pn(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 = 0 (19.13)

are positive and nondecreasing; i.e., 0 < an ≤ an−1 ≤ · · · ≤ a0, then (19.13)
has no root in the circle |z| ≤ 1, except perhaps at z = −1.

19.4. If Pn(z) has distinct roots z1, · · · , zn and if Q(z) is a polynomial
of degree < n, show that

Q(z)

Pn(z)
=

n∑

j=1

Q(zj)

P ′
n(zj)(z − zj)

.
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19.5. Show that

1

2
+ cos θ + cos 2θ + · · ·+ cosnθ =

sin(n+ 1/2)θ

2 sin θ/2
,

sin θ + sin 2θ + · · ·+ sinnθ =
cos θ/2− cos(n+ 1/2)θ

2 sin θ/2
.

The first equality is due to Lagrange.

19.6. Consider the polynomial equation

z4 − iz3 + 7z2 − iz + 6 = 0

for which the roots are i,−i,−2i, 3i.
(a). Verify the relations (19.7).

(b). Use (19.11) to find the annulus region in which the roots lie.

19.7. Show that there are at most n points in the extended w-plane with
fewer than n distinct inverse images under the mapping w = Pn(z), n > 1.

19.8. Show that there are at most n + m points in the extended w-
plane with fewer than N = max{n,m} > 1 distinct inverse images under
the rational mapping w = P (z)/Q(z),where P (z) andQ(z) are polynomials
of degree n > 1 and m > 1, respectively.

Answers or Hints

19.1. Pn(z0) = anz
n
0 + an−1z

n−1
0 + · · ·+ a1z0 + a0 = 0.

19.2. The function φ(z) = P (z)−Q(z) is a polynomial of degree at most
n that has n+ 1 distinct zeros. Now apply Corollary 19.1.
19.3. Obviously, z = 1 is not a solution. Consider |z| ≤ 1 except at
z = ±1. It suffices to show that

|(1− z)(anz
n + an−1z

n−1 + · · ·+ a1z + a0)| > 0. (19.14)
Since (1− z)(anzn + an−1zn−1 + · · ·+ a1z + a0) = a0 − [anzn+1 + (an−1 −
an)zn + · · ·+ (a0 − a1)z], it follows that

|(1− z)(anzn + an−1zn−1 + · · ·+ a1z + a0)|
≥ |a0|− |anzn+1 + (an−1 − an)zn + · · ·+ (a0 − a1)z|.

(19.15)

Now,
|anzn+1 + (an−1 − an)zn + · · ·+ (a0 − a1)z|

≤ an|zn+1|+ (an−1 − an)|zn|+ · · ·+ (a0 − a1)|z|
(19.16)

with equality if and only if z ∈ IR and z ≥ 0. However, for such z, P (z) >
0 (a0 > 0). Thus, in (19.16) we need to consider only strict inequality.
Then, it follows that
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|anzn+1 + (an−1 − an)zn + · · ·+ (a0 − a1)z|
< an + (an−1 − an) + · · ·+ (a0 − a1) = a0.

(19.17)

Using (19.17) in (19.15), we get the required inequality (19.14).
19.4. Since Pn(z) = an(z− z1)(z− z2) · · · (z− zn), it suffices to show that

φ(z) = Q(z)−
n∑

j=1

(z − z1) · · · (z − zj−1)(z − zj+1) · · · (z − zn)

(zj − z1) · · · (zj − zj−1)(zj − zj+1) · · · (zj − zn)
Q(zj) ≡ 0.

Clearly, φ(z) is a polynomial of degree at most (n−1). Furthermore, φ(zk) =
Q(zk) − Q(zk) = 0, 1 ≤ k ≤ n; i.e., φ(z) has at least n zeros. Now use
Problem 19.2.
19.5. In (19.8), let c = eiθ and separate real and imaginary parts.
19.6. (a). Verify directly, (b). 6/13 ≤ |z| ≤ 8.
19.7. Since Pn(z) = ∞ if and only if z = ∞, the point ∞ has just
one inverse image. If A ̸= ∞ has fewer than n distinct inverse images,
the equation Pn(z) = A must have a multiple root; i.e., must satisfy the
equation P ′

n(z) = 0. But this equation is of degree n − 1, and hence can
have at most n − 1 distinct roots, say α1, · · · ,αr, 1 ≤ r ≤ n − 1. Thus,
Pn(α1), · · · , Pn(αr),∞ are the only values of A for which the equation
Pn(z) = A can have a multiple root. Clearly, at most n of these num-
bers are distinct.
19.8. Arguments are similar to that of Problem 19.7.



Lecture 20
Maximum Modulus Principle

In this lecture, we shall prove that a function analytic in a bounded do-
main and continuous up to and including its boundary attains its maximum
modulus on the boundary. This result has direct applications to harmonic
functions.

Let f be a function analytic inside and on the positively oriented circle
γr of radius r around z0. Parameterizing γr by z = z0 + reit, 0 ≤ t ≤ 2π,
we can write (18.6) as

f (n)(z0) =
n!

2πi

∫ 2π

0

f
(
z0 + reit

)

rn+1ei(n+1)t
ireitdt

=
n!

2πrn

∫ 2π

0
f(z0 + reit)e−intdt,

which for n = 0 is the same as

f(z0) =
1

2π

∫ 2π

0
f
(
z0 + reit

)
dt, (20.1)

i.e., f(z0) is the average of its value around the circle γr. This result is
known as Gauss’s mean-value property. We shall use this result to prove
the following lemma.

Lemma 20.1. Suppose that f(z) is analytic in an open disk centered
at z0 and that the maximum value of |f(z)| over this disk is |f(z0)|. Then,
|f(z)| is a constant in the disk.

Proof. Let ρ be the radius of the disk. Then, for every r such that
0 < r < ρ, we have the mean-value property (20.1). Hence, we find

|f(z0)| =

∣∣∣∣
1

2π

∫ 2π

0
f
(
z0 + reit

)
dt

∣∣∣∣ ≤
1

2π

∫ 2π

0

∣∣f
(
z0 + reit

)∣∣ dt. (20.2)

However, since |f(z0)| is the maximum value of |f(z)|, we have |f(z)| ≤
|f(z0)| whenever |z − z0| < ρ. Thus, from (20.2), we get

|f(z0)| ≤
1

2π

∫ 2π

0

∣∣f
(
z0 + reit

)∣∣ dt ≤ 1

2π

∫ 2π

0
|f(z0)|dt = |f(z0)|.

(20.3)
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From (20.3), it follows that

|f(z0)| =
1

2π

∫ 2π

0

∣∣f
(
z0 + reit

)∣∣ dt

or ∫ 2π

0

[
|f(z0)|−

∣∣f
(
z0 + reit

)∣∣] dt = 0.

The integrand |f(z0)| −
∣∣f
(
z0 + reit

)∣∣ is continuous in the variable t, and
by our assumption on |f(z0)| it is greater than or equal to zero on the entire
interval 0 ≤ t ≤ 2π. Because the value of the integral is zero, it follows that
the integrand is identically zero. i.e.,

∣∣f
(
z0 + reit

)∣∣ = |f(z0)|, 0 < r < ρ, 0 ≤ t ≤ 2π

or
|f(z)| = |f(z0)| whenever |z − z0| < ρ.

Hence, |f(z)| must be constant.

Now we shall use Lemma 20.1 to prove the following important theorem.

Theorem 20.1 (Maximum Modulus Principle). If f is
analytic in a domain S and |f(z)| achieves its maximum value at a point
z0 in S, then f is constant in S.

Proof. We shall prove that |f | is constant in S. Then, by Theorem 7.3,
we can conclude that f is constant.

Let w be a point in S. Since S is connected, there is a polygonal path
joining z0 to w. Using topological considerations, we can always cover the
path by a sequence of disks {B0, B1, · · · , Bn} centered at z0, z1, · · · , zn = w,
respectively, that satisfy the following properties:

(i). Bi is contained in the domain S for every i.

(ii). zi lies on the path for every i.

(iii). Bi contains the point zi+1 for i = 0, 1, · · · , n− 1.

Since |f(z0)| is the maximum value of |f(z)| over S, it is the maximum
value of |f(z)| over B0. By Lemma 20.1, |f(z)| is constant in the disk B0.
In particular, |f(z0)| = |f(z1)| since z1 ∈ B0. Therefore, |f(z1)| is the
maximum value of |f(z)| over the disk B1. By Lemma 20.1 again, |f(z)| is
constant in B1. By using the same argument repeatedly, we deduce that
|f(z)| is constant over the disks B0, B1, · · · , Bn. In particular, |f(z0)| =
|f(w)|. Since w is arbitrary, we conclude that |f | is constant in S. Hence,
f is constant in S.
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Figure 20.1

·w
Bn

· zn−1

Bn−1

· zn−2 Bn−2

·z1 B1
·z0

B0

The following version of Theorem 20.1 is directly applicable in applica-
tions.

Theorem 20.2. A function analytic in a bounded domain and con-
tinuous up to and including its boundary attains its maximum modulus on
the boundary.

Example 20.1. Find the maximum value of |z2 + 2z − 3| in the disk
B(0, 1). Clearly, z2+2z−3 is analytic in the disk B(0, 1) and continuous on
the closed disk B(0, 1). By Theorem 20.2, the maximum of |z2+2z−3|must
occur on the boundary of the disk; i.e., on the circle |z| = 1. Parameterizing
the circle by z(t) = eit, 0 ≤ t ≤ 2π, we get

|z2 + 2z − 3|2 = (z2 + 2z − 3)(z2 + 2z − 3)

=
(
e2it + 2eit − 3

) (
e−2it + 2e−it − 3

)

= (14− 6 cos 2t− 8 cos t).

The function 14−6 cos 2t−8 cos t attains its maximum when t = cos−1(1/3).
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Thus, the maximum value of |z2 + 2z − 3| is 8/
√
3.

Example 20.2. Find the maximum of | sin z| on the square {x+ iy :
0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π}. Since sin z is entire, we can apply Theorem
20.2. Now, since | sin(x + iy)|2 = sin2 x + sinh2 y (see Example 8.2) on
the boundary y = 0, | sin2 z| has maximum 1; for x = 0, the maximum is
sinh2 2π since sinh y increases with y; for x = 2π, the maximum is again
sinh2 2π; and for y = 2π, the maximum is sinh2 2π+1. Thus, the maximum
of | sin z|2 occurs at x = π/2, y = 2π and is sinh2 2π + 1 = cosh2 2π.
Therefore, the maximum of | sin z| on the square is cosh 2π.

Figure 20.2

0 2π

2πi 2π + 2πi

1

sinh2 2π

1 + sinh2 2π

sinh2 2π

x

y

Example 20.3. Find the maximum of |ez3 | on B(0, 1). Since ez
3
is

an entire function, it is analytic in the disk B(0, 1) and continuous on the

closed disk B(0, 1). By Theorem 20.2, the maximum of |ez3 | occurs on the
boundary of the disk; i.e., the circle |z| = 1. Let z = x+ iy. Then

|ez
3

| = |ex
3+3ix2y−3xy2−iy3

| = ex
3−3xy2

.

Since |z| = 1, we have x2 + y2 = 1. Thus,

|ez
3

| = e4x
3−3x, − 1 ≤ x ≤ 1.

The maximum value of e4x
3−3x, − 1 ≤ x ≤ 1, is equal to e and is attained

at x = −1/2 and x = 1. Hence, the maximum of |ez3 | is e, which occurs at
x = −1/2, y = ±

√
3/2, and x = 1, y = 0.

Example 20.4. Consider the entire function e−iz2
= e−i(x2−y2)e2xy in

the positive quadrant S = {z = x+ iy : x ≥ 0, y ≥ 0}. Since |f(z)| = e2xy,
on the boundary of S, |f(z)| = 1; however, |f(z)| → ∞ as y = x → ∞.
Thus, the maximum modulus principle fails on unbounded domains.

An immediate application of Theorem 20.2 applied to the function g =
1/f gives the following result.

Theorem 20.3 (Minimum Modulus Principle). A function
f analytic in a bounded domain S, continuous up to and including its
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boundary, and f(z) ̸= 0 for all z ∈ S, attains its minimum modulus on the
boundary.

A combination of Theorems 20.1-20.3 leads to the following result.

Theorem 20.4. Suppose that f is analytic in a bounded domain S,
continuous up to and including its boundary, and f(z) ̸= 0 for all z ∈ S.
Then, |f | attains a maximum M and a minimum m on the boundary, and
either f is a constant or m < |f(z)| < M for all z ∈ S.

Finally, we note that the Maximum Modulus Principle and Minimum
Modulus Principle have local versions also: Let f(z) be analytic and not
constant in a neighborhood N of z0. Then, there are points in N lying
arbitrarily close to z0, where |f(z)| > |f(z0)|; i.e., |f(z)| cannot have a
local maximum at z0. If, in addition, f(z0) ̸= 0, there are points in N lying
arbitrarily close to z0, where |f(z)| < |f(z0)|; i.e., |f(z)| cannot have a local
minimum at z0.

Problems

20.1. Find the maximum of |zez + z2| and |iz2 − 2z| on the set {z :
|z| ≤ 1 and Im z ≥ 0}.

20.2. Find the maximum of | cos z| on the square {x + iy : 0 ≤ x ≤
2π, 0 ≤ y ≤ 2π}. (Observe that | cos(0 + 2πi)| > 1).

20.3. Consider the function g(z) defined in (18.7) on the rectangle with
vertices at 0, π, i, π+ i. Find the maximum and minimum values of |g(z)|
and determine where these values occur.

20.4. Consider the function f(z) = z + 1. Find the maximum and
minimum of |f | in the closed triangle with vertices at z = 0, z = 2, and
z = i.

20.5. Suppose f(z) and g(z) are continuous in B(0, r) and analytic in
B(0, r) and that f(z) ̸= 0 and g(z) ̸= 0 for all z ∈ B(0, r). If |f(z)| = |g(z)|
for |z| = r, show that there exists a constant c such that |c| = 1 and
f(z) = cg(z) for all z in B(0, r).

Answers or Hints

20.1. |zez + z2| = |z||ez + z| ≤ |ez|+ |z| ≤ e+1 if |z| ≤ 1 (note that when
z = 1, |1 · e1 + 1| = e + 1), |iz2 − 2z| = |z||iz − 2| ≤ |iz|+ 2 ≤ 3 if |z| ≤ 1
(note that when z = i, |i · i2 − 2i| = |− 3i| = 3).
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20.2. We need only to consider either x = 0, 2π or y = 0, 2π.
| cos(x+ iy)| = | cosx cos iy − sinx sin iy|

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

| cos iy| =
∣∣∣e

−y+ey

2

∣∣∣ if x = 0, 2π

| cosx| =
∣∣∣ e

ix+e−ix

2

∣∣∣ if y = 0
∣∣∣ e

ix−2π+e−ix+2π

2

∣∣∣ if y = 2π.

Note that
∣∣∣e

ix−2π+e−ix+2π

2

∣∣∣ ≤ e−2π+e2π

2 = cos(0 + 2πi).

20.3. sinh 1, z = i; 0, z = π.
20.4. The maximum is attained at z = 2 and equals 3, whereas the mini-
mum is attained at z = 0 and equals 1.
20.5. The function h(z) = f(z)/g(z) satisfies the conditions of Theorem
20.4, and hence there exist u, v ∈ ∂B(0, r) such that |h(u)| ≤ |h(z)| ≤ |h(v)|
for all z ∈ B(0, r). But, |f(z)| = |g(z)| for z ∈ δB(0, r), and hence |h(z)| = 1
for all z ∈ B(0, r). The result now follows from Theorem 7.3.



Lecture 21
Sequences and Series

of Numbers

In this lecture, we shall collect several results for complex sequences and
series of numbers. Their proofs require essentially the same arguments as
in calculus.

A sequence of complex numbers is a function whose domain is the set of
nonnegative integers and whose range is a subset of complex numbers. We
denote a complex sequence as {zn}∞n=0. This sequence is said to have the
limit z, and we write limn→∞ zn = z, or equivalently zn → z as n→∞, if
for any ϵ > 0 there exists an integer N = N(ϵ) such that |zn − z| < ϵ for
all n > N. Intuitively, this means that as n increases the distance between
zn and z gets smaller and smaller. If {zn} has no limit, we say it diverges.

Example 21.1. (i) limn→∞ i/n = 0, (ii) {in} diverges, (iii) if z ∈ C,
then

lim
n→∞

zn =

⎧
⎨

⎩

0 if |z| < 1
1 if z = 1
divergent otherwise.

(21.1)

Example 21.2. Consider zn = 1+(−1)n(i/n), n ≥ 1. Clearly, |zn|→ 1;
however, if the principal values of the arguments are chosen, then

arg z2k = tan−1 1

2k
→ 0 and arg z2k+1 = 2π− tan−1 1

2k + 1
→ 2π.

Thus, limn→∞ arg zn does not exist.

We list the principal properties of complex sequences as follows:

P1. A convergent sequence has a unique limit.

P2. A convergent sequence is bounded.

P3. If limn→∞ zn = z and limn→∞ wn = w, and α and β are complex
numbers, then limn→∞(αzn + βwn) = αz + βw.

P4. If limn→∞ zn = z and limn→∞ wn = w, then limn→∞(znwn) =
limn→∞ zn × limn→∞ wn = zw.

P5. If limn→∞ zn = z and limn→∞ wn = w, then limn→∞(zn/wn) =
limn→∞ zn/ limn→∞ wn = z/w, provided w ̸= 0.

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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P6. If limn→∞ zn = z, then limn→∞ zn = z and limn→∞ |zn| =
| limn→∞ zn| = |z|.

P7. If zn = xn + iyn, n ≥ 0 and z = x+ iy, then limn→∞ zn = z if and
only if xn → x and yn → y.

P8. If limn→∞ zn = 0 and |wn| ≤ |zn|, n ≥ 0, then limn→∞ wn = 0.

P9. If limn→∞ zn = 0 and {wn} is a bounded sequence, then
limn→∞ wnzn = 0.

P10. From any bounded sequence, it is possible to extract a convergent
subsequence.

P11. A sequence {zn} is called a Cauchy sequence if for any ϵ > 0 there
exists an integer N > 0 such that n, m ≥ N ⇒ |zn−zm| < ϵ. The sequence
{zn} is convergent if and only if it is a Cauchy sequence.

P12. (Heine’s Criterion). Let f be a function defined in a neighborhood
of z. The function f is continuous at z if and only if for any sequence {zn}
converging to z the condition limn→∞ f(zn) = f(z) holds.

A point z is called a limit point (or an accumulation point) of the se-
quence {zn} if for every neighborhood N(z) there exists a subsequence
{znk} for which all terms belong to N(z). Alternatively, z is said to be
a limit point of {zn} if every neighborhood N(z) contains infinitely many
terms of {zn}. From P10, in particular, it follows that every bounded real
sequence {an} has at least one limit point. For example, for the sequence
{(−1)n}, − 1 and 1 are the limit points. An unbounded sequence may
not have a limit point; e.g. {

√
n}; however, an unbounded real sequence

{an} has at least one limit point if we allow the values +∞ and −∞.
This means that the real sequence {an} has +∞ as a limit point if it
contains arbitrarily large positive terms, and −∞ as a limit point if it con-
tains negative terms of arbitrarily large absolute value. Clearly, for the
sequence {1, 1, 2, 1, 2, 3, 1, 2, 3, 4, · · ·}, each natural number is a limit point.
The largest (smallest) limit point of the (bounded or unbounded) real se-
quence {an} is called the limit superior or upper limit (limit inferior or
lower limit) and is denoted as lim supn→∞ an (lim infn→∞ an). For exam-
ple, the sequence {an} defined by un = (−1)n(3 + 1/n) is bounded with
lower bound −4 and upper bound 7/2. For this sequence, the limit points
are −3 and 3, and hence lim supn→∞ an = 3 and lim infn→∞ an = −3.
For the sequence {1, 1, 2, 1, 2, 3, 1, 2, 3, 4, · · ·}, lim supn→∞ an = ∞ and
lim infn→∞ an = 1. For a real bounded sequence {an}, it follows that
limn→∞ an = a if and only if lim infn→∞ an = a = lim supn→∞ an. For
an unbounded real sequence {an}, we have limn→∞ an = ∞ if and only if
lim infn→∞ an =∞ = lim supn→∞ an, and limn→∞ an = −∞ if and only if
lim infn→∞ an = −∞ = lim supn→∞ an. Now let {an} and {bn} be bounded
sequences of real numbers. For these sequences, it can easily be shown that:

(1). If an ≤ bn, n ∈ N , then lim supn→∞ an ≤ lim supn→∞ bn and
lim infn→∞ an ≤ lim infn→∞ bn.
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(2). lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn.

(3). lim infn→∞(an + bn) ≥ lim infn→∞ an + lim infn→∞ bn.

In (2) and (3), the inequality sign cannot be replaced by equality. For
this it suffices to consider an = (−1)n and bn = (−1)n+1.

A series is a formal expression of the form z0 + z1 + · · · or, equiva-
lently,

∑∞
j=0 zj , where the terms zj are complex numbers. The nth partial

sum of the series, denoted by sn, is the sum of the first n + 1 terms; i.e.,
sn =

∑n
j=0 zj . If the sequence of partial sums {sn}∞n=0 has a limit s, the

series is said to converge, or sum, to s, and we write s =
∑∞

j=0 zj . A series

that does not converge is said to diverge. The series
∑∞

j=0 zj is said to

be absolutely convergent provided that the series of magnitudes
∑∞

j=0 |zj |
converges. For example, the series

∑∞
j=0(−i)j/(j + 1)2 converges abso-

lutely. A complex series that is convergent but not absolutely convergent is
called conditionally convergent. For example, the series

∑∞
j=0(−1)j/(j+1)

converges conditionally.

Example 21.3. Consider the geometric series
∑∞

j=0 ac
j , where |c| < 1.

From Lemma 19.2, we have

a

1− c
− (a + ac+ ac2 + · · ·+ acn) =

acn+1

1− c
.

Since |c| < 1, the term |a||c|n+1/|1− c| converges to 0 as n→∞. Thus, the
geometric series converges to a/(1− c).

The following properties of complex series are similar to those of real
series:

Q1. If
∑∞

j=0 zj converges, then limn→∞ zn = 0.

Q2. If
∑∞

j=0 zj converges, then limm→∞
∑∞

n=m+1 zn = 0.

Q3. If
∑∞

j=0 zj converges, then there exists a real constantM such that
|zj | ≤M for all j.

Q4. If
∑∞

j=0 zj and
∑∞

j=0 wj converge, and α and β are complex num-

bers, then
∑∞

j=0(αzj + βwj) = α
∑∞

j=0 zj + β
∑∞

j=0 wj .

Q5. If zj = xj + iyj and s = u+ iv, then
∑∞

j=0 zj converges to s if and

only if
∑∞

j=0 xj = u and
∑∞

j=0 yj = v.

Q6. If
∑∞

j=0 zj converges absolutely, then it converges; however, the
converse is not true.

Q7. If
∑∞

j=0 zj converges absolutely, then its every rearrangement is
absolutely convergent and converges to the same limit.

Q8. The series
∑∞

j=0 zj converges if and only if for any given ϵ > 0
there exists an N > 0 such that m > n ≥ N implies |sm − sn| = |zn+1 +
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zn+2 + · · · + zm| < ϵ. This is known as Cauchy’s criterion.

Q9. (Comparison Test). If |zj| ≤ aj for all j and
∑∞

j=0 aj converges,

then
∑∞

j=0 zj converges.

Q10. (Cauchy’s Root Test). If ρ = limj→∞ |zj|1/j either exists or is
infinite, then the series

∑∞
j=0 zj converges absolutely if ρ < 1 and diverges

if ρ > 1. If ρ = 1 the test is inconclusive.

Q11. (d’Alembert’s Ratio Test). If limj→∞ |cj+1/cj| = ρ, then the series∑∞
j=0 zj converges absolutely if ρ < 1 and diverges if ρ > 1. If ρ = 1 the

test is inconclusive.

Now let
∑∞

j=0 zj and
∑∞

j=0 wj be given series. The Cauchy product of

these series is defined to be the new series
∑∞

j=0 tj , where

tj = z0wj + z1wj−1 + · · ·+ zj−1w1 + zjw0 =
j∑

k=0

zkwj−k =
j∑

k=0

zj−kwk.

(21.2)

The following example shows that the Cauchy product of two convergent
series need not be convergent.

Example 21.4. The series
∑∞

j=0 zj and
∑∞

j=0 wj , where zj = wj =

(−1)j(j + 1)−1/2, are convergent. The Cauchy product of these series is∑∞
j=0 tj, where

tj = (−1)j
j∑

k=0

(k + 1)−1/2(j + 1− k)−1/2.

Now since from the arithmetic-geometric mean inequality

√
(k + 1)(j + 1− k) ≤ k + 1 + j + 1− k

2
=

j + 2

2
,

we find

(k + 1)−1/2(j + 1− k)−1/2 ≥ 2

j + 2
.

Thus, it follows that

(−1)jtj ≥ (j + 1)
2

j + 2
> 1 for all j > 0.

Hence, tj does not tend to zero as j → ∞. This shows that the Cauchy
product of these series diverges.
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Q12. If
∑∞

j=0 zj and
∑∞

j=0wj converge to z and w, respectively, and
their Cauchy product converges, then

∞∑

j=0

tj =

⎛

⎝
∞∑

j=0

zj

⎞

⎠

⎛

⎝
∞∑

j=0

wj

⎞

⎠ = zw. (21.3)

However, if
∑∞

j=0 zj and
∑∞

j=0 wj converge absolutely to z and w, respec-
tively, then their Cauchy product also converges absolutely, and (21.3)
holds.

Problems

21.1. Discuss the convergence of the following sequences:

(a).

{
3n+ 2(i)n

n

}
, (b).

{(
1 + i√

2

)n}
, (c).

{
3n+ 7ni

2n+ 5i

}
.

21.2. Discuss the convergence of the following series:

(a).
∞∑

j=0

ij

(j + 1)2
, (b).

∞∑

j=0

(1 + 3i)j

5j
,

(c).
∞∑

j=0

(
cos

jπ

5
+ i sin

jπ

5

)
, (d).

∞∑

j=0

2ij

5 + ij2
.

21.3. Examine the series
∑∞

j=0 zj for its convergence or divergence,
where zj are recursively defined as

z0 = 1 + i, zj+1 =
(2 + 3i)j

7 + 5ij2
zj.

21.4. If 0 ≤ r < 1, show that

(a).
∞∑

j=0

rj cos jθ =
1− r cos θ

1 + r2 − 2r cos θ
, (b).

∞∑

j=0

rj sin jθ =
r sin θ

1 + r2 − 2r cos θ
.

21.5. If limn→∞ zn = z, show that limn→∞(z0+z1+ · · ·+zn)/(n+1) =
z.

21.6. Prove that if
∑∞

j=0 zj converges and |arg zj | ≤ θ < π/2, then it
converges absolutely.

21.7. Suppose that
∑∞

j=0 zj and
∑∞

j=0 z
2
j are convergent and Re zj ≥ 0.

Show that
∑∞

j=0 |zj |2 converges.



Sequences and Series of Numbers 143

21.8. A metric space (S, d) is said to be complete if every Cauchy
sequence in S converges. Show that (C, d) with any metric d is complete.

21.9. The function f : S → C is said to be uniformly continuous on S
if for every given ϵ > 0 there exists a δ = δ(ϵ) > 0 such that |z − w| < δ
implies |f(z)− f(w)| < ϵ for all z, w ∈ S. Show that:

(a). The function f(z) = 1/z is continuous on S = {z : 0 < |z| < 1}, but
not uniformly continuous.

(b). If S is compact and f(z) is continuous on S, then it is uniformly
continuous.

Answers or Hints

21.1. (a). Converges to 3, (b). in polar form limn→∞ ei nπ/4 oscillates, and
hence diverges, (c). converges to (3 + 7i)/2.
21.2. (a). Absolutely convergent, (b). geometric series 5/(4− 3i), (c). di-
vergent, (d). absolutely convergent.
21.3. Absolutely convergent.
21.4. In Example 21.3, let a = 1, c = reiθ .
21.5. Writing wn = zn−z, this is equivalent to showing that if limwn = 0,
then lim(w0 + w1 + · · · + wn)/(n + 1) = 0. Given ε > 0, there are N1 ≥ 1
and N2 such that n ≥ N1 implies |wn| < ε/2 and

n ≥ N2 ⇒
|w0+w1+···+wN1−1|

n+1 < ε
2 .

Then, by the triangle inequality,

n ≥ max{N1, N2} ⇒ |w0+w1+···+wn|
n+1 ≤ |w0+w1+···+wN1−1|

n+1

+
|wN1 |+···+|wn|

n+1 < ε
2 + n−N1+1

n+1
ε
2 < ε.

21.6. Writing zj = xj + iyj = rj eiθj , since xj > 0, |yj | = xj | tan θj | ≤
xj tan θ, and

∑
xj converges,

∑
|yj | also converges. Since |zj| ≤ |xj |+ |yj |

by the triangle inequality, then
∑

|zj| converges.
21.7. Writing zj = xj + iyj, since

∑
xj converges and xj ≥ 0, {xj} is

bounded, say, xj ≤ M . Then 0 ≤ x2j ≤ Mxj , so
∑

x2j also converges.
Since z2j = x2j − y2j +2ixy,

∑
(x2

j − y2j ) converges. Then so does
∑

y2j since
y2j = x2j − (x2j − y2j ). Since |zj |2 = x2

j + y2j , then
∑

|zj |2 also converges.
21.8. We will show that C with the Euclidean metric is complete. Let
{zn} be a Cauchy sequence in C, so that for ϵ > 0 there is an N such that
|zn− zm| < ϵ for n,m ≥ N. Let zn = xn + iyn. Since |xn − xm| < |zn− zm|
and |yn − ym| < |zn − zm| for all n,m, we find that {xn} and {yn} are real
Cauchy sequences. They both converge since IR is complete, say to p and
q, respectively. Then, it follows that {zn} converges to p+ iq ∈ C.
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21.9. (a). Let z = δ (0 < δ < 1) and ϵ = δ/(1 + ϵ). Then, |z − w| < δ,
but |f(z)− f(w)| = ϵ/δ > ϵ. (b). Suppose not. Then there exists a z0, and
for each n there are points zn and wn in S such that |zn − wn| < 1/n and
|f(zn)− f(wn)| ≥ ϵ0. Now, since S is compact, there exists a subsequence
zn1 , zn2 , · · · and a point z∗ ∈ S such that z∗ = limk→∞ znk . Since |z∗ −
wnk | ≤ |z∗ − znk |+ 1/nk, it is clear that z∗ = limk→∞ wnk . Thus, from the
continuity of f(z), we have f(z∗) = limk→∞ f(znk) = limk→∞ f(wnk). Now
notice that in ϵ0 ≤ |f(znk)− f(wnk)| ≤ |f(znk)− f(z∗)|+ |f(z∗)− f(wnk)|
the right-hand side tends to zero.



Lecture 22
Sequences and Series

of Functions

In this lecture, we shall prove some results for complex sequences and
series of functions. These results will be needed repeatedly in later lectures.

Let {fn(z)}∞n=0 be a sequence of complex functions defined on a domain
S ⊆ C. Suppose that for any z ∈ S the complex sequence {fn(z)} converges.
Define f(z) = limn→∞ fn(z) for any z ∈ S. We say {fn(z)} converges
to f(z) pointwise on S. The sequence {fn(z)} is said to converge to f(z)
uniformly on S if for every ϵ > 0 there exists an integer N > 0 such that
n ≥ N implies |fn(z)− f(z)| < ϵ for all z ∈ S; i.e., the same N works for
all points z ∈ S. The series

∑∞
j=0 fj(z) converges uniformly to s(z) on S if

the sequence of its partial sums; i.e., sn(z) =
∑n

j=0 fj(z), n ≥ 0 converges
uniformly to s(z) there. For the sequences and series of functions we shall
prove the following results.

Theorem 22.1 (Cauchy’s Criterion). The sequence {fn(z)}
converges uniformly on a domain S to f(z) if and only if for any ϵ > 0
there exists an N(ϵ) such that, for all z ∈ S, n ≥ N, and any natural
number m, the inequality

|fn+m(z)− fn(z)| < ϵ (22.1)

holds.

Proof. If {fn(z)} converges uniformly on S, then for any ϵ > 0 there
exists an N = N(ϵ) such that, for all z ∈ S, n ≥ N, and any natural
number m,

|fn(z)− f(z)| <
ϵ

2
and |fn+m(z)− f(z)| <

ϵ

2
.

Thus, from the triangle inequality, we find

|fn+m(z)− fn(z)| ≤ |fn+m(z) − f(z)|+ |f(z)− fn(z)| <
ϵ

2
+
ϵ

2
= ϵ.

Conversely, if (22.1) holds, then in view of P11 (Lecture 21), for any fixed
z ∈ S, the sequence {fn(z)} converges. Define f(z) = limn→∞ fn(z). Then,
we have

lim
m→∞

|fn+m(z)− fn(z)| = |f(z)− fn(z)| ≤ ϵ

R.P. Agarwal et al., An Introduction to Complex Analysis, 
DOI 10.1007/978-1-4614-0195-7_22, © Springer Science+Business Media, LLC 2011 

145



146 Lecture 22

for n ≥ N at all points on S; i.e., the convergence is uniform.

Example 22.1. Let fn(z) = zn, f(z) ≡ 0. Then,

(i). fn → f pointwise on the open disk B(0, 1),

(ii). fn → f uniformly on the closed disk B(0, r), 0 < r < 1, and

(iii). fn ̸→ f uniformly on B(0, 1).

Example 22.2. Let fn(z) = 1/(1 + nz), f(z) ≡ 0. Then, for |z| ≥ 2,
we find ∣∣∣∣

1

1 + nz

∣∣∣∣ ≤
1

n|z|− 1
≤ 1

2n− 1
≤ 1

n
,

i.e., the convergence is uniform. We also note that this sequence for |z| ≤ 1
and Re z ≥ 0 converges pointwise but not uniformly. For this, clearly
f(0) = 1 and f(z) = 0, z ̸= 0 is the pointwise limit of this sequence.

Corollary 22.1. The series
∑∞

j=0 fj(z) converges uniformly on a do-

main S to s(z); i.e.,
∑∞

j=0 fj(z) = s(z) if and only if for any ϵ > 0 there
exists an N(ϵ) such that, for all z ∈ S, n ≥ N, and any natural number m,
the inequality |sn+m(z)− sn(z)| < ϵ holds.

Example 22.3. The series
∑∞

j=0 z
j does not converge uniformly on

B(0, 1). In fact, since

|sn+m(z)− sn(z)| = |zn+1(1 + z + · · ·+ zm−1)|

=
|z|n+1||1− zm|

|1− z|
≥ |z|n+1|(1− |z|m)

|1− z|
,

letting m = n and zn = (n− 1)/n, and recalling that limn→∞(1− 1/n)n =
1/e, we find

|s2n(zn)−sn(zn)| ≥ n

(
1− 1

n

)n+1 [
1−

(
1− 1

n

)n]
→ ∞ as n→∞.

Theorem 22.2. If the sequence {fn(z)} converges uniformly on a
domain S to f(z) and each fn(z) is continuous on S, then f(z) is continuous
on S.

Proof. Let z0 be any point in S. Then, for z ̸= z0, we have

|f(z)−f(z0)| ≤ |fn(z)−f(z)|+ |fn(z)−fn(z0)|+ |fn(z0)−f(z0)|. (22.2)

Since {fn(z)} is uniformly convergent on S, given any ϵ > 0, there is an
N = N(ϵ) such that |fn(z)− f(z)| < ϵ/3 for all n ≥ N and z ∈ S. Thus, in
particular, |fn(z0)− f(z0)| < ϵ/3 for all n ≥ N. Furthermore, since fn(z) is
continuous at z0 ∈ S, we can choose δ > 0 such that |fn(z)− fn(z0)| < ϵ/3
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if |z− z0| < δ. Using these bounds in (22.2), we find that |f(z)− f(z0)| < ϵ
if |z − z0| < δ; i.e., f(z) is continuous at z0.

Corollary 22.2. If the series
∑∞

j=0 fj(z) converges uniformly on a
domain S to s(z) and each fn(z) is continuous on S, then s(z) is continuous
on S.

Theorem 22.3. Let {fn(z)} be a sequence of functions continuous on
a domain S containing the contour γ, and suppose that {fn(z)} converges
uniformly to f(z) on S. Then, the following holds:

lim
n→∞

∫

γ
fn(z)dz =

∫

γ
lim

n→∞
fn(z)dz =

∫

γ
f(z)dz.

Proof. Let L be the length of γ. Choose N large enough so that |f(z)−
fn(z)| < ϵ/L for any n ≥ N and for all z on γ. Then, from Theorem 13.1,
we have
∣∣∣∣

∫

γ
f(z)dz −

∫

γ
fn(z)dz

∣∣∣∣ =

∣∣∣∣

∫

γ
[f(z)− fn(z)]dz

∣∣∣∣ <
ϵ

L
L = ϵ.

Theorem 22.4 (Weierstrass’s M-Test). Let
∑∞

j=0 Mj be a
convergent series of positive numbers. Suppose that |fj(z)| ≤ Mj for all
z on a domain S and j ≥ 0. Then,

∑∞
j=0 fj(z) converges uniformly and

absolutely on S.

Proof. Since
∑∞

j=0Mj converges, from Q8 (Lecture 21) it follows that
for any given ϵ > 0 there exists an N = N(ϵ) such that, for all n ≥
N and positive integer m, |Mn+1 + Mn+2 + · · · + Mn+m| < ϵ. But then
|sn+m(z)−sn(z)| ≤ |fn+1(z)|+|fn+2(z)|+· · ·+|fn+m(z)| ≤Mn+1+Mn+2+
· · · +Mn+m < ϵ for all n ≥ N, m > 0, and z ∈ S. The result now follows
from Corollary 22.1.

Theorem 22.5. If
∑∞

j=0 fj(z) converges uniformly to s(z) on a domain
S, then for any contour γ in S the following holds

∫

γ

∞∑

j=0

fj(z)dz =
∞∑

j=0

∫

γ
fj(z)dz. (22.3)

Proof. Since the partial sums sn(z) =
∑n

j=0 fj(z), n ≥ 0 converge to
s(z) uniformly on S, from Theorem 22.3 it follows that

lim
n→∞

∫

γ
sn(z)dz =

∫

γ
s(z)dz.
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Now it suffices to note that

lim
n→∞

∫

γ
sn(z)dz = lim

n→∞

∫

γ

n∑

j=0

fj(z)dz = lim
n→∞

n∑

j=0

∫

γ
fj(z)dz =

∞∑

j=0

∫

γ
fj(z)dz

and ∫

γ
s(z)dz =

∫

γ

∞∑

j=0

fj(z)dz.

Theorem 22.6. Let {fn(z)} be a sequence of analytic functions on a
domain S. If fn(z)→ f(z) uniformly on S, then f(z) is analytic on S.

Proof. Let z0 ∈ S. Since S is open, there exists an r > 0 such that the
open disk B(z0, r) ⊆ S. Let γ be a closed contour in B(z0, r). Then, by
Theorem 22.3, we have

lim
n→∞

∫

γ
fn(z)dz =

∫

γ
f(z)dz.

Since, for each n, fn(z) is analytic in S,
∫
γ fn(z)dz = 0.Hence,

∫
γ f(z)dz =

0. By Theorem 22.2, f(z) is continuous on S. Therefore, by Theorem 18.4,
f(z) is analytic in B(z0, r). Since z0 ∈ S is arbitrary, f(z) is analytic in
S.

Corollary 22.3. Let {fn(z)} be a sequence of analytic functions on
a domain S. If

∑∞
j=0 fj(z) converges to s(z) uniformly on S, then s(z) is

analytic on S.

To prove our next result, we need the following elementary lemma.

Lemma 22.1. Suppose that the sequence {fn(z)} (series
∑∞

j=0 fj(z))
converges uniformly to f(z) (s(z)) on a compact set S, and g(z) is a con-
tinuous function on S. Then, {g(z)fn(z)} (

∑∞
j=0 g(z)fj(z)) converges to

g(z)f(z) (g(z)s(z)) uniformly on S.

Theorem 22.7. Let {fn(z)} be a sequence of analytic functions on a
domain S. If fn(z) → f(z) uniformly on every compact subset of S, then,

for any k ≥ 1, f (k)
n (z) → f (k)(z) for all z ∈ S; i.e., the limit of the kth

derivative is the kth derivative of the limit. Moreover, for each k ≥ 1, the

differentiated sequence {f (k)
n (z)} converges to f (k)(z) uniformly on every

compact subset of S.

Proof. Let z0 ∈ S and γ be a positively oriented closed contour in S.
From (18.6), we have

f (k)(z0) =
k!

2πi

∫

γ

f(z)

(z − z0)k+1
dz and f (k)

n (z0) =
k!

2πi

∫

γ

fn(z)

(z − z0)k+1
dz.
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Now, since fn(z) → f(z) uniformly on γ and 1/(z − z0)k+1 is continuous
on γ, from Lemma 22.1 it follows that

fn(z)

(z − z0)k+1
−→ f(z)

(z − z0)k+1

uniformly on γ. Thus, we can apply Theorem 22.3 to obtain

f (k)
n (z0) =

k!

2πi

∫

γ

fn(z)

(z − z0)k+1
dz −→ f (k)(z0) =

k!

2πi

∫

γ

f(z)

(z − z0)k+1
dz.

Now let S1 be a compact subset of S, and in S let γ be a positively ori-
ented closed contour containing S1 so that the shortest distance d between
S1 and γ is positive; i.e., for all ξ ∈ γ and z ∈ S1, |ξ − z| ≥ d > 0. Then,
from (18.4), for all z ∈ S1 it follows that

|f (k)
n (z)− f (k)(z)| =

∣∣∣∣
k!

2πi

∫

γ

fn(ξ)− f(ξ)

(ξ − z)k+1
dξ

∣∣∣∣

≤ k!

2πdk+1
L(γ) max

ξ∈{γ}
|fn(ξ)− f(ξ)|.

Finally, since fn(ξ) → f(ξ) uniformly on every compact subset of S, from

the inequality above it follows that f
(k)
n (z)→ f (k)(z) uniformly on S1.

Corollary 22.4. Let {fn(z)} be a sequence of analytic functions on
a domain S. If

∑∞
j=0 fj(z) converges to s(z) uniformly on every compact

subset of S, then for any k ≥ 1 and all z ∈ S,

∞∑

j=0

f (k)
j (z) = s(k)(z), (22.4)

i.e., the series may be differentiated term-by-term. Moreover, for each k,
the convergence in (22.4) is uniform on every compact subset of S.

Problems

22.1. Check for the pointwise and uniform convergence of the series∑∞
j=0 fj(z) on the given domain, where fj(z) is

(a).
zj

(j + 1)(j + 2)
, |z| ≤ 1, (b).

1

(z + j + 1)2
, Re z > 0,

(c).
1

(1 + j2 + z2)
, 1 < |z| < 2, (d).

1

(1 + j2z2)
, |z| ≤ 1.
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22.2. Does the sequence of functions

fn(z) =

{
n|z| if |z| ≤ 1/n

1 if 1/n ≤ |z| ≤ 1

converge uniformly on the unit disk B(0, 1) ?

22.3. Prove that Theorem 22.7 does not hold if S is assumed to be an
arbitrary set instead of a domain.

22.4. Suppose that {fn(z)} converges to f(z) pointwise on a domain
S. For each n ≥ 0, let

sup{|fn(z)− f(z)| : z ∈ S} = Mn.

Show that {fn(z)} converges to f(z) uniformly on S if and only if
limn→∞ Mn = 0.

22.5. Let the functions fn(z) be analytic on a domain S and continuous
on S, and let the series

∑∞
j=0 fj(z) converge uniformly on the boundary γ

of S. Show that the series
∑∞

j=0 fj(z) converges uniformly on S.

Answers or Hints

22.1. (a). For all |z| ≤ 1, |fj(z)| ≤ 1/(j+1)2, and hence the convergence is
uniform. (b). For all Re z > 0, |x+iy+j+1|2 = (x+j+1)2+y2 > (j+1)2.
(c). For j ≥ 4, |1 + j2 + z2| > 1 + j2 − 4 > (j + 1)2/2, and hence the
convergence is uniform. (d). fj(z)→ 0 if z ̸= 0 and 1 if z = 0, and hence
from Theorem 22.2 the convergence is only pointwise.
22.2. Each fn(z) is continuous on |z| ≤ 1; however, the limiting function

limn→∞ fn(z) =

{
1 if 0 < |z| ≤ 1
0 if z = 0

is not continuous. Hence, in view of

Theorem 22.2, the convergence is not uniform.
22.3. The sequence {(sinnx)/n} converges uniformly to zero on the real
axis; however, the sequence of its derivative {cosnx} converges only at
x = 0. Thus, the sequence {(sinnz)/n} cannot converge uniformly on any
domain containing points of the real axis.
22.4. See the definition of uniform convergence.
22.5. Clearly, the function sn+m(z)− sn(z), being a finite sum of analytic
functions, is analytic on S and continuous on S. From the uniform con-
vergence on γ, Corollary 22.1 gives |sn+m(z) − sn(z)| = |fn+m(z) + · · · +
fn+1(z)| < ϵ for n ≥ N for any natural number m and all z ∈ {γ}. Now,
by Theorem 20.2, it follows that |sn+m(z) − sn(z)| < ϵ for n ≥ N for any
natural number m and all z ∈ S.



Lecture 23
Power Series

Power series are a special type of series of functions that are of funda-
mental importance. For a given power series we shall introduce and show
how to compute its radius of convergence. We shall also show that within
its radius of convergence a power series can be integrated and differentiated
term-by-term.

An infinite series of the form

∞∑

j=0

aj(z − z0)
j = a0 + a1(z − z0) + · · ·+ aj(z − z0)

j + · · · (23.1)

is called a power series, with z0 as the point of expansion. The constants
aj are called the coefficients of the power series. It is clear that this series
converges at z = z0; it may converge for all z, or it may converge for some
values of z and not for others. If it converges absolutely for |z − z0| < R
and diverges for |z− z0| > R, then R is called the radius of convergence. It
is clear that this R is unique. If (23.1) converges nowhere except at z0, we
define R to be zero; if (23.1), converges for all z, we say R is infinite. On
the circle of convergence; i.e., |z − z0| = R, the series (23.1) may converge
at some, all, or none of the points. The following result determines the
domain of convergence of (23.1).

Theorem 23.1. If (23.1) converges at z = z1 (̸= z0), then it converges
absolutely and uniformly in the closed disk B(z0, r), where r < |z1 − z0|.

Proof. Since the series (23.1) converges at z = z1, aj(z1 − z0)j → 0 as
j →∞. Consequently, there exists a constant M such that |aj ||z1 − z0|j ≤
M, j ≥ 0. Let z be an arbitrary point such that |z − z0| ≤ r < |z1 − z0|;
i.e.,

|z − z0|
|z1 − z0|

= ρ < 1.

But then

|aj ||z − z0|j ≤ M
|z − z0|j
|z1 − z0|j

= Mρj, j ≥ 0.

Now, since in view of Example 21.3 the geometric series
∑∞

j=0 Mρj con-
verges, from Weierstrass’sM -test it follows that (23.1) converges absolutely
and uniformly in the closed disk B(z0, r).
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Corollary 23.1. If (23.1) diverges at some point z = z1, then it
diverges at all points z that satisfy the inequality |z − z0| > |z1 − z0|.

Corollary 23.2. Let R be the radius of convergence of (23.1). For each
0 < R1 < R, the series converges uniformly on the closed disk B(z0, R1).

Example 23.1. From Example 21.3 and Theorem 23.1, it follows that
the geometric series

∞∑

j=0

zj = 1 + z + z2 + · · ·+ zj + · · · , (23.2)

which is in fact a power series with z0 = 0, aj = 1, converges absolutely
and uniformly on |z| ≤ r < 1 to the analytic function 1/(1 − z). Since at
z = 1 the series (23.2) diverges, from Corollary 23.1 we find that it diverges
on |z| > 1. Thus, the radius of convergence of (23.2) is R = 1. If |z| = 1,
then the terms of (23.2) do not tend to zero, and hence it also diverges on
|z| = 1.

From Theorem 23.1 and Corollary 23.1, it is clear that the radius of
convergenceR of (23.1) is the least upper bound of the distances |z−z0| from
the point z0 to the point z at which the series (23.1) converges. However,
for the computation of R, one of the following methods is usually employed:

d’Alembert’s Ratio Test. R = (limj→∞ |aj+1/aj |)−1 , provided the limit
exists.

Cauchy’s Root Test. R =
(
limj→∞ |aj |1/j

)−1
, provided the limit exists.

Cauchy-Hadamard Formula. R =
(
lim supj→∞ |aj |1/j

)−1
; this limit

always exists.

Example 23.2. Since in (23.2), aj = 1, the ratio test confirms its
radius of convergence R = 1. Similarly, for the series

∑∞
j=0 z

j+2/(j+1), we
have |aj+1/aj | = |(j − 1)/j| → 1 as j → ∞. Thus, for this series also, the
radius of convergence R = 1. This series diverges at z = 1 and converges
at z = −1. For the series

∑∞
j=0(−1)j(z − 2 − 3i)j+1/(j + 1)!, we have

|aj+1/aj| = 1/(j + 2) → 0 as j → ∞. Thus, the radius of convergence
R =∞.

Example 23.3. For the series
∑∞

j=0(j + 1)j(z + i)j, we have |aj |1/j =
(j+1)→∞ as j →∞, and hence by the root test its radius of convergence
R = 0; i.e., it converges only at z = −i. For the series

∑∞
j=0(z−3−2i)j/(j+

1)j , the root test gives R = ∞, whereas for the series
∑∞

j=0[(j + 1)/(2j +

3)]j(z − 2− i)j , R = 2.

Example 23.4. In the series
∑∞

j=0 z
2j/2j, a2m = 1/2m and a2m+1 = 0.

Thus, |aj |1/j = 0 if j is odd and |aj |1/j = (1/2m)1/2m = 1/
√
2 if j = 2m.
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Hence, lim supj→∞ |aj |1/j = 1/
√
2. Therefore, by the Cauchy-Hadamard

formula, R =
√
2.

We shall now prove the following theorem.

Theorem 23.2. Let R be the radius of convergence of (23.1).

(I). s(z) =
∑∞

j=0 aj(z − z0)j is an analytic function on B(z0, R).

(II). (Term-by-Term Integration). If γ is a contour in B(z0, R) and g(z)
is a continuous function on γ, then

∫

γ
g(z)s(z)dz =

∫

γ
g(z)

∞∑

j=0

aj(z − z0)
jdz =

∞∑

j=0

aj

∫

γ
g(z)(z − z0)

jdz.

(23.3)
In particular, if g(z) ≡ 1, then

∫

γ

∞∑

j=0

aj(z − z0)
jdz =

∞∑

j=0

aj

∫

γ
(z − z0)

jdz. (23.4)

(III). (Term-by-Term Differentiation).

s′(z) =
d

dz

∞∑

j=0

aj(z − z0)
j =

∞∑

j=1

jaj(z − z0)
j−1. (23.5)

The radius of convergence of the series
∑∞

j=1 jaj(z − z0)j−1 is also R.

Proof. (I). Let z1 ∈ B(z0, R). Choose any r such that |z1−z0| < r < R.
Then, sn(z) =

∑n
j=0 aj(z − z0)j → s(z) uniformly on B(z0, r) by Theorem

23.1. Now, since each term of the series aj(z − z0)j is entire, the function
s(z) is analytic on B(z0, r) by Corollary 22.3. Hence, in particular, s(z) is
analytic at z1.

(II). Let 0 < r < R be such that {γ} ⊂ B(z0, r). Then, by Theorem 23.1,
sn(z)→ s(z) uniformly on B(z0, r). Since {γ} is a closed subset of B(z0, r),
from Lemma 22.1 it follows that g(z)sn(z) → g(z)s(z) uniformly on {γ}.
Now, from Theorem 22.3, we have

lim
n→∞

∫

γ
g(z)sn(z)dz =

∫

γ
lim

n→∞
g(z)sn(z)dz,

and hence
∞∑

j=0

aj

∫

γ
g(z)(z − z0)

jdz =

∫

γ
g(z)s(z)dz.
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(III). Let z ∈ B(z0, R), and let γr = {ξ : |ξ − z| = r} ⊂ B(z0, R). Then,
from part (II) with g(ξ) = 1/[2πi(ξ − z)2], it follows that

1

2πi

∫

γr

s(ξ)

(ξ − z)2
dξ =

∞∑

j=0

aj
1

2πi

∫

γr

(ξ − z0)j

(ξ − z)2
dξ.

Now, from (18.3), we have

s′(z) =
∞∑

j=0

aj
d

dz
(z − z0)

j =
∞∑

j=1

jaj(z − z0)
j−1.

Finally, since

lim
j→∞

∣∣∣∣
(j + 1)aj+1

jaj

∣∣∣∣ = lim
j→∞

∣∣∣∣
j + 1

j

∣∣∣∣ limj→∞

∣∣∣∣
aj+1

aj

∣∣∣∣ = lim
j→∞

∣∣∣∣
aj+1

aj

∣∣∣∣ ,

the radius of convergence of the series
∑∞

j=1 jaj(z − z0)j−1 is also R.

Corollary 23.3. Let R be the radius of convergence of (23.1). Then,
s(z) =

∑∞
j=0 aj(z − z0)j is infinitely differentiable for all z ∈ B(z0, R). In

fact, for any k,

s(k)(z) =
∞∑

j=k

j(j − 1) · · · (j − k + 1)aj(z − z0)
j−k . (23.6)

Remark 23.1. From (23.6), it immediately follows that ak = s(k)(z0)/k!,
k = 0, 1, · · · .

Example 23.5. From Example 23.1, we have
∑∞

j=0 z
j = 1/(1−z), z ∈

B(0, 1). Applying Theorem 23.2 (III) to differentiate the series term-by-
term, it follows that

1 + 2z + 3z2 + · · · =
∞∑

j=0

(j + 1)zj =
1

(1− z)2
.

Example 23.6. We shall show that on B(0, 1),

Log (1 + z) =
∞∑

j=0

(−1)j z
j+1

j + 1
= z − z2

2
+

z3

3
+ · · · . (23.7)

For this, let s(z) be the right-hand side of (23.7). Since limj→∞ |aj+1/aj| =
limj→∞ |j/(j+1)| = 1, the radius of convergence of s(z) is 1.Using Theorem
23.2 (III), we find

s′(z) = 1− z + z2 − z3 − · · · = (1 + z)−1 =
d

dz
Log (1 + z) (23.8)
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on B(0, 1); i.e., [s(z) − Log (1 + z)]′ = 0. The relation (23.7) now follows
from Theorem 7.2 and the fact that s(0) − Log 1 = 0. Clearly, (23.7) also
follows if we begin with (23.8) and use Theorem 23.2 (II) to integrate the
series term-by-term along any path connecting 0 and z ∈ B(0, 1).

We conclude this lecture by stating the following theorem.

Theorem 23.3. Assume that the power series f(z) =
∞∑

j=0

aj(z − z0)
j

and g(z) =
∞∑

j=0

bj(z − z0)
j have the radius of convergence R1 and R2,

respectively. Then,

(i). f(z) ± g(z) =
∞∑

j=0

(aj ± bj)(z − z0)
j and f(z)g(z) =

∞∑

j=0

cj(z − z0)
j ,

where cj =
j∑

k=0

akbj−k =
j∑

k=0

aj−kbk, have the radius of convergence R =

min{R1, R2}, and

(ii). if g(z) ̸= 0 in the disk B(z0, r) (necessarily b0 ̸= 0), then the quotient

f(z)/g(z) =
∞∑

j=0

cj(z−z0)
j , where the coefficients satisfy the equation aj =

j∑

k=0

bj−kck, has the radius of convergence R = min{r, R1, R2}.

Problems

23.1. Use the ratio test to compute the radius of convergence of the
following series:

(a).
∞∑

j=0

1

(1 + 3i)j+1
(z − 7i)j, (b).

∞∑

j=0

(j!)2

(2j)!
(z − 3− 2i)j .

23.2. Use the root test to compute the radius of convergence of the
following series:

(a).
∞∑

j=0

(
11j + 9

2j + 5

)j

(z− 2− 5i)j, (b).
∞∑

j=0

(
4j2

2j + 1
− 6j2

3j + 4

)
(z− 3i)j.

23.3. Use the Cauchy-Hadamard formula to compute the radius of
convergence of the series

∑∞
j=0 ajz

j, where
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(a). aj =

(
j∑

k=0

1

k!

)j

, (b). aj = (8 − (−3)j)j .

23.4. Suppose that (23.1) has radius of convergence R. Show that∑∞
j=0 a

2
j (z − z0)j has radius of convergence R2.

23.5. Show that

lim
n→∞

(
n!

nn

)1/n

=
1

e

and use it to find the radius of convergence of the series

1 + z +
22

2!
z2 + · · ·+ jj

j!
zj + · · · .

23.6. The Bessel function of order n is defined by

Jn(z) =
∞∑

j=0

(−1)j

j!(j + n)!

(z
2

)2j+n
.

(a). Show that Jn(z) is entire.

(b). Verify the identity [znJn(z)]′ = znJn−1(z).

23.7. Consider the function

f(z) = 1 +
∞∑

j=1

a(a− 1)(a− 2) · · · (a − j + 1)

j!
zj.

(a). Show that its radius of convergence is 1.

(b). For all |z| < 1, f ′(z) = af(z)/(1 + z). Hence, deduce the binomial
expansion (1 + z)a = f(z).

23.8. Use power series f(z) =
∑∞

j=0 ajz
j to solve the functional equa-

tion f(z) = z + f(z2).

23.9. If the sum of two power series in a neighborhood of the point of
expansion z0 is the same, then show that the identical powers of (z − z0)
have identical coefficients; i.e., there is a unique power series that has a
given sum in a neighborhood of z0.

23.10. For the power series s(z) =
∑∞

j=0 ajz
j , let the radius of conver-

gence be R. Show that

(a). the coefficients of the odd powers of z vanish if s(z) is even; i.e., if
s(−z) = s(z), and
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(b). the coefficients of the even powers of z vanish if s(z) is odd; i.e., if
s(−z) = −s(z).

23.11. For the power series s(z) =
∑∞

j=0 ajz
j , let the radius of conver-

gence be R.

(a). Show that s(z) is a power series in z with the same radius of conver-
gence R.

(b). Suppose R > 1 and |s(eiθ)| ≤ 4 for 0 ≤ θ ≤ π and |s(eiθ)| ≤ 9 for
π < θ ≤ 2π. Show that |s(0)| ≤ 6.

23.12. Let f(z) =
∑∞

j=0 ajz
j = 1+ z + 2z2 + 3z3 + 5z4 + 8z5 + 13z6 +

21z7 + · · · , where the coefficients aj are the Fibonacci numbers defined by
a0 = 1, a1 = 1, aj = aj−1 + aj−2, j ≥ 2. Show that f(z) = 1/(1 − z −
z2), z ∈ B(0, R), where R = (

√
5− 1)/2.

23.13. Let f(z) =
∑∞

j=0 ajz
j , where the coefficients aj are the Lucas

numbers defined by a0 = 1, a1 = 3, aj = aj−1 + aj−2, j ≥ 2. Show that
f(z) = (1 + 2z)/(1− z − z2), z ∈ B(0, R), where R = (

√
5− 1)/2.

23.14 (Weierstrass Double Series Theorem). Suppose that for

each k = 0, 1, 2, · · · the power series fk(z) =
∑∞

j=0 a
(k)
j (z − z0)j converges

in the disk B(z0, R), R ≤ ∞; i.e., each power series defines the function
fk(z) in the disk B(z0, R). Suppose that F (z) =

∑∞
k=0 fk(z) converges

uniformly for |z − z0| ≤ ρ for every ρ < R. Show that F (z) is analytic on
|z − z0| ≤ ρ and has a power series expansion, F (z) =

∑∞
j=0 Aj(z − z0)j ,

that converges for all |z − z0| < R; here, Aj =
∑∞

k=0 a
(k)
j . Furthermore,

show that

(a).
∞∑

j=1

zj

1 + z2j
converges uniformly for |z| ≤ r < 1, and

(b).
∞∑

j=1

zj

1 + z2j
=

∞∑

k=0

(−1)k z2k+1

1− z2k+1
for |z| < 1.

Answers or Hints

23.1. (a).
√
10, (b). 4.

23.2. (a). 2/11, (b). 3/5.
23.3. (a). 1/e, (b). 1/11.

23.4. lim supj→∞ |a2j |1/j =
(
lim supj→∞ |aj |1/j

)2
.

23.5. en = 1 + n
1! + · · ·+ nn−1

(n−1)! +
nn

n!

[
1 + n

n+1 + n2

(n+1)(n+2) + · · ·
]
implies
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that nn

n! < en < nnn

n! +
nn

n!

[
1 + n

n+1 +
(

n
n+1

)2
+ · · ·

]
= (2n+1)n

n

n! . Hence,

1
en < n!

nn < 2n+1
en . R = 1/e.

23.6. (a). aj =

{
0 if j is odd
(−1)j/2/[2j+n (j/2)! (j/2 + n)!] if j is even.

We will

show that lim supj→∞ |aj |1/j = 0. Clearly, |aj |1/j = 0 if j is odd, and for j

even we have |aj |1/j ≤ 1/[(j/2)!]2/j . Now use [(k)!]1/k →∞ as k →∞.

(b). [znJn(z)]′ =
∑∞

j=0
(−1)j2n(j+n)

j!(j+n)!

(
z
2

)2j+2n−1
= zn

∑∞
j=0

(−1)j

j!(j+n−1)!

×
(
z
2

)2j+n−1
.

23.7. (a). limj→∞ |aj+1/aj| = limj→∞ |(a− j)/(j +1)| = 1. (b). Compute
(1 + z)f ′(z) directly and show that it is the same as af(z).

23.8. f(z) = a0 +
∑∞

j=0 z
2j , |z| < 1.

23.9. If
∑∞

j=0 aj(z− z0)j and
∑∞

j=0 bj(z− z0)j have the same sum s(z) in
a neighborhood of z0, then from Corollary 23.3 and Remark 23.1 it follows
that aj = bj = s(j)(z0)/j!, j = 0, 1, · · · .
23.10. (a). s(2k+1)(0) = 0, k = 0, 1, · · · , (b). s(2k)(0) = 0, k = 0, 1, · · · .
23.11. (a). s(z) =

∑∞
j=0 ajz

j, so s(z) =
∑∞

j=0 ajz
j, and since lim|aj |1/j =

lim|aj |1/j , they have the same radius of convergence. (b). Both s(z) and

s(z) converge absolutely and uniformly on B(0, R), R > 1, so they are
analytic on B(0, 1). Hence, g(z) = s(z)s(z) is also analytic on B(0, 1).
Since |s(eiθ)| ≤ 4 for 0 ≤ θ ≤ π and |s(eiθ)| ≤ 9 for π < θ ≤ 2π, |g(eiθ)| =
|s(eiθ)s(e−iθ)| = |s(eiθ)||s(ei(2π−θ))| ≤ 4× 9 or 9× 4 according to whether
0 ≤ θ ≤ π or π < θ ≤ 2π. Thus, |g(eiθ)| ≤ 36 for all 0 ≤ θ ≤ 2π.Now, by the
Maximum Modulus Principle, |g(0)| ≤ |g(eiθ)| for some θ, so |g(0)| ≤ 36;
i.e., |s(0)|2 ≤ 36, and hence |s(0)| ≤ 6.
23.12. 1 + zf(z) + z2f(z) = 1 +

∑∞
j=0 ajz

j+1 +
∑∞

j=0 ajz
j+2 = 1 + z +∑∞

j=2(aj−1+aj−2)zj = 1+z+
∑∞

j=2 ajz
j . Hence, 1+zf(z)+z2f(z) = f(z).

23.13. Show that f(z) = 1 + 2z + zf(z) + z2f(z).
23.14. Use results of Lecture 22. For (a) and (b), expand each function in
the power series.



Lecture 24
Taylor’s Series

In this lecture, we shall prove Taylor’s Theorem, which expands a given
analytic function in an infinite power series at each of its points of analyt-
icity. The novelty of the proof comes from the fact that it requires only
Cauchy’s integral formula for derivatives.

Theorem 24.1 (Taylor’s Theorem). Let f be analytic in a
domain S and let at z0 ∈ S, B(z0, R) be the largest open disk in S. Then,
f has the series representation

f(z) = f(z0)+
f ′(z0)

1!
(z−z0)+

f ′′(z0)

2!
(z−z0)2+· · · =

∞∑

j=0

f (j)(z0)

j!
(z−z0)j ,

(24.1)
which converges for all z ∈ B(z0, R). Furthermore, for any 0 ≤ r < R,
the convergence is uniform on the closed disk B(z0, r). The series (24.1) is
called the Taylor series of f at z0.

Proof. Let z ∈ B(z0, R), and let µ denote the distance between z and
z0; i.e., |z−z0| = µ. Clearly, 0 ≤ µ < R. Let ν be such that 0 ≤ µ < ν < R,
and let γ be the positively oriented circle |ξ − z0| = ν. For a point ζ on γ,
we define w = (z − z0)/(ζ − z0) so that |w| = |z − z0|/|ξ − z0| = µ/ν < 1.
Thus, in view of Example 23.1, we have

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

ζ − z0

1

1− w
=

1

ζ − z0

∞∑

j=0

wj ,

which is the same as

f(ζ)

ζ − z
=

∞∑

j=0

f(ζ)
(z − z0)j

(ζ − z0)j+1

uniformly in ζ on γ.

Now, from Theorem 22.5 and Cauchy’s integral formula for derivatives

R.P. Agarwal et al., An Introduction to Complex Analysis, 
DOI 10.1007/978-1-4614-0195-7_24, © Springer Science+Business Media, LLC 2011 

159



160 Lecture 24

(18.4), we find

f(z) =
1

2πi

∫

γ

f(ζ)

ζ − z
dζ =

1

2πi

∫

γ

∞∑

j=0

f(ζ)

(ζ − z0)j+1
(z − z0)

jdζ

=
∞∑

j=0

[
1

2πi

∫

γ

f(ζ)

(ζ − z0)j+1
dζ

]
(z − z0)

j

=
∞∑

j=0

f (j)(z0)

j!
(z − z0)

j .

It is clear that the radius of convergence of (24.1) is at least R. This in
turn implies that the power series converges uniformly on every closed disk
B(z0, r), where 0 ≤ r < R.

Remark 24.1. Taylor’s series (24.1) with z0 = 0 reduces to

f(z) = f(0) +
f ′(0)

1!
z +

f ′′(0)

2!
z2 + · · · =

∞∑

j=0

f (j)(0)

j!
zj. (24.2)

This series is called the Maclaurin series of f .

Remark 24.2. In view of Theorem 23.2, Taylor’s series (24.1) in
B(z0, R) can be integrated as well as differentiated any number of times
term-by-term. The radius of convergence of each differentiated series is
also R.

Theorem 24.2 (Uniqueness of Taylor Series). If f(z) =∑∞
j=0 aj(z − z0)j for all z ∈ B(z0, R), then the series is the Taylor series of

f at z0.

Proof. From Corollary 23.3 and Remark 23.1, it follows that aj =
f (j)(z0)/j!, j = 0, 1, · · · .

Remark 24.3. The function f(z) is analytic at z0 if and only if it can
be expanded in Taylor’s series at z0.

Theorem 24.3. Let f and g have Taylor’s series expansions f(z) =∑∞
j=0 aj(z−z0)j , |z−z0| < R1 and g(z) =

∑∞
j=0 bj(z−z0)j , |z−z0| < R2;

here aj = f (j)(z0)/j! and bj = g(j)(z0)/j!. Then, the following hold:

(i). αf (z) =
∑∞

j=0 αaj(z− z0)j , |z− z0| < R1, where α ∈ C is a constant.

(ii). f(z)± g(z) =
∑∞

j=0(aj ± bj)(z − z0)j , |z − z0| < R = min{R1, R2}.
(iii). f(z)g(z) =

∑∞
j=0 cj(z − z0)j , |z − z0| < R = min{R1, R2}, where

cj =
∑j

k=0 aj−kbk =
∑j

k=0 akbj−k.
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Example 24.1. Calculating the derivatives of all orders at z0 = 0 of
the entire functions ez, cos z, sin z, cosh z, sinh z, we obtain the following
Maclaurin series expansions, which are valid on |z| <∞ :

ez = 1 + z +
z2

2!
+

z3

3!
+ · · · =

∞∑

j=0

zj

j!
, (24.3)

cos z = 1− z2

2!
+

z4

4!
− z6

6!
+ · · · =

∞∑

j=0

(−1)j z2j

(2j)!
, (24.4)

sin z = z − z3

3!
+

z5

5!
− z7

7!
+ · · · =

∞∑

j=0

(−1)j z2j+1

(2j + 1)!
, (24.5)

cosh z = 1 +
z2

2!
+

z4

4!
+

z6

6!
+ · · · =

∞∑

j=0

z2j

(2j)!
, (24.6)

sinh z = z +
z3

3!
+

z5

5!
+

z7

7!
+ · · · =

∞∑

j=0

z2j+1

(2j + 1)!
. (24.7)

Example 24.2. Clearly,
dj

dzj
(1 − z)−1 = j!(1 − z)−j−1. Evaluating

these at z = 0 gives the Maclaurin series expansion

1

1− z
= 1 + z +

2!z2

2!
+

3!z3

3!
+ · · · =

∞∑

j=0

zj . (24.8)

This is the geometric series, which is valid for |z| < 1.

Example 24.3. The consecutive derivatives of Log z are 1/z,−1/z2,
2/z3, · · · ; in general,

djLog z

dzj
= (−1)j+1(j − 1)!z−j, j = 1, 2, · · · .

Evaluating these at z = 1, we find the Taylor series expansion

Log z = 0 + (z − 1)− (z − 1)2

2!
+ 2!

(z − 1)3

3!
− 3!

(z − 1)4

4!
+ · · ·

=
∞∑

j=1

(−1)j+1(z − 1)j

j
.

(24.9)
This is valid for |z − 1| < 1, the largest open disk centered at 1 over which
Log z is analytic.

Example 24.4. From Example 24.1, the following expansions follow
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on |z| <∞ :

cos z + i sin z =

(
1− z2

2!
+

z4

4!
− · · ·

)
+ i

(
z − z3

3!
+

z5

5!
− · · ·

)

= 1 + iz − z2

2!
− i

z3

3!
+

z4

4!
+ i

z5

5!
− · · ·

= 1 + iz +
(iz)2

2!
+

(iz)3

3!
+

(iz)4

4!
+ · · · = eiz,

sin z · cos z =

(
z − z3

3!
+

z5

5!
− z7

7!
+ · · ·

)(
1− z2

2!
+

z4

4!
− z6

6!
+ · · ·

)

= z −
(
1

3!
+

1

2!

)
z3 +

(
1

5!
+

1

3!

1

2!
+

1

4!

)
z5

−
(
1

7!
+

1

5!

1

2!
+

1

3!

1

4!
+

1

6!

)
z7 + · · ·

= z − 4

3!
z3 +

16

5!
z5 − 64

7!
z7 + · · · =

1

2
sin 2z.

Example 24.5. (a). Differentiate (24.8) term-by-term to get

1

(1− z)2
= 1 + 2z + 3z2 + · · · =

∞∑

j=0

(j + 1)zj, |z| < 1.

(b). Write 1/(9 + z2) = 1/[9(1− w)], where w = −z2/9. Thus, as long as
|w| < 1; i.e., |− z2/9| < 1 or |z| < 3, we have

1

9 + z2
=

1

9

∞∑

j=0

wj =
1

9

∞∑

j=0

(
−z2

9

)n

.

(c). Use partial fractions to obtain

1

z2 − 5z + 6
=

1

(z − 3)(z − 2)
=

1

z − 3
− 1

z − 2

=
1

2

(
1

1− z/2

)
− 1

3

(
1

1− z/3

)

=
1

2

∞∑

j=0

(z
2

)j
− 1

3

∞∑

j=0

(z
3

)j

=
∞∑

j=0

[(
1

2

)j+1

−
(
1

3

)j+1
]

zj , |z| < 2.
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Example 24.6. Find the first few terms of the Maclaurin series for

tan z. Let tan z =
sin z

cos z
=

∞∑

j=0

cjz
j . In view of Theorem 23.3 (ii), for |z| <

π/2, we have

z − z3

3!
+

z5

5!
− · · ·

=

(
1− z2

2!
+

z4

4!
− · · ·

)(
c0 + c1z + c2z

2 + c3z
3 + · · ·

)

= c0 + c1z +
(
c2 −

c0
2!

)
z2 +

(
c3 −

c1
2!

)
z3 +

(
c4 −

c2
2!

+
c0
4!

)
z4 + · · · .

Thus, c0 = 0, c1 = 1, c2 − c0/2 = 0, and hence c2 = 0, c3 − c1/2 = −1/6,
and hence c3 = 1/3, c4 − (c2/2) + (c0/24) = 0, and hence c4 = 0, · · · .
Therefore, it follows that

tan z = z +
1

3
z3 +

2

15
z5 + · · · .

Example 24.7. Consider the function f(z) = (1 + 2z)/(z3 + z4). We
cannot find a Maclaurin series for f(z) since it is not analytic at z = 0.

However, we can write f(z) as f(z) =
1

z3

(
2− 1

1 + z

)
. Now 1/(1 + z) has

a Taylor series expansion around the point z = 0. Thus, when 0 < |z| < 1,
it follows that

f(z) =
1

z3
(2− 1 + z − z2 + z3 − z4 + z5 − z6 + · · ·)

=
1

z3
+

1

z2
− 1

z
+ 1− z + z2 − z3 + · · · .

Problems

24.1. Find the first four terms of the power series expansions about
z = 0 of the following functions:

(a).
z

z2 + 3
, (b).

1

z2 − 2
, (c).

z

2− z2
, (d).

1

z2 − 2z + 2
, (e). sec z.

24.2. Show that, for any constant z0 ∈ C,

(a). ez = ez0
∞∑

j=0

(z − z0)j

j!
, |z| <∞. Hence, deduce that ez1+z2 = ez1ez2 .

(b). sin z = sin z0 cos(z − z0) + cos z0 sin(z − z0).
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(c). cos z = cos z0 cos(z − z0)− sin z0 sin(z − z0).

24.3. Show that

(a).
1

z2
=

∞∑

j=0

(j + 1)(z + 1)j , |z + 1| < 1,

(b). sin3 z =
∞∑

j=0

(−1)j 3(1− 9j)

4 (2j + 1)!
z2j+1, |z <∞,

(c).
ez

1− z
= 1 + 2z +

5

2
z2 +

8

3
z3 + · · · , |z| < 1.

24.4. For the function g(z) defined in (18.7), show that

g(z) =
∞∑

j=0

(−1)j z2j

(2j + 1)!
, z ∈ C.

Hence, deduce that the function g(z) is entire.

24.5. Expand sinh z in Taylor’s series at z0 = πi, and show that

lim
z→πi

sinh z

z − πi = − 1.

23.6. The error function erf(z) is defined by the integral erf(z) =
2√
π

∫ z

0
e−t2dt. Find the Maclaurin series for erf(z).

23.7. The Fresnel integrals C(z) and S(z) are defined by

C(z) =

∫ z

0
cos(ξ2)dξ and S(z) =

∫ z

0
sin(ξ2)dξ.

Use f(z) = C(z) + iS(z) =

∫ z

0
eiξ

2

dξ to compute the Maclaurin series for

f(z).

24.8. Suppose that an entire function f(z) satisfies |f(z)| ≤ k|z|j for
sufficiently large |z|,where j is a positive integer and k is a positive constant.
Show that f is a polynomial of degree at most j.

24.9. Let f(z) be an entire function such that limz→∞ f(z)/z = 0.
Show that f(z) is a constant.

24.10. Bernoulli’s numbers Bk are defined as follows:

B0 = 1, B1 = − 1

2
, B2j+1 = 0, j = 1, 2, · · · ,
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22j

1

(
2j

0

)
B2j +

22j−2

3

(
2j

2

)
B2j−2 + · · ·+ 1

2j + 1

(
2j

2j

)
B0 = 1,

j = 1, 2, · · · .

Extend the method of Example 24.6 to show that

(a).
z

ez − 1
= B0 +B1z +

∞∑

j=1

B2j

(2j)!
z2j , |z| < 2π,

(b). z cot z = B0 +
∞∑

j=1

(−1)j
22jB2j

(2j)!
z2j , |z| < π,

(c). tan z =
∞∑

j=1

(−1)j−1 2
2j(22j − 1)B2j

(2j)!
z2j−1, |z| < π/2,

(d). z sec z = B0 +
∞∑

j=1

(−1)j−1 (2
2j − 2)B2j

(2j)!
z2j, |z| < π.

24.11. Euler’s numbers Ek are defined as

E0 = 1, E2j+1 = 0, j = 0, 1, 2, · · · ,
(
2j

0

)
E2j +

(
2j

2

)
E2j−2 + · · ·+

(
2j

2j

)
E0 = 0, j = 1, 2, · · · .

Extend the method of Example 24.6 to show that

sech z = E0 +
∞∑

j=1

E2j

(2j)!
z2j, |z| < π/2.

24.12. The Legendre polynomials Pj(ξ), j = 0, 1, 2, · · · are defined as
the coefficients of zj in the Maclaurin expansion of

(1− 2ξz + z2)−1/2 =
∞∑

j=0

Pj(ξ)z
j .

Show that Pj(ξ) is a polynomial of degree j, and compute Pj(ξ), j =
0, 1, 2, 3, 4, 5.

24.13 (Parseval’s Formula). Let f(z) =
∑∞

j=0 aj(z−z0)j be Taylor’s
expansion of the analytic function f(z) on B(z0, R). Show that, for any
0 < r < R,

∞∑

j=0

|aj |2r2j =
1

2π

∫ 2π

0
|f(z0 + reit)|2dt.
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24.14. Suppose that f(z) is analytic in an open set containing the closed
unit disk |z| ≤ 1, and suppose that |f(z)| ≤ 1 for all |z| = 1. If f(1/2) = 0,
show that |f(3/4)| ≤ 2/5.

24.15. Let ai(z), i = 1, 2, · · · , n be analytic functions in a disk B(z0, R).
It is known that the initial value problem

dnf

dzn
+ a1(z)

dn−1f

dzn−1
+ · · ·+ an−1(z)

df

dz
+ an(z)f(z) = 0,

f(z0) = α0, f ′(z0) = α1, · · · , f (n−1)(z0) = αn−1,

has a unique solution, which is analytic in B(z0, R). Use Taylor’s series to
compute the solution of the following initial value problems:

(a). f ′ − if = 0, f(0) = 1,

(b). f ′′ + f = 0, f(0) = 0, f ′(0) = 1,

(c). f ′′ + f = 0, f(0) = 1, f ′(0) = 0.

24.16. Let g(t) be a continuous complex-valued function of a real vari-

able on [0,π]. Show that the function f(z) =

∫ π

0
g(t) sin(tz)dt is entire,

and find its power series around the origin.

Answers or Hints

24.1. (a). z
z2+3 = z

3

(
1 + z2

3

)−1
= z

3 −
(

z2

3

)
+ z

3

(
z2

3

)2
− z

3

(
z2

3

)3
+ · · · ,

(b). 1
z2−2 = − 1

2

(
1− z2

2

)−1
= − 1

2

(
1 + z2

2 +
(

z2

2

)2
+
(

z2

2

)3
+ · · ·

)
,

(c). z
2−z2 = 1

2z
(
1− z2

2

)−1
= 1

2

(
z + z3

2 + z5

4 + z7

8 + · · ·
)
,

(d). 1
z2−2z+2 = 1/2i

z−(1+i) −
1/2i

z−(1−i) = − i
2(1+i)

1
z/(1+i)−1 + i

2(1−i)
1

z/(1−i)−1

= 1+i
4

(
1 + z

1+i +
(

z
1+i

)2
+ · · ·

)
+ 1−i

4

(
1 + z

1−i +
(

z
1−i

)2
+ · · ·

)

= 1
2 + z

2 + z2

4 + 0 z3 + · · · , (e). 1 + 1
2z

2 + 5
24z

4 + · · · .
24.2. (a). Let f(z) = ez. Then f (j)(z) = ez, and hence f(z) = f(z0) +
f ′(z0)

1! (z − z0) +
f ′′(z0)

2! (z − z0)2 + · · · = ez0 + ez0(z − z0) + ez0 (z−z0)
2

2! + · · · .
Now, since ez1+z2 = 1 + (z1 + z2) +

(z1+z2)
2

2! + · · · =
∑∞

j=0
(z1+z2)

j

j! and

ez1 =
∑∞

j=0
zj
1
j! , ez2 =

∑∞
j=0

zj
2
j! , it follows that e

z1ez2 =
∑∞

j=0

(∑j
k=0

1
(j−k)!

1
k!z

j−k
1 zk2

)
=
∑∞

j=0
1
j!

(∑j
k=0

j!
(j−k)!k!z

j−k
1 zk2

)

=
∑∞

j=0
(z1+z2)

j

j! .
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(b). Let f(z) = sin z. Then f ′(z) = cos z, f ′′(z) = − sin z, · · · , and hence
sin z = sin z0 +

cos z0
1! (z − z0)− sin z0

2! (z − z0)2 +
cos z0
3! (z − z0)3 − · · ·

= sin z0
[
1− (z−z0)

2

2! + (z−z0)
4

4! − · · ·
]
+ cos z0

[
(z − z0)− (z−z0)

3

3! + · · ·
]

= sin z0 cos(z − z0) + cos z0 sin(z − z0).

(c). cos z = cos z0 − (z−z0)
1! sin z0 − (z−z0)

2

2! cosz0 +
(z−z0)

3

3! sin z0 − · · ·
= cos z0 cos(z − z0)− sin z0 sin(z − z0).
24.3. (a). 1

z = − 1
1−(z+1) = −1 − (z + 1) − (z + 1)2 − · · · , (b). sin3 z =

3
4 sin z−

1
4 sin 3z, (c).

ez

1−z = (1+ z+ z2 + z3 + · · ·)(1 + z+ z2

2! +
z3

3! + · · ·) =
1+(1+1)z+(1+ 1

2 +1)z2+(1+ 1
2 +

1
6 +1)z3+ · · · = 1+2z+ 5

2z
2+ 8

3z
3+ · · · .

24.4. Use (24.5). Since g(z) is represented by a convergent power series
for z ∈ C it is entire.
24.5. For even j, f (j)(πi) = sinhπi = i sinπ = 0, and for odd j, f (j)(πi) =
coshπi = cosπ = −1, so

sinh z =
∑∞

j=0

[
− (z−πi)2j+1

(2j+1)!

]
, |z| <∞,

in particular,

limz→πi
sinh z
z−πi =

∑∞
j=0

[
limz→πi− (z−πi)2j

(2j+1)!

]
= −1

since the convergence is uniform on B(πi, r) for any r ∈ (0,∞).

24.6. Since e−z2
=
∑∞

j=0
(−z2)j

j! , |z| <∞, and the convergence is uniform

on B(πi, r) for any r ∈ (0,∞), term-by-term integration gives

erf(z) = 2√
π

∑∞
j=0

(−1)jz2j+1

j! (2j+1) , |z| <∞.

24.7. Since eiz
2
=
∑∞

j=0
(iz2)j

j! , |z| < ∞, and the convergence is uniform

on B(πi, r) for any r ∈ (0,∞), term-by-term integration gives

f(z) =
∑∞

j=0
ijz2j+1

j! (2j+1) , |z| <∞.

24.8. Taylor’s expansion of f at 0; i.e., f(z) =
∑∞

j=0 ajz
j has infinite

radius of convergence; here aj = 1
j!f

(j)(0) = 1
j!

j!
2πi

∫
γR

f(z)
zj+1 dz and γR is a

positively oriented circle of radius R around 0. Clearly, for large R, |am| ≤
1
2π

∫
CR

|f(z)|
|z|m+1dz ≤ 1

2πk
Rj

Rm+1 2πR. Thus, |am| ≤ k
Rm−j → 0 as R → ∞ for

m > j, and hence am = 0 for m > j. So, f is a polynomial of degree ≤ j.
24.9. Observe that |f(z)| ≤ k|z| for large |z|. Now use Problem 24.8.
24.10. Similar to 24.11 below. In part (a), first note that z/(ez−1)−B1z =
z(ez + 1)/(ez − 1) is an even function.
24.11. Since cosh z is an even entire function whose zeros are (2k+1)πi/2,
k ∈ Z, the function f(z) = sechz = 1/ cosh z is analytic in B(0,π/2) and

even, so it has the Taylor series expansion f(z) =
∑∞

j=0
bj

(2j)!z
2j, |z| < π/2,

where bj = f (2j)(0). Then
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1 = f(z) cosh z =
∑∞

j=0
bj

(2j)! z
2j
∑∞

j=0
z2j

(2j)!

=
∑∞

j=0

[∑j
k=0

bj−k

[2(j−k)]! (2k)!

]
z2j

=
∑∞

j=0

[∑j
k=0

(2j
2k

)
bj−k

]
z2j

(2j)! ,

and hence b0 = 1,
∑j

k=0

(2j
2k

)
bj−k = 0, j ≥ 1, so bj = E2j .

24.12. If |ξ| ≤ r, where r is arbitrary, and |z| < (1 + r2)1/2 − r, then it
follows that |2ξz− z2| ≤ 2|ξ||z|+ |z2| < 2r(1 + r2)1/2 − 2r2 +1+ r2 + r2 −
2r(1 + r2)1/2 = 1, and hence we can expand (1− 2ξz + z2)−1/2 binomially
(see Problem 23.7) to obtain [1−z(2ξ−z)]−1/2 = 1+ 1

2z(2ξ−z)+
1
2
3
4z

2(2ξ−
z)2+ · · ·+ 1.3···(2j−1)

2.4···(2j) zj(2ξ−z)j+ · · · . The coefficient of zj in this expansion
is
1.3.···(2j−1)
2.4.···(2j) (2ξ)j− 1.3.···(2j−3)

2.4···(2j−2)
(j−1)

1! (2ξ)j−2+ 1.3···(2j−5)
2.4···(2j−4)

(j−2)(j−3)
2! (2ξ)j−4−· · ·

= 1.3···(2j−1)
j!

[
ξj − j(j−1)

(2j−1)1.2 ξ
j−2 + j(j−1)(j−2)(j−3)

(2j−1)(2j−3) 2.4 ξ
j−4 − · · ·

]
= Pj(ξ).

P0(ξ) = 1, P1(ξ) = ξ, P2(ξ) =
1
2(3ξ

2 − 1), P3(ξ) =
1
2 (5ξ

3 − 3ξ), P4(ξ) =
1
8(35ξ

4 − 30ξ2 + 3), P5(ξ) = 1
8(63ξ

5 − 70ξ3 + 15ξ).
24.13. Let z be on the circle of radius r with center at z0. Since z = z0+reit,
where 0 ≤ t ≤ 2π, f(z) =

∑∞
j=0 ajr

jeijt. Thus, |f(z)|2 = f(z)f(z) =∑∞
j=1

∑∞
k=1 ajakr

j+kei(j−k)t. Now integrate this term-by-term.

24.14. Clearly, limz→1/2
(2−z)f(z)

2z−1 = limz→1/2
(2−z)(f(z)−f(1/2))

2(z−1/2) = (3/4)×
f ′(1/2). Consider the function g(z) = (2−z)f(z)

2z−1 , z ̸= 1/2 and g(z) =
(3/4)f ′(1/2), z = 1/2. Since f(z) is analytic, in a small neighborhood
around z = 1/2 we have f(z) = f ′(1/2)(z − 1/2) +

∑
n≥2 an(z − 1/2)n.

Hence, limz→1/2
g(z)−g(1/2)

z−1/2 = limz→1/2

[(1−2z)/4]f ′(1/2)+
∑

n≥2
an(z−1/2)n−1

z−1/2

= −(1/2)f ′(1/2)+a2. So, g′(1/2) exists and clearly g′(z) exists at z ̸= 1/2.
Thus, g(z) is analytic on |z| ≤ 1. Applying Theorem 20.2 to g(z) on |z| ≤ 1,

we have |g(z)| ≤ max|α|=1 |g(α)| = |2−α||f(α)|
|2α−1| ≤ |α−2|

|2α−1| = 1 (see Problem

3.5 with a = 1, b = −2). Therefore, |g(z)| ≤ 1 for |z| ≤ 1. In particular,
|g(3/4)| ≤ 1, which implies |f(3/4)| ≤ 2/5.
24.15. (a). eiz , (b). sin z, (c). cos z.
24.16. For fixed z ∈ C, Lemma 22.1 ensures that the series g(t) sin(tz) =
∑∞

j=0(−1)j
(tz)2j+1

(2j+1)! g(t) converges uniformly on [0,π]. Now, by Theorem
22.5, we can use term-by-term integration to obtain

f(z) =
∑∞

j=0

(∫ π
0 (−1)j (t)2j+1

(2j+1)!g(t)dt
)
z2j+1,

which is a power series in z. Clearly, this series converges for all z, and
hence in view of Theorem 23.1, f(z) is entire.



Lecture 25
Laurent’s Series

In this lecture, we shall expand a function that is analytic in an annulus
domain. The resulting expansion, although it resembles a power series,
involves positive as well as negative integral powers of (z − z0). From an
applications point of view, such an expansion is very useful.

Theorem 25.1 (Laurent’s Theorem). Let f(z) be analytic
in an annulus domain A = {z : R1 < |z − z0| < R2}. Then, f(z) can be
represented by the Laurent series

f(z) =
∞∑

j=0

aj(z − z0)
j +

∞∑

j=1

bj
(z − z0)j

, z ∈ A, (25.1)

where

aj =
1

2πi

∫

γ

f(ξ)

(ξ − z0)j+1
dξ, j = 0, 1, 2, · · · (25.2)

and

bj =
1

2πi

∫

γ
f(ξ)(ξ − z0)

j−1dξ, j = 1, 2, · · · , (25.3)

and γ is any positively oriented, simple, closed contour around z0 lying in
A (see Figure 25.1). The second sum in (25.1) is called the principal part
of the Laurent series.

Figure 25.1

·
R1

R2

z· A

γ

z0

Proof. From Cauchy’s integral formula (17.1), we have

f(z) =
1

2πi

[∫

γ2

−
∫

γ1

]
f(ξ)

ξ − z
dξ, (25.4)
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where γ1 and γ2 are circles centered at z0 contained in A, as indicated in
Figure 25.2.

Figure 25.2

·
R1

R2z0

γ1

γ2·
z·

ξ

γ

For ξ ∈ γ2,
∣∣∣∣
z − z0
ξ − z0

∣∣∣∣ < 1 and

1

ξ − z
=

1

(ξ − z0) − (z − z0)
=

1

ξ − z0

1

1− [(z − z0)/(ξ − z0)]

=
1

ξ − z0

∞∑

j=0

(
z − z0
ξ − z0

)j

uniformly on γ2. Hence, we get

1

2πi

∫

γ2

f(ξ)

ξ − z
dξ =

1

2πi

∫

γ2

f(ξ)
∞∑

j=0

(z − z0)j

(ξ − z0)j+1
dξ

=
∞∑

j=0

[
1

2πi

∫

γ

f(ξ)

(ξ − z0)j+1
dξ

]
(z − z0)

j

=
∞∑

j=0

aj(z − z0)
j .

(25.5)

Now, for ξ ∈ γ1,
∣∣∣∣
ξ − z0
z − z0

∣∣∣∣ < 1 and

1

z − ξ =
1

(z − z0)− (ξ − z0)
=

1

z − z0

1

1− [(ξ − z0)/(z − z0)]

=
1

z − z0

∞∑

j=0

(
ξ − z0
z − z0

)j
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uniformly on γ1. Thus, we have

− 1

2πi

∫

γ1

f(ξ)

ξ − z
dξ =

1

2πi

∫

γ1

f(ξ)
∞∑

j=0

(ξ − z0)j

(z − z0)j+1
dξ

=
∞∑

j=0

[
1

2πi

∫

γ1

f(ξ)(ξ − z0)
jdξ

]
1

(z − z0)j+1

=
∞∑

j=1

[
1

2πi

∫

γ
f(ξ)(ξ − z0)

j−1dξ

]
1

(z − z0)j

=
∞∑

j=1

bj
(z − z0)j

. (25.6)

Combining (25.4)-(25.6) we immediately get (25.1).

Remark 25.1. 1. If f(z) is analytic everywhere in B(z0, R2) except
at z0, then the Laurent series is valid in 0 < |z− z0| < R2; i.e., we can take
R1 = 0.

2. If f(z) is analytic in B(z0, R2), then f(ξ)(ξ − z0)j−1 is analytic in
B(z0, R2), so that by the Cauchy-Goursat Theorem (Theorem 15.2),

bj =
1

2πi

∫

γ
f(ξ)(ξ − z0)

j−1dξ = 0.

Hence, the Laurent series for f(z) reduces to the Taylor series for f(z).

3. We can write

f(z) =
∞∑

j=−∞
aj(z − z0)

j , z ∈ A,

where

aj =
1

2πi

∫

γ

f(ξ)

(ξ − z0)j+1
dξ for all j ∈ Z.

4. If a series
∑∞

j=−∞ aj(z−z0)j converges to f(z) in some annular domain,
then it must be the Laurent series for f(z) at z0; i.e., Laurent’s series for
f(z) in a given annulus is unique.

5. Laurent’s series of an analytic function in an annular region can be
differentiated term-by-term. As a consequence, since Log z is not analytic
in any annulus around 0, it cannot be represented by a Laurent series
around 0.

Example 25.1. Expand e1/z in the Laurent series around z = 0. Since

eξ = 1 + ξ +
ξ2

2!
+
ξ3

3!
+ · · ·
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for all (finite) ξ, if z ̸= 0, we let ξ = 1/z and find

e1/z = 1 +
1

z
+

1

2!z2
+

1

3!z3
+ · · · , 0 < |z| <∞.

Similarly, we have

1

1− z
= − 1

z

(
1− 1

z

)−1

= − 1

z
− 1

z2
− 1

z3
− · · · , 1 < |z| <∞,

and by term-by-term differentiation,

1

(1− z)2
=

1

z2
+

2

z3
+

3

z4
+ · · · , 1 < |z| <∞.

Example 25.2. Find the Laurent series for the function (z2 − 2z +
7)/(z − 2) in the domain |z − 1| > 1. We have

z2 − 2z + 7

z − 2
=

[
(z − 1)2 + 6

] 1

(z − 1)− 1
=

[
(z − 1)2 + 6

]

(z − 1)

1

1− 1
(z−1)

=

[
(z − 1)2 + 6

]

(z − 1)

[
1 +

1

(z − 1)
+

1

(z − 1)2
+

1

(z − 1)3
+ · · ·

]

= (z − 1) + 1 +
7

(z − 1)
+

7

(z − 1)2
+ · · · .

Example 25.3. Find the Laurent series of e2z/(z − 1)3 around z = 1.
We have

e2z

(z − 1)3
=

e2+2(z−1)

(z − 1)3
=

e2

(z − 1)3
e2(z−1)

=
e2

(z − 1)3

[
1 + 2(z − 1) +

[2(z − 1)]2

2!
+

[2(z − 1)]3

3!
+ · · ·

]

=
e2

(z − 1)3
+

2e2

(z − 1)2
+

2e2

(z − 1)
+

4e2

3
+

2e2

3
(z − 1) + · · · .

Example 25.4. Find the Laurent series of (z− 3) sin 1/(z+2) around
z = −2. We have

(z−3) sin 1

z+2
= [(z + 2)− 5]

(
1

(z+2)
− 1

3!(z+2)3
+

1

5!(z+2)5
− · · ·

)

= 1− 5

(z+2)
− 1

3!(z+2)2
+

5

3!(z+2)3
+

1

5!(z+2)4
− · · · .
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Example 25.5. Expand f(z) = 1/(z2 + 1) in a Laurent series in a
punctured ball centered at z = i (in powers of z − i). We have that

f(z) =
1

(z + i)(z − i)
=

1

z − i

1

(z − i) + 2i
=

1

z − i

1

2i

1

1 + (z − i)/2i

= − i

2

1

z − i

1

1− (i/2)(z − i)
= − i

2

1

z − i

∞∑

j=0

[
i

2
(z − i)

]j

(converges if |i(z − i)/2| < 1)

= −
∞∑

j=0

(
i

2

)j+1

(z − i)j−1 = − i/2

z − i
−

∞∑

j=0

(
i

2

)j+2

(z − i)j

converges if |i(z − i)/2| < 1 and z ̸= i; i.e., 0 < |z − i| < 2.

Example 25.6. For the function (b− a)/(z − a)(z − b), 0 < |a| < |b|,
find the Laurent series expansion in (i) the domain |z| < |a|, (ii) the
domain |a| < |z| < |b|, and (iii) the domain |z| > |b|. Note that

b− a

(z − a)(z − b)
=

1

z − b
− 1

z − a
.

(i). For |z| < |a|, we have |z/a| < 1 and |z/b| < 1. Thus,

1

z − b
− 1

z − a
= −1

b

1

1− z/b
+

1

a

1

1− z/a

= −1

b

∞∑

j=0

(z
b

)j
+

1

a

∞∑

j=0

(z
a

)j

=
∞∑

j=0

(
1

aj+1
− 1

bj+1

)
zj.

(ii). For |a| < |z| < |b|, we have |a/z| < 1 and |z/b| < 1. Thus,

1

(z − b)
− 1

(z − a)
= −1

b

1

1− z/b
− 1

z

1

1− a/z

= −
∞∑

j=0

(
zj

bj+1
+

aj

zj+1

)
.

(iii). For |z| > |b|, we have |a/z| < 1 and |b/z| < 1. Thus,

1

(z − b)
− 1

(z − a)
=

1

z

1

1− b/z
− 1

z

1

1− a/z

=
∞∑

j=0

(
bj

zj+1
−

aj

zj+1

)
.
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Problems

25.1. Expand each of the following functions f(z) in a Laurent series
on the indicated domain:

(a).
z2 − 2z + 5

(z − 2)(z2 + 1)
, 1 < |z| < 2, (b).

(z − 1)

z2
, |z − 1| > 1,

(c). Log

(
z − a

z − b

)
, where b > a > 1 are real, |z| > b.

25.2. Find the Laurent series for the function 1/[z(z−1)] in the follow-
ing domains: (a). 0 < |z| < 1, (b). 1 < |z|, (c). 0 < |z− 1| < 1, (d). 1 <
|z − 1|, (e). 1 < |z − 2| < 2.

25.3. Find the Laurent series for the function z/[(z2 + 1)(z2 + 4)] in
the following domains (a). 0 < |z| < 1, (b). 1 < |z| < 2, (c). |z| > 2.

25.4. (a). Show that when 0 < |z| < 4,

1

4z − z2
=

1

4z
+

∞∑

n=0

zn

4n+2
.

(b). Show that, when 0 < |z − 1| < 2,

z

(z − 1)(z − 3)
= − 1

2(z − 1)
− 3

∞∑

n=0

(z − 1)n

2n+2
.

(c). Show that, when 2 < |z| <∞,

1

z4 + 4z2
=

1

z4

∞∑

n=0

(−1)n
(

4

z2

)n

.

25.5. Find the Laurent series for the function 1/[(z− 1)(z− 2)(z− 3)]
in the following domains: (a). 0 < |z| < 1, (b). 1 < |z| < 2, (c). 2 < |z| <
3, (d). |z| > 3.

25.6. For the series
∑∞

j=0 bj(z−z0)−j , let r = lim supj→∞ |bj|1/j . Show
that

(a). if r = 0, the series is absolutely convergent for all z in the extended
plane except at z = z0,

(b). if 0 < r < ∞, the series is absolutely convergent for all |z − z0| > r
and divergent for all |z − z0| < r, and

(c). if r =∞, the series is divergent for all finite z.
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25.7. Show that if the Laurent series
∑∞

j=−∞ aj(z− z0)j represents an
even function, then a2j+1 = 0, j = 0,±1,±2, · · · and if it represents an odd
function, then a2j = 0, j = 0,±1,±2, · · · .

25.8. Let
∑∞

j=0 aj(z−z0)j converge for |z−z0| < R2 and
∑∞

j=1 a−j(z−
z0)−j converge for |z − z0| > R1, and R1 < R2. Show that there exists
an analytic function f(z), R1 < |z − z0| < R2 whose Laurent series is∑∞

j=−∞ aj(z − z0)j .

25.9. Determine conditions on aj , j = 0,±1,±2, · · · such that the
Laurent series

∑∞
j=−∞ ajzj is analytic on the punctured disk 0 < |z| < 1.

25.10. Let f(z) be analytic in an annulus domain A = {z : R1 ≤
|z− z0| ≤ R2} and |f(z)| ≤M, z ∈ A. Show that the coefficients aj and bj
in the Laurent expansion of f(z) in the annulus A satisfy

|aj | ≤
M

Rj
2

, j = 0, 1, 2, · · · and |bj | ≤ MRj
1, j = 1, 2, · · · .

25.11. Show that

exp

[
ξ

2

(
z − 1

z

)]
=

∞∑

n=−∞
Jn(ξ)z

n, |z| > 0 (25.7)

where

Jn(ξ) = (−1)nJ−n(ξ) =
1

2π

∫ 2π

0
cos(ξ sin θ − nθ)dθ. (25.8)

The Jn(ξ) are the Bessel functions of the first kind (see Problem 23.6).
From (25.8), deduce that for z = x a real number |Jn(x)| ≤ 1.

25.12. Show that

cosh

(
z +

1

z

)
= a0 +

∞∑

j=1

aj

(
zj +

1

zj

)
,

where

aj =
1

2π

∫ 2π

0
cos jθ cosh(2 cos θ)dθ.

Answers or Hints

25.1. (a). −
∑∞

j=0 z
j/2j+1 + 2

∑∞
j=1(−1)j/22j, (b).

∑∞
j=1 j(−1)j−1(z −

1)−j , (c). Log
(

z−a
z−b

)
= Log

(
1− a

z

)
−Log

(
1− b

z

)
=
∑∞

j=1(b
j − aj)/(jzj).
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25.2. (a). − 1
z −

∑∞
j=0 z

j , (b).
∑∞

j=2 1/z
j, (c). 1

z−1 −
∑∞

j=0(−1)j(z −
1)j , (d).

∑∞
j=2(−1)j/(z−1)j, (e).

∑∞
j=1(−1)j+1(z−2)−j+

∑∞
j=0(−1)j+1(z−

2)j/2j+1.

25.3. z
(z2+1)(z2+4) =

z
3

(
1

z2+1 −
1

z2+4

)
.

25.4. (a). 1
4z−z2 = 1

4z

(
1− z

4

)
= 1

4z

∑∞
n=0

(
z
4

)n
= 1

4z +
∑∞

n=0
zn

4n+2 .

(b). z
(z−1)(z−3) = −

1
2(z−1) +

3
2

1
(z−1)−2 = − 1

2(z−1) +
3
2

(
− 1

2

) (
1− z−1

2

)−1

= − 1
2(z−1) − 3

∑∞
n=0

(z−1)n

2n+2 .

(c). 1
z4+4z2 = 1

z4
1

1+4/z2 = 1
z4

∑∞
n=0(−1)n

(
4
z2

)n
.

25.5. 1
(z−1)(z−2)(z−3) =

1
2

1
z−1 −

1
z−2 + 1

2
1

z−3 .

25.6. Use the substitution ξ = 1/(z − z0) to obtain the series
∑∞

j=0 bjξ
j .

For this new series, the radius of convergence is 1/r.
25.7. See Problem 23.10.
25.8. Define f(z) as the sum of two series. The result now follows from
the uniqueness of the Laurent series.
25.9.

∑−1
j=−∞ ajzj must converge for all z ̸= 0, and

∑∞
j=0 ajz

j must con-

verge on the disk |z| < 1, lim supj→∞ |a−j |1/j = 0, and lim supj→∞ |aj |1/j ≤
1.
25.10. Let γ = R2 and R1 in (25.2) and (25.3), respectively, and follow as
in Theorem 18.5.
25.11. To show Jn(ξ) = (−1)nJ−n(ξ), replace z = −1/s in (25.7). Let
γ : |z| = 1. Then, from Examples 14.6 and 16.1, it follows that Jn(ξ) =
1

2πi

∫
γ exp

[
ξ
2

(
z − 1

z

)]
dz

zn+1 . Now let z = eiθ .

25.12. Use Laurent expansion to obtain cosh(z+ z−1) =
∑∞

j=−∞ ajzj, and
note that aj = a−j .



Lecture 26
Zeros of Analytic Functions

In this lecture, we shall use Taylor’s series to study zeros of analytic
functions. We shall show that unless a function is identically zero, about
each point where the function is analytic there is a neighborhood through-
out which the function has no zero except possibly at the point itself; i.e.,
the zeros of an analytic function are isolated. We begin by proving the
following theorem.

Theorem 26.1. Let f(z) be analytic at z0. Then, f(z) has a zero of
order m at z0 if and only if f(z) can be written as f(z) = (z − z0)mg(z),
where g(z) is analytic at z0 and g(z0) ̸= 0.

Proof. Since f(z) is analytic at z0, it can be expanded in a Taylor
series; i.e., f(z) =

∑∞
j=0 aj(z − z0)j on some disk B(z0, R); here aj =

f (j)(z0)/j!, j = 0, 1, 2, · · · . If f(z) has a zero of order m at z0, then
f (k)(z0) = 0, k = 0, 1, · · · ,m− 1 and f (m)(z0) ̸= 0 (recall the definition in
Lecture 19). Thus, it follows that a0 = a1 = · · · = am−1 = 0, am ̸= 0, and
hence the Taylor series reduces to

f(z) = am(z − z0)m + am+1(z − z0)m+1 + · · ·
= (z − z0)

m
[
am + am+1(z − z0) + am+2(z − z0)

2 + · · ·
]
,

which is the same as f(z) = (z − z0)mg(z), where g(z) =
∑∞

j=m aj(z −
z0)j−m is analytic on |z − z0| < R and g(z0) = am ̸= 0. Conversely, let
f(z) = (z − z0)mg(z). Since g(z) is analytic at z0, it has a Taylor series
expansion g(z) =

∑∞
j=0 bj(z − z0)j , and since g(z0) ̸= 0 it follows that

b0 ̸= 0. Thus, we have

f(z) = b0(z − z0)
m + b1(z − z0)

m+1 + · · · =
∞∑

j=0

bj(z − z0)
m+j ,

which implies that f(z) has a zero of order m at z0.

Corollary 26.1. Let f(z) and g(z) be analytic at z0. If f(z) has a zero
of order m at z0 and g(z) has a zero of order n at z0, then f(z)g(z) has a
zero of order m+ n at z0.

Example 26.1. (i). The zeros of the function sin z, which occur at
integer multiples of π, are all simple (at such points, the first derivative,
cos z, is nonzero).

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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(ii). In view of Problem 24.4, the function g(z) defined in (18.7) has no
zero at 0.

(iii). Since

f1(z) = z2 sin z = z2
(
z − z3

3!
+

z5

5!
− · · ·

)

= z3
(
1−

z2

3!
+

z4

5!
− · · ·

)
,

f1(z) has a zero of order 3 at z = 0.

(iv). Since

f2(z) = z sin z2 = z

(
z2 − z6

3!
+

z10

5!
− · · ·

)

= z3
(
1− z4

3!
+

z8

5!
− · · ·

)
,

f2(z) has a zero of order 3 at z = 0.

Corollary 26.2. If f(z) is analytic at z0 and f(z0) = 0, then either
f(z) is identically zero in a neighborhood of z0 or there is a punctured disk
about z0 in which f(z) has no zeros.

Proof. Let
∑∞

j=0 aj(z − z0)j be the Taylor series for f(z) about z0.
This series converges to f(z) in some neighborhood of z0. So, if all the
Taylor coefficients aj are zero, then f(z) must be identically zero in this
neighborhood. Otherwise, let m ≥ 1 be the smallest subscript such that
am ̸= 0. Then, f(z) has a zero of order m at z0, and so the representation
f(z) = (z − z0)mg(z) by Theorem 26.1 is valid. Since g(z0) ̸= 0 and g(z)
is continuous at z0, there exists a disk B(z0, δ) throughout which g(z) is
nonzero. Consequently, f(z) ̸= 0 for 0 < |z − z0| < δ.

Thus, for a function f(z) that is analytic and has a zero at a point z0
but is not identically equal to zero in any neighborhood of z0, the point z0
must be a zero of some finite order; and conversely, if z0 is a zero of finite
order of f(z), then f(z) ̸= 0 throughout some punctured neighborhood
Nϵ(z0) = {z : 0 < |z − z0| < ϵ} of z0. Thus, a finite-order zero of f(z) is
isolated from other zeros of f(z).

Corollary 26.3. Suppose f(z) is analytic on a region S, and {zn} is an
infinite sequence of distinct points in S converging to α ∈ S. If f(zn) = 0
for all n, then f(z) is identically zero on S.

Proof. Since f(z) is continuous, 0 = limn→∞ f(zn) = f(α). We claim
that f(z) is identically zero in some neighborhood of α. In fact, if f(z) ̸= 0
in some punctured neighborhood Nϵ(α), then, from the definition of the
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limit, for sufficiently large n, there exists zn ∈ Nϵ(α) such that f(zn) = 0.
The rest of the proof is exactly the same as that of Theorem 20.1 (recall
Figure 20.1).

Corollary 26.4. If a function f(z) is analytic on a domain S and
f(z) = 0 at each point z of a subdomain of S or an arc contained in S, then
f(z) ≡ 0 in S.

Now suppose f(z) and g(z) are analytic on the same domain S and that
f(z) = g(z) at each point z of a subdomain of S or an arc contained in S.
Then, the function h(z) defined by h(z) = f(z) − g(z) is also analytic on
S and h(z) = 0 throughout the subdomain or along the arc. But then, in
view of Corollary 26.4, h(z) = 0 throughout S; i.e., f(z) = g(z), z ∈ S.
This proves the following corollary.

Corollary 26.5. A function that is analytic on a domain S is uniquely
determined over S by its values over a subdomain of S or along an arc
contained in S.

Example 26.2. (i). Since sin2 x + cos2 x = 1, the entire function
f(z) = sin2 z+cos2 z−1 has zero values along the real axis. Thus, Corollary
26.4 implies that f(z) = 0 throughout the complex plane; i.e., sin2 z +
cos2 z = 1 for all z. Furthermore, Corollary 26.5 tells us that sin z and cos z
are the only entire functions that can assume the values sinx and cosx,
respectively, along the real axis or any segment of it.

(ii). We can use cosh2 x− sinh2 x = 1 to show that cosh2 z − sinh2 z = 1
for all complex z.

(iii). We can use sin(x1 + x2) = sinx1 cosx2 + cosx1 sinx2 to show that
for all complex z1, sin(z1 + x2) = sin z1 cosx2 + cos z1 sinx2, and from
this deduce that sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2 for all complex
numbers z1 and z2.

(iv). We can use ex1+x2 = ex1ex2 to show that ez1+z2 = ez1ez2 for all
complex numbers z1 and z2.

Corollary 26.6. If a function f(z) is analytic on a bounded domain
S and continuous and nonvanishing on the boundary of S, then f(z) can
have at most finitely many zeros inside S.

Proof. Suppose that f(z) has an infinite number of zeros inside S.
Since S is closed and bounded, in view of Theorem 4.2, there is an infinite
sequence of zeros {zn} that converges to a point α ∈ S. Now, since f(z) is
continuous on S, f(α) = limn→∞ f(zn) = 0, and since f(z) is nonvanishing
on the boundary, α must be inside S. But then, by Corollary 26.3, f(z) is
identically zero on S, and since f(z) is continuous it must be zero on the
boundary of S also. This contradiction completes the proof.
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From Corollary 26.6, it follows that an analytic function can have an
infinite number of zeros only in an open or unbounded domain. From
Corollary 26.6, it also follows that an entire function in any bounded part
of the complex plane can have only a finite number of zeros. Thus, all
the zeros of an entire function can be arranged in some kind of order, for
example in order of increasing absolute value. In the extended complex
plane, an entire function can have only a countable set of zeros, and the
limit point of this set is the point at infinity of the complex plane.

Extension of known equalities from real to complex variables as in Ex-
ample 26.2 can be generalized to a broader class of identities. In the follow-
ing result we state such a generalization for an important class of identities
that involve only polynomials of functions.

Theorem 26.2. Let P (f1, · · · , fn) be a polynomial in the n variables
fj , j = 1, · · · , n, where each fj is an analytic function of z in a domain S
that contains some interval a < x < b of the real axis. If for all x ∈ (a, b)

P (f1(x), · · · , fn(x)) = 0,

then for all z ∈ S
P (f1(z), · · · , fn(z)) = 0.

Proof. Clearly, the function P (f1(z), · · · , fn(z)) is analytic in S and
vanishes over an arc in S. The result now follows from Corollary 26.4.

We conclude this lecture by proving the following result.

Theorem 26.3 (Counting Zeros). Let f(z) be analytic inside
and on a positively oriented contour γ. Furthermore, let f(z) ̸= 0 on γ.
Then,

1

2πi

∫

γ

f ′(z)

f(z)
dz = Zf (26.1)

holds, where Zf is the number of zeros (counting with multiplicities) of
f(z) that lie inside γ.

Proof. The function f ′(z)/f(z) is analytic inside and on γ except at the
zeros a1, · · · , aℓ of f(z) lying inside γ. Supposem1, · · · ,mℓ are the respective
multiplicities of these zeros. Then Zf = m1+ · · ·+mℓ. In view of Theorem
26.1, we can find disjoint open disks B(ak, rk), k = 1, · · · , ℓ, and analytic
nonzero functions gk(z) in B(ak, rk) such that

f(z) = (z − ak)
mkgk(z), z ∈ B(ak , rk). (26.2)

Thus, we have

f ′(z)

f(z)
=

mk

z − ak
+

g′k(z)

gk(z)
, z ∈ B(ak, rk)\{ak}. (26.3)
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Consider the function

F (z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f ′(z)

f(z)
−

ℓ∑

j=1

mj

z − aj
, z ̸∈

ℓ⋃

j=1

B(aj , rj),

g′k(z)

gk(z)
−

ℓ∑

j=1,j ̸=k

mj

z − aj
, z ∈ B(ak, rk), k = 1, · · · , ℓ.

Clearly, F (z) is analytic inside and on γ, and hence

∫

γ
F (z)dz = 0. There-

fore, from Theorem 16.2 and Example 16.1, it follows that

∫

γ

f ′(z)

f(z)
dz = 2πi

ℓ∑

j=1

mj = 2πiZf ,

which is the same as (26.1).

Problems

26.1. Locate and determine the order of zeros of the following functions:

(a). e2z − ez, (b). z2 sinh z, (c). z4 cos2 z, (d). z3 cos z2.

26.2. Suppose that f(z) is analytic and has a zero of order m at z0.
Show that

(a). f ′(z) has a zero of order m− 1 at z0.

(b). f ′(z)/f (z) has a simple pole at z0.

26.3. Find an entire function f(z) with prescribed distinct zeros z1, · · · , zk
with multiplicities m1, · · · ,mk, respectively. Is f(z) uniquely determined?

26.4. If f(z) is analytic on a domain S and has distinct zeros z1, · · · , zk
with multiplicities m1, · · · ,mk, respectively, show that there exists an ana-
lytic function g(z) on S such that f(z) = (z − z1)m1 · · · (z − zk)mkg(z).

26.5. Suppose that f(z) and g(z) are analytic in a region S and f(z)g(z)
is identically zero in S. Show that either f(z) or g(z) is identically zero in
S.
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Answers or Hints

26.1. (a). z = 2kπi, k = 0,±1,±2, · · · simple zeros, (b). z = 0 zero of
order 3, z = kiπ, k = ±1,±2, · · · simple zeros, (c). z = 0 zero of order 4,
z = (2k + 1)π/2, k = 0,±1,±2, · · · simple zeros, (d). z = 0 zero of order
3, z = ±

√
(2k + 1)π/2, ± i

√
(2k + 1)π/2, k = 0, 1, 2, · · · simple zeros.

26.2. By Theorem 26.1, f(z) = (z−z0)mg(z), where g is analytic at z0 and
g(z0) ̸= 0. (a). f ′(z) = (z−z0)m−1h(z), where h(z) = mg(z)+(z−z0)g′(z)
is analytic at z0 and h(z0) = mg(z0) ̸= 0, so f ′ has a zero of order m− 1 at
z0 by Theorem 26.1 again. (b). f ′(z)/f (z) = p(z)/(z−z0), where p = h/g
is analytic at z0 and p(z0) = m ̸= 0, so f ′/f has a simple pole at z0.

26.3. We can take, for example, f(z) =
∏k

j=1(z− zj)mj ; it is not uniquely
determined since multiplying it by an entire function without zeros gives
another such function.
26.4. Taylor’s expansion of f(z) at z1 yields an analytic function f1(z)
such that f(z) = (z − z1)m1f1(z), where z1 is not a zero of f1(z). Now
expand f1(z) at z2.
26.5. If neither f nor g is identically zero in S, then they both have isolated
zeros, so the zeros of h = fg are also isolated, and hence h is not identically
zero in S.



Lecture 27
Analytic Continuation

The uniqueness result established in Corollary 26.5 will be used here
to discuss an important technique in complex function theory known as
analytic continuation. The principal task of this technique is to extend the
domain of a given analytic function.

Let S1 and S2 be two domains with S1 ∩ S2 ̸= ∅, and let f1(z) be a
function that is analytic in S1. There may exist a function f2(z) that is
analytic in S2 such that f2(z) = f1(z) for each z in S1 ∩ S2. If so, we call
f2(z) a direct analytic continuation of f1(z) into the second domain S2.
In view of Corollary 26.5, it is clear that if analytic continuation exists,
then it is unique; i.e., no more than one function can be analytic in S2 and
also assume the value f1(z) at each point z ∈ S1 ∩ S2. However, if there
is an analytic continuation f3(z) of f2(z) from S2 into a domain S3 that
intersects S1, it is not necessary that f3(z) = f1(z) for each z ∈ S1 ∩ S3.
We shall illustrate this in Example 27.4.

S1 S2

S3

S1 ∩ S3 S2 ∩ S3

S1∩S2

Figure 27.1

If f2(z) is the analytic continuation of f1(z) from a domain S1 into a
domain S2, then the single-valued function F (z) defined by

F (z) =

{
f1(z), z ∈ S1

f2(z), z ∈ S2
(27.1)

is analytic in the domain S1 ∪ S2. Clearly, the function F is the analytic
continuation into S1 ∪ S2 of either f1(z) or f2(z). Here f1(z) and f2(z) are
called elements of F.

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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Example 27.1. Let f(x), x ∈ (a, b) be a continuous function. Then in
some domain S ⊆ C such that (a, b) ⊂ S there may exist a unique analytic
function f(z), z ∈ S that coincides with f(x) on (a, b). This function f(z) is
also called an analytic continuation of the function f(x) of the real variable
into the complex domain S. Various such analytic continuations were given
in Lecture 26.

Example 27.2. Consider the function

f1(z) =
∞∑

j=0

zj.

Clearly, this function converges to 1/(1− z) when |z| < 1. Hence,

f1(z) =
1

1− z
when |z| < 1,

and f1(z) is not defined when |z| ≥ 1.

Now the function

f2(z) =
1

1− z
, z ̸= 1,

is defined and analytic everywhere except at the point z = 1. Since f2(z) =
f1(z) inside the circle |z| = 1, the function f2(z) is the analytic continuation
of f1(z) into the domain consisting of all points in the z-plane except for
z = 1. Clearly, this is the only possible analytic continuation of f1(z) into
that domain. In this example, f1(z) is an element of f2(z).

Example 27.3. Consider the function

f1(z) =

∫ ∞

0
e−ztdt.

This function exists when Re z > 0, and since

f1(z) =
1

z
, Re z > 0,

it is analytic in S1 : Re z > 0.

Let f2(z) be defined by the geometric series

f2(z) = i
∞∑

j=0

(
z + i

i

)j

, |z + i| < 1.

Within its circle of convergence, which is the unit circle centered at the
point z = −i, the series is convergent. Clearly,

f2(z) =
i

1− (z + i)/i
=

1

z
,
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where z is in the domain S2 : |z + i| < 1.

Evidently, f2(z) = f1(z) for each z ∈ S1 ∩ S2, and f2(z) is the analytic
continuation of f1(z) into S2.

x

Figure 27.2

S1

−i ·
S2

The function F (z) = 1/z, S3 : z ̸= 0 is the analytic continuation of both
f1(z) and f2(z) into the domain S3 consisting of all points in the z-plane
except the origin. The functions f1(z) and f2(z) are elements of F (z).

Example 27.4. Consider the branch of z1/2

f1(z) =
√
reiθ/2, r > 0, 0 < θ < π.

An analytic continuation of f1(z) across the negative real axis into the lower
half-plane is

f2(z) =
√
reiθ/2, r > 0, π/2 < θ < 2π.

An analytic continuation of f2(z) across the positive real axis into the first
quadrant is

f3(z) =
√
reiθ/2, π < θ < 5π/2.

Note that f3(z) ̸= f1(z) in the first quadrant. In fact, f3(z) = −f1(z) there.

In general, it may not be obvious whether a given analytic function can
be extended. However, a standard method of analytic continuation is by
means of power series, which can be described as follows: Let the function
f1(z) be analytic in the domain S1. Choose an arbitrary point z0 ∈ S1, and
consider the Taylor series expansion

f1(z) =
∞∑

j=0

f
(j)
1 (z0)

j!
(z − z0)

j . (27.2)

For (27.2), the radius of convergence R0 may not exceed the distance from
z0 to the boundary γ1 of S1 (see Figure 27.3(a)). In this case, the expansion
(27.2) does not provide continuation of f1(z) beyond the boundary of S1.
Another possibility is that R0 exceeds the distance from z0 to the boundary
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γ1 of S1 (see Figure 27.3(b)). In this case, the domain S2 : |z − z0| < R0

is not a subdomain of S1 but has a common overlapping portion, say S12.
In S2, the series (27.2) defines an analytic function f2(z), which coincides
with f1(z) in S12. Clearly, f2(z) is the analytic continuation of f1(z) into
the domain S2. Thus, the function F (z) defined as in (27.1) is analytic in
the domain S = S1∪S2. Now, starting from S2, the process can be repeated
to obtain a chain of overlapping disks.

Figure 27.3(a)

γ1

S1
z0•
R0

Figure 27.3(b)

γ1

S1
z0•
R0

S2

Example 27.5. Consider the function f1(z) = Log z. We can expand
this function in Taylor’s series around the point z0 = −1 + i to obtain

f2(z) = Log (−1 + i) +
∞∑

j=1

(−1)j−1(z + 1− i)j

j(−1 + i)j
.

The radius of convergence of this series is
√
2, and hence f2(z) is analytic

in the disk |z+1− i| <
√
2 (see Figure 27.4). The function f2(z) crosses the

branch cut of f1(z) but not the branch point (0, 0). In the second quadrant
f2(z), coincides with f1(z); however, in the third quadrant, f2(z) has to be
different from f1(z). Thus, the Taylor expansion of f1(z) analytically con-
tinues the function into the third quadrant, and the analytic continuation
is different from the original function.

Figure 27.4

•
−1+i

√
2

0
•
1

x

y

It can be shown that if analytic continuation of f(z) is possible at all
then it can be accomplished by following a chain of overlapping disks along
some path. Furthermore, different paths may lead to different analytic
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continuations of f(z). The function F (z) obtained by means of an analytic
continuation of f(z) along all possible paths is called the complete ana-
lytic function. Its domain of definition S∗ is called the natural domain of
existence. The boundary of S∗ is called the natural boundary.

Example 27.6. Consider the function

f(z) = 1 + z2 + z4 + z8 + · · ·+ z2
j

+ · · · .

Clearly, each root of any of the equations z2 = 1, z4 = 1, z8 = 1, · · · is a
singularity of f(z). Hence, on any arc, however small, of the circle |z| = 1,
the function f(z) has an infinite number of singularities. Therefore, we
cannot extend this function outside the circle |z| = 1. In conclusion, for the
function f(z), the circle |z| = 1 is the natural boundary.

Problems

27.1. Show that the functions

f1(z) = − iπ

2
+

∞∑

j=1

(−1)j−1

j
(z − 1)j , |z − 1| < 1

and

f2(z) =
iπ

2
+

∞∑

j=1

1

j
(z + 1)j , |z + 1| < 1

are analytic continuations of each other.

27.2. Suppose that f(z) =
∑∞

j=0 ajz
j has radius of convergence R.

Show that if f
(
reiθ

)
tends to infinity as r → R, then the point Reiθ is a

singular point of f(z).

27.3. Suppose f(z) =
∑∞

j=0 aj(z − z0)j has a finite radius of conver-
genceR > 0. Show that f(z) has at least one singular point on the boundary
of the disk B(z0, R).

27.4. Show that for the function f(z) =
∑∞

j=1 z
j! the unit circle |z| = 1

is a natural boundary.

27.5 (Painlevé’s Theorem). Assume that S1 and S2 are two regions
with an adjacent piecewise smooth boundary arc L (see Figure 27.5(a)) and
f1(z) and f2(z) are analytic functions on S1 and S2, respectively. Further-
more, assume that f1(z) and f2(z) are continuous on S1 ∪ L and S2 ∪ L,
respectively, and f1(z) = f2(z), z ∈ L. Show that

F (z) =

{
f1(z) if z ∈ S1 ∪ L
f2(z) if z ∈ S2
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is analytic in S = S1 ∪ L ∪ S2.

Figure 27.5(a)

S1

L

S2

Figure 27.5(b)

S1

S2

Lγ
ℓ

27.6 (Riemann’s Theorem). Let S = B(z0, r)\{z0}, and let f(z) be
an analytic and bounded function on S. Show that f(z) can be analytically
continued to B(z0, r).

Answers and Hints

27.1. The functions f1(z) and f2(z) are the restrictions of −iπ/2+ logz =
−iπ/2+Log|z|+ i argz, where −π/2 < arg z < 3π/2 to the disks |z−1| < 1
and |z + 1| < 1.
27.2. If Reiθ is not a singular point, then there is a function F (z) that is
analytic in a disk with center Reiθ and agrees with f(z) in |z| < R. But then
limr→R f

(
reiθ

)
= limr→R F

(
reiθ

)
= F

(
Reiθ

)
. But this is a contradiction.

27.3. Suppose that at all points on the boundary {z : |z − z0| = R} the
function f(z) can be continued analytically . Then, at each point ξ of the
boundary, the function f(z) can be expanded in terms of powers of (z− ξ),
say fξ(z) in the disk B(ξ) with radius of convergence r(ξ). Since

⋃
ξ B(ξ)

covers the compact set {z : |z − z0| = R}, by Theorem 4.4 there also exists
a finite subcover {B(ξ1), B(ξ2), · · · , B(ξm)}. Now the function F (z) defined
by F (z) = f(z), z ∈ B(z0, R) and F (z) = fξj (z), z ∈ B(ξj), 1 ≤ j ≤ m is
analytic in S = B(z0, R)∪B(ξ1)∪ · · ·∪B(ξm). Since S contains the closed
disk B(z0, R), it must also contain the disk {z : |z−z0| ≤ R+ ϵ}. But, then
the power series representation F (z) =

∑∞
j=0 aj(z−z0)j is valid in the disk

{z : |z − z0| < R + ϵ}, which contradicts the fact that f(z) has the radius
of convergence R.
27.4. |f(Reirπ)|→∞ as R→ 1− for any rational number r.
27.5. Clearly, F is continuous in S. Draw an arbitrary piecewise smooth
closed contour γ so that its interior lies in S. If it lies entirely in S1 or S2,
then, by Theorem 15.2,

∫
γ F (z)dz = 0. If γ is contained partly in S1 and

partly in S2 (see Figure 27.5(b)), denoted by γ1 and γ2, respectively, and
the arc L∩γ is denoted by ℓ, then again by Theorem 15.2,

∫
γ1+ℓ F (z)dz = 0

and
∫
γ2−ℓ F (z)dz = 0. Hence,

∫
γ F (z)dz = 0. Now use Theorem 18.4.
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27.6. We assume that z0 = 0. Define g(z) = z2f(z), z ∈ S; g(z) =
0, z = 0. Clearly, g′(0) = 0 and since g′(z) = z2f ′(z) + 2zf(z), z ̸= 0
we find g′(z)→ 0 as z → 0. Thus, g(z) is continuous and differentiable on
B(0, r) and satisfies the Cauchy-Riemann conditions, and hence is analytic
on B(0, r). Therefore, Taylor’s series g(z) = 0 + 0z + a2z2 + a3z3 + · · ·
converges on B(0, r). Now define F (z) = f(z)/z2 = a2 + a3z + · · · which
has the same radius of convergence. Thus, F (z) is analytic on B(0, r), and
F (z) = f(z), z ∈ S.



Lecture 28
Symmetry and Reflection

The cross ratio defined in Problem 11.9 will be used here to introduce
the concept of symmetry of two points with respect to a line or a circle. We
shall also prove Schwarz’s Reflection Principle, which is of great practical
importance for analytic continuation.

Recall that in the real plane two points P andQ are said to be symmetric
across the line L if L is the perpendicular bisector of the segment joining
P and Q. In the complex plane, if L is the real axis, points z′, z′′ are said
to be symmetric (reflections of each other) across L, if z′′ = z′. Thus, from
the definition of the cross ratio, if three points z1, z2, z3 are on the real line
L, then the points z′, z′′ are symmetric if and only if

(z1, z2, z3, z
′′) = (z1, z2, z3, z′). (28.1)

Now, since linear fractional transformations map lines and circles to lines
or circles and preserve the value of the cross ratio (see Problem 11.9(a)),
it is natural to use (28.1) to define symmetry of points across any line or
circle γ as follows: If the points z1, z2, z3 are on a line or circle γ, the points
z′, z′′ are said to be symmetric with respect to γ if (28.1) holds. Once again,
from Problem 11.9(a) it follows that the points z′, z′′ are symmetric if and
only if w′, w′′ are symmetric with respect to γ1, where w′ = f(z′), w′′ =
f(z′′) and γ1 is the image of γ under the linear fractional transformation
f. In the following theorems, we shall show that the definition of symmetry
above is independent of the points z1, z2, z3. For this, we need the following
elementary lemma.

Lemma 28.1. Let z1, z2, z3 be distinct complex numbers. Then,
(z1, z2, z3, z′′) = (z1, z2, z3, z′) if and only if z′′ = z′.

Theorem 28.1. The points z′ and z′′ are symmetric with respect to a
line γ in the complex plane if and only if γ is the perpendicular bisector of
the segment joining z′ and z′′.

Proof. We can map γ onto the real axis in the w-plane by a linear
transformation w = az+ b, where |a| = 1. Then, for the real points wj , j =
1, 2, 3 and the images w′ = az′+b, w′′ = az′′+b, we have (w1, w2, w3, w′′) =
(w1, w2, w3, w′) = (w1, w2, w3, w′), and hence, in view of Lemma 28.1, w′′ =
w′; i.e., the real axis in the w-plane is the perpendicular bisector of the
segment joining w′ and w′′. Now, since the inverse transformation z =

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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(1/a)w + (−b/a) is just a translation and rotation, the segment joining w′

and w′′ is rotated and translated along with the real axis onto the segment
joining z′ and z′′ and the line γ. Thus, γ is the perpendicular bisector of
the segment joining z′ and z′′.

Theorem 28.2. The points z′ and z′′ are symmetric with respect to a
circle γ : |z− z0| = r if and only if z′ and z′′ lie on a ray from the center O
of the circle, and |z′ − z0||z′′ − z0| = r2.

Figure 28.1

•
•

•

z0

z′

z′′

r

γ

Proof. Without any loss of generality, we can assume that z0 = 0. Since
zj = r2/zj, j = 1, 2, 3, the points z′, z′′ are symmetric with respect to the
circle |z| = r if and only if

(z1, z2, z3, z
′′) = (z1, z2, z3, z′) =

(
r2/z1, r

2/z2, r
2/z3, z′

)
. (28.2)

Now, since the function f(z) = r2/z is a linear fractional transformation,
from (28.2) and Problem 11.9(a) it follows that

(z1, z2, z3, z
′′) = (z1, z2, z3, r

2/z′).

But then, from Lemma 28.1, we have z′′ = r2/z′; i.e., z′′z′ = r2. Hence, if
z′ = µeiθ and z′′ = νeiφ, then z′′z′ = νµei(φ−θ) = r2. Therefore, φ = θ and
|z′||z′′| = r2.

Remark 28.1. From Theorem 28.2, it is clear that the center of the
circle γ is symmetric to∞ with respect to γ. Thus, the image of this center
will be symmetric to the image of ∞ with respect to γ1 under a linear
fractional transformation.

We shall now prove a theorem that shows that some analytic functions
possess the property that f(z) = f(z) at all points z in certain domains
while others do not. For example, the functions z + 1 and z2 have this
property in the entire plane, but z + i and iz2 do not. The following
result, which is known as Schwarz’s Reflection Principle, provides sufficient
conditions when the reflection of f(z) in the real axis corresponds to the
reflection of z.
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Theorem 28.3. Suppose that a function f is analytic in some domain
S that contains a segment of the x-axis and is symmetric to that axis.
Then,

f(z) = f(z) (28.3)

for each point z in the domain if and only if f(x) is real for each point x
on the segment.

Proof. Let f(x) be real at each point x on the segment. We shall show
that the function

F (z) = f(z) (28.4)

is analytic in S. For this, we write

f(z) = u(x, y) + iv(x, y) and F (z) = U(x, y) + iV (x, y).

Now, since
f(z) = u(x,−y)− iv(x,−y), (28.5)

from (28.4) it follows that

U (x, y) = u(x, t) and V (x, y) = − v(x, t), (28.6)

where t = −y.

Now, since f(x+it) is an analytic function of x+it, the first-order partial
derivatives of the functions u(x, t) and v(x, t) are continuous throughout S
and satisfy the Cauchy-Riemann equations

ux = vt, ut = − vx. (28.7)

Next, in view of equations (28.6), we have

Ux = ux and Vy = − vt
dt

dy
= vt (t = −y),

and hence, from (28.7), we get Ux = Vy. Similarly,

Uy = ut
dt

dy
= − ut, Vx = − vx

and therefore from (28.7) we find Uy = −Vx. Thus, the partial derivatives of
U(x, y) and V (x, y) are continuous and satisfy the Cauchy-Riemann equa-
tions, and hence the function F (z) is analytic in S.

Now, since f(x) is real on the segment of the real axis lying in S, v(x, 0)
= 0 on that segment. Thus, in view of (28.6) it follows that

F (x) = U(x, 0) + iV (x, 0) = u(x, 0)− iv(x, 0) = u(x, 0);
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i.e.,
F (z) = f(z) (28.8)

at each point z = x on the segment. But now, in view of Corollary 26.5,
we can conclude that (28.8) holds throughout S. Hence, (28.4) gives

f(z) = f(z), z ∈ S, (28.9)

which is the same as (28.3).

Conversely, assume that (28.3) holds. Then, (28.9) in view of (28.5) is
the same as

u(x,−y)− iv(x,−y) = u(x, y) + iv(x, y).

Thus, if (x, 0) is a point on the segment of the real axis that lies in S, then

u(x, 0)− iv(x, 0) = u(x, 0) + iv(x, 0),

which implies that v(x, 0) = 0; i.e., f(x) is real on the segment of the real
axis lying in S.

Note that the functions z + 1 and z2 satisfy the conditions of Theorem
28.3; in particular, for z = x, both the functions are real; i.e., x+1 and x2.
However, z + i and iz2 are not real when z = x.

The following corollary of Theorem 28.3 provides a means of describing
an analytic continuation across the interval on the real axis that is a part
of the boundary of the domain.

Corollary 28.1. Let S be a domain in the upper half-plane whose
boundary includes an interval J = (a, b) of the real axis. Let S ′ be the
reflection of S across the real axis; i.e., S′ = {z : z ∈ S}. Let the function
f(z) be analytic on S and continuous on S ∪ J. Furthermore, let f be
real-valued on I. Then, the function F (z) defined by

F (z) =

{
f(z), z ∈ S ∪ J

f(z), z ∈ S′

is the unique analytic continuation of f(z) to S ∪ J ∪ S′.

Figure 28.2

•
z

•
z

S

S′J
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Corollary 28.2. Let S be the upper half-plane and let f(z) be an
analytic function on S that is continuous and real on the real axis. Then,
f(z) can be extended analytically to the entire complex plane.

Corollary 28.3. Let f(z) be an analytic function on the right half-
plane that is continuous and purely imaginary on the imaginary axis. Then,
the function F (z) defined by

F (z) =

{
f(z), Re(z) ≥ 0

−f(−z), Re(z) ≤ 0

is the unique analytic continuation of f(z) to the entire complex plane.

Proof. The transformation w = iz maps the right half-plane Re(z) ≥ 0
onto the upper half-plane Im(w) ≥ 0. The function g(w) = if(−iw) satisfies
the conditions of Corollary 28.2 and hence has an analytic continuation
G(w) to the entire w-plane. Now, from Corollary 28.1, we have

G(w) =

{
if(−iw), Im(w) ≥ 0

−if(−iw), Im(w) ≤ 0,

which is the same as G(w) = iF (−iw). Thus, F (z) is the desired exten-
sion.

Corollary 28.4. Let f(z) be an entire function taking real values on the
real axis and imaginary values on the imaginary axis. Then, f(z)+f(−z) =
0 for all z.

Proof. From Corollaries 28.2 and 28.3, we have f(z) = f(z) and
f(z) = −f(−z). On replacing z by z in these relations, we get the desired
result.



Lecture 29
Singularities and Poles I

In this lecture, we shall define, classify, and characterize singular points
of complex functions. We shall also study the behavior of complex functions
in the neighborhoods of singularities.

A point z0 is called a singular point of the function f(z) if f(z) is not
analytic at z0 but is analytic at some point in B(z0, ϵ) for all ϵ > 0. A
singular point z0 of f(z) is called isolated if there exists R > 0 such that
f(z) is analytic on some punctured open disk 0 < |z − z0| < R.

Example 29.1. For the function f(z) = (z + 1)/[z4(z2 + 1)], the
singular points are z = 0, i, − i and all are isolated.

Example 29.2. The function Log z is analytic in C\(−∞, 0]. Each
point in (−∞, 0] is a singular point of Log z but not an isolated singularity.

Example 29.3. For the function f(z) = 1/ sin(π/z), singularities occur
where sin π/z = 0; i.e., π/z = nπ or z = 1/n. Hence, the singularities of
f(z) are {0} ∪ {1/n : n ∈ Z}.

Now, let z0 be an isolated singularity of f(z). Then, f(z) has a Lau-
rent series expansion around z0; i.e., f(z) =

∑∞
j=−∞ aj(z − z0)j on some

punctured open disk, say, 0 < |z − z0| < R.

(i). If aj = 0 for all j < 0, we say that z0 is a removable singularity or a
regular point of f(z).

(ii). If a−m ̸= 0 for some positive integer m but aj = 0 for all j < −m,
we say that z0 is a pole of order m for f(z). A pole of order 1 is called a
simple pole.

(iii). If aj ̸= 0 for an infinite number of negative values of j, we say that
z0 is an essential singularity of f.

When f(z) has a removable singularity at z0, its Laurent series takes
the form

f(z) = a0 + a1(z − z0) + a2(z − z0)
2 + · · · , 0 < |z − z0| < R, (29.1)

and hence limz→z0 f(z) = a0. Thus, if f(z) is not defined at z0 (the specified
value of f(z0) is not the same as a0), we can define (redefine) the function
f(z) at z0 as f(z0) = a0. The function f(z) thus obtained will be analytic
on the open disk B(z0, R).
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Example 29.4. The following functions have removable singularities:

f1(z) =
sin z

z
=

1

z

(
z − z3

3!
+

z5

5!
− · · ·

)
= 1− z2

3!
+

z4

5!
− · · · , z0 = 0,

f2(z) =
cos z − 1

z
=

1

z

(
1− z2

2!
+

z4

4!
− · · ·− 1

)
= − z

2!
+
z3

4!
− · · · , z0 = 0,

f3(z) =
z3 − 1

z − 1
= z2+ z+1 = 3+3(z−1)+ (z−1)2+0+0+ · · · , z0 = 1.

In fact, we can remove the singularities of these functions by defining
f1(0) = 1, f2(0) = 0, f3(1) = 3.

Theorem 29.1. The function f(z) has a removable singularity at z0
if and only if any one of the following conditions holds:

(i). f(z) has a (finite) limit as z approaches z0,

(ii). f(z) can be redefined at z0 so that the new function is analytic at z0,

(iii). limz→z0(z − z0)f(z) = 0,

(iv). f(z) is bounded in some punctured neighborhood of z0.

Proof. Parts (i)-(iii) follow immediately from (29.1). To prove part (iv),
let z0 be a removable singularity of f(z). Then, from (29.1) it is clear that
the function

g(z) =

{
f(z), 0 < |z − z0| < R
a0, z = z0

is analytic on |z − z0| < R, and hence bounded in every closed neighbor-
hood of z0. This in turn implies that f(z) is bounded in some punctured
neighborhood of z0. Conversely, suppose there is a punctured neighbor-
hood 0 < |z − z0| < r < R and a finite M such that on this neighbor-
hood |f(z)| ≤ M. Then, in Problem 25.10, taking R1 → 0, it follows that
bj = 0, j = 1, 2, · · · ,∞. Hence, the Laurent expansion of f(z) reduces to
(29.1), and hence z0 is a removable singularity of f(z).

Now, for the function f(z), let the point z0 be a pole of order m. Then,
its Laurent series reduces to

f(z) =
a−m

(z − z0)m
+

a−(m−1)

(z − z0)m−1
+ · · ·+ a−1

(z − z0)

+a0 + a1(z − z0) + a2(z − z0)2 + · · · , a−m ̸= 0,
(29.2)

which is valid in some punctured neighborhood of z0.

Example 29.5. The functions

f1(z) =
sin z

z2
=

1

z
− z

3!
+

z3

5!
− z5

7!
+ · · · ,

f2(z) =
sin z

z4
=

1

z3
− 1

3!z
+

z

5!
− z3

7!
+ · · · ,
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f3(z) =
ez

z3
=

1

z3
+

1

z2
+

1

2!z
+

1

3!
+

z

4!
+ · · · ,

respectively, have poles of order 1, 3, and 3 at z0 = 0.

Theorem 29.2. A function f(z) has a pole of order m at z0 if and only
if, in some punctured neighborhood of z0, f(z) = g(z)/(z − z0)m, where
g(z) is analytic at z0 and g(z0) ̸= 0.

Proof. If f(z) has a pole of order m at z0, then from (29.2) it follows
that, in some punctured neighborhood of z0,

(z − z0)
mf(z) = g(z) =: a−m + a−m+1(z − z0) + · · · .

Setting g(z0) = a−m ̸= 0, we find that g(z) is analytic and f(z) = g(z)/(z−
z0)m. Conversely, if f(z) = g(z)/(z− z0)m, where g(z) is analytic at z0 and
g(z0) ̸= 0, then from Taylor’s series we have

g(z) = c0 + c1(z − z0) + c2(z − z0)
2 + · · · , c0 = g(z0) ̸= 0,

and hence the Laurent series for f(z) around z0 is

f(z) =
g(z)

(z − z0)m
=

c0
(z − z0)m

+
c1

(z − z0)m−1
+ · · · .

Since c0 ̸= 0, z0 is a pole of order m for f(z).

Example 29.6. Since

f(z) =
cos z

(z − 1)3(z2 − 1)2
=

cos z/(z + 1)2

(z − 1)5

and the numerator cos z/(z+1)2 is analytic and nonzero at z = 1, Theorem
29.2 implies that the function f(z) has a pole of order 5. Similarly, in view
of Example 24.3, the function 1/[(z2 − 1)2Log z] has a pole of order 3 at
z = 1.

Corollary 29.1. If f(z) and g(z) have poles of orders m and n,
respectively, at z0, then f(z)g(z) has a pole of order m+ n at z0.

Corollary 29.2. If f(z) has a zero of order m at z0, then 1/f(z) has a
pole of order m at z0. Conversely, if f(z) has a pole of order m at z0, and
if we define 1/f(z0) = 0, then 1/f(z) has a zero of order m at z0.

Example 29.7. Classify the singularity at z = 0 of the function
f(z) = 1/[z(ez−1)]. Clearly, z = 0 is a zero of the function z(ez− 1). Since

d

dz
[z(ez − 1)]

∣∣∣∣
z=0

= (ez − 1 + zez)

∣∣∣∣
z=0

= 0
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and
d2

dz2
[z(ez − 1)]

∣∣∣∣
z=0

= ez(z + 2)

∣∣∣∣
z=0

̸= 0,

z = 0 is a zero of order 2 of z(ez − 1). Hence, z = 0 is a pole of order 2 of
the function f(z).

Example 29.8. Find and classify the singularities of the function

f(z) =
5z + 3

(1− z)3 sin2 z
.

The singularities of f(z) are the zeros of its denominator; i.e., z = 1 and
z = nπ, n = 0,±1,±2, · · · . For z = 1, since

5z + 3

(1 − z)3 sin2 z
=

(5z + 3)/ sin2 z

(1− z)3
and

5z + 3

sin2 z

∣∣∣∣
z=1

̸= 0,

z = 1 is a pole of order 3. Since z = nπ are the zeros of order 2 for the
function sin2 z and the function (1− z)3/(5z + 3) does not vanish at these
points, z = nπ are zeros of order 2 for the function 1/f(z). Hence, z = nπ
are poles of order 2 for f(z).

Example 29.9. Classify the zeros and poles of the function f(z) =
tan z/z. Since (tan z)/z = (sin z)/(z cos z), the only possible zeros are those
of sin z; i.e., z = nπ (n = 0,±1,±2, · · ·). However, z = 0 is a singularity.
The points z = (n + 1/2)π, which are zeros of cos z, are also singularities.
If n is a nonzero integer, z = nπ is a simple zero for f(z) since f ′(nπ) =
1/(nπ) ̸= 0. At z = 0, we have limz→0(z tan z)/z = 0. Hence, the origin
is a removable singularity. Finally, since cos z has simple zeros at z =
(n+ 1/2)π, n = 0,±1,±2, · · · and z/ sin z does not vanish at these points,
1/f(z) also has simple zeros at these points. Hence, f(z) has simple poles
at z = (n+ 1/2)π, n = 0,±1,±2, · · · .

Corollary 29.3. If f(z) and g(z) have zeros of orders m and n,
respectively, at z0, then the quotient function h(z) = f(z)/g(z) has the
following behavior:

(i). If m > n, then h(z) has a removable singularity at z0. If we define
h(z0) = 0, then h(z) has a zero of order m− n at z0.

(ii). If m < n, then h(z) has a pole of order n−m at z0.

(iii). If m = n, then h(z) has a removable singularity at z0.

Corollary 29.4. The only singularities of the rational function (5.2)
are removable singularities or poles.

Theorem 29.3. If the function f(z) has a pole of order m at z0, then
|(z−z0)ℓf(z)|→∞ as z → z0 for all ℓ = 0, 1, · · · ,m−1, while (z−z0)mf(z)
has a removable singularity at z0.
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Proof. From (29.2) in some punctured neighborhood of z0, we have

(z − z0)
mf(z) = a−m + a−m+1(z − z0) + · · · .

Thus, the singularity of (z−z0)mf(z) at z0 is removable, and (z−z0)mf(z)→
a−m ̸= 0 as z → z0. Hence, for any integer ℓ < m, it follows that

|(z − z0)
ℓf(z)| =

∣∣∣∣
1

(z − z0)m−ℓ
(z − z0)

mf(z)

∣∣∣∣→∞ as z → z0.

Theorem 29.4. The point z0 is a pole of f(z) if and only if |f(z)|→∞
as z → z0.

Proof. From Theorem 29.3, if z0 is a pole of f(z), then limz→z0 |f(z)| =
∞. Conversely, assume that limz→z0 |f(z)| =∞; i.e., for any number A > 0
there is a punctured neighborhood Nρ(z0) = {z : 0 < |z − z0| < ρ} of z0
such that on it |f(z)| > A. Then, the function 1/f(z) on Nρ(z0) is analytic,
bounded, and nonzero. But then, from Theorem 29.1, for the function
1/f(z), the point z0 is a removable singularity. Consider the function

φ(z) =

{
1/f(z), z ∈ Nρ(z0)

0, z = z0.

Clearly, φ(z) is nonzero on Nρ(z0), and since limz→z0 φ(z) = 0 = φ(z0),
it is analytic and has a zero of order m ≥ 1 at z0. Therefore, in view of
Theorem 26.1, φ(z) = (z − z0)mψ(z), where ψ(z) is analytic and nonzero
on Nρ(z0). Consequently, if we let g(z) = 1/ψ(z), then g(z) is analytic and
nonzero on Nρ(z0), and

f(z) =
1

φ(z)
=

1

(z − z0)mψ(z)
=

1

(z − z0)m
g(z), 0 < |z − z0| < ρ.

Hence, in view of Theorem 29.2, f(z) has a pole of order m at z0.

A function f(z) that is analytic in a region S, except for poles, is said
to be meromorphic in S. It is clear that the class of meromorphic functions
includes analytic and rational functions.



Lecture 30
Singularities and Poles II

Expanding a function in a Laurent series is often difficult. Therefore,
in this lecture we shall find the behavior of an analytic function in the
neighborhood of an essential singularity. We shall also discuss zeros and
singularities of analytic functions at infinity.

Theorem 30.1 (Casorati-Weierstrass Theorem). Suppose
that f(z) is analytic on the punctured disk 0 < |z − z0| < R. Then, z0 is
an essential singularity of f(z) if and only if the following conditions hold:

(i). There exists a sequence {αn} such that αn → z0 and limn→∞ |f(αn)|
=∞.

(ii). For any complex number w, there exists a sequence {αn} (depending
on w) such that αn → z0 and limn→∞ f(αn) = w.

Proof. If (i) holds, then, in view of Theorem 29.1 (iv), z0 cannot be a re-
movable singularity. If (ii) holds, then, from Theorem 29.4, z0 is not a pole.
Hence, if (i) and (ii) hold, then z0 is an essential singularity. Conversely,
suppose that z0 is an essential singularity. Clearly, f(z) cannot be bounded
near z0 (otherwise, z0 is a removable singularity), and hence (i) holds. If (ii)
does not hold, then |f(z)−w| ≥ ϵ > 0 for some w and all z in a punctured
neighborhood Nr(z0). Consider the function g(z) = 1/(f(z)−w). It follows
that g(z) is analytic on Nr(z0), and since |g(z)| ≤ 1/ϵ for all z ∈ Nr(z0), z0
is a removable singularity for g(z). In view of Theorem 29.4, we also note
that limz→z0 |f(z)| ≠∞, and hence g(z0) ̸= 0. But this in turn implies that
the function f(z) = w + 1/g(z) is analytic in a neighborhood of z0. This
contradiction ensures that (ii) holds.

Corollary 30.1. Let z0 be an essential singular point of f(z), and
let Eδ be the set of values taken by f(z) in the punctured neighborhood
Nδ(z0). Then, Eδ = C ∪ {∞}.

Theorem 30.1 has a generalization, which we state without proof.

Theorem 30.2 (Picard’s Theorem). A function with an essen-
tial singularity assumes every complex value, except possibly one, infinitely
often in every neighborhood of this singularity.

Example 30.1. Consider the function f(z) = e1/z. In view of the
Laurent expansion of e1/z in Example 25.1, this function has an essential
singularity at z = 0. If we choose the sequence {zn} = {1/n}, then zn → 0
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and f(zn) = en → ∞ as n → ∞, and hence condition (i) of Theorem 30.1
is satisfied. If we choose the sequence {zn} = {−1/n}, then zn → 0 and
f(zn) = e−n → 0 as n→∞. If we choose the sequence {zn} = {1/(Log |w|+
iArgw+2πni)}, where w ̸= 0, then zn → 0 and f(zn) = eLog |w|+iArgw =
w, and hence condition (ii) of Theorem 30.1 is also satisfied. Here, since,
for each n, f(zn) = w and e1/z is never zero, this function verifies Theorem
30.2 also.

Example 30.2. Since

f(z) = sin
1

z
=

1

z
− 1

3!z3
+

1

5!z5
− · · · ,

this function has an essential singularity at z = 0. If we choose the sequence
{zn} = {i/n}, then zn → 0 and f(zn) = sin(n/i) = sin(−in) = −i sinhn→
∞ as n → ∞, and hence condition (i) of Theorem 30.1 is satisfied. If
we choose the sequence {zn} = {i/[Log(iw +

√
1− w2) + 2nπi]}, where

w ̸=∞, then zn → 0 and f(zn) = sin(1/zn) = sin(−i log[iw+
√
1− w2]) =

sin(sin−1 w) = w, and hence condition (ii) of Theorem 30.1 is also satisfied.
Clearly, this function also confirms Theorem 30.2.

Example 30.3. For the function f(z) = ez/ sin z , the only possi-
ble singularities are z = kπ, k = 0,±1,±2, · · · . Since limz→0(z/ sin z) =
1, limz→0 f(z) = e, and hence f(z) has a removable singularity at z = 0.
We claim that z = kπ, k ̸= 0 are essential singularities of f(z). For this, let
k be even. Then, since limz→kπ+(z/ sin z) = ∞ and limz→kπ− (z/ sin z) =
−∞, it follows that limz→kπ+ f(z) = ∞ and limk→kπ− f(z) = 0. From the
first limit, we find that z = kπ cannot be a removable singularity, whereas
from the second limit it is clear that z = kπ cannot be a pole. Thus, the
only possibility left is that z = kπ is an essential singularity. A similar
argument holds when k is odd.

Now we shall investigate the behavior of an analytic function in the
neighborhood of infinity. For this, suppose that f(z) is analytic for all |z| >
R, except possibly at the point z = ∞. We note that the transformation
w = 1/z carries the point z =∞ into the point w = 0, and every sequence
{zn} converging to∞ into a sequence {wn} = {1/zn} converging to 0. Thus,
the study of f(z) in the neighborhood of infinity can be reduced to the study
of F (w) = f(1/w), which is analytic on the annulus 0 < |w| < 1/R. We
say z = ∞ is a removable singularity, a pole of order m, or an essential
singularity of f(z) if w = 0 is a removable singularity, a pole of order m, or
an essential singularity of F (w).

Thus, if z =∞ is a removable singularity of f(z), then

F (w) = a0 + a−1w + a−2w
2 + · · · + a−jw

j + · · · ,
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and hence

f(z) = a0 + a−1z
−1 + a−2z

−2 + · · ·+ a−jz
−j + · · · .

Therefore, the expansion of f(z) does not have terms involving positive
powers of z. Similarly, if z =∞ is a pole of order m of f(z), then

F (w) = amw−m + · · ·+ a1w
−1 + a0 + a−1w+ · · ·+ a−jw

j + · · · , am ̸= 0,

and hence

f(z) = amzm + · · ·+ a1z + a0 + a−1z
−1 + · · ·+ a−jz

−j + · · · , am ̸= 0.

Therefore, the expansion of f(z) contains a finite number of terms involving
positive powers of z. Finally, if z = ∞ is an essential singularity of f(z),
then

F (w) =
∞∑

j=−∞
ajw

−j ,

and hence

f(z) =
∞∑

j=−∞
ajz

j.

Therefore, the expansion of f(z) contains an infinite number of terms in-
volving positive powers of z.

From the considerations above it is clear that the situation at z = ∞
is the same as at any finite point, except the roles of positive and negative
powers are now interchanged. Furthermore, in view of Theorems 29.1, 29.2,
and 30.1, we can state the following theorem.

Theorem 30.3. The function f(z) has a removable singularity at
z =∞ if f(z) is bounded in a deleted neighborhood of∞, a pole at z =∞
if limz→∞ f(z) =∞, and an essential singularity at z =∞ if limz→∞ f(z)
does not exist.

When f(z) has a removable singularity at ∞, limz→∞ f(z) exists. If
limz→∞ f(z) = 0, we say that f(z) has a zero at ∞.

Example 30.4. The function z/(z2 + 1) has a zero at ∞, whereas
z2/(z2 + 1) does not have a zero at ∞ but has a removable singularity.
The function f(z) = z5 has a pole of order 5 at z = ∞. The function
f(z) = ze−z has an essential singularity at z =∞.

In the following results, we shall characterize entire functions at z =∞.

Theorem 30.4. An entire function f(z) has a removable singularity
at z =∞ if and only if it is a constant.
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Proof. If f(z) is a constant, then clearly z = ∞ is its removable sin-
gularity. Conversely, if f(z) has a removable singularity at z = ∞, then
limz→∞ f(z) = w0 exists, and hence there is an R > 0 such that |z| > R
implies |f(z) − w0| < 1; i.e., |f(z)| < |w0| + 1. This in turn implies that
there exists a finite constant M > 0 such that |f(z)| < M on C. But then,
in view of Theorem 18.6, the function f(z) has to be a constant.

Theorem 30.5. An entire function f(z) has a pole of order m at
z =∞ if and only if it is a polynomial of degree m.

Proof. If f(z) = amzm + am−1zm−1 + · · ·+ a1z + a0, am ̸= 0, then

F (w) = f(1/w) = am
1

wm
+ am−1

1

wm−1
+ · · ·+ a1

1

w
+ a0

=
1

wm

(
am + am−1w + · · ·+ a1w

m−1 + a0
)
,

and hence limw→0wmF (w) = am ̸= 0, while limw→0 wnF (w) = 0 for all
n > m. Hence, F (w) has a pole of order m at 0; i.e., f(z) has a pole of order
m at ∞. Conversely, suppose that f(z) has a pole of order m at ∞. Then,
F (w) has a pole of orderm at 0; i.e., m is the least positive integer such that
limw→0 wmF (w) = c, a constant, which is the same as limz→∞ f(z)/zm = c.
This implies that there is R > 0 such that |f(z)| ≤ (|c|+1)|z|m for |z| > R.
But then, in view of Problem 24.8, f(z) is a polynomial of degree at most
m. However, since m is the least such integer, the degree of the polynomial
is exactly m.

From Theorems 30.4 and 30.5, it follows that f(z) has an essential
singularity at z =∞ if and only if f(z) is not a polynomial of finite degree;
i.e., it is an entire transcendental function, such as ez, sin z.

We conclude this lecture by characterizing rational functions.

Theorem 30.6. An entire function f(z) is rational (see (5.2)) if and
only if it has at most poles on the extended complex plane C ∪ {∞}.

Proof. Since a limiting point of poles is an essential singularity, the
function f(z) can have only a finite number of poles on the extended com-
plex plane. Let the poles be at a1, a2, · · · , ak,∞ of orders n1, n2, · · · , nk,m,
respectively. Consider the function

g(z) = (z − a1)
n1(z − a2)

n2 · · · (z − ak)
nkf(z).

Clearly, g(z) is analytic on every bounded domain. Since h(z) = (z −
a1)n1(z − a2)n2 · · · (z − ak)nk has a pole of order N = n1 + n2 + · · · + nk

at infinity, the function g(z) must have a pole of order N +m at infinity.
But then, from Theorem 30.5, it follows that g(z) is a polynomial of degree
N +m. This, however, implies that f(z) = g(z)/h(z) is a rational function.
The converse is immediate.
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Problems

30.1. Show that z = 0 is a removable singularity of the following
functions. Furthermore, define f(0) such that these functions are analytic
at z = 0.

(a). f(z) =
ez

2 − 1

z
, (b). f(z) =

sin z − z

z2
, (c). f(z) =

1− 1
2z

2 − cos z

sin z2
.

30.2. Show that the following functions are entire

(a).

⎧
⎪⎨

⎪⎩

cos z

z2 − π2/4
when z ̸= ±π

2

− 1

π
when z ̸= ±π

2
,

(b).

⎧
⎨

⎩

ez − e−z

2z
when z ̸= 0

1 when z = 0.

30.3. Find and classify the isolated singularities of the following func-
tions:

(a).
z3 + 1

z2(z − 1)
, (b). z2e1/z, (c).

z

cos z
, (d).

sin 3z

z2
,

(e). cos
1

z

sin(z − 1)

z2 + 1
, (f).

(z2 − 1) cosπz

(z + 2)(2z − 1)(z2 + 1)2 sin2 πz
.

30.4. Suppose that f(z) has a pole of order m at z0. Show that f ′(z)
has a pole of order m+ 1 at z0.

30.5. Show that the function f(z) whose Laurent series is

−1∑

j=−∞
zj +

∞∑

j=1

zj

3j

does not have an essential singularity at z = 0, although it contains in-
finitely many negative powers of z.

30.6. Classify the zeros and singularities of the functions

(a). f(z) = sin(1− z−1), (b). f(z) =
tan z

z
, (c). f(z) = tanh z.

30.7. Verify Theorem 30.2 for the functions cos(1/z) and cosh(1/z).

30.8. Suppose that f(z) is analytic on |z| < R, R > 1 except at
z0, |z0| = 1, where it has a simple pole. Furthermore, suppose that the
expansion f(z) =

∑∞
j=0 ajz

j holds on |z| < 1. Show that limj→∞ aj/aj+1 =
z0.

30.9. Investigate the behavior of the following functions at infinity:
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(a).
1

z2(z3 + 1)2
, (b).

1− ez

1 + ez
, (c). zez, (d). ecot z.

30.10. Suppose that f(z) and g(z) are entire functions such that (f ◦
g)(z) is a polynomial. Show that both f(z) and g(z) are polynomials.

30.11. Find all functions that are analytic everywhere in the extended
complex plane C ∪ {∞}.

Answers or Hints

30.1. (a). f(z) = (z + z3

2! +
z5

3! + · · ·), f(0) = 0, (b). f(z) = (− z
3! +

z3

5! −
· · ·), f (0) = 0, (c). f(z) = z2(− 1

4! +
z2

6! − · · ·)/(1− z4

3! +
z8

5! − · · ·), f(0) = 0.
30.2. (a). First note that cos z

z2−π2/4 is analytic everywhere except ±π/2.
Hence, ±π/2 are isolated singularities of the function. Next, we have
limz→π/2

cos z
z2−π2/4 = limz→π/2

− sin z
2z = − 1

π and

limz→−π/2
cos z

z2−π2/4 = limz→−π/2
− sin z

2z = − 1
π .

Thus, z = ±π/2 are removable singularities, and hence f is an entire func-
tion.
(b). Clearly, ez−e−z

2z is analytic everywhere except z = 0. But limz→0
ez−e−z

2z

= limz→0
ez+e−z

2 = 1, and hence z = 0 is a removable singularity of ez−e−z

2z ,
and so g is an entire function. Alternatively, we note that

g(z) = 1
2z

(
1 + z + z2

2! + · · ·
)
− 1

2z

(
1− z + z2

2! −
z3

3! + · · ·
)
= 1+ z2

3! +
z4

4! +

· · · , which is an entire function.
30.3. (a). z = 0 pole of order 2, z = 1 simple pole, (b). z = 0 es-
sential singularity, (c). z = (π/2) + kπ, k ∈ Z simple pole, (d). z = 0
simple pole, (e). z = 0 essential singularity, z = i simple pole, z = −i
simple pole, (f). z = 1/2 removable singularity, z = ±1 simple pole,
z ∈ Z\{−2,−1, 1} and z = ±i pole of order 2, z = −2 pole of order 3.
30.4. In some punctured neighborhood of z0, f (z) = g(z)/(z − z0)m,
where g is analytic at z0 and g(z0) ̸= 0 by Theorem 29.2. Then f ′(z) =
h(z)/(z− z0)m+1, where h(z) = (z− z0) g′(z)−mg(z) is analytic at z0 and
h(z0) = −mg(z0) ̸= 0, so f ′ has a pole of order m + 1 by Theorem 29.2
again.
30.5. The series does not converge in a deleted neighborhood of z = 0.
30.6. (a). Simple zeros at z = 1/(1−nπ), n = 0,±1,±2, · · · . If we let z → 0
through positive values, then sin(1− z−1) oscillates between ±1, and hence
at z = 0 is an essential singularity, (b). z = 0 is a removable singularity, z =
nπ, n = ±1,±2, · · · are simple zeros, and z = (2n+1)/2, n = 0,±1,±2, · · ·
are simple poles.
30.7. cos(1/z) =

∑∞
j=0(−1)jz−2j/(2j)!, 0 < |z| < ∞ has an essential

singularity at 0. We want to show that for every complex value w, except
possibly one, there is a sequence zn → 0, zn ̸= 0 such that cos(1/zn) = w.
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cos−1 w = −i log[w+ i(1−w2)1/2] = −iLog[w+ i(1−w2)1/2]+ 2nπ, n ∈ Z
is defined for all w ∈ C since the quantity inside the brackets is never zero.
Fix w and set ζn = −iLog[w + i(1 − w2)1/2] + 2nπ. Then |ζn| → ∞. So
we can take zn = 1/ζn. The result for cosh(1/z) = cos(1/(iz)) also follows
from this.
30.8. f(z) = a−1

z−z0
+ h(z), where h(z) is analytic in |z| < R. Thus, h(z) =∑∞

j=0 bjz
j in |z| < R. Clearly, bj → 0. For |z| < 1, we have

∑∞
j=0 ajz

j =

−(a−1/z0)
∑∞

j=0(z/z0)
j +

∑∞
j=0 bjz

j. Thus, limj→∞
aj

aj+1

= limj→∞

[
− a−1

zj+1
0

+ bj
]
/
[
− a−1

zj+2
0

+ bj+1

]
= z0.

30.9. (a). Zero of order 8, (b). simple poles at (2k+1)πi, k = 0,±1,±2, · · ·
and ∞ is a limit point of poles, (c). simple pole, (d). essential singularity.
30.10. If f(z) is not a polynomial, then it has an essential singularity at∞.
But, then from Theorem 30.1, limz→∞ |(f ◦ g)(z)| ̸=∞, which contradicts
that (f ◦ g)(z) is a polynomial. A similar argument holds if g(z) is not a
polynomial.
30.11. Let f(z) be such a function. Since it is analytic at∞, it is bounded
for |z| > M. But then, by continuity, f(z) is also bounded for |z| ≤ M.
Hence, f(z) is a bounded entire function. By Theorem 18.6, f(z) must be
a constant.



Lecture 31
Cauchy’s Residue Theorem

In this lecture, we shall use Laurent’s expansion to establish Cauchy’s
Residue Theorem, which has far-reaching applications. In particular, it
generalizes Cauchy’s integral formula for derivatives (18.5), so that integrals
that have a finite number of isolated singularities inside a contour can be
integrated rather easily.

Suppose that the function f(z) is analytic in a punctured neighborhood
N(z0) of an isolated singular point z0, so that it can be expanded in a
Laurent series f(z) =

∑∞
j=−∞ aj(z − z0)j . The coefficient a−1 is called the

residue of f(z) at z0 and is denoted by R[f, z0].

Example 31.1. From Examples 25.1-25.3, we have

R
[
e1/z, 0

]
= 1, R

[
z2 − 2z + 7

z − 2
, 1

]
= 7, R

[
e2z

(z − 1)3
, 1

]
= 2e2.

Example 31.2. Clearly,

R
[
ez+1/z, 0

]
= (coefficient of 1/z)

⎛

⎝
∞∑

j=0

zj

j!

⎞

⎠

⎛

⎝
∞∑

j=0

1

j!zj

⎞

⎠ =
∞∑

j=0

1

j!(j + 1)!
.

If f(z) has a removable singularity at z0, all the coefficients of the nega-
tive powers of (z−z0) in its Laurent expansion are zero, and so, in particular,
the residue at z0 is zero.

Example 31.3. From Example 29.4, it is clear that

R

[
sin z

z
, 0

]
= 0, R

[
cos z − 1

z
, 0

]
= 0, R

[
z3 − 1

z − 1
, 1

]
= 0.

If f(z) has a pole of order m ≥ 1 at z0, then the residue R[f, z0] can be
calculated with the help of the following theorem.

Theorem 31.1. If f(z) has a pole of order m at z0, then

R[f, z0] = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
[(z − z0)

mf(z)] . (31.1)
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Proof. The Laurent series for f(z) around z0 is given by

f(z) =
a−m

(z − z0)m
+ · · ·+ a−2

(z − z0)2
+

a−1

(z − z0)
+ a0 + a1(z − z0) + · · · .

Multiplying the series by (z − z0)m, we get

(z − z0)mf(z) = a−m + a−m+1(z − z0) + · · ·+ a−2(z − z0)m−2

+a−1(z − z0)m−1 + a0(z − z0)m + a1(z − z0)m+1 + · · · .

Differentiating m − 1 times, we obtain

dm−1

dzm−1
[(z − z0)

mf(z)] = (m− 1)!a−1 +m!a0(z − z0)

+
(m+ 1)!

2
a1(z − z0)

2 + · · · .

Hence, it follows that

lim
z→z0

dm−1

dzm−1
[(z − z0)

mf(z)] = (m− 1)!a−1,

which is the same as (31.1).

Corollary 31.1. If f(z) has a simple pole at z0, then

R[f, z0] = lim
z→z0

(z − z0)f(z). (31.2)

Corollary 31.2. If f(z) = P (z)/Q(z), where the functions P (z) and
Q(z) are both analytic at z0 and Q(z) has a simple zero at z0, while P (z0) ̸=
0, then

R[f, z0] =
P (z0)

Q′(z0)
. (31.3)

Proof. Since Q(z0) = 0 and f(z) has a simple pole at z0, it follows that

R[f, z0] = lim
z→z0

(z − z0)
P (z)

Q(z)
= lim

z→z0

P (z)[
Q(z)−Q(z0)

z−z0

] =
P (z0)

Q′(z0)
.

Corollary 31.3. If f(z) has a simple pole at z0 and g(z) is analytic at
z0, then

R[fg, z0] = g(z0)R[f, z0]. (31.4)

Example 31.4. Find the residue at each of the singularities of f(z) =

ez
3
/[z(z + 1)]. The function f(z) has simple poles at z = 0 and z = −1.

Therefore, from (31.2), we have

R[f, 0] = lim
z→0

zf (z) = lim
z→0

ez
3

z + 1
= 1
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and

R[f,−1] = lim
z→−1

(z + 1)f(z) = lim
z→−1

ez
3

z
= − e−1.

Example 31.5. Find the residue at each of the singularities of f(z) =
z/(zn − 1). The function f(z) has simple poles at zk = e2iπk/n, k =
0, 1, · · · , n− 1. Therefore, from (31.3) and the fact that znk = 1, we have

R

[
z

zn − 1
, zk

]
=

zk
nzn−1

k

=
1

n
z2k =

1

n
e4iπk/n.

Example 31.6. Find the residue at each of the singularities of f(z) =
cot z. The function cot z = cos z/ sin z has simple poles at z = kπ, k =
0,±1,±2, · · · . Using (31.3), we get

R[cot z, kπ] =
cos z

(sin z)′

∣∣∣∣
z=kπ

=
cos kπ

cos kπ
= 1.

Example 31.7. Find the residue of f(z) = (cot z)/z2 at z = 0. Since
f(z) has a pole of order 3 at z = 0, from (31.1) and L’Hôpital’s Rule
(Theorem 6.3), we have

R

[
cot z

z2
, 0

]
=

1

2!
lim
z→0

d2

dz2

[
z3

cot z

z2

]
=

1

2!
lim
z→0

d2

dz2
[z cot z]

=
1

2
lim
z→0

d

dz
[cot z − zcosec2z] =

1

2
lim
z→0

[−2cosec2z + 2zcosec2z cot z]

= lim
z→0

z cos z − sin z

sin3 z
= lim

z→0

−z sin z
3 sin2 z cos z

= − 1

3
lim
z→0

z

sin z
lim
z→0

1

cos z
= −1

3
.

Now we shall state and prove the main theorem of this lecture.

Theorem 31.2 (Cauchy’s Residue Theorem). If γ is a
positively oriented simple closed contour and f is analytic inside and on γ
except at the points z1, z2, · · · , zn inside γ, then

∫

γ
f(z)dz = 2πi

n∑

j=1

R[f, zj]. (31.5)

Proof. Let γj , j = 1, 2, · · · , n be positively oriented circles centered
at zj , j = 1, 2, · · · , n respectively. Furthermore, suppose that each γj has
a radius rj so small that γj , j = 1, 2, · · · , n are mutually disjoint and lie
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interior to γ (see Figure 16.4). Then, from Theorem 16.2, the relation (16.1)
holds. At zj the function f(z) has a Laurent series expansion

f(z) =
∞∑

k=−∞
ak(z − zj)

k,

which is valid for all z on a small, positively oriented circle γj centered at
zj. But then, it follows that

∫

γj

f(z)dz =

∫

γj

∞∑

k=−∞
ak(z − zj)

kdz

=
∞∑

k=−∞
ak

∫

γj

(z − zj)
kdz = 2πia−1 = 2πiR[f, zj].

Substituting this in (16.1), the relation (31.5) follows.

Example 31.8. Let γ be any positively oriented, simple, closed contour
containing only the isolated singularity at z = 0 of the functions considered
below. Then, from Examples 31.1-31.4, 31.6 and 31.7, it follows that

∫

γ
e1/zdz = 2πi,

∫

γ
ez+1/zdz = 2πi

∞∑

j=0

1

j!(j + 1)!
,

∫

γ

sin z

z
= 0,

∫

γ

ez
3

z(z + 1)
dz = 2πi,

∫

γ
cot zdz = 2πi,

∫

γ

cot z

z2
dz = − 2

3
πi.

Example 31.9. Evaluate

∫

γ
dz/(z4 + 1), where γ is the following

contour.

0−2 2

··
eπi/4e3πi/4

Figure 31.1

γ

The singularities of the integrand occur at the fourth roots of −1; i.e.,
eπi/4, e3πi/4, e5πi/4, and e7πi/4. However, only eπi/4 and e3πi/4 are inside
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the contour. Hence, by Theorem 31.2, we have

∫

γ

dz

z4 + 1
= 2πi

(
R
[

1
z4+1 , e

πi/4
]
+R

[
1

z4+1 , e
3πi/4

])

= 2πi

(
1

4(eπi/4)3
+

1

4(e3πi/4)3

)

= 2πi

(
−eπi/4

4
+

e−πi/4

4

)
=

π√
2
.

Now suppose that f(z) is analytic in a deleted neighborhood of z =∞,
so that f(z) =

∑∞
j=−∞ ajzj holds for R < |z| < ∞. Let γρ : |z| = ρ >

R. From the definition of a curve positively oriented surrounding infinity
(Lecture 12), it follows that

∫

γρ

f(z)dz =

∫

γρ

a−1

z
dz = ia−1

∫ 0

2π
dθ = − 2πia−1.

This suggests that R[f,∞] = −a−1. It is interesting to note that at ∞ the
residue of a function can be nonzero even when ∞ is a regular point. For
example, for the function f(z) = 1/z, ∞ is a regular point, in fact, a simple
zero, but R[1/z,∞] = −1.

Theorem 31.3. Let the function f(z) be analytic in the extended
complex plane, except at isolated singular points. Then, the sum of all
residues of f(z) is equal to zero.

Proof. The function f(z) can have only a finite number of singular
points; otherwise, the singular points will have a limit point α (maybe at
infinity), which will be a nonisolated singular point of f(z). Thus, there
exists a positively oriented circle γρ such that all finite singular points
z1, · · · , zn of f(z) lie inside γρ. But then, from Theorem 31.2, we have

∫

γρ

f(z)dz = 2πi
n∑

j=1

R[f, zj ]. (31.6)

Since relative to the point z = ∞ the direction of γρ is negative, we also
have ∫

γρ

f(z)dz = − 2πiR[f,∞]. (31.7)

Subtracting (31.7) from (31.6), we find

n∑

j=1

R[f, zj ] +R[f,∞] = 0. (31.8)
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Since rational functions have only isolated singular points (poles), The-
orem 31.3 is directly applicable to rational functions.

Example 31.10. Consider I =

∫

γ

dz

(z − 7)(z23 − 1)
, where γ : z =

3eiθ, 0 ≤ θ ≤ 2π. Clearly, I = 2πi
∑23

j=1 R[f,ωj], where ωj are the
23 roots of unity. Obviously, this sum is not easy to compute. How-
ever, since R[f,∞] = 0 and R[f, 7] = 1/(723 − 1), from (31.8) we get
I = −2πi(R[z,∞] + R[f, 7]) = −2πi/(723 − 1).

Problems

31.1. For each of the functions in Problem 30.3 (a)-(d), compute
R[f, z0], where z0 is an isolated singularity of f(z).

31.2. Show that

(a). R

[
z2n

(z + 1)n
,−1

]
= (−1)n+1 (2n)!

(n− 1)!(n+ 1)!
,

(b). R

[
cos

1

z

sin(z − 1)

z2 + 1
, i

]
=

1

2
cosh 1 sinh(1 + i),

(c). R

[
cos z

z2(z − π)3
, 0

]
= − 3

π4
,

(d). R

[
cos z

z2(z − π)3
,π

]
= − (6− π2)

2π4
,

(e). R

[
z3 cos

1

z − 2
, 2

]
= −143

24
,

(f). R

[
e1/z

z2 + 1
, 0

]
= sin 1.

31.3. Show that

(a). R

[
z2n

(z + 1)n
,∞
]
= (−1)n (2n)!

(n− 1)!(n+ 1)!
,

(b). R

[
z3 cos

1

z − 2
,∞
]
=

143

24
.

31.4. Evaluate the following integrals:

(a).

∫

γ

z2

(z − 1)2(z + 2)
dz, where γ : |z| = 3,

(b).

∫

γ

z3

(z − 2)(z − 1− i)
dz, where γ : |z| = 1.5,
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(c).

∫

γ

dz

z4 − 1
, where γ is the rectangle defined by x = −0.5, x = 2, y =

−2, y = 2,

(d).

∫

γ

z

(z2 − 1)2(z2 + 1)
dz, where γ : |z − 1| =

√
3,

(e).

∫

γ
cos(1/z2)e1/zdz, where γ : |z| = 1,

(f).

∫

γ
tan z, where γ : |z| = 2.

31.5. Let γ be the circle |z + 1| = 2 traversed twice in the clockwise

direction. Evaluate

∫

γ

dz

(z2 + z)2
.

31.6. Suppose that f(z) is an even function with an isolated singularity
at 0. Show that R[f, 0] = 0.

31.7. Suppose that f(z) =
∑∞

j=−∞ aj(z−z0)j and g(z) =
∑∞

j=−∞ bj(z−
z0)j are valid in an annulus around z0. Show that

R[fg, z0] =
∞∑

j=−∞
ajb−j−1.

31.8. Suppose that f(z) and g(z) are analytic functions with zeros of
respective orders k and k + 1 at z0. Show that

R

[
f

g
, z0

]
= (k + 1)

f (k)(z0)

g(k+1)(z0)
.

31.9. Let α be a nonzero fixed complex number such that |α| = a < 1.
Show that ∫

γ

|dz|
|z − α|2 =

2π

1− a2
,

where γ is the unit circle |z| = 1.

31.10. Find all functions f(z) having the following properties: f(z) has
a double pole with residue 3 at z = 0; f(z) has a simple pole with residue
7 at z = 1; and f(z) is bounded in a neighborhood of z =∞.

Answers or Hints

31.1. (a). R[f, 0] = d
dz

z3+1
z−1 = −1, R[f, 1] = 2, (b). R[f, 0) = 1/3!,

(c). R[f, (2k + 1)π/2) = limz→(2k+1)π/2
z(z−(2k+1)π/2)

cos z = −(2k+1)π/2
sin(2k+1)π/2 ,



214 Lecture 31

(d). R[f, 0] = 3.
31.2. For (a)-(d), use Theorem 31.2; for (e) and (f), expand the functions
in Laurent’s series.
31.3. Use the definition.
31.4. (a). 2πi, (b). 4πi, (c). πi/2, (d). πi/4, (e). 2πi, (f). −4πi.
31.5.

∫
γ

dz
(z2+z)2 = −2

∫
Γ

dz
z2(z+1)2 where Γ is the circle |z+1| = 2 anticlock-

wise, so −4πi(Res(0) + Res(−1)) = 0.
31.6. Use Problem 25.7.
31.7. Use the Cauchy product.
31.8. f(z) = (z − z0)kφ(z), φ(z0) ̸= 0, g(z) = (z − z0)k+1ψ(z), ψ(z0) ̸=
0. Thus, R[f/g, z0] = limz→z0(z − z0)[(z − z0)kφ(z)/(z − z0)k+1ψ(z)] =
φ(z0)/ψ(z0). Now use φ(z0) = f (k)(z0)/k! and ψ(z0) = g(k+1)(z0)/(k + 1)!.
31.9. |dz| = |ieiθ|dθ = dθ = dz/(iz) and |z−α|2 = |z|2−αz−αz+ |α|2 =

1−αz−αz+ a2. Hence,
∫
γ

|dz|
|z−α|2 = − 1

i

∫
γ

dz
αz2−(1+a2)z+α . Now, αz

2− (1+

a2)z + α = 0 gives z1 = 1/α, z2 = a2/α. Since |α| = a < 1, z1 lies outside

γ, whereas z2 is inside γ. Finally, note that R
[

1
αz2−(1+a2)z+α , z2

]
= 1

a2−1 .

31.10. In view of Theorem 18.6, the function g(z) = f(z)− 3
z −

A
z2 − 7

z−1

is a constant. Thus, f(z) = 3
z + A

z2 + 7
z−1 +B.



Lecture 32
Evaluation of Real Integrals
by Contour Integration I

In this lecture and the next, we shall show that the theory of residues
can be applied to compute certain types of definite as well as improper real
integrals. Some of these integrals occur in physical and engineering appli-
cations, and often cannot be evaluated by using the methods of calculus.

First we shall apply Cauchy’s Residue Theorem to evaluate definite real
integrals of the form ∫ 2π

0
R(cos θ, sin θ)dθ, (32.1)

where R(cos θ, sin θ) is a rational function with real coefficients of cos θ and
sin θ and whose denominator does not vanish on [0, 2π]. We shall transform
(32.1) into a simple closed contour integral. For this, we let γ be the
positively oriented unit circle |z| = 1 parameterized by z = eiθ. Thus,
1/z = e−iθ. Since cos θ = (eiθ + e−iθ)/2 and sin θ = (eiθ − e−iθ)/(2i), we
have

cos θ =
1

2

(
z +

1

z

)
and sin θ =

1

2i

(
z − 1

z

)
. (32.2)

Also, differentiating z = eiθ along γ, we find

dz

dθ
= ieiθ = iz,

and hence

dθ =
dz

iz
= − i

dz

z
.

Therefore, the integral (32.1) can be written as the contour integral

∫ 2π

0
R(cos θ, sin θ)dθ =

∫

γ
R

(
z + z−1

2
,
z − z−1

2i

)
dz

iz
. (32.3)

If in (32.1) the function R involves cosnθ and sinnθ, then we can directly
use

cosnθ =
1

2

(
zn +

1

zn

)
and sinnθ =

1

2i

(
zn − 1

zn

)
, (32.4)
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which follow from De Moivre’s formula (3.4).

Example 32.1. Evaluate I =

∫ 2π

0

1

1 + a sin θ
dθ, 0 < |a| < 1. This

integral can be transformed into a contour integral:

I =

∫

γ

1

1 + a(z − z−1)/2i

dz

iz
=

∫

γ

2

az2 + 2iz − a
dz

=
2

a

∫

γ

1

[z + i(1 +
√
1− a2)/a][z + i(1−

√
1− a2)/a]

dz.

Since | − i(1 +
√
1− a2)/a| > 1 and | − i(1 −

√
1− a2)/a| < 1, it follows

that

I =
4πi

a
R

[
1

[z+i(1 +
√
1−a2)/a][z+i(1−

√
1−a2)/a]

,−i(1−
√
1−a2)/a

]

=
4πi

a

1

[−i(1−
√
1− a2)/a+ i(1 +

√
1− a2)/a]

=
2π√
1− a2

.

Similarly, we have

I =

∫ 2π

0

1

1 + a cos θ
dθ =

2π√
1− a2

, 0 < |a| < 1.

Example 32.2. Evaluate I =

∫ π

0

dθ

(a+ cos θ)2
, a > 1. Since the

integrand is symmetric in [0, 2π] about θ = π, it is clear that

I =
1

2

∫ 2π

0

dθ

(a + cos θ)2
.

We transform this integral into a contour integral to obtain

I =
1

2

∫

γ

4z2

(z2 + 2az + 1)2
dz

iz
=

2

i

∫

γ

zdz

(z − α)2(z − β)2
,

where α = −a+
√
a2 − 1 and β = −a −

√
a2 − 1. Thus, the integrand has

two double poles at α and β, of which only α is inside γ. Hence, it follows
that

I =
4πi

i
R

[
z

(z − α)2(z − β)2 ,α
]

= 4π lim
z→α

d

dz

(
z

(z − β)2

)

= −4π α+ β

(α− β)3 = 4π
a

4(a2 − 1)3/2
=

πa

(a2 − 1)3/2
.

Next, we shall evaluate integrals of certain functions over infinite in-
tervals. If f(x) is a function continuous on the nonnegative real axis
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0 ≤ x < ∞, then the improper integral of f(x) over [0,∞) is defined
by

I1 =

∫ ∞

0
f(x)dx = lim

b→∞

∫ b

0
f(x)dx. (32.5)

If the limit exists, the integral I1 is said to be convergent; otherwise it is
divergent. Similarly, the improper integral of f(x) over (−∞, 0] is defined
as

I2 =

∫ 0

−∞
f(x)dx = lim

c→∞

∫ 0

−c
f(x)dx. (32.6)

If f(x) is continuous for all x, the improper integral of f(x) over (−∞,∞)
is defined by

I =

∫ ∞

−∞
f(x)dx = lim

c→∞

∫ 0

−c
f(x)dx+ lim

b→∞

∫ b

0
f(x)dx = I2+I1 (32.7)

provided both the limits in (32.7) exist.

The Cauchy principal value (p.v.) of I is defined to be the number

p.v.

∫ ∞

−∞
f(x)dx = lim

ρ→∞

∫ ρ

−ρ
f(x)dx (32.8)

provided this limit exists. Cauchy’s principal value of an integral may exist
even though the integral itself is not convergent. For example,

∫ ρ
−ρ xdx = 0

for all ρ, and hence p.v.
∫∞
−∞ xdx = 0, but

∫∞
0 xdx = ∞. However, if the

improper integral I exists, then clearly it must be equal to its principal value
(p.v.). We also note that if f(x) is an even function; i.e., f(−x) = f(x)
for all real numbers x, and if the Cauchy principal value of I exists, then I
exists. Moreover, we have

1

2
p.v.

∫ ∞

−∞
f(x)dx =

∫ ∞

0
f(x)dx. (32.9)

In the following theorem, we use residue theory to compute the Cauchy
principal value of I for a certain class of functions f(x).

Theorem 32.1. Let f(z) be a rational function having no real poles,
and there exists µ such that for any |z| > µ, |f(z)| ≤ M/|z|2 for some
M > 0. Then,

p.v.

∫ ∞

−∞
f(x)dx = 2πi

∑
R[f, zj], (32.10)

holds, where the sum is taken over all the poles zj of f(z) that fall in the
upper half-plane.
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Proof. Suppose ρ > µ is so large that the semicircle γ+ρ contains all the
poles of f(z) that are in the upper half-plane. Then, on Γρ = [−ρ, ρ]∪{γ+ρ },
by Cauchy’s Residue Theorem, we have
∫

Γρ

f(z)dz =

∫ ρ

−ρ
f(x)dx +

∫

γ+
ρ

f(z)dz = 2πi
∑

R[f, zj]. (32.11)

Clearly, the right-hand side of (32.11) is independent of ρ, while for the
left-hand side we find

lim
ρ→∞

∫ ρ

−ρ
f(x)dx =

∫ ∞

−∞
f(x)dx

and
∣∣∣∣∣

∫

γ+
ρ

f(z)dz

∣∣∣∣∣ =

∣∣∣∣
∫ π

0
f(ρeiθ)ρieiθdθ

∣∣∣∣ ≤
∫ π

0
|f(ρeiθ)|ρdθ ≤ M

ρ2
πρ =

Mπ

ρ

so that limρ→∞
∫
γ+
ρ
f(z)dz = 0. Hence, (32.10) follows.

Corollary 32.1. If f(z) = P (z)/Q(z) is a rational function such that
P (z) and Q(z) do not have a common zero, Q(z) has no zeros on the real
line, and degree Q ≥ 2+ degree P, then limρ→∞

∫
γ+
ρ
f(z)dz = 0, where γ+ρ

is the upper half-circle of radius ρ.

Remark 32.1. In the proof of Theorem 32.1, the upper semicircle is
used only for convenience. One may as well use the lower semicircle or any
other suitable contour having the real interval [−ρ, ρ] as one of its parts.

Example 32.3. Evaluate

I = p.v.

∫ ∞

−∞

dx

x4 + a4
, a > 0.

Clearly, the function f(z) = 1/(z4+a4) satisfies the conditions of Corollary
32.1. Its singular points in the upper half-plane are the simple poles at
z1 = aeπi/4 and z2 = ae3πi/4. Thus, from (32.10), it follows that

I = 2πi

(
R

[
1

z4 + a4
, z1

]
+R

[
1

z4 + a4
, z2

])

= 2πi

[
1

4z31
+

1

4z32

]
=

2πi

4a3

(
e−3πi/4 + e−9πi/4

)

=
2πi

4a3

(
−eπi/4 + e−πi/4

)
=

π√
2a3

.

Example 32.4. Evaluate

I =

∫ ∞

0

dx

(x2 + a2)2
, a > 0.
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Note that the integral is even and that the function 1/(z2+a2)2 has a double
pole at ai and −ai, and hence, from Corollary 32.1, (32.9) and (32.10), it
follows that

I =
1

2
p.v.

∫ ∞

−∞

dx

(x2 + a2)2
=

1

2
(2πi)R[f, ai]

= πi lim
z→ai

d

dz

1

(z + ai)2
= πi

−2
(2ai)3

=
π

4a3
.



Lecture 33
Evaluation of Real Integrals
by Contour Integration II

We begin this lecture with two examples where we need to use appro-
priate contours to evaluate certain proper and improper real integrals. We
shall also prove Jordan’s Lemma, which plays a fundamental role in the
computation of integrals involving rational functions multiplied by trigono-
metric functions.

Example 33.1. We shall derive the Fresnel integrals

∫ ∞

0
cosx2dx =

∫ ∞

0
sinx2dx =

1

2

√
π

2
, (33.1)

which occur in the theory of diffraction. For this, we need the inequality

2

π
θ < sin θ, 0 < θ <

π

2
, (33.2)

and the integral

L =

∫ ∞

0
e−x2

dx =

√
π

2
. (33.3)

To show (33.2), we consider the function f(θ) = sin θ − 2θ/π, θ ∈ [0,π/2].
Since f ′′(θ) = − sin θ, min0≤θ≤π/2 f(θ) = f(0) = f(π/2) = 0. To establish
(33.3), we note first that

L2 =

(∫ ∞

0
e−x2

dx

)(∫ ∞

0
e−y2

dy

)
=

∫ ∞

0

∫ ∞

0
e−(x2+y2)dxdy

and then use the polar coordinates x = r cosφ, y = r sinφ, to obtain

L2 =

∫ π/2

0

∫ ∞

0
e−r2rdrdθ =

[
−1

2
e−r2

]∞

0

× π

2
=

π

4
.

Now, to establish the integrals in (33.1), we consider the entire function

f(z) = eiz
2

and the contour γ = OA+AB+BO as in Figure 33.1, so that,
by Theorem 15.2, we have

∫

γ
eiz

2

dz =

∫

OA
eiz

2

dz +

∫

AB
eiz

2

dz +

∫

BO
eiz

2

dz = 0.
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Clearly, z = x, 0 ≤ x ≤ ρ on the line OA; z = ρeiθ, 0 ≤ θ ≤ π/4 on the
arc AB; and z = reπi/4, 0 ≤ r ≤ ρ on the line BO. Hence it follows that

∫ ρ

0
eix

2

dx+

∫ π/4

0
exp

(
iρ2e2iθ

)
ρieiθdθ +

∫ 0

ρ
exp

(
ir2eπi/2

)
eπi/4dr = 0.

(33.4)

π
4

0 A
ρ ••

•B

Figure 33.1

Now, in view of (33.2), we have

∣∣∣∣∣

∫ π/4

0
exp

(
iρ2e2iθ

)
ρieiθdθ

∣∣∣∣∣ ≤ ρ

∫ π/4

0

∣∣exp[iρ2(cos 2θ + i sin 2θ)]
∣∣ dθ

≤ ρ

∫ π/4

0
e−ρ2 sin 2θdθ ≤ ρ

∫ π/4

0
e−ρ2(4θ/π)dθ

=
π

4

1− e−ρ2

ρ
→ 0 as ρ→∞,

(33.5)
whereas (33.3) gives

lim
ρ→∞

∫ 0

ρ
exp

(
ir2eπi/2

)
eπi/4dr = − eπi/4

∫ ∞

0
e−r2

dr = − 1 + i√
2

√
π

2
.

(33.6)
Combining (33.4)-(33.6), we get

lim
ρ→∞

∫ ρ

0
eix

2

dx =

∫ ∞

0
(cosx2 + i sinx2)dx =

1 + i√
2

√
π

2
,

which on comparing the real and imaginary parts gives (33.1).

Example 33.2. We shall show that

I =

∫ ∞

0

1

tα + 1
dt =

π

α sin(π/α)
, α > 1. (33.7)

For this, we use the substitution t = ex, so that

I = p.v.

∫ ∞

−∞

ex

eαx + 1
dx. (33.8)
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The function f(z) = ez/(eαz +1) has an infinite number of singularities on
both the upper and lower half-planes at the points zk = (2k+1)πi/α, k =
0,±1,±2, · · · . Thus, to compute the integral in (33.8), as in Examples 32.3
and 32.4, semicircles cannot be used. Therefore, we use a rectangular con-
tour Γρ = γ1 + γ2 + γ3 + γ4 (see Figure 33.2), which as ρ→∞ expands in
the horizontal direction with the fixed vertical length 2π/α, and contains
only one singularity of f(z) at z0 = πi/α.

γ1

γ3

γ4 γ2× πi/α

ρ+ 2πi/α••

• •

−ρ + 2πi/α

−ρ ρ

×

×
0

Figure 33.2

By Cauchy’s Residue Theorem, we have

∫

Γρ

f(z)dz = 2πiR[f,πi/α] = 2πi

[
ez

d
dz (e

αz + 1)

]∣∣∣∣∣
z=πi/α

= − 2πi
eπi/α

α
.

(33.9)
We also have

∫

Γρ

f(z)dz =

∫

γ1

f(z)dz +

∫

γ2

f(z)dz +

∫

γ3

f(z)dz +

∫

γ4

f(z)dz

=

∫ ρ

−ρ
f(x)dx+

∫ 2π/α

0
f(ρ+ iy)idy

+

∫ −ρ

ρ
f(x+ 2πi/α)dx+

∫ 0

2π/α
f(−ρ+ iy)idy.

(33.10)
Now, we note that
∫ −ρ

ρ
f(x+ 2πi/α)dx =

∫ −ρ

ρ

ex+2πi/α

eαx+2πi + 1
dx = − e2πi/α

∫ ρ

−ρ

ex

eαx + 1
dx,

(33.11)∣∣∣∣∣

∫ 2π/α

0
f(ρ+ iy)idy

∣∣∣∣∣ =

∣∣∣∣∣

∫ 2π/α

0

eρ+iy

eα(ρ+iy) + 1
idy

∣∣∣∣∣ ≤
2π

α

eρ

eαρ − 1
,

(33.12)
and
∣∣∣∣∣

∫ 0

2π/α
f(−ρ+ iy)idy

∣∣∣∣∣ =

∣∣∣∣∣

∫ 0

2π/α

e−ρ+iy

eα(−ρ+iy) + 1
idy

∣∣∣∣∣ ≤
2π

α

e−ρ

1− e−αρ
.

(33.13)
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Clearly, the right-hand sides of (33.12) and (33.13) go to 0 as ρ → ∞.
Hence, from (33.9)-(33.13), it follows that

−2πi e
πi/α

α
= lim

ρ→∞

∫

Γρ

f(z)dz

=

∫ ∞

−∞

ex

eαx + 1
dx+ 0− e2πi/α

∫ ∞

−∞

ex

eαx + 1
dx+ 0

= (1− e2πi/α)I,

which gives

I = − 2πi

α

eπi

1− e2πi/α
=

π

α

−2i
e−πi/α − eπi/α

=
π

α sin(π/α)
.

We shall now prove the following result.

Lemma 33.1 (Jordan’s Lemma). Let the function f(z) be
analytic in the upper half-plane with the exception of a finite number of
isolated singularities. Furthermore, let limρ→∞ maxγρ |f(z)| = 0, where γρ
is the semicircle in the upper half-plane. Then, the following holds

lim
ρ→∞

∫

γρ

eiazf(z)dz = 0, a > 0. (33.14)

Proof. Let z = ρeiθ, 0 ≤ θ ≤ π, and Mρ = maxγρ |f(z)|. Then, from
the inequality (33.2), we have
∣∣∣∣∣

∫

γρ

eiazf(z)dz

∣∣∣∣∣ ≤
∫ π

0

∣∣∣e(iaρ[cos θ+i sin θ])
∣∣∣ |f(z)|ρdθ ≤ ρMρ

∫ π

0
e−aρ sin θdθ

= 2ρMρ

∫ π/2

0
e−aρ sin θdθ ≤ 2ρMρ

∫ π/2

0
e−2aρθ/πdθ

=
π

a
Mρ

(
1− e−aρ

)
→ 0 as ρ→∞.

Remark 33.1. If a < 0 and the function f(z) satisfies the conditions
of Lemma 33.1 in the lower half-plane and γρ is the semicircle in the lower
half-plane, then (33.14) holds. For a = ±iα, (α > 0), (33.14) also holds; in
fact, respectively, we have

lim
ρ1→∞

∫

γρ1

e−αzf(z)dz = 0 and lim
ρ2→∞

∫

γρ2

eαzf(z)dz = 0, α > 0,

(33.15)
where γρ1 is the semicircle in the right half-plane and γρ2 is the semicircle
in the left half-plane.
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Remark 33.2. If the function f(z) satisfies the conditions of Lemma
33.1 in the half-plane Im z ≥ y0, where y0 is a fixed positive or negative real
number, and γρ is the circular arc |z− iy0| = ρ in the half-plane Im z ≥ y0,
then (33.14) also holds.

Theorem 33.1. Let the function f(z) be as in Lemma 33.1 and have
no singularities on the real axis. Then, for a > 0,

p.v.

∫ ∞

−∞
eiaxf(x)dx = 2πi

∑
R[eiazf, zj ], (33.16)

holds, where the sum is taken over all the poles zj of f(z) that fall in the
upper half-plane.

Corollary 33.1. If f(z) = P (z)/Q(z) is a rational function such that
P (z) and Q(z) do not have a common zero, Q(z) has no zeros on the real
line, and degree Q ≥ 1+ degree P, then (33.16) holds.

Example 33.3. Clearly, the function f(z) = 1/(z2+b2), b > 0 satisfies
the conditions of Corollary 33.1, and hence, for a > 0, we have

p.v.

∫ ∞

−∞

eiax

x2 + b2
dx = 2πiR

[
eiaz

z2 + b2
, ib

]
=

π

b
e−ab.

Therefore, on comparing the real and imaginary parts, it follows that

p.v.

∫ ∞

−∞

cos ax

x2 + b2
dx =

π

b
e−ab and p.v.

∫ ∞

−∞

sin ax

x2 + b2
dx = 0.

Similarly, we find

p.v.

∫ ∞

−∞

x cos ax

x2 + b2
dx = 0 and p.v.

∫ ∞

−∞

x sin ax

x2 + b2
dx = πe−ab.

Problems

33.1. Show that:

(a).

∫ 2π

0

sin2 θ

a+ b cos θ
dθ =

2π

b2
(a−

√
a2 − b2), a > b > 0.

(b).

∫ π

0

cos 2θ

1 + a2 − 2a cos θ
dθ =

πa2

1− a2
, a2 < 1.

(c).

∫ 2π

0

1

a+ b cos2 θ
dθ =

∫ 2π

0

1

a+ b sin2 θ
dθ =

2π
√
a
√
a+ b

, 0 < b < a.



Evaluation of Real Integrals by Contour Integration II 225

(d).

∫ 2π

0

1

a cos θ + b sin θ + c
dθ =

2π√
c2 − a2 − b2

, a2 + b2 < c2.

(e).

∫ 2π

0

1

a cos2 θ + b sin2 θ + c
dθ =

2π√
(a + c)(b+ c)

, 0 ≤ c < a, c < b.

(f).

∫ 2π

0

1

(1 + 2a cos θ + a2)2
dθ =

2π(1 + a2)

(1− a2)3
, |a| < 1.

(g).

∫ π

0

sin2 θ

(1−2a cosθ + a2)(1−2b cosθ + b2)
dθ =

π

2(1−ab)
, 0 < a < b < 1.

(h).

∫ 2π

0
sin2n θdθ =

∫ 2π

0
cos2n θdθ =

2π

4n

(
2n

n

)
, n = 1, 2, · · · .

33.2. Show that:

(a). p.v.

∫ ∞

−∞

dx

x2 + x+ 1
=

2π√
3
.

(b).

∫ ∞

0

dx

(x2 + a2)(x2 + b2)
=

π

2ab(a+ b)
, a > 0, b > 0.

(c).

∫ ∞

0

2x2 − 1

x4 + 5x2 + 4
dx =

π

4
.

(d). p.v.

∫ ∞

−∞

x2

(x2 + a2)2
=

π

2a
, a > 0.

(e).

∫ ∞

0

dx

(x2 + 1)n
=

1 · 3 · 5 · · · (2n − 3)

2 · 4 · 6 · · · (2n − 2)

π

2
, n > 1.

33.3. Let f(z) be a meromorphic function in the upper half-plane
having no real poles, and zf(z)→ 0 uniformly as |z|→∞ for 0 ≤ arg z ≤
π. Show that (32.10) holds.

33.4. Derive the Poisson integral

p.v.

∫ ∞

−∞
e−ax2

cos(2abx)dx =

√
π

a
e−ab2 , a > 0, b > 0.

33.5. Show that

p.v.

∫ ∞

−∞

eαx

ex + 1
dx =

π

sinαπ
, 0 < α < 1.

33.6. Show that
∫ ∞

0

x

xk + 1
dx =

π

k sin(2π/k)
, k > 2.



226 Lecture 33

33.7. Show that

∫ ∞

0

xk−1

x+ 1
dx =

∫ ∞

0

x−k

x+ 1
dx =

π

sinkπ
, 0 < k < 1.

33.8. With the help of the contour γρ as shown, show that

∫ ∞

0

dx

x3 + 1
=

2π

3
√
3
.

γρ

ρei2π/3

O A

B

33.9. Let a > 0, b > 0, c > 0 and k be real. Show that:

(a). p.v.

∫ ∞

−∞

cos ax

x4 + b4
dx =

π√
2b3

e−ab/
√
2

(
cos

ab√
2
+ sin

ab√
2

)
.

(b).

∫ ∞

0

cos ax

(x2 + b2)2
dx =

π

4b3
e−ab(ab+ 1).

(c). p.v.

∫ ∞

−∞

cosx

(x2 + b2)(x2 + c2)
dx =

π

(b2 − c2)

(
e−c

c
− e−b

b

)
, b > c.

(d). p.v.

∫ ∞

−∞

cos ax

(x + k)2 + b2
dx =

π

b
e−ab cos ka.

33.10. Show that:

(a). p.v.

∫ ∞

−∞

x3 sinx

(x2 + 1)2
dx =

π

2e
.

(b). p.v.

∫ ∞

−∞

x sinπx

x2 + 2x+ 5
dx = − π

e2π
.

(c). p.v.

∫ ∞

−∞

sinx

x+ i
dx =

π

e
.

(d). p.v.

∫ ∞

−∞

cosx+ x sinx

x2 + 1
dx =

2π

e
.

33.11. The gamma function is denoted and defined as

Γ(z) =:

∫ ∞

0
e−ttz−1dt, (33.17)
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where Re z > 0 and tz−1 = e(z−1)Log t is the principal branch of tz−1.
This integral is improper at both ends, and hence it is interpreted as
limb→0,c→∞

∫ c
b e−ttz−1dt.

(a). Show that |e−ttz−1| ≤ e−ttRe z−1, and hence (33.17) converges abso-
lutely for all z such that Re z > 0.

(b). Write Γ(z) =
∑∞

j=0 fj(z), where fj(z) =
∫ j+1
j e−ttz−1dt. Show that

each fj(z) is analytic for all z such that Re z > 0.

(c). For all z such that |z| ≤ A, 0 < Re z ≤ B, show that |fj(z)| ≤ Mj =
(j+1)B−1(e−j−e−(j+1)). Hence, deduce that Γ(z) is analytic for all z such
that Re z > 0.

(d). Use integration by parts to obtain the recurrence relation Γ(z + 1) =
zΓ(z).

(e). Show that Γ(1) = 1 and, for an integer n > 1, Γ(n + 1) = n!. Thus,
the gamma function is a generalization of the factorial function.

(f). Show that

Γ(α)Γ(1− α) =

∫ ∞

0

∫ ∞

0
e−(s+t)s−αtα−1dsdt =

π

sinπα
, 0 < α < 1.

(g). The analytic continuation of Γ(z) is

Γ1(z) = e−γzz−1
∞∏

n=1

(
1 +

z

n

)−1
ez/n, z ̸= 0,−1,−2, · · · ;

here γ is the Euler constant given by

γ = lim
m→∞

[
1 +

1

2
+

1

3
+ · · ·+ 1

m
− lnm

]
≃ 0.5772.

Answers or Hints

33.1. Similar to Examples 32.1 and 32.2.
33.2. Similar to Examples 32.3 and 32.4.
33.3. Similar to Theorem 32.1.
33.4. Take a rectangle as a contour and follow Example 33.1.
33.5. Use the substitution αx = t in (33.8).
33.6. In (33.7), use the substitutions t = x2, 2α = k.
33.7. In (33.7), use the substitutions tα = x, α = 1/(1− k).
33.8. Since z3 + 1 = 0 implies z = eiπ/3, eiπ, ei5π/3, for ρ > 1 only
eiπ/3 is enclosed by γρ. Hence,

∫
γρ

dz
z3+1dz = 2πiR[1/(z3 + 1), eiπ/3] =
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2πi 1
3ei2π/3 . Next, note that

∣∣∣
∫
AB

dz
z3+1

∣∣∣ ≤ 2πρ
3

1
ρ3−1 → 0 as ρ → ∞. Fur-

thermore,
∫
BO

dz
z3+1 = −

∫ ρ
0

1
t3+1e

i2π/3dt. Thus, we have 2πi
3ei2π/3 = (1 −

ei2π/3)
∫∞
0

1
x3+1dx, or

∫∞
0

dx
x3+1 = 2πi

3(ei2π/3−ei4π/3)
= 2

√
3π
9 .

33.9. Similar to Example 33.3.
33.10. (a). and (b). similar to Example 33.3, (c). use sinx = (eix −
e−ix)/(2i), (d). use eiz/(z − i).
33.11. (a). Compute directly, (b). integral of an analytic function, (c). use
Theorem 22.4 and note thatA and B are arbitrary, (d). verify directly, (e). com-
pute directly, (f). use x = s + t, y = t/s and Problem 33.7, (g). use
Weierstrass’s Factorization Theorem (Theorem 43.3).



Lecture 34
Indented Contour Integrals

In previous lectures, when evaluating the real improper integrals we
assumed that the integrand has no singularity over the whole interval of
integration. In this lecture, we shall show that by using indented contours
some functions which have simple poles at certain points on the interval of
integration can be computed.

Recall from calculus that if f(x) is continuous on the interval [a, b) and
discontinuous at b, then the improper integral of f(x) over [a, b] is defined
by ∫ b

a
f(x)dx = lim

r→b−

∫ r

a
f(x)dx,

provided the limit exists. Similarly, if f(x) is continuous on the interval
(b, c] and discontinuous at b, then the improper integral of f(x) over [b, c]
is defined by ∫ c

b
f(x)dx = lim

s→b+

∫ c

s
f(x)dx,

provided the limit exists. If f(x) is continuous on the interval [a, c] and
discontinuous at b ∈ (a, c), then the improper integral of f(x) over [a, c]
and its Cauchy principal value are defined by

∫ c

a
f(x)dx := lim

r→b−

∫ r

a
f(x)dx + lim

s→b+

∫ c

s
f(x)dx

and

p.v.

∫ c

a
f(x)dx := lim

t→0+

(∫ b−t

a
f(x)dx+

∫ c

b+t
f(x)dx

)
,

provided the appropriate limits exist. If the function f(x) is continuous
on the interval (−∞,∞) and discontinuous at b, then the Cauchy principal
value of its integral is defined by

p.v.

∫ ∞

−∞
f(x)dx := lim

ρ→∞
lim
t→0+

(∫ b−t

−ρ
f(x)dx +

∫ ρ

b+t
f(x)dx

)
,

provided the limits as t→ 0+ and ρ→∞ exist independently. If f(x) has
discontinuities at several points, then the definitions above can be extended
rather easily.
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Example 34.1. Clearly,

∫ 1

0

1

x1/5
dx = lim

t→0+

∫ 1

t

1

x1/5
dx = lim

t→0+

5

4
(1− t4/5) =

5

4
,

∫ 9

3

1

x− 3
dx = lim

t→0+

∫ 9

3+t

1

x− 3
dx = lim

t→0+
ln |x− 3|

∣∣∣∣
9

3+t

= lim
t→0+

[ln 6− ln t] = ∞,

and

∫ 3

1

1

x− 3
dx = lim

t→0+

∫ 3−t

1

1

x− 3
dx = lim

t→0+
ln |x− 3|

∣∣∣∣
3−t

1

= lim
t→0+

[ln t− ln 2] = −∞;

however,

p.v.

∫ 9

1

1

x− 3
dx = lim

t→0+

(∫ 3−t

1

1

x− 3
dx +

∫ 9

3+t

1

x− 3
dx

)

= lim
t→0+

[ln t− ln 2 + ln 6− ln t] = ln 3.

To prove the main results of this lecture, we shall need the following
lemma.

Lemma 34.1. Suppose that f(z) has a simple pole at the point b on
the x-axis. If γr is the contour γr : z = b + reiθ , θ1 ≤ θ ≤ θ2 (see Figure
34.1), then

lim
r→0+

∫

γr

f(z)dz = i(θ2 − θ1)R[f, b]. (34.1)

•

•

•

θ2−θ1 r

b

γr

Figure 34.1

Proof. The Laurent series for f(z) at z = b can be written as

f(z) =
R[f, b]

z − b
+ g(z), (34.2)
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where g(z) is analytic at b. Integrating (34.2) and using the parametrization
of γr, we obtain

∫

γr

f(z)dz = R[f, b]

∫ θ2

θ1

ireiθ

reiθ
dθ + ir

∫ θ2

θ1

g(b+ reiθ)eiθdθ

= i(θ2 − θ1)R[f, b] + +ir

∫ θ2

θ1

g(b+ reiθ)eiθdθ.

Now, since g(z) is analytic at b, there exists an M > 0 such that |g(b +
reiθ)| ≤M in some neighborhood of b. Thus, it follows that

lim
r→0+

∣∣∣∣∣ir
∫ θ2

θ1

g(b+ reiθ)eiθdθ

∣∣∣∣∣ ≤ lim
r→0+

r

∫ θ2

θ1

Mdθ

= lim
r→0+

r(θ2 − θ1)M = 0.

The following theorems extend the results we presented in earlier lec-
tures.

Theorem 34.1. If f(z) = P (z)/Q(z) is a rational function such that
P (z) and Q(z) do not have a common zero, Q(z) has simple zeros at the
points b1, · · · , bℓ on the real line, and degree Q ≥ 2+ degree P, then

p.v.

∫ ∞

−∞

P (x)

Q(x)
dx = 2πi

∑
R[f, zj] + πi

ℓ∑

k=1

R[f, bk] (34.3)

holds, where the first sum is taken over all the poles zj of f(z) that fall in
the upper half-plane.

Theorem 34.2. If f(z) = P (z)/Q(z) is a rational function such that
P (z) and Q(z) do not have a common zero, Q(z) has simple zeros at the
points b1, · · · , bℓ on the real line, and degree Q ≥ 1+ degree P, then for
a > 0,

p.v.

∫ ∞

−∞

P (x)

Q(x)
cos axdx = −2π

∑
Im R[eiazf, zj ]−π

ℓ∑

k=1

Im R[eiazf, bk]

(34.4)
and

p.v.

∫ ∞

−∞

P (x)

Q(x)
sin axdx = 2π

∑
Re R[eiazf, zj ] + π

ℓ∑

k=1

Re R[eiazf, bk]

(34.5)
hold, where the first sum in (34.4) as well as in (34.5) is taken over all the
poles zj of f(z) that fall in the upper half-plane.
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Proof of Theorems 34.1 and 34.2. Let ρ be sufficiently large so
that all poles of f(z) lie under the semicircle γρ : z = ρeiθ, 0 ≤ θ ≤ π. Also,
let r be so small that the semicircles Ck : z = bk + reiθ , 0 ≤ θ ≤ π, k =
1, · · · , ℓ are disjoint and the poles of f(z) lie above them (see Figure 34.2).
Furthermore, let Γ be the closed positively oriented contour consisting of
γρ, − Cj , j = 1, · · · , ℓ and the segments between these small semicircles
Iρ = [−ρ, ρ]\∪ℓk=1 (bk− r, bk+ r). Then, from Theorem 31.2, it follows that

••

γρ

C2C1

b1 b2

z1•
•z2

Γ

Figure 34.2

2πi
∑

R[f, zj ] =

∫

Γ
f(z)dz =

∫

γρ

f(z)dz +

∫

Iρ

f(x)dx −
ℓ∑

k=1

∫

Ck

f(z)dz.

(34.6)
Now, in (34.6), we let ρ → ∞ and r → 0+. If f(z) satisfies the conditions
of Theorem 34.1, then, in view of Corollary 32.1 and Lemma 34.1, (34.6)
reduces to

2πi
∑

R[f, zj] =

∫ ∞

−∞
f(x)dx − πi

ℓ∑

k=1

R[f, bk], (34.7)

which is the same as (34.3). If f(z) satisfies the conditions of Theorem 34.2,
then also from Corollary 33.1 and Lemma 34.1 the relation (34.7) holds,
but for the function f(z) multiplied by eiaz, a > 0; i.e.,

2πi
∑

R[eiazf, zj] =

∫ ∞

−∞
eiaxf(x)dx − πi

ℓ∑

k=1

R[eiazf, bk]. (34.8)

Finally, equating the real and imaginary parts of (34.8), we obtain (34.4)
and (34.5), respectively.

Example 34.2. We shall show that

p.v.

∫ ∞

−∞

x

x3 − a3
dx =

π√
3 a

, a > 0.
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Clearly, the function f(z) = z/(z3 − a3) has simple poles at z1 = a, z2 =
(−1 − i

√
3)a/2, and z3 = (−1 +

√
3)a/2. Since the pole z2 is in the lower

half-plane, from Theorem 34.1 it follows that

p.v.

∫ ∞

−∞

x

x3 − a3
dx = 2πiR[f, z3] + πiR[f, z1]

= 2πi× 2

3(−1 +
√
3 i)a

+ πi× 1

3a
=

π√
3 a

.

Example 34.3. Since R[eiaz/z, 0] = 1, a > 0. From Theorem 34.2, it
follows that

p.v.

∫ ∞

−∞

cos ax

x
dx = 0 and p.v.

∫ ∞

−∞

sin ax

x
dx = π, a > 0.

We also note that the function (sin ax)/x is even, and hence

∫ ∞

0

sin ax

x
dx =

π

2
, a > 0.

Example 34.4. Since the function f(z) = z/(z2−b2), b > 0 has simple
poles at b and −b and, for a > 0,

R

[
zeiaz

z2 − b2
, b

]
=

eiab

2
, R

[
zeiaz

z2 − b2
,−b

]
=

e−iab

2
,

from Theorem 34.2, it follows that

p.v.

∫ ∞

−∞

x cos ax

x2 − b2
dx = − πIm

(
eiab

2
+

e−iab

2

)
= − πIm(cosab) = 0

and

p.v.

∫ ∞

−∞

x sin ax

x2 − b2
dx = πRe

(
eiab

2
+

e−iab

2

)
= πRe(cos ab) = π cos ab.

Problems

34.1. Show that:

(a). p.v.

∫ ∞

−∞

cosx

x− a
dx = − π sin a, a > 0.

(b). p.v.

∫ ∞

−∞

sinx

x− a
dx = π cos a, a > 0.
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(c).

∫ ∞

0

sin2 x

x2
dx =

π

2
.

(d).

∫ ∞

0

cos ax− cos bx

x2
dx =

π

2
(b− a), a, b > 0.

(e).

∫ ∞

0

sin ax

x(x2 + b2)
dx =

π

2b2
(
1− e−ab

)
, a, b > 0.

(f).

∫ ∞

0

sin ax

x(x2 + b2)2
dx =

π

4b4
[
2− (2 + ab)e−ab

]
, a, b > 0.

Answers or Hints

34.1. Similar to Examples 34.1-34.3.



Lecture 35
Contour Integrals Involving

Multi-valued Functions

In previous lectures, we successfully applied contour integration theory
to evaluate integrals of real-valued functions. However, often it turns out
that the extension of a real function to the complex plane is a multi-valued
function. In this lecture, we shall show that by using contours cleverly some
such functions can also be integrated.

We begin with the evaluation of the integral

I =

∫ ∞

0
xα−1f(x)dx, 0 < α < 1. (35.1)

For this, we shall assume that: (i) f(z) is a single-valued analytic function,
except for a finite number of isolated singularities not on the positive real
semiaxis, (ii) f(z) has a removable singularity at z = 0, and (iii) f(z) has
a zero of order at least one at z =∞.

Consider the domain S : 0 < arg z < 2π, which is the z-plane cut along
the positive real semiaxis. Clearly, the function F (z) = zα−1f(z) in the
domain S is single-valued, its singularities are the same as those of f(z),
and it coincides with xα−1f(x) on the upper side of the cut; i.e., arg z = 0.
Let ρ > 0 be sufficiently large so that all singularities zj of f(z) lie inside
the circle γρ, and let r > 0 be sufficiently small so that all singularities
of f(z) lie outside the circle γr. In the domain S, we consider the closed
contour Γ, which consists of open circles γρ, γr and the segments of the
real axis [r, ρ] on the upper and lower sides of the cut (see Figure 35.1).
Then, by Theorem 31.3, it follows that

∫

Γ
F (z)dz = 2πi

∑
R[zα−1f(z), zj]

=

∫ ρ

r
xα−1f(x)dx +

∫

γρ

zα−1f(z)dz

+

∫ r

ρ
zα−1f(z)dz −

∫

γr

zα−1f(z)dz

= I1 + I2 + I3 − I4,

(35.2)

where the sum is taken over all singularities of f(z).
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×
γr

0

γρ

x

y

z1

z2

z3

z4

•
•

•
•

Figure 35.1

From assumption (iii) it is clear that |f(z)| ≤ M/|z| for all sufficiently
large |z|. Thus, it follows that

|I2| =

∣∣∣∣∣

∫

γρ

zα−1f(z)dz

∣∣∣∣∣ ≤
Mρα−1

ρ
2πρ = 2πMρα−1 → 0 as ρ→∞.

For the integral I3, we note that arg z = 2π, and hence z = xe2πi, x > 0.
Thus, we have

I3 =

∫ r

ρ
zα−1f(z)dz = − e2πi(α−1)

∫ ρ

r
xα−1f(x)dx = − e2πi(α−1)I1.

For the integral I4, in view of assumption (ii), we find

|I4| =

∣∣∣∣
∫

γr

zα−1f(z)dz

∣∣∣∣ ≤ Crα−12πr → 0 as r → 0.

Finally, in (35.2), letting r → 0, ρ→∞ and using the relations above,
we obtain
∫ ∞

0
xα−1f(x)dx =

2πi

1− e2παi

∑
R[zα−1f(z), zj], 0 < α < 1. (35.3)

Example 35.1. For 0 < α < 1, from (35.3), we have

∫ ∞

0

xα−1

x+ 1
dx =

2πi

1− e2παi
R

[
zα−1

z + 1
,−1

]

=
2πi

1− e2παi
(−1)α−1 =

2πieπ(α−1)i

1− e2π(α−1)i
=

π

sinαπ
,

which is the same as given in Problem 33.7.



Contour Integrals Involving Multi-valued Functions 237

Example 35.2. From (35.3), we have
∫ ∞

0

√
x

x3 + 1
dx =

∫ ∞

0
x1/2−1 x

x3 + 1
dx

=
2πi

1− eπi

(
R

[
z1/2

z3 + 1
, eπi/3

]
+R

[
z1/2

z3 + 1
, eπi

]
+R

[
z1/2

z3 + 1
, e5πi/3

])

= πi

[
i

3
+

1

3
e−πi/2 +

1

3
e−5πi/2

]
=

πi

3
[i− i− i] =

π

3
.

Now, we shall consider the integral of the form

I =

∫ 1

0
xα−1(1− x)−αf(x)dx, 0 < α < 1. (35.4)

We shall assume that: (i) f(z) is a single-valued analytic function, except
for a finite number of isolated singularities not on the interval 0 ≤ x ≤ 1,
and (ii) f(z) has a removable singularity at z = ∞. The function F (z) =
zα−1(1 − z)−αf(z) has two branch points, namely z = 0 and z = 1, and
the point z =∞ is a removable singularity. Now, as for the integral (35.1),
from Figure 35.2 it is clear that

× ×
1

γr1
γr2

0

γρ

x

y

z1

z2

z3

z4

•
•

•
•

Figure 35.2

∫

Γ
F (z)dz = 2πi

∑
R[zα−1(1− z)−αf(z), zj]

=

∫ 1−r

r
xα−1(1− x)−αf(x)dx −

∫

γr2

zα−1(1− z)−αf(z)dz

+

∫ r

1−r
zα−1(1− z)−αf(z)dz −

∫

γr1

zα−1(1− z)−αf(z)dz

+

∫

γρ

zα−1(1− z)−αf(z)dz

= I1 − I2 + I3 − I4 + I5,
(35.5)
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where the sum is taken over all singularities of f(z).

Now, as for the integrals in (35.2), it follows that I2 and I4 tend to zero,
and I3 = −e2πiαI1 as r → 0. Next, since f(z) has a removable singularity
at z = ∞, it has the expansion f(z) = a0 + (a−1/z) + · · · , where a0 =
limz→∞ f(z). This leads to I5 = 2πia0eπiα. Thus, as r→ 0 and ρ→∞, we
get

2πi
∑

R[zα−1(1− z)−αf(z), zj] = (1− e2πiα)I + 2πia0e
πiα,

which gives

∫ 1

0
xα−1(1−x)−αf(x)dx =

πa0
sinπα

+
2πi

(1−e2πiα)
∑

R[zα−1(1−z)−αf(z), zj],

(35.6)
where 0 < α < 1 and a0 = limz→∞ f(z).

Example 35.3. From (35.6), it immediately follows that

∫ 1

0
xα−1(1− x)−αdx =

π

sinπα
, 0 < α < 1.

Recall that the integral above is a particular case of the beta function de-
noted and defined as

B(p, q) :=

∫ 1

0
xp−1(1− x)q−1dx, 0 < p, q < 1.

Finally, in this lecture we shall evaluate the integral

I =

∫ ∞

0
f(x)Logx dx. (35.7)

We shall assume that f(x) is an even function and that f(z) is analytic
onto the upper half-plane Im z > 0 and satisfies the conditions of Theorem
32.1. From Figure 35.3 it follows that

∫

Γ
f(z)Log zdz = 2πi

∑
R[f(z)Log z, zj]

=

∫ ρ

r
f(x)Logxdx+

∫

γρ

f(z)Log zdz

+

∫ ρ

r
f(x)[Logx+ πi]dx−

∫

γr

f(z)Log zdz

= I1 + I2 + I3 − I4,
(35.8)

where the sum is taken over all singularities of f(z) on the upper half-plane.
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x•
0

y

γr

γρ

z1•
•z2

Γ

Figure 35.3

Now, following as earlier, it follows that

|I2| ≤
M

ρ2

∫ π

0
|Log ρeiθ||ρeiθ|dθ

≤ M

ρ

∫ π

0
|Log ρ+ iθ|dθ ≤ Mπ

ρ

√
Log2ρ+ π2 → 0 as ρ→∞.

Furthermore, I4 also tends to zero as r → 0. From our earlier lectures, we
also have ∫ ∞

0
f(x)dx = πi

∑
R[f(z), zj].

Thus, from (35.8), we get

∫ ∞

0
f(x)Logxdx = πi

∑
R

[
f(z)

(
Log z − πi

2

)
, zj

]
. (35.9)

Example 35.4. From (35.9), it is clear that

∫ ∞

0

Logx

(x2 + 1)2
dx = πiR

[
1

(z2 + 1)2

(
Log z − πi

2

)
, i

]
= − π

4
.

Problems

35.1. Show that:

(a).

∫ ∞

0

1√
x(x2 + 1)

dx =
π√
2
.

(b).

∫ ∞

0

√
x

(x2 + 1)2
dx =

π

4
√
2
.

(c).

∫ ∞

0

x1/4

x2 + x+ 1
dx = π(1− 1/

√
3).
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(d).

∫ ∞

0

√
x

(x+ 1)2
dx =

π

2
.

35.2. Show that:

(a).

∫ ∞

0

Logx

x2 + 1
dx = 0.

(b).

∫ ∞

0

Logx

(x+ a)2 + b2
dx =

Log
√
a2 + b2

b
tan−1 b

a
, a and b are real.

(c).

∫ ∞

0

Logx

x4 + 1
dx =

π2

8
√
2
.

(d).

∫ ∞

0

(Logx)2

x2 + 1
dx =

π3

8
.

(e).

∫ ∞

0

√
x Logx

(x+ 1)2
dx = π.

(f).

∫ ∞

0

(Logx)2

x3 + 1
dx =

3
√
2 π2

64
.

35.3. Show that the substitution t = x/(1 − x) reduces the integral
(35.4) to the form (35.1).

35.4. Show that:

(a).

∫ ∞

0

cos ax

coshπx
dx =

1

2
sech

a

2
, a is real.

(b).

∫ ∞

0

sin ax

sinhπx
dx =

1

2
tanh

a

2
, a is real.

(c).

∫ ∞

−∞

eax

coshx
dx = π sec

(πa
2

)
, |a| < 1.

(d).

∫ ∞

0
e−πx sinax

sinhπx
dx =

1

2

1 + e−a

1− e−a
− 1

a
, a > 0.

(e).

∫ ∞

0

cosx

xα
dx = Γ(1− α) sin πα

2
, 0 < α < 1.

(f).

∫ ∞

0

sinx

xα
dx = Γ(1− α) cos πα

2
, 0 < α < 1.

Answers or Hints

35.1. Similar to Examples 35.1 and 35.2.
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35.2. Similar to Example 35.4.
35.3. Verify directly.
35.4. Use proper function and contour.



Lecture 36
Summation of Series

One of the remarkable applications of the Residue Theorem is that we
can sum

∑
n∈Z f(n) for certain types of functions f(z). For this, we shall

prove the following result.

Theorem 36.1. Let the function f(z) be analytic on C except at
finitely many points z1, z2, · · · , zk, none of which is a real integer. Further-
more, let there exist M > 0 such that |z2f(z)| ≤M for all |z| > ρ for some
ρ > 0. Consider the functions

g(z) = π
cosπz

sinπz
f(z) and h(z) =

π

sinπz
f(z), z ∈ C.

Then, the following hold:

∞∑

n=−∞
f(n) = −

k∑

j=1

R[g, zj] (36.1)

and
∞∑

n=−∞
(−1)nf(n) = −

k∑

j=1

R[h, zj]. (36.2)

Proof. Recall that the function sin πz vanishes at each n ∈ Z. Thus, the
functions π cosπz/ sinπz and π/ sinπz have simple poles at each n ∈ Z.
Furthermore, by hypothesis, f(z) is analytic at each n. Now, we consider
the following two cases.

Case (i). Let f(n) ̸= 0 for each n. Then, both g(z) and h(z) have sim-
ple poles at each n ∈ Z and singularities at z1, z2, · · · , zk. Let γ be a
large rectangle containing all singularities z1, z2, · · · , zk of f(z), the inte-
gers −n, · · · ,−1, 0, 1, · · · , n, and not passing through any integer. Then, by
the Residue Theorem, it follows that

∫

γ
g(z)dz = 2πi

⎡

⎣
k∑

j=1

R[g, zj] +
n∑

m=−n

R[g,m]

⎤

⎦ .

Now since g(z) has a simple pole at each m, we have

R[g,m] = lim
z→m

(z −m)g(z) = lim
z→m

f(z)
π(z −m)

sinπz
cosπz = f(m).

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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Hence, we obtain

∫

γ
g(z)dz = 2πi

⎡

⎣
k∑

j=1

R[g, zj] +
n∑

m=−n

f(m)

⎤

⎦ . (36.3)

Similarly, we find

∫

γ
h(z)dz = 2πi

⎡

⎣
k∑

j=1

R[h, zj] +
n∑

m=−n

(−1)mf(m)

⎤

⎦ . (36.4)

Case (ii). If f(m) = 0 for some m, then g(z) and h(z) have removable
singularities at m. Thus, the contribution of the point m to

∫
γ g(z)dz and

to
∫
γ h(z)dz is zero, which is also f(m). Thus, in this case also, (36.3) and

(36.4) remain valid.

If we can show that, as the rectangle γ gets larger, enclosing all the
integers m in the limit, lim

∫
γ g(z)dz = 0 = lim

∫
γ h(z)dz, then from (36.3)

and (36.4) the relations (36.1) and (36.2), respectively, follow immediately.
To show this, we consider the rectangular region Sn with boundary γn.

•
1

•
n

•
n+1

•
−n

•
−n−1

•

•

ni

−ni

•

•

(n+1)i

−(n+1)i

(n+1/2)+(n+1/2)i•

••

•

(n+1/2)−(n+1/2)i

Figure 36.1

Let n be so large that |zj| < n for all j and ρ < n. Then, for any
z ∈ Sn, |z| > n > ρ, we have |f(z)| ≤M/|z|2 ≤M/ρ2 < M/n2.

Next, we need to show that

∣∣∣
cosπz

sinπz

∣∣∣ ≤ A for some A > 0 and |z| > n. (36.5)
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For this, note that, for z = x+ iy, iπz = πix− πy and

∣∣∣
cosπz

sinπz

∣∣∣ =

∣∣∣∣
eπix−πy + e−πix+πy

eπix−πy − e−πix+πy

∣∣∣∣ ≤
∣∣eπix−πy

∣∣+
∣∣e−πix+πy

∣∣
||e−πix+πy|− |eπix−πy||

.

Hence, it follows that

∣∣∣
cosπz

sinπz

∣∣∣ ≤
e−πy + eπy

eπy − e−πy
=

1 + e−2πy

1− e−2πy
≤ 1 + e−π

1− e−π

provided y ≥ 1/2, and similarly,

∣∣∣
cosπz

sinπz

∣∣∣ ≤
e−πy + eπy

e−πy − eπy
=

1 + e2πy

1− e2πy
≤ 1 + e−π

1− e−π

provided y ≤ −1/2. Now let −1/2 < y < 1/2, and z = N + 1/2 + iy where
N > n. Then, we have

∣∣∣
cosπz

sinπz

∣∣∣ =
∣∣∣∣cotπ

(
N +

1

2
+ iy

)∣∣∣∣ =
∣∣∣cot

(π
2
+ πiy

)∣∣∣ = | tanhπy| ≤ tanh
π

2
.

Similarly, if z = −(N + 1/2) + iy, we get
∣∣∣
cosπz

sinπz

∣∣∣ = | tanhπy| ≤ tanh
π

2
.

From the considerations above, the inequality (36.5) is clear.

Finally, for any N > n as chosen above, we find
∣∣∣∣
∫

γN

g(z)dz

∣∣∣∣ ≤ π

∫

γN

∣∣∣
cosπz

sinπz

∣∣∣ |f(z)||dz| ≤ πA
M

N2
L(γN ).

Since, L(γN ) = 4(2N + 1), it follows that
∣∣∣∣
∫

γN

g(z)dz

∣∣∣∣ ≤ πA
M

N2
4(2N + 1) → 0 as N →∞.

Following the same arguments, we can show that
∣∣∣∣

∫

γN

h(z)dz

∣∣∣∣ → 0 as N →∞.

This completes the proof of Theorem 36.1.

Remark 36.1. If the function f(z) has a singularity at some real
integer K, then Theorem 36.1 also remains valid; however, then, from the
sum

∑
f(m), we need to exclude the term f(K) and include the residue

R[g,K] in the sum
∑

R[g, zj].
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Example 36.1. The function f(z) = 1/z2 satisfies the hypothesis of
Theorem 36.1 except that it has a pole of order 2 at 0. Hence, the function

g(z) =
π

z2
cosπz

sin πz
has a pole of order 3 at 0. Now, since

R
[ π
z2

cosπz

sinπz
, 0
]

= − π2

3

and
∞∑

n=1

1

n2
=

1

2

∞∑

n=−∞, n̸=0

1

n2
,

from (36.1) and Remark 36.1 it follows that

∞∑

n=1

1

n2
= − 1

2
R
[ π
z2

cosπz

sinπz
, 0
]

=
π2

6
.

For the same function f(z) = 1/z2, if we use the relation (36.2) and Remark
36.1, we get

1− 1

22
+

1

32
− · · · =

∞∑

n=1

(−1)n+1 1

n2
=

π2

12
.

Similarly, we can show that

∞∑

n=0

1

(2n+ 1)2
=

π2

8
,

∞∑

n=1

1

n4
=

π4

90
,

∞∑

n=0

1

(2n+ 1)4
=

π4

96
,

1−
1

33
+

1

53
−

1

73
+ · · · =

π3

32
,

and

1− 1

35
+

1

55
− 1

75
+ · · · =

5π5

1536
.

Example 36.2. The function f(z) = 1/(z2 − a2), where a is real and
noninteger, satisfies the hypothesis of Theorem 36.1. Thus, from (36.1), it
follows that

∞∑

n=−∞

1

n2 − a2
= −R

[
π

z2 − a2
cosπz

sin πz
, a

]
−R

[
π

z2 − a2
cosπz

sinπz
,−a

]

= − π

2a
cotπa− π

2a
cotπa = − π

a
cotπa.

Furthermore, since

∞∑

n=−∞

1

n2 − a2
=

−1∑

n=−∞

1

n2 − a2
− 1

a2
+

∞∑

n=1

1

n2 − a2
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and
−1∑

n=−∞

1

n2 − a2
=

∞∑

n=1

1

n2 − a2
,

we have
∞∑

n=1

1

n2 − a2
=

1

2a2
− π

2a
cotπa.

Problems

36.1. Let a be real and noninteger. Show that:

(a).
∞∑

n=−∞

1

n2 + a2
=

π

a
coth πa.

(b).
∞∑

n=−∞

1

(n− a)2
= π2cosec2πa.

(c).
∞∑

n=−∞

1

(n2 + a2)2
=

π

2a3
cothπa+

π2

2a2
cosec2πa.

(d).
∞∑

n=1

(−1)n+1

n2 + a2
=

1

2a2
− π

2a
cosecπa.

(e).
∞∑

n=−∞

(−1)n

(n+ a)2
= π2 cotπa cosecπa.

36.2. Show that, for a positive integer k,

∞∑

n=1

1

n2k
= (−1)k−1π2k 2

2k−1

(2k)!
B2k

and
∞∑

n=1

(−1)n
n2k

= (−1)kπ2k

(
22k−1 − 1

)

(2k)!
B2k,

where B2k is the 2kth Bernoulli number (see Problem 24.10).

Answers or Hints

36.1. Similar to Examples 36.1 and 36.2.
36.2. Consider the function f(z) = 1/z2k and see Problem 24.10.



Lecture 37
Argument Principle and

Rouché and Hurwitz Theorems

We begin this lecture with an extension of Theorem 26.3 known as
the Argument Principle. This result is then used to establish Rouché’s
Theorem, which provides locations of the zeros and poles of meromorphic
functions. We shall also prove an interesting result due to Hurwitz.

Theorem 37.1 (Argument Principle). Let f(z) be meromor-
phic inside and on a positively oriented contour γ. Furthermore, let f(z) ̸= 0
on γ. Then,

1

2πi

∫

γ

f ′(z)

f(z)
dz = Zf − Pf , (37.1)

holds, where Zf (Pf ) is the number of zeros (poles), counting multiplicities
of f(z) that lie inside γ.

Proof. Let a1, · · · , aℓ be the zeros and b1, · · · , bp be the poles of f(z) in
γ with respective multiplicities m1, · · · ,mℓ and n1, · · · , np such that Zf =
m1 + · · ·+mℓ and Pf = n1 + · · · + np. Then, from (26.3), we obtain

R

[
f ′

f
, ak

]
= mk. (37.2)

Now, similar to (26.2) at the pole bs, we have

f(z) =
1

(z − bs)ns
h(z), (37.3)

where h(z) is analytic and nonzero in a neighborhood of bs. From (37.3), it
follows that

f ′(z)

f(z)
= − ns

z − bs
+

h′(z)

h(z)
, (37.4)

and hence

R

[
f ′

f
, bs

]
= − ns. (37.5)

Finally, using Theorem 31.2 and the formulas (37.2) and (37.5), we find
∫

γ

f ′(z)

f(z)
dz = 2πi [(m1 + · · ·+mℓ)− (n1 + · · ·+ np)] = 2πi[Zf − Pf ],

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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which is the same as (37.1).

Remark 37.1. The nomenclature argument principle for (37.1) comes
from the fact that its left-hand side can be interpreted as the change in
the argument as one runs around the image path f(γ). More precisely, the
relation (37.1) implies that Zf − Pf = (1/2π) [change in arg(f(z)) as z
traverses γ once in the positive direction].

Example 37.1. Consider the function

f(z) =
(z − 2)3(z − 1)7z3

(z − i)4(z + 3)5(z − 2i)7

and γ : |z| = 2.5. Clearly, Zf = 3 + 7 + 3 = 13 and Pf = 4 + 7 = 11, and
hence Zf − Pf = 2. We also note that

f ′(z)

f(z)
=

3

z − 2
+

7

z − 1
+

3

z
− 4

z − i
− 5

z + 3
− 7

z − 2i
,

and hence

1

2πi

∫

γ

f ′(z)

f(z)
dz =

1

2πi
[2πi(3 + 7 + 3)− 2πi(4 + 7)] = 2 = Zf − Pf .

Lemma 37.1. Suppose that f(z) is continuous and assumes only integer
values on a domain S. Then, f(z) is a constant on S.

Proof. For each integer n, let Sn ⊂ S be such that, for z ∈ Sn, f(z) = n.
Clearly, the sets Sn are disjoint and their union is S. We claim that each Sn

is open. For this, let z0 ∈ Sn, so that f(z0) = n. Since f(z) is continuous
at z0, there exists an open disk B(z0, r) such that |f(z) − n| < 1/2 for
all z ∈ B(z0, r). However, since f(z) is integer-valued, this implies that
f(z) = n for all z ∈ B(z0, r). Hence, Sn is open. Now, since a connected
set cannot be the union of disjoint open sets, only one of the Sn can be
nonempty, say Sn0 , and thus f(z) = n0 for all z in S.

Now we shall use Theorem 37.1 and Lemma 37.1 to prove the following
result.

Theorem 37.2 (Rouché’s Theorem). Suppose f(z) and g(z)
are meromorphic functions in a domain S. If |f(z)| > |g(z)| for all z on γ,
where γ is a simply closed positively oriented contour in S and f(z) and
g(z) have no zeros or poles on γ, then

Zf − Pf = Zf+g − Pf+g. (37.6)

Proof. We claim that the function f(z)+g(z) has no zeros on γ. Indeed, if
f(z0)+g(z0) = 0 for some z0 on γ, then |f(z0)| = |g(z0)|, which contradicts
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the hypothesis. Now, since |f(z)|− |g(z)| is continuous on the compact set
γ, there exists a constant m > 0 such that |f(z)| − |g(z)| > m > 0 on γ.
Thus, for any λ ∈ [0, 1], it follows that

|f(z) + λg(z)| ≥ |f(z)|− |g(z)| ≥ m > 0

for all z on γ. Therefore,

J(λ) =
1

2πi

∫

γ

f ′(z) + λg′(z)

f(z) + λg(z)
dz

is a continuous function of λ. But, in view of Theorem 37.1, J(λ) = Zf+λg−
Pf+λg , which is an integer, and hence, from Lemma 37.1, we have J(0) =
J(1); i.e., (37.6) holds.

Corollary 37.1. Suppose f(z) and g(z) are analytic functions in a
domain S. If |f(z)| > |g(z)| for all z on γ, where γ is a simply closed
contour in S, then f(z) and f(z) + g(z) have the same number of zeros
inside γ counting multiplicities.

Example 37.2. We shall show that the function φ(z) = 2z5−6z2+z+1
has three zeros in the annulus 1 ≤ |z| ≤ 2. For this, first we let f(z) = −6z2
and g(z) = 2z5+z+1 on |z| = 1, so that |f(z)| = 6 and |g(z)| ≤ 2+1+1 = 4,
and hence |f(z)| > |g(z)| on |z| = 1. Thus, by Corollary 37.1, φ(z) has two
zeros in |z| < 1. Next, we let f(z) = 2z5 and g(z) = −6z2+z+1 on |z| = 2,
so that |f(z)| = 64 and |g(z)| ≤ 24 + 2 + 1 = 27, and hence |f(z)| > |g(z)|
on |z| = 2. Thus, by Corollary 37.1, φ(z) has five zeros in |z| < 2. Therefore,
φ(z) has three zeros in 1 ≤ |z| ≤ 2.

Example 37.3. We shall show that the function φ(z) = 2+z2+eiz has
exactly one zero in the open upper half-plane. For this, we let f(z) = 2+z2

and g(z) = eiz on γ : [−R,R] ∪ {z : Im z ≥ 0, |z| = R}, R >
√
3. Clearly,

for z ∈ [−R,R], |f(z)| ≥ 2 > 1 = |g(z)|, and for z = Reiθ , 0 ≤ θ ≤
π, |f(z)| ≥ R2− 2 > 1 ≥ e−R sin θ = |g(z)|. Thus, from Corollary 37.1, φ(z)
has the same number of roots in {z : Im z > 0, |z| < R} as 2+ z2, which is
exactly one.

Example 37.4. As an application of Corollary 37.1, we can prove
the Fundamental Theorem of Algebra (Theorem 19.1). For this, we let
f(z) = anzn and g(z) = an−1zn−1 + · · · + a1z + a0 on |z| = R, so that
|f(z)| = |an|Rn and |g(z)| ≤ |an−1|Rn−1 + · · · + |a1|R + |a0|. Hence,
|f(z)| > |g(z)| on |z| = R if we choose R > 1 so large that

|an−1|
|an|

+ · · · + |a1|
|an|

+
|a0|
|an|

< R.

Since f(z) has n zeros in |z| = R, Pn(z) = f(z) + g(z) also has exactly n
zeros in |z| = R.
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Now, for each n, let pn(z) be the polynomial

pn(z) = 1 + z +
z2

2!
+ · · ·+ zn

n!
.

It is clear that it has n zeros and the sequence {pn(z)} converges to ez

uniformly on any closed disk B(0, R). Thus, as n increases, the number of
zeros of pn(z) being n increases while the limit function ez has no zeros at
all. In the following result, we shall show that in the limit all zeros of pn(z)
go into the point at infinity.

Theorem 37.3. For a given R > 0, there exists an n such that, for
any m ≥ n, pm(z) has no zero in the open disk B(0, R).

Proof. Let ϵ = inf{|ez| : |z| ≤ R}. Since ez is continuous and nonzero,
and B(0, R) is compact, it is clear that ϵ > 0. On B(0, R), the sequence
{pn(z)} converges uniformly to ez, so there is n such that, for all m ≥
n, |pm(z) − ez| < ϵ < |ez| for z ∈ B(0, R). Now let f(z) = ez and g(z) =
pm(z)− ez. Then, from Corollary 37.1, it follows that ez and f(z)+ g(z) =
pm(z) have the same number of zeros in B(0, R). But ez has no zeros in
B(0, R).

We conclude this lecture by proving the following result, which gener-
alizes Theorem 37.3.

Theorem 37.4 (Hurwitz’s Theorem). Suppose that {fn(z)}
is a sequence of analytic functions on a domain S converging uniformly on
every compact subset of S to a function f(z). Then, either

(i). f(z) is identically zero on S or

(ii). if B(z0, r) is any open disk in S such that f(z) does not have zeros
on its boundary, then fn(z) and f(z) have the same number of zeros in
B(z0, r) for all sufficiently large n.

Proof. From Theorem 22.6, the function f(z) is analytic on S. Now
suppose that f(z) is not identically zero on S, and let z0 ∈ S be a zero of
f(z). Let B(z0, r) be a closed disk such that f(z) does not vanish on its
boundary. Let 0 < ϵ = inf |f(z)| on the boundary of B(z0, r). Then, in view
of uniform convergence, there exists an n such that, for all m ≥ n, |fm(z)−
f(z)| < ϵ ≤ |f(z)| on the boundary of B(z0, r). Now let g(z) = fm(z)−f(z).
Then, from Corollary 37.1, it follows that f(z) and f(z) + g(z) = fm(z)
have the same number of zeros in B(z0, r).

Corollary 37.2. Let {fn(z)} be a sequence of one-to-one analytic
functions defined on a domain S, and suppose {fn(z)} converges uniformly
to f(z) on every compact subset of S. Then, the function f(z) is also one-
to-one and analytic on S.
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Example 37.5. The sequence {ez/n} converges uniformly to zero on
every compact subset of C. Note that functions ez/n have no zeros in the
complex plane.

Problems

37.1. Let f(z) be meromorphic in a simply connected domain S, and
let γ be a simply closed positively oriented contour in S such that, for all
z on γ, f(z) ̸= 0 and f(z) ̸=∞. Then,

w(f(γ), a) =
1

2πi

∫

γ

f ′(z)

f(z)− a
dz

is called the winding number of f(γ) about a. It represents the number of
times the curve f(γ) winds around the point a. Clearly, Theorem 37.1 gives
w(f(γ), 0) = Zf − Pf . If γ is not a simple closed curve, but crosses itself
several times, then w(f(γ), a) also gives the number of times the curve f(γ)
winds around the point a. Find w(f(γ), a) for the function f(z) = z7 − z
when

(a). γ : |z| = 2, a = 0,

(b). γ : |z| = 0.5, a = 0,

(c). γ : |z − i| = 1.5, a = 0.

37.2. If a > e, show that the equation ez = azn has n roots inside the
circle |z| = 1.

37.3. Show that the function z8− 5z5− 2z+1 has five zeros inside the
unit circle |z| = 1.

37.4. Show that all nine zeros of z9 − 8z2 + 5 lie in the annulus 1/2 ≤
|z| ≤ 3/2.

37.5. Show that all five zeros of z5 − 2z + 16 lie in the annulus 1 ≤
|z| ≤ 2.

37.6. Show that the equation z + e−z = c (c > 1) has a unique real
root in the right half-plane.

Answers or Hints

37.1. (a). 7, (b). 1, (c). 5.
37.2. Let f(z) = azn and g(z) = −ez on |z| = 1, and apply Corollary 37.1.
37.3. Let f(z) = −5z5 + 1 and g(z) = z8 − 2z.



252 Lecture 37

37.4. Follow Example 37.2.
37.5. Follow Example 37.2.
37.6. Follow Example 37.3.



Lecture 38
Behavior of Analytic Mappings

In this lecture, we shall use the Rouché Theorem to investigate the be-
havior of the mapping f generated by an analytic function w = f(z). Then,
we shall study some properties of the inverse mapping f−1. We shall also
discuss functions that map the boundaries of their domains to the bound-
aries of their ranges. Such results are of immense value for constructing
solutions of the Laplace equation with boundary conditions.

Let the function w = f(z) be analytic at z0 and w0 = f(z0). We say that
f has order m ≥ 1 at z0 if f(z)− w0 has a zero of order m at z0. Clearly,
f has order m ≥ 2 at z0 if and only if f (k)(z0) = 0, k = 1, · · · ,m − 1 and
f (m)(z0) ̸= 0. In particular, f has order one at z0 if and only if f ′(z0) ̸= 0.

Theorem 38.1 (Local Mapping Theorem). Let w = f(z) be
a nonconstant analytic function in a neighborhood of z0. Let w0 = f(z0)
and m be the order of f at z0. Then, there exist r > 0 and ρ > 0 such that
every w ̸= w0 in B(w0, ρ) is attained by f at exactly m distinct points in
B(z0, r).

Proof. Since f(z)−w0 has a zero of order m ≥ 1, from Theorem 26.1 it
follows that

f(z)− w0 = am(z − z0)
m + am+1(z − z0)

m+1 + · · · , am ̸= 0. (38.1)

Thus, limz→z0(f(z)− w0)/(z − z0)m = am ̸= 0, and therefore there exists
an r > 0 such that

|f(z)− w0|
|z − z0|m

>
|am|
2

for all 0 < |z − z0| ≤ r. Hence, for z ̸= z0, it follows that f(z) ̸= w0, and
for |z − z0| = r, we have

|f(z)− w0| >
|am|rm

2
. (38.2)

Again, since m ≥ 1, in view of (38.1), we can choose r sufficiently small so
that f ′(z) ̸= 0 for all 0 < |z − z0| < r. Now let ρ = |am|rm/2 and, for a
fixed w such that |w − w0| < ρ, set g(z) to be the constant w0 − w. From
(38.2), for |z − z0| = r, we have

|g(z)| = |w0 − w| <
|am|rm

2
< |f(z)− w0|.

R.P. Agarwal et al., An Introduction to Complex Analysis, 
DOI 10.1007/978-1-4614-0195-7_38, © Springer Science+Business Media, LLC 2011 

253



254 Lecture 38

Thus, the Rouché Theorem with f = f −w0 and g = w0 −w is applicable,
and we have Zf−w0 = Zf−w0+g = Zf−w. Since Zf−w0 = m, it follows that
Zf−w = m for all |w − w0| < ρ. This implies that w has m inverse images
under the mapping w = f(z) in |z−z0| < r. Finally, the fact that f ′(z) ̸= 0
for all 0 < |z− z0| < r ensures that f(z)−w does not have repeated roots,
and hence the inverse images are distinct.

The particular case m = 1 of Theorem 38.1 will be used later, and hence
we state and prove it separately.

Theorem 38.2 (Inverse Function Theorem). Let w = f(z)
be an analytic function in a neighborhood of z0. Then, there exists an r > 0
such that f is one-to-one on B(z0, r) if and only if f ′(z0) ̸= 0.

Proof. In Problem 7.12 (Answers or Hints), we used elementary calculus
to show that there exists an open disk at z0 on which f is one-to-one
provided f ′(z0) ̸= 0. Here, we shall provide an alternative proof: Consider
the disk B(z0, r1) where r1 > 0 is sufficiently small. On B(z0, r1), we define
the function

F (z) = f(z)− f(z0)− (z − z0)f
′(z0).

Clearly, F is continuous and, for z1, z2 ∈ B(z0, r1) with z1 ̸= z2,

F (z2)−F (z1) = (f(z2)−f(z1))−(z2−z1)f
′(z0) =

∫ z2

z1

(f ′(z)−f ′(z0))dz.

Let r > 0 be such that 0 < r < r1 and, for |z − z0| < r, |f ′(z)− f ′(z0)| <
|f ′(z0)|/2. Then, for z1, z2 ∈ B(z0, r), |F (z1)−F (z2)| ≤ |z2− z1||f ′(z0)|/2.
Hence, it follows that

|f(z2)− f(z1)| = |(z2 − z1)f ′(z0) + (F (z2)− F (z1))|
≥ |z2 − z1||f ′(z0)|− |F (z2)− F (z1)|
≥ |z2 − z1||f ′(z0|/2 > 0,

and therefore f(z1) ̸= f(z2). Conversely, if f ′(z0) = 0, we can apply Theo-
rem 38.1 to find a neighborhood of z0 on which f is not one-to-one.

Remark 38.1. Theorem 38.2 says that an analytic function f(z) is one-
to-one in some neighborhood B(z0, r) of a given point z0 where f ′(z0) ̸=
0; i.e., one-to-one is only a local property. For example, the exponential
function ez is one-to-one only locally, although its derivative does not vanish
anywhere. Similarly, the function z2 is locally one-to-one at every point
other than the origin. In the following result, we shall estimate the size of
the neighborhood B(z0, r); i.e., provide an upper bound on r.

Theorem 38.3 (Landau’s Estimate). Let w = f(z) be an
analytic function on a closed disk B(z0, R) and f ′(z0) ̸= 0. Then, f is one-
to-one on B(z0, r), where r = R2|f ′(z0)|/(4M) and M is the maximum
value of |f(z)| on |z − z0| = R.
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Proof. Clearly, it suffices to choose r such that f ′(z) ̸= 0 for all z ∈
B(z0, r). We assume that both z0 and w0 = f(z0) are zero; otherwise, we
can use the transformation Z = z− z0, W = w−w0. Since f(z) is analytic
on B(0, R), for |z| < R it can be written as a convergent Taylor series
f(z) = a1z + a2z2 + · · · , where |f ′(0)| = |a1| > 0. Let λ be so small that

∞∑

j=2

j|aj |λj−1Rj−1 < |a1|. (38.3)

Then, for any z ∈ B(0,λR), we have

|f ′(z)| =

∣∣∣∣∣∣
a1 +

∞∑

j=2

jajz
j−1

∣∣∣∣∣∣
≥ |a1|−

∞∑

j=2

j|aj|λj−1Rj−1 > 0.

Thus, if we can find a value of λ such that (38.3) holds, then we can take
r = λR. For this, since M is the maximum value of |f(z)| on |z − z0| = R,
from Theorem 18.5 it follows that |aj | ≤M/Rj, j = 1, 2, · · · , and therefore

∞∑

j=2

j|aj |λj−1Rj−1 ≤
∞∑

j=2

M

R
jλj−1 =

M

R

λ(2− λ)
(1− λ)2

<
M

R

2λ

(1− λ)2
.

We now take λ = R|a1|/(4M). Clearly, then λ ≤ 1/4, and it follows that

∞∑

j=2

j|aj |λj−1Rj−1 <
8

9
|a1| < |a1|.

Now we shall deduce the following corollaries from Theorem 38.1.

Corollary 38.1 (Open Mapping Property). A nonconstant
analytic function f maps open sets into open sets.

Proof. Let S be an open set. For w0 ∈ f(S), let z0 ∈ S be such that
f(z0) = w0. Since S is open, there exists an r > 0 such that B(z0, r) ⊂ S.
In view of Theorem 38.1, there exists a ρ such that every w ∈ B(w0, ρ) is
attained by f ; i.e., w = f(z), z ∈ B(z0, r). Thus, B(w0, ρ) ⊂ f(S), and
hence f(S) is open.

Remark 38.2. If a nonconstant function is just continuous, then
the corollary above does not hold. Indeed, the function f(z) = Re z is
continuous everywhere in C, but f(C) = IR is not open in C.

Corollary 38.2. Let f(z) be analytic on a domain S and z0 ∈ S.
Then, there exist two distinct points z1 and z2 in S such that

f ′(z0) =
f(z1)− f(z2)

z1 − z2
.
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Proof. Consider the function g(z) = f(z) − f ′(z0)z. Clearly, g(z) is
analytic in S and g′(z0) = 0. Thus, by Theorem 31.1 there exist points z1
and z2 such that g(z1) = g(z2).

The next corollary shows that the analytic image of a domain is a do-
main.

Corollary 38.3 (Mapping of Domains). Let S be a nonempty
domain, and f be a nonconstant analytic function on S. Then, f(S) is a
domain.

Proof. From Corollary 38.1, f(S) is open, and since f is continuous
from Problem 5.13(ii) (Answer or Hints) it is clear that f(S) is connected.
Thus, f(S) is a domain.

Remark 38.3. The Maximum Modulus Principle (Theorem 20.1) fol-
lows from Corollary 38.3. For this, suppose that f(z) is nonconstant. Let
z0 ∈ S and w0 = f(z0). The image of B(z0, r) ⊂ S under f is a domain
containing w0, and hence contains B(w0, ρ). Therefore, B(z0, r) contains a
point z whose image w = f(z) is farther from the origin of the w-plane
than the point w0; i.e., a point z such that |f(z)| > |f(z0)|.

The following result proves the existence of the inverse function and
provides an expression for its derivative.

Theorem 38.4 (Inverse Function Theorem). Let w = f(z)
be an analytic and one-to-one function on an open set S. Then, the inverse
function f−1 exists and is analytic on the open set f(S). Moreover,

d

dw
f−1(w) =

1

f ′(z)
. (38.4)

Proof. In view of Corollary 38.1, f(S) is an open set. Since f is one-to-
one, there exists an inverse function g = f−1 : f(G) → G. The continuity
of g also follows from Corollary 38.1. Now let z0 = g(w0) ∈ S. By Theorem
38.2, f ′(g(w0)) ̸= 0. Thus, we have

lim
w→w0

g(w)− g(w0)

w − w0
= lim

g(w)→g(w0)

g(w)− g(w0)

f(g(w))− f(g(w0))
=

1

f ′(g(w0))
,

i.e., (38.4) for z = z0, w = w0 holds.

The next result we state gives a formula for the inverse function of f in
terms of an integral involving f and its derivative.

Theorem 38.5. Let w = f(z) be an analytic function on an open
set containing B(z0, r), and suppose that f is one-to-one on B(z0, r). If
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S′ = f(B(z0, r)) and γ : |z − z0| = r, then f−1(w) is defined for each w in
S′ and given by

f−1(w) =
1

2πi

∫

γ

zf ′(z)

f(z)− w
dz.

Now let S be a domain. We say that f maps ∂S onto ∂f(S) if, for every
point w0 ∈ ∂f(S), there exists a sequence {zn} ⊆ S converging to z0 ∈ ∂S,
and f(zn)→ w0.

Theorem 38.6. Let w = f(z) be an analytic and one-to-one function
on a domain S. Then, f maps ∂S onto ∂f(S).

Proof. We shall prove only that f maps ∂S to ∂f(S). Let {zn} ⊆ S be
a sequence such that f(zn) → w0, where w0 is an interior point of f(S).
Since in view of Theorem 38.4 the function f−1 exists and is continuous, it
follows that

lim
n→∞

zn = lim
n→∞

f−1(f(zn)) = f−1
(
lim
n→∞

f(zn)
)

= f−1(w0);

i.e., {zn} converges to an interior point of S.

The following corollary of Theorem 38.6 is immediate.

Corollary 38.4. Let w = f(z) be an analytic and one-to-one function
on a domain S. Let z0 ∈ ∂S and let f be continuous at z0. Then, f(z0) ∈
∂f(S).

We conclude this lecture by stating the following interesting result.

Theorem 38.7. Let w = f(z) be an analytic function on a simply
connected domain S, and let γ be a simple, closed, smooth curve in S. If f
is one-to-one on γ, then it is also one-to-one in the interior of γ.



Lecture 39
Conformal Mappings

In Lecture 10, we saw that the nonconstant linear mapping (10.1) is an
expansion or contraction and a rotation, followed by a translation. Thus,
under a linear mapping, the angle between any two intersecting arcs in the
z-plane is equal to the angle between the images in the w-plane. Map-
pings that have this angle-preserving property are called conformal map-
pings. These mappings are of immense importance in solving boundary
value problems involving Laplace’s equation. We begin with the following
definitions.

Let z0 be a fixed point in the z-plane and γ1 and γ2 be smooth paths
that intersect at z0, and let ℓ1 and ℓ2 denote the tangent lines on γ1 and γ2
at z0. The paths γ1 and γ2 are said to intersect at an angle α at z0 if the
tangent lines ℓ1 and ℓ2 intersect at an angle α at z0 (see Figure 39.1(a)).
To determine this angle precisely in magnitude and sense, we assume that
the paths γ1 and γ2 are parameterized by z1(t) and z2(t), t ∈ [α,β], which
intersect at z1(t0) = z2(t0) = z0. Now, since γ1 is smooth, z′1 = z′1(t0) is
nonzero, and hence the angle between the tangent line ℓ1 and the positive
x-axis, denoted as arg(z′1), is well-defined. The angle arg(z′2) is defined
similarly. The angle α (see Figure 39.1(b)) between γ1 and γ2 at z0 is then

α = arg(z′2)− arg(z′1). (39.1)

Figure 39.1(a)
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Figure 39.1(b)
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Now, let w = f(z) be a mapping defined on a domain S ⊆ C and let
z0 ∈ S. This mapping is said to be conformal at z0 if it is one-to-one in a
neighborhood of the point z0 and for every pair of smooth paths γ1 and γ2
in S intersecting at z0 the angle between γ1 and γ2 at z0 is equal to the
angle between the image paths γ′1 and γ′2 at f(z0) in magnitude and sense.

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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Furthermore, if w = f(z) maps S onto a domain S ′ and is conformal at
every point in S, then w = f(z) is called a conformal mapping of S onto
S′. Moreover, S′ is called a conformal image of S.

The following result provides an easier test for the conformality of the
mapping w = f(z) at the point z0.

Theorem 39.1. If f(z) is analytic at z0 and f ′(z0) ̸= 0, then the
mapping w = f(z) is conformal at z0.

Proof. Since f ′(z0) ̸= 0 from Theorem 38.2, it follows that there exists
an open disk at z0 on which f is one-to-one. Let γ be a smooth path
passing through z0. We parameterize γ by z(t) and assume that z(t0) = z0
and z′(t0) ̸= 0. The image of γ by f is a path parameterized by f(z(t))
that passes through w0 = f(z(t0)) = f(z0) in the w-plane. Since z′(t0) ̸= 0,
the angle between the tangent line ℓ on γ at z0 and the positive x-axis is
arg(z′(t0)). Now, since

d

dt
f(z(t))

∣∣∣∣
t0

= f ′(z(t0))z
′(t0) ̸= 0,

the angle between the tangent line ℓ′ on f(z(t)) at w0 = f(z0) and the
positive u-axis is

arg(f ′(z(t0))z
′(t0)) = arg(f ′(z(t0))) + arg(z′(t0)).

Thus, f(z) rotates the tangent line at z0 by a fixed angle arg(f ′(z0)). The
result now follows from (39.1) and the fact that f rotates any two tangent
lines intersecting at z0 by the same angle arg(f ′(z0)).

Remark 39.1. In view of Remark 38.1, it is clear that Theorem 39.1
ensures conformality of the mapping w = f(z) only locally at points where
its derivative does not vanish.

Remark 39.2. If a one-to-one analytic function f maps an open set S
onto the open set f(S), then in view of Theorem 38.4 the inverse function
f−1 : f(S) → S exists and is analytic. Now, since f−1 is one-to-one on
f(S), from Theorems 38.2 and 39.1 it follows that f−1 is also a conformal
map.

Example 39.1. The exponential map f(z) = ez is conformal at all
z ∈ C. The map f(z) = z2 is conformal everywhere except at the origin.
The Möbius transformation f(z) = (az+b)/(cz+d) is conformal everywhere
except at z = −d/c. The mapping w = Pn(z), where Pn(z) is a polynomial
of degree n, is conformal everywhere except possibly at ∞ and the points
z1, z2, · · · , zr (1 ≤ r ≤ n− 1), where the derivative P ′

n(z) vanishes.

Let f(z) be a nonconstant analytic function at z0. If f ′(z0) = 0, then
z0 is called a critical point of f(z). Our next result shows that at critical
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points magnification of angles occurs, which in turn implies that at critical
points analytic functions are not conformal.

Theorem 39.2. Let f(z) be analytic at z0. If f ′(z0) = f ′′(z0) = · · · =
f (n−1)(z0) = 0 and f (n)(z0) ̸= 0, then the mapping w = f(z) magnifies
angles at z0 by a factor n.

Proof. From Taylor’s series expansion of f(z) at z0, it follows that

f(z) = f(z0) + (z − z0)
ng(z), (39.2)

where the function

g(z) = an + an+1(z − z0) + an+2(z − z0)
2 + · · ·

is analytic at z0 and g(z0) = an = f (n)(z0)/n! ̸= 0. From (39.2), we obtain

arg(w − w0) = arg(f(z)− f(z0)) = n arg(z − z0) + arg(g(z)). (39.3)

Now, if γ is a smooth curve that passes through z0 and z → z0 along γ,
then w → w0 along the image curve γ′. Thus, the angle of inclination of
the tangents ℓ on γ and ℓ′ on γ′, respectively, are θ = limz→z0 arg(z − z0)
and φ = limw→w0 arg(w − w0). Hence, from (39.3), it follows that

φ = lim
z→z0

(n arg(z − z0) + arg(g(z))) = nθ + ψ, (39.4)

where ψ = limz→z0 arg(g(z)). The result now follows from (39.1) and
(39.4).

Example 39.2. For the mapping f(z) = cos z critical points are
z = nπ, n = 0, 1, 2, · · · . Since f ′′(z) = − cos z = ±1 at the critical points,
Theorem 39.2 indicates that angles at these critical points are magnified by
a factor of 2.

Now we shall show that, given any two finite simply connected domains
S and S′, there exists a conformal mapping of S onto S′. For this, we need
the following existence theorem of Riemann.

Theorem 39.3 (Riemann Mapping Theorem). If S is any
simply connected domain in the complex plane (other than the entire plane
itself), then there exists a one-to-one conformal mapping w = f(z) that
maps S onto the unit disk |w| < 1.

Corollary 39.1. Let S and S′ be any two simply connected domains
(none of them is the entire plane). Then, S and S ′ are conformal images
of each other.

Proof. We use Theorem 39.3 to find a conformal mapping f from S
onto the open unit disk |w| < 1. We apply Theorem 39.3 again to find
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a conformal mapping g from S′ onto the open unit disk |w| < 1. Since g
is one-to-one, g−1 exists and maps the open disk |w| < 1 onto S′. Then,
w = g−1 ◦ f(z) is the desired mapping.

Remark 39.3. The function w = f(z) that maps S conformally onto
S′ is not unique. For this, first we map S conformally onto the unit disk,
then map the unit disk conformally onto itself, and then map the unit disk
conformally onto S′. The resulting composite mapping maps S conformally
onto S′. However, in view of Problem 39.8, the unit disk can be mapped
conformally onto itself in an infinite number of ways, and hence S can be
mapped onto S′ conformally in an infinite number of ways. In our next
result we shall provide sufficient conditions so that the conformal mapping
of S onto S′ is unique. For this, we need the following lemma, which is of
independent interest.

Lemma 39.1 (Schwarz’s Lemma). Let f(z) be analytic on the
open disk B(0, R), and f(0) = 0, |f(z)| ≤M <∞. Then, the inequality

|f(z)| ≤ M

R
|z| (39.5)

holds for all z ∈ B(0, R), and

|f ′(0)| ≤ M

R
. (39.6)

In (39.5) equality occurs at some point 0 ̸= z ∈ B(0, R) if and only if
f(z) = (M/R)αz, where α is a complex number of absolute value 1.

Proof. Consider the function f1(z) = f(Rz)/M. Obviously, f1(z) is
analytic for |z| < 1 and f1(0) = 0. Also, for |z| < 1, we have |f1(z)| =
|f(Rz)/M | ≤ M/M = 1 (since |Rz| = R|z| < R). Let f1(z) = a1z +
a2z2 + · · · be the power series for f1(z). The constant term is 0 because
f1(0) = 0. Then, f1(z)/z is analytic, and |f1(z)/z| ≤ 1/r for |z| = r < 1.
This inequality also holds for |z| ≤ r by the Maximum Modulus Principle.
Letting r → 1, we find |f1(z)/z| ≤ 1 for all z ∈ B(0, 1), which is the same
as (39.5). For the inequality (39.6), it suffices to note that

lim
z→0

f1(z)

z
= lim

z→0

f1(z)− f1(0)

z − 0
= f ′

1(0) =
R

M
f ′(0).

Finally, if |f1(z0)/z0| = 1 for some z0 in the unit disk, then again by the
Maximum Modulus Principle f1(z)/z cannot have a maximum unless it
is a constant, and therefore there is a constant α with |α| = 1 such that
f1(z)/z = α.

Theorem 39.4 (Uniqueness Theorem). Let S be as in Theo-
rem 39.3, and let z0 ∈ S be an arbitrary point. Then, there exists a unique
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function w = f(z) that maps S conformally onto the unit disk B(0, 1) and
satisfies f(z0) = 0, f ′(z0) > 0.

Proof. Let w = g(z) be another such function. Then, the function
φ(w) = f(g−1(w)) is analytic on B(0, 1), satisfies φ(0) = f(g−1(0)) =
f(z0) = 0, φ′(0) = f ′(z0)/g′(z0) > 0, and maps B(0, 1) conformally onto
itself. Thus, from Lemma 39.1, it follows that |φ(w)| ≤ |w|; i.e., |f(z)| ≤
|g(z)| for all z ∈ S. Now, interchanging the roles of f and g, we also have
|g(z)| ≤ |f(z)| for all z ∈ S. This implies that |f(z)| = |g(z)| for all z ∈ S; or
equivalently, |φ(w)| = |w|. But then, from Lemma 39.1, we find φ(w) = αw,
where |α| = 1. However, since φ′(0) > 0, we must have α = 1. Therefore,
φ(w) = w, and hence f(z) = g(z), z ∈ S.

Finally, we state a result that shows that the knowledge of f(z) on the
boundary of a domain G can be used to conclude that f maps S onto f(S)
conformally.

Theorem 39.5. Let γ be a closed rectifiable Jordan curve. Suppose
f(z) is analytic on I(γ) and one-to-one on γ. Then, f maps I(γ) conformally
onto I(Γ), where Γ = f(γ).

Problems

39.1. If f(z) is analytic at z0 and f ′(z0) ̸= 0, show that the function
F (z) = f(z) preserves the magnitude but reverses the sense of the angles
at z0.

39.2 (Noshiro-Warschawski Theorem). Let f(z) be analytic in a
convex domain S. If Ref ′(z) > 0 for all z ∈ S, show that f(z) is one-to-one
in S.

39.3. Explain why the complex plane and the open unit disk cannot
be conformally equivalent.

39.4. Show that:

(a). If S′ is a conformal image of a domain S, then S is a conformal image
of S′.

(b). If S′ is a conformal image of a domain S, and if S′′ is a conformal
image of S′, then S ′′ is a conformal image of S.

(c). Use parts (a) and (b) to prove Corollary 39.1.

39.5. Show that the rational mapping w = f(z) = P (z)/Q(z), where
P (z) and Q(z) are polynomials, is conformal at any simple zero of Q(z),
and also at z =∞ if the equation f(z) = f(∞) has no multiple roots.
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39.6. Show that the mapping w =
ez − i

ez + i
is conformal of the horizontal

strip 0 < y < π onto the disk |w| < 1. Furthermore, the x-axis is mapped
onto the lower semicircle bounding the disk, and the line y = π is mapped
onto the upper semicircle.

39.7. Show that the mapping w =

(
1 + z

1− z

)2

is conformal of {z : |z| <

1, Im(z) > 0} onto {w : Im(w) > 0}. Furthermore, {z : |z| = 1, Im(z) ≥ 0}
is mapped onto the negative w-axis, and the segment −1 < x < 1, y = 0,
is mapped onto the positive w-axis.

39.8. Show that the mapping w = eiα
z − z0
zz0 − 1

is conformal of the unit

circle |z| < 1 onto |w| < 1 so that the given interior point z0 is transformed
into the center of the circle; here, α is an arbitrary parameter.

39.9. Show that the mapping w = sin2 z is conformal of the semi-
infinite strip 0 < x < π/2, y > 0 onto the upper half-plane Im(w) > 0.

39.10. The Joukowski mapping

w = J(z) =
1

2

(
z +

1

z

)

occurs when solving a variety of applied problems, particularly in aerody-
namics. Show that:

(a). J(z) = J(1/z).

(b). Under the mapping w = J(z), every point of the w-plane except
w = ±1 has exactly two distinct inverse images, z1 and z2 satisfying the
relation z1z2 = 1.

(c). J maps the unit circle |z| = 1 onto the real interval [−1, 1].
(d). J maps both the interior and the exterior of the unit circle |z| = 1
into the same set in the w-plane.

(e). J maps the circle |z| = r (r > 0, r ̸= 1) onto the ellipse

u2

[
1
2

(
r + 1

r

)]2 +
v2

[
1
2

(
r − 1

r

)]2 = 1,

which has foci at ±1.

(f). J is a one-to-one continuous mapping of both the interior and the
exterior of the unit circle |z| = 1 onto C\[−1, 1].
(g). w = J(z) is conformal everywhere except at z = ±1.

39.11. Let f(z) be analytic on an open set S, and let z0 ∈ S and
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f ′(z0) ̸= 0. Show that

2πi

f ′(z0)
=

∫

γ

1

f(z)− f(z0)
dz,

where γ is a small circle centered at z0.

39.12. Let f(z) be analytic on the open disk B(0, R), and |f(z)| ≤M <
∞. Show that |f(z)− f(0)| ≤ 2(M/R)r for |z| = r < R.

39.13. Let f(z) be analytic on the open disk B(0, R), and |f(z)| ≤M <
∞. Show that

|f ′(z0)| ≤
R

M

M2 − |f(z0)|2

R2 − |z0|2
, z0 ∈ B(0, R).

39.14 (Schwarz-Pick Lemma). Let f : B(0, 1) → B(0, 1) be an
analytic function. Furthermore, let w1 = f(z1), w2 = f(z2), z1, z2 ∈
B(0, 1). Show that

∣∣∣∣
w1 − w2

1− w1w2

∣∣∣∣ ≤
∣∣∣∣
z1 − z2
1− z1z2

∣∣∣∣ and
|dw|

1− |w|2 ≤
|dz|

1− |z|2 .

Answers or Hints

39.1. Since the mapping w = f(z) is conformal at z0 by Theorem 39.1,
this follows from (39.1) and the fact that argF (z) = − arg f(z).
39.2. Write f(z1)− f(z1) as an integral of f ′.
39.3. If they are, then there exists a function f : C → B(0, 1) that is
analytic and bijective. But then |f(z)| < 1, so by Theorem 18.6, f(z) is a
constant and hence cannot be bijective.
39.4. (a). See Remark 39.2. (b). Follows from the fact that the composition
of two conformal maps is conformal. (c). Use Theorem 39.3 and parts (a)
and (b).
39.5. Use Theorem 39.1.
39.6. Show that z → ez conformally maps 0 < y < π onto y > 0 and
takes y = 0 (resp. y = π) onto the positive (resp. negative) x-axis, while
z → (z − i)/(z + i) conformally maps y > 0 onto |z| < 1 and takes the
positive (resp. negative) x-axis onto the lower (resp. upper) semicircle.
39.7. Show that z → (1+z)/(1−z) conformally maps {z : |z| < 1, y > 0}
onto the first quadrant and takes {z : |z| = 1, y > 0} (resp. the segment
−1 < x < 1, y = 0) onto the positive y-axis (resp. positive x-axis),
while z → z2 conformally maps the first quadrant onto y > 0 and takes
the positive y-axis (resp. positive x-axis) onto the negative x-axis (resp.
positive x-axis).
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39.8. Verify directly.
39.9. Show that z → sin z conformally maps 0 < x < π/2, y > 0, onto
the first quadrant, while z → z2 conformally maps the first quadrant onto
y > 0.
39.10. (a). This is clear. (b). Solving J(z) = w gives z = w ±

√
w2 − 1.

(c). Follows from J(eiθ) = cos θ. (d). Follows from (a). (e). Setting
J(reiθ) = w gives u = [(r+1/r)/2] cosθ, v = [(r−1/r)/2] sin θ. (f). Follows
from (b) and (e). (g). For z ̸= 0, J is analytic and J ′(z) = (1−1/z2)/2 ̸= 0
except at z = ±1.
39.11. Since f ′(z0) ̸= 0, by Theorem 38.2, f(z) is locally one-to-one in a
neighborhood S1 of z0. Using the analyticity of f(z) at z0, from (6.2), we
have

f(z) = f(z0) + f ′(z0)(z − z0) + η(z)(z − z0) (39.7)

in a small neighborhood S2 of z0; here, limz→z0 η(z) = 0. Take a closed disk
B(z0, r) ⊂ S1 ∩ S2 with γ as its boundary. Then, for any z ∈ γ, equation
(39.7) holds and f(z) ̸= f(z0). From (39.7), we have

f ′(z0)

f(z)− f(z0)
=

1

z − z0
− η(z)

f ′(z0) + η(z)

1

z − z0
,

and hence

1

2πi

∫

γ

f ′(z0)

f(z)− f(z0)
dz = 1− 1

2πi

∫

γ

η(z)

f ′(z0) + η(z)

dz

z − z0
.

It suffices to show that
∫
γ

η(z)
f ′(z0)+η(z)

dz
z−z0

= 0. Since limz→z0
η(z)

f ′(z0)+η(z) = 0

for any ϵ > 0 there exists a 0 < δ < r such that z ∈ B(z0, δ) implies∣∣∣ η(z)
f ′(z0)+η(z)

∣∣∣ < ϵ. Let γδ denote the circle |z − z0| = δ. Since in view of

(39.7) the function η(z) is analytic in B(z0, r)\{z0}, by Theorem 16.1 it
follows that
∣∣∣∣

∫

γ

η(z)

f ′(z0) + η(z)

dz

z − z0

∣∣∣∣ =
∣∣∣∣

∫

γδ

η(z)

f ′(z0) + η(z)

dz

z − z0

∣∣∣∣ < ϵ
1

δ
2πδ = 2πϵ.

Now use the fact that ϵ is arbitrary.
39.12. Let g(z) = f(z)−f(0). Then, g(0) = 0 and |g(z)| ≤ |f(z)|+ |f(0)| ≤
2M. Now apply Lemma 39.1.
39.13. Consider Z = h(z) = R(z − z0)/(R2 − z0z), which maps |z| < R
analytically onto |Z| < 1 with z0 going into the origin, and W = g(w) =
M(w − w0)/(M2 − w0w) (w0 = f(z0)), which maps |w| < M analytically
onto |W | < 1 with g(w0) = 0. The function W = g(f(h−1(Z))) satisfies
the hypotheses of Lemma 39.1. Hence, |g(f(h−1(Z)))| ≤ |Z| or |g(f(z))| ≤
|h(z)|, which is the same as

∣∣∣ f(z)−f(z0)
z−z0

∣∣∣ ≤ R
M

∣∣∣M
2−f(z0)f(z)
R2−z0z

∣∣∣ , z ̸= z0.
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Now let z → z0.
39.14. Let φ(z) = (z + z1)/(1 + z1z), ψ(z) = (z − w1)/(1 − w1z). Then,
(ψ ◦ f ◦ φ)(z) satisfies the conditions of Lemma 39.1, and hence |(ψ ◦ f ◦
φ)(z)| ≤ |z|. Now let z = φ−1(z2). We also have |(ψ ◦ f ◦ φ)′(0)| ≤ 1; i.e.,
|ψ′(w1)f ′(z1)φ′(0)| ≤ 1.



Lecture 40
Harmonic Functions

In this lecture, we shall employ earlier results to establish some funda-
mental properties of harmonic functions. The results obtained strengthen
our understanding of harmonic functions and are of immense help in solving
boundary value problems for the Laplace equation. We begin by proving
the following result.

Theorem 40.1. Let φ(x, y) be a nonconstant harmonic function in
a domain S. Then, φ(x, y) has neither a maximum nor a minimum at any
point of S.

Proof. Let z0 = x0+ iy0 be an arbitrary point in S, and let B(z0, r) ⊂ S
be a neighborhood of z0. As in Lecture 7 (also see Problem 40.2) we con-
struct a function f(z) = φ(x, y) + iθ(x, y) that is analytic in B(z0, r).
Clearly, the function g(z) = ef(z) is analytic and nonconstant, and |g(z)| =
eφ(x,y). Now we claim that the function φ(x, y) cannot have a maximum
(minimum) at (x0, y0). In fact, if it does, then |g(z)| will have a maxi-
mum (minimum) at (x0, y0), but this contradicts Theorem 20.1 (Theorem
20.3).

Corollary 40.1. Let φ(x, y) be a harmonic function in a domain S
and continuous on S. Then, φ(x, y) attains its maximum and minimum on
∂S.

Corollary 40.2. Let φ(x, y) be a harmonic function in a domain S,
and continuous on S. If φ(x, y) = constant for (x, y) ∈ ∂S, then φ(x, y) =
constant for (x, y) ∈ S.

Corollary 40.3. Let S ⊂ IR2 be a bounded domain, and let g(x, y)
be a real-valued continuous function on ∂S. Then, the Dirichlet boundary
value problem

φxx + φyy = 0 in S and φ(x, y) = g(x, y) on ∂S (40.1)

has at most one solution that is twice continuously differentiable in S and
continuous in S.

Problems in which the normal derivative dφ/dn = 0 is known a priori
everywhere on the boundary of a domain and where the harmonic function
φ is sought inside the domain are known as Neumann problems.

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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Theorem 40.2. Suppose that w = f(z) = u(x, y) + iv(x, y) is a
conformal mapping of S into S′ and φ(u, v) is a harmonic function on S ′.
Then, φ ◦ f(z) = φ(u(x, y), v(x, y)) = ψ(x, y) is harmonic in S. Thus, if φ
satisfies φuu + φvv = 0 on S′, then ψ = φ ◦ f satisfies ψxx + ψyy = 0 on S;
i.e., the Laplace equation is invariant under a change of variables using a
conformal mapping.

Proof. Let z0 ∈ S and w0 = f(z0). In view of Problem 40.3, the function
φ has a harmonic conjugate θ in a disk around w0. Then, φ+iθ is analytic in
this disk, and by the composition of analytic functions, (φ+iθ)◦f is analytic
at z0. Hence, in view of Problem 7.20, Re[(φ+iθ)◦f ] = Re[φ◦f+i(θ◦f)] =
φ ◦ f is harmonic at z0. Since z0 was arbitrary, φ ◦ f is analytic in S.

We also note that, under a change of variables, a level curve φ(u, v) = c
in the uv-plane transforms into the level curve φ(u(x, y), v(x, y)) = c in the
xy-plane. In particular, any portion of the boundary of a region in the uv-
plane upon which φ has a constant value transforms into a corresponding
curve in the xy-plane along which φ has the same constant value. Thus,
the boundary condition φ = c in the original problem is also invariant
under a change of variables using a conformal mapping. Similarly, if the
normal derivative of φ vanishes along some curve in the uv-plane, then the
normal derivative of φ expressed as a function of x and y also vanishes along
the corresponding curve in the xy-plane. Hence, the boundary condition
dφ/dn = 0 remains unchanged. However, if the boundary condition is not
one of these types, then for the transform problem the boundary condition
may change significantly.

To see the usefulness of Theorem 40.2 and the remarks above, suppose
we are given a domain S in the z-plane. We need to find a harmonic function
ψ(x, y) in S that assumes certain conditions on the boundary of S. Suppose
we can find a conformal mapping w = u + iv = f(z) that maps S onto a
domain S′ in the w-plane, and S′ has a simpler (familiar) shape than S.
Assume that we can find a harmonic function φ(u, v) in S ′ that assumes at
each point of the boundary of S′ the condition that is required by ψ(x, y)
at the preimage of that point on the boundary of S. Then, Theorem 40.2
assures that ψ(x, y) = φ((u(x, y), v(x, y))) will be the required harmonic
function in S.

In view of Problem 18.10, the following representation of harmonic func-
tions is immediate.

Theorem 40.3 (Poisson’s Integral Formula). Let φ(x, y) be
harmonic in a domain containing the disk B(0, R). Then, for 0 ≤ r < R,

φ
(
reiθ

)
= u(r cos θ, r sin θ) =

R2 − r2

2π

∫ 2π

0

φ
(
Reit

)

R2 + r2 − 2Rr cos(t− θ)
dt.

(40.2)
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Theorem 40.3 has a generalization, which we state in the following re-
sult.

Theorem 40.4. Let Φ(x, y) be defined on the circle CR : |z| = R and
continuous there except for a finite number of jump discontinuities. Then,
the function

φ
(
reiθ

)
=

R2 − r2

2π

∫ 2π

0

Φ
(
Reit

)

R2 + r2 − 2Rr cos(t− θ)dt (40.3)

is harmonic in the disk B(0, R), and as reiθ approaches any point on CR

where Φ is continuous, φ
(
reiθ

)
approaches the value of Φ at that point.

Remark 40.1. Since

R2 − r2

R2 + r2 − 2Rr cos(t− θ) =
R2 − r2

R2

1(
1− r

R ei(t−θ)
) (

1− r
Re−i(t−θ)

)

=
1

1− r
Rei(θ−t)

+
r
Rei(t−θ)

1− r
Rei(t−θ)

=
∞∑

j=0

( r

R

)j
eij(θ−t) +

∞∑

j=1

( r

R

)j
eij(t−θ)

= 1 +
∞∑

j=1

( r

R

)j [
eij(θ−t) + eij(t−θ)

]

= 1 + 2
∞∑

j=1

( r

R

)j
cos j(θ − t)

= 1 + 2
∞∑

j=1

( r

R

)j
cos jθ cos jt

+2
∞∑

j=1

( r

R

)j
sin jθ sin jt,

from (40.3) it follows that

φ
(
reiθ

)
=

a0
2

+
∞∑

j=1

( r

R

)j
(aj cos jθ + bj sin jθ), (40.4)

where

aj =
1

π

∫ 2π

0
Φ
(
Reit

)
cos jtdt, j ≥ 0, (40.5)

and

bj =
1

π

∫ 2π

0
Φ
(
Reit

)
sin jtdt, j ≥ 1. (40.6)
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Thus, the function φ can be expanded in a Fourier series with the Fourier
coefficients (40.5) and (40.6).

Remark 40.2. If w = eit and z = reiθ , then it follows that

1− r2

1 + r2 − 2r cos(t− θ) = Re

[
w + z

w − z

]
=

1− |z|2
|w − z|2 . (40.7)

Example 40.1. Consider an electrically conducting tube of unit radius
(R = 1) that has dielectric material inside and is separated into two halves
by means of infinitesimal slits. The top half of the tube (0 < t < π)
is maintained at an electrical potential of 1 volt, while the bottom half
(π < t < 2π) is at −1 volt. To find the potential φ at an arbitrary point
(r, θ) inside the tube, we recall that electrostatic potential is a harmonic
function. Thus, from (40.3), it follows that

φ(r, θ) =
1

2π

∫ π

0

(1 − r2)dt

1 + r2 − 2r cos(t− θ) −
1

2π

∫ 2π

π

(1− r2)dt

1 + r2 − 2r cos(t− θ)

=
1

π

[
2 tan−1

(
1 + r

1− r
tan

(
π

2
−
θ

2

))
− tan−1

(
1 + r

1− r
tan

(
π −

θ

2

))

− tan−1

(
1 + r

1− r
tan

(
−θ
2

))]
.

Thus, in particular, at the center, φ(0, 0) = 0.

Once again, for the same problem, (40.5) and (40.6), respectively, give
aj = 0, j ≥ 0 and bj = 2(1 − (−1)j)/(jπ), j ≥ 1, and hence, in view of
(40.4), we have

φ(r, θ) =
∞∑

j=1

2rj

jπ

(
1− (−1)j

)
sin jθ.

Example 40.2. In Theorem 40.4, let R = 1 and

Φ(Reit) =

{
sin t, 0 < t < π

0, π < t < 2π.

Then, from (40.3), we have

φ(z) =
1− r2

2π

∫ π

0

sin t

1 + r2 − 2r cos(t− θ)dt,

which in view of (40.7) is the same as

φ(z) =
1

2π

∫

γ

w − w

2i

1− |z|2
|w − z|2

dw

iw
,
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where γ is the upper half unit circle. Since on γ, w = 1/w, it follows that

φ(z) = − 1

4π

∫

γ

(
w − 1

w

)
(1− |z|2)

w(w − z)
(
1
w − z

) dw

= − (1− |z|2)
4π

∫

γ

(w2 − 1)

w(w − z)(1− wz)
dw.

Thus, from Theorem 31.2, it follows that

φ(z) = − 2πi
(1− |z|2)

4π

[
1

z
+

z2 − 1

z(1− |z|2)

]
=

z − z

2i
= r sin θ.

Once again, for the same problem, (40.5) and (40.6), respectively, give
aj = 0, j ≥ 0 and b1 = 1, bj = 0, j ≥ 2. Hence, in view of (40.4), we have
φ(r, θ) = r sin θ.

Example 40.3. The conformal mapping w = i(1+z)/(1−z) transforms
the unit disk |z| < 1 onto the upper half-plane v > 0, the upper semi-circle
is mapped onto the negative u-axis u < 0, and the lower semi-circle is
mapped onto the positive u-axis u > 0. The function

1

π
logw =

1

π
Log|w| + i

π
argw, 0 < argw < π,

is analytic in the upper half-plane. The imaginary part of this function;
i.e., (1/π) argw, 0 < argw < π is harmonic in the upper half-plane and
assumes the value 1 on the negative u-axis and 0 on the positive u-axis.
Thus, the function

φ(x, y) =
1

π
arg

(
i
1 + z

1− z

)

is harmonic in the unit disk satisfying the boundary condition

g(θ) =

{
1, 0 < θ < π

0, π < θ < 2π.

Clearly, under the conformal mapping above, the points z = −1 and z = 1,
respectively, correspond to the points w = 0 and w = ∞, and hence the
harmonic function constructed has singularities at z = ±1.

Once again, for the same problem, (40.5) and (40.6), respectively, give
a0 = 1, aj = 0, j ≥ 1 and bj = (1− (−1)j)/(jπ), j ≥ 1, and hence, in view
of (40.4), we have

φ(r, θ) =
1

2
+

∞∑

j=1

rj

jπ

(
1− (−1)j

)
sin jθ.
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Problems

40.1. Suppose that φ(x, y) is a harmonic function in a domain S. Let
ψ = φx − iφy. Show that ψ is analytic in S. The function ψ is called the
conjugate gradient of φ.

40.2. Suppose that φ(x, y) is a harmonic function in a simply connected
domain S. Show that φ has a harmonic conjugate in S given up to an
additive constant by

θ(x, y) =

∫ (x,y)

(x0,y0)
−φydx+ φxdy,

where the point (x0, y0) is fixed in S and the integral is independent of the
path. Furthermore, show that in this problem the connectedness property
is crucial.

40.3. Suppose that φ(x, y) is a harmonic function in a domain S. Show
that φ admits a harmonic conjugate locally in S.

40.4. Prove that φxx + φyy = |f ′(z)|2(φuu + φvv), where w = f(z) is
analytic and f ′(z) ̸= 0. Hence, deduce Theorem 40.2.

40.5. Let a function φ(x, y) satisfy Poisson’s equation φxx + φyy =
P (x, y) in a domain S. If S′ is the image of the domain S under the confor-
mal mapping w = f(z), show that ψ = φ(x(u, v), y(u, v)) satisfies another
Poisson equation, ψuu + ψvv = |f ′(z)|2P [x(u, v), y(u, v)], in S ′.

40.6. Suppose that φ(x, y) is harmonic and nonnegative in a domain
containing the disk B(0, R). Establish the Harnack inequality

R− r

R+ r
φ(0) ≤ φ

(
reiθ

)
≤ R + r

R− r
φ(0).

Hence, show that a bounded function that is harmonic in C is necessarily
constant.

40.7. Use (40.4) to find a harmonic function φ(x, y) in the disk B(0, a)
that satisfies φ(a, θ) = g(θ), where

(a). g(θ) =
1

2
(1 + cos θ), 0 < θ < 2π,

(b). g(θ) =
1

2
(1 + cos3 θ), 0 < θ < 2π,

(c). g(θ) = |θ|, 0 < θ < 2π.

40.8. Find a harmonic function φ(r, θ) in the wedge with three sides
θ = 0, θ = β, and r = a (see Figure 40.1) and the boundary conditions
φ(r, 0) = 0 = φ(r,β), 0 < r < a and φ(a, θ) = g(θ), 0 < θ < β.



Harmonic Functions 273

Figure 40.1

φ = 0

φ = 0 g(θ)

β

0

40.9. Let g(x) be a piecewise continuous and bounded function on
−∞ < x <∞. Show that the function defined by

φ(x, y) =
y

π

∫ ∞

−∞

g(t)

(x− t)2 + y2
dt (40.8)

is harmonic in the upper half-plane y > 0 and satisfies the boundary con-
dition φ(x, 0) = g(x) at all points of continuity of f. The relation (40.8) is
called Poisson’s integral formula for the half-plane.

40.10. Use Problem 40.9 to find a harmonic function φ(x, y) in the
upper half-plane y > 0 that satisfies φ(x, 0) = g(x), where

(a). g(x) =

{
1, |x| < 1

0, |x| > 1,

(b). g(x) =

{
x, |x| < 1

0, |x| > 1,

(c). g(x) = cosx, −∞ < x <∞.

Answers and Hints

40.1. It suffices to verify that φx and −φy satisfy the Cauchy-Riemann
conditions.
40.2. See Examples 7.6 and 7.7. Consider the function ln |z|.
40.3. Since S is open, we can find an open disk B(z0, r) in S. Clearly, this
disk is connected.
40.4. Use the chain rule and the Cauchy-Riemann conditions.
40.5. Use Problem 40.4.
40.6. Use (R− r)2 ≤ R2 + r2 − 2Rr cos(t− θ) ≤ (R+ r)2, and note that,

for r = 0, (40.2) reduces to φ(0) = 1
2π

∫ 2π
0 φ

(
Reit

)
dt.

40.7. (a). 1
2

(
1 + r

a cos θ
)
, (b). 1

2

(
1 + 3

4
r
a cos θ + 1

4
r3

a3 cos 3θ
)
, (c). π

2

+
∑∞

n=1
2((−1)n−1)

πn2
rn

an cosnθ.

40.8. φ(r, θ) =
∑∞

n=1Anrnπ/β sin nπ
β θ, An = 2

β a
−nπ/β

∫ β
0 g(t) sin nπ

β tdt.
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40.9. Fix z = x+ iy, y > 0, and consider f(w) = (w− z)/(w− z), v ≥ 0.
Clearly, f maps the open upper half-plane conformally onto B(0, 1). The
boundaries |z| = 1 and the real axis correspond via eit = f(τ) = (τ −
z)/(τ − z), t ∈ [0, 2π], τ ∈ IR. This gives dt = 2ydτ/|τ − z|2.
40.10. (a). 1

π

(
tan−1 y

x−1 − tan−1 y
x+1

)
, (b). x

π

(
tan−1 y

x−1 − tan−1 y
x+1

)
+

y
2π ln (x−1)2+y2

(x+1)2+y2 , (c). e−y cosx.



Lecture 41
The Schwarz-Christoffel

Transformation

In this lecture, we shall provide an explicit formula for the derivative of
a conformal mapping that maps the upper half-plane onto a given bounded
or unbounded polygonal region (boundary contains a finite number of line
segments). The integration of this formula (often a formidable task unless
done numerically) and then its inversion (another nontrivial task) yields
a conformal mapping that maps a polygonal region onto the upper half-
plane. Such mappings are often applied in physical problems such as in
heat conduction, fluid mechanics, and electrostatics.

Consider the transformation

z = g(w) = (w − u1)
α/π, 0 < α < 2π, (41.1)

where u1 is a point on the real axis of the w-plane. This mapping is a
composition of a translation T (w) = w − u1 followed by the real power
function G(w) = wα/π . From Lecture 11, it is clear that under the com-
posite mapping z = G(T (w)) = (w − u1)α/π a ray emanating from u1 and
making an angle θ with the real axis is mapped onto a ray emanating from
the origin and making an angle αθ/π with the real axis. The image of the
half-plane v > 0 is the point z = 0 together with the wedge 0 ≤ arg(z) ≤ α.
Since g′(w) = (α/π)(w− u1)(α/π)−1 ̸= 0 if w = u+ iv and v > 0, it follows
that z = g(w) is a conformal mapping at any point w with v > 0. In what
follows, we shall use the form of the derivative of the function g(w) to de-
scribe a conformal mapping of the upper half-plane v > 0 onto an arbitrary
polygonal region. For this, we shall first analyze the mapping h(w), which
is analytic in the domain v > 0 and whose derivative is

h′(w) = A(w − u1)
(α1/π)−1(w − u2)

(α2/π)−1, (41.2)

where A is a complex number, u1 < u2 are real, and 0 < α1,α2 < 2π.
Under the mapping w = h(z), we shall find the images of the intervals
(−∞, u1), (u1, u2), and (u2,∞). Since, on the real axis w = u, from (41.2)
it follows that

Arg(h′(u)) = Arg(A) +
(α1

π
− 1
)
Arg(u− u1) +

(α2

π
− 1
)
Arg(u− u2).

Thus, if −∞ < u < u1,

Arg(h′(u)) = Arg(A)+
(α1

π
− 1
)
π+
(α2

π
− 1
)
π = Arg(A)+α1+α2−2π,
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which is a constant for all u. Hence, the interval (−∞, u1) is mapped into a
line segment ℓ1 defined by z = h(u). Similarly, we find that if u1 < u < u2,
then Arg(h′(u)) = Arg(A) + α2 − π; i.e., the interval (u1, u2) is mapped
into a line segment ℓ2 defined by z = h(u), which changes the exterior
angle by π − α1 from ℓ1. If u2 < u < ∞, then Arg(h′(u)) = Arg(A); i.e.,
the interval (u2,∞) is mapped into a line segment ℓ3 defined by z = h(u),
which changes the exterior angle by π − α2 from ℓ2 (see Figure 41.1).

Figure 41.1

u

v

• •
u1 u2

x

y

ℓ1

ℓ2

ℓ3
α1 α2

Since h(z) is analytic, the image of the half-plane v ≥ 0 is an unbounded
polygonal region (see Figure 41.1). In the following result, we generalize
the discussion above for the derivative f ′(w) of a function f(w) that maps
the half-plane v ≥ 0 onto a polygonal region with any number of sides.

Theorem 41.1 (The Schwarz-Christoffel Transformation).
Let f(w) be analytic in the domain v > 0 and have the derivative

f ′(w) = A(w − u1)
(α1/π)−1(w − u2)

(α2/π)−1 · · · (w − un)
(αn/π)−1, (41.3)

where u1 < u2 < · · · < un, 0 < αj < 2π, j = 1, 2, · · · , n, and A is a complex
constant. Then, the upper half-plane v ≥ 0 is mapped by z = f(w) onto an
unbounded polygonal region, say P with interior angles αj , j = 1, 2, · · · , n.

In integral form, (41.3) can be written as

z = f(w) = A

∫ w

(ζ−u1)
(α1/π)−1(ζ−u2)

(α2/π)−1 · · · (ζ−un)
(αn/π)−1dζ+B;

(41.4)
here, in the integral, the lower limit can be chosen arbitrarily. Clearly, from
(41.3) and (41.4), it follows that (u1, 0), (u2, 0), · · · , (un, 0) are the images in
the w-plane of the vertices z1, z2, · · · , zn of the polygon P in the z-plane. If
w =∞ is mapped into one vertex, say zj then the term containing (w−uj)
is absent in (41.3). If the polygon P is closed, then the last vertex zn is
the same as the initial vertex z1, and hence instead of n interior angles we
have only n− 1 interior angles. The size and orientation of the polygon P
are determined by the complex constants A and B. This is usually fixed by
choosing some of the points uj on the u-axis. We illustrate some of these
remarks in the following examples.
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Example 41.1. We shall find the transformation that maps the upper
half-plane v ≥ 0 onto the polygonal region defined by the strip x ≥ 0, −1 ≤
y ≤ 1 (see Figure 41.2).

Figure 41.2

u

v

• •−1 1

x

y

π/2

π/2

−i

i

Clearly, here we have α1 = α2 = π/2, z1 = −i, and z2 = i. We choose
u1 = −1 and u2 = 1, so that (41.4) becomes

z = f(w) = A

∫ w

(ζ + 1)−1/2(ζ − 1)−1/2dζ +B

= −iA
∫ w

(1− ζ2)−1/2dζ +B = − iA sin−1 w +B.

Now, since f(−1) = −i and f(1) = i, it follows that A = −2/π, B = 0.
Hence, the required mapping is

z = i
2

π
sin−1 w.

From this mapping, it is clear that

w = sin
(πz
2i

)
= − i sinh

(πz
2

)

maps the strip x ≥ 0, − 1 ≤ y ≤ 1 onto the upper half-plane v ≥ 0.

Example 41.2. We shall find the transformation that maps the upper
half-plane v ≥ 0 onto the sector 0 ≤ arg z ≤ απ, 0 < α < 2. For this, we
note that the given sector is a polygon with vertices z1 = 0 and z2 = ∞.
We choose u1 = 0 and u2 =∞, so that (41.4) becomes

z = f(w) = A

∫ w

ζα−1dζ +B =
A

α
wα +B.

Now since f(0) = 0 it follows that B = 0, and hence z = f(w) = (A/α)wα.
To fix the arbitrary constant A, for simplicity we choose f(1) = 1, so that
A = α. Hence, the required mapping is z = wα. From this mapping it is
clear that the principal branch of w = z1/α maps the sector 0 ≤ arg z ≤
απ, 0 < α < 2 onto the upper half-plane v ≥ 0.
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Example 41.3. We shall find the transformation that maps the upper
half-plane v ≥ 0 onto the right isosceles triangle. The vertices of the triangle
and its images are given in Figure 41.3.

Figure 41.3

u

v

• •
u1 u2

−a a

u3=∞ x

y

α1 α2

z1 = −1 z2 = 1

z3 = i

α3 α3 = π/2

Clearly, here we have α1 = α2 = π/4, α3 = π/2, w1 = −a, w2 = a, and
w3 =∞, and hence (41.4) can be taken as

z = f(w) = A

∫ w

0
(ζ+a)−3/4(ζ+a)−3/4dζ+B = A

∫ w

0
(ζ2−a2)−3/4dζ+B.

This integral cannot be evaluated in terms of known functions. It has
to be computed numerically for each value of w of interest. Now, since
f(−a) = −1 and f(a) = 1, it follows that

−1 = A

∫ −a

0
(ζ2 − a2)−3/4dζ +B,

1 = A

∫ a

0
(ζ2 − a2)−3/4dζ +B,

which easily determines

A =
1∫ a

0 (ζ
2 − a2)−3/4dζ

and B = 0.

Hence, the required mapping is

z =

∫ w
0 (ζ2 − a2)−3/4dζ
∫ a
0 (ζ

2 − a2)−3/4dζ
.

From this the computation of the inverse mapping that transforms the
triangle in Figure 41.3 to the upper half-plane v ≥ 0 is not straightforward.

Example 41.4. We shall find the transformation that maps the upper
half-plane v ≥ 0 onto the rectangle. The vertices of the rectangle and its
images are given in Figure 41.4.
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Figure 41.4

u

v

•
1

u1
•

1/k

u2
•
u4

-1
•
u3

-1/k
•
0

k<1

x

y

0
• •

••

z1=a

z2=a+ ibz3=−a+ ib

z4=−a

Since here α1 = α2 = α3 = α4 = π/2, u1 = 1, u2 = 1/k, u3 = −1/k, u4 =
−1, (41.4) takes the form

z = f(w) = A

∫ w

0
(ζ − 1)−1/2

(
ζ − 1

k

)−1/2(
ζ +

1

k

)−1/2

(ζ + 1)−1/2dζ +B

= A

∫ w

0

k√
(1− ζ2)(1− k2ζ2)

dζ +B.

We can use the correspondence w = 0→ z = 0 to get B = 0. Then,

z = C

∫ w

0

1√
(1− ζ2)(1 − k2ζ2)

dζ := CF (w, k), C = kA. (41.5)

The function F (w, k) is called the elliptic integral of the first kind. The
correspondence w = 1→ z = a now yields

a = C

∫ 1

0

1√
(1− ζ2)(1 − k2ζ2)

dζ = CF (1, k) = CK(k). (41.6)

The function K(k) is called the complete integral of the first kind and is
well-studied in tabular form. Finally, we note that the correspondence
w = 1/k→ a + ib leads to

a+ ib = C

[∫ 1

0

1√
(1− ζ2)(1− k2ζ2)

dζ +

∫ 1/k

1

1√
(1− ζ2)(1 − k2ζ2)

dζ

]
,

which in view of (41.6) is the same as

b = C

∫ 1/k

1

1√
(ζ2 − 1)(1− k2ζ2)

dζ. (41.7)

For the given values of a and b, the nonlinear equations (41.6) and (41.7)
can be solved for the unknowns C and k. The relation (41.5) with these
computed values then provides the required transformation.
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Problems

41.1. Find the transformations that map the upper half-plane v ≥ 0
onto the domains in the z-plane as shown in Figure 41.5 with the following
correspondences of the points:

(a). w(u1 = 0, u2 = 1, u3 =∞) → z(z1 = 0, z2 = 1, z3 =∞),

(b). w(u1 = 0, u2 = 1, u3 =∞) → z(z1 = 0, z2 = 1, z3 =∞),

(c). w(u1 = 0, u2 = 1, u3 =∞) → z(z1 = 0, z2 =∞, z3 =∞),

(d). w(u1 = 0, u2 = 1, u3 =∞) → z(z1 = 0, z2 =∞, z3 =∞).

•
z1

•
z2

z3z3
(a) (b)

• •
z1 z2

z3

z3

•
z1

z2

z2

z3

z3

h

(c)

•
z1

z2

z2

z3

z3

5π/4

h

(d)

Figure 41.5

Answers or Hints

41.1. (a). z = (2/π)[sin−1√w − (1− 2w)
√
w − w2],

(b). z = (2/π)[sin−1√w −
√
w − w2],

(c). z = (2h/π)[tanh−1√w −
√
w],

(d). z = (2h/π)[tanh−1 w1/4 − 2w1/4].



Lecture 42
Infinite Products

In this lecture, we shall introduce infinite products of complex num-
bers and functions and provide necessary and sufficient conditions for their
convergence.

Let {an} be a sequence of complex numbers. The infinite product, de-
noted as

∏∞
j=1 aj is the limit p as n → ∞ of the nth partial product

pn =
∏n

j=1 aj = a1a2 · · · an provided this limit exists and is not zero.

As in series, we write
∏∞

j=1 aj = p or limn→∞
∏n

j=1 aj = p. Now, if
limn→∞ pn = p ̸= 0, then, since

lim
n→∞

an = lim
n→∞

∏n
j=1 aj∏n−1
j=1 aj

=
p

p
= 1,

for the infinite product
∏∞

j=1 aj to converge it is necessary that limn→∞ an
= 1. Thus, if, for convenience, we consider an = 1 + bn, then the infinite
product

∞∏

j=1

(1 + bj) (42.1)

diverges if limn→∞ bn ̸= 0 or some bn = −1. The following example suggests
that limn→∞ bn = 0 is not sufficient for the convergence of (42.1).

Example 42.1. Both the infinite products,
∏∞

j=2(1−1/j) and
∏∞

j=1(1+
1/j), diverge. In fact, respectively, we have

pn =
1

2

2

3

3

4
· · · n− 1

n

n

n+ 1
=

1

n+ 1
→ 0 as n→∞

and

pn =
2

1

3

2

4

3
· · · n+ 1

n
= n+ 1 → ∞ as n→∞.

The following results that we state, leaving the proofs as exercises, pro-
vide necessary and/or sufficient conditions for the convergence of the infinite
product (42.1).

Theorem 42.1. The infinite product (42.1) converges if and only if
the infinite series

∞∑

j=1

Log(1 + bj) (42.2)

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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converges.

Theorem 42.2. The infinite product (42.1) converges if and only if
for every ϵ > 0 there exists an integer N = N (ϵ) such that

|(1 + bn+1)(1 + bn+2) · · · (1 + bn+m) − 1| < ϵ (42.3)

whenever n ≥ N and m ≥ 1.

Theorem 42.3. If the series
∑∞

j=1 bj and
∑∞

j=1 b
2
j converge, then the

infinite product (42.1) converges.

The infinite product (42.1) is said to be absolutely convergent if the
infinite product

∞∏

j=1

(1 + |bj |) (42.4)

converges. A convergent infinite product that is not absolutely convergent
is called conditionally convergent.

Theorem 42.4. The infinite product (42.1) is absolutely convergent if
and only if the series

∑∞
j=1 bj is absolutely convergent.

Theorem 42.5. If (42.4) converges, then (42.1) converges.

Example 42.2. For the infinite product
∏∞

j=2

(
1− (−1)j/j

)
, we have

pn =
1

2

4

3

3

4
· · · n− (−1)n

n

(n+ 1)− (−1)n+1

n+ 1
=

⎧
⎪⎨

⎪⎩

1

2
if n is odd

1

2

n+ 2

n+ 1
if n even,

and hence limn→∞ pn = 1/2. However, in view of Example 42.1, the infinite
product

∏∞
j=1(1 + 1/j) diverges, and hence the converse of Theorem 42.5

is not true.

Now we shall consider infinite products of complex functions. Let
{bn(z)} be a sequence of complex functions defined on a set S. An infi-
nite product

∞∏

j=1

(1 + bj(z)) (42.5)

is said to be uniformly convergent on S if the sequence of partial products
pn(z) =

∏n
j=1(1 + bj(z)) is uniformly convergent on S to a function p(z)

that is different from zero for all z ∈ S.

Theorem 42.6. Suppose that the series
∑∞

j=1 |bj(z)| converges uni-
formly on every compact subset of S. Then, (42.5) converges uniformly to
p(z) on every compact subset of S.
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Proof. Let S1 be a compact subset of S. Since
∑∞

j=1 |bj(z)| converges
uniformly on S1, it is uniformly bounded. Thus, for all z ∈ S1, it follows
that

|pn(z)| ≤
n∏

j=1

(1 + |bj(z)|) ≤
n∏

j=1

e|bj(z)| = exp

⎛

⎝
n∑

j=1

|bj(z)|

⎞

⎠ ≤ M.

Let ϵ > 0 be arbitrary. Then, there exists an integer N sufficiently large
such that

∑n
j=m+1 |bj(z)| < ϵ for every n > m ≥ N and all z ∈ S1. Now an

easy argument for all z ∈ S1 gives

|pn(z)− pm(z)| = |pm(z)|

∣∣∣∣∣∣

n∏

j=m+1

(1 + bj(z))− 1

∣∣∣∣∣∣

≤ |pm(z)|

⎡

⎣
n∏

j=m+1

(1 + |bj(z)|)− 1

⎤

⎦

≤ |pm(z)|

⎡

⎣exp

⎛

⎝
n∑

j=m+1

|bj(z)|

⎞

⎠− 1

⎤

⎦

≤ M (eϵ − 1) .

But this shows that the sequence {pn(z)} converges uniformly on S1.

Corollary 42.1. Let {Mn} be a sequence of positive constants, and let
|bn(z)| ≤ Mn for all z ∈ S. Then, if

∑∞
j=1 Mj converges, (42.5) converges

uniformly on S.

Corollary 42.2. If in Theorem 42.6 the functions bn(z) are analytic
on S, then the limiting function p(z) is analytic on S.

Example 42.3. For |z| < 1, uniformly we have

∞∏

j=0

(
1 + z2

j
)

= (1 + z)(1 + z2)(1 + z4) · · ·

=
1

1− z
(1− z2)(1 + z2)(1 + z4) · · ·

=
1

1− z
lim

n→∞

(
1− z2

n
)

=
1

1− z
.

We also note that this infinite product diverges for |z| ≥ 1.

Example 42.4. Since (1 + z/
√
j)(1 − z/

√
j) = (1 − z2/j), j ≥ 2 and

(1 + zi/
√
j)(1− zi/

√
j) = (1 + z2/j), j ≥ 1 in view of Example 42.1, both
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the infinite products

∞∏

j=2

(
1 +

z√
j

)(
1− z√

j

)
and

∞∏

j=1

(
1 +

zi√
j

)(
1− zi√

j

)

diverge at z = ±1.

Example 42.5. Consider the zeros of the function sin z; i.e., z =
jπ, j = 0,±1,±2, · · · . The infinite product

z
∞∏

j=1

(z + jπ)(z − jπ) = z
∞∏

j=1

(z2 − j2π2) = z
∞∏

j=1

(1 + (z2 − j2π2 − 1))

does not converge at any point z ̸= jπ, as the necessary condition z2 −
j2π2 − 1→ 0 as j →∞ is violated.

Remark 42.1. If the conditions of Corollary 42.2 are satisfied, then it
can be shown that

p′(z)

p(z)
=

∞∑

j=1

b′j(z)

1 + bj(z)
.

Corollary 42.3. Let the conditions of Theorem 42.6 be satisfied.
Then, if {n1, n2, · · · , nj , · · ·} is any permutation of the positive integers,
then p(z) =

∏∞
j=1(1 + bnj (z)) on every compact subset of S.

Proof. Let S1,M, ϵ, and N be as in Theorem 42.6. Choose K so large
that {1, 2, · · · , N} ⊂ {n1, n2, · · · , nK}. Furthermore, let qk(z) =

∏k
j=1(1 +

bnj (z)). Then, for all z ∈ S1, we have

|qK(z)− pN (z)| = |pN (z)|

∣∣∣∣∣∣

∏

j

(1 + bnj (z))− 1

∣∣∣∣∣∣
,

where j ∈ {n1, n2, · · · , nK}\{1, 2, · · · , N}. Thus, as in Theorem 42.6, we
have |qK(z) − pN (z)| ≤ M (eϵ − 1) , which shows that {qk(z)} converges
uniformly on S1.

Corollary 42.4. Let the conditions of Theorem 42.6 be satisfied. Then,
p(z0) = 0 for some z0 in a compact subset of S if and only if bj(z0) = −1
for some j.

Proof. Let S1, 0 < ϵ < 1/2 and N be as in Theorem 42.6. Then, for ev-
ery n > m ≥ N and all z ∈ S1, we have |pn(z)−pm(z)| ≤ |pm(z)| (eϵ − 1) ≤
2|pm(z)|ϵ. Thus, it follows that

|pn(z)| ≥ |pm(z)|−|pn(z)−pm(z)| ≥ |pm(z)|−2|pm(z)|ϵ = (1−2ϵ)|pm(z)|.
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Hence, as n→∞, |p(z)| ≥ (1−2ϵ)|pm(z)|, where (1−2ϵ) > 0. This implies
that if |pm(z)| > 0 for each m and z ∈ S1, then |p(z)| > 0. The converse is
obvious.

Corollary 42.5. If, for each j, 0 ≤ bj < 1, then
∏∞

j=1(1− bj) > 0 if

and only if
∑∞

j=1 bj <∞.

Proof. Let qn =
∏n

j=1(1 − bj). Then, q1 ≥ q2 ≥ · · · ≥ 0, and therefore

limn→∞ qn = q exists. If
∑∞

j=1 bj < ∞, then q > 0 by Corollary 42.4

since each factor 1 − bj > 0. Conversely, 0 ≤ q ≤ qn ≤
∏n

j=1(1 − bj) ≤
exp

(
−
∑n

j=1 bj
)
, and hence if

∑∞
j=1 bj = ∞, then exp

(
−
∑∞

j=1 bj
)
= 0,

which implies that q = 0.

Problems

42.1. Evaluate the following infinite products:

(a).
∞∏

j=2

(
1− 1

j2

)
, (b).

∞∏

j=1

(
1 +

1

j(j + 2)

)
, (c).

∞∏

j=1

(
1− 2

(j+1)(j+2)

)
.

42.2. Show that the infinite product
∏∞

j=1

(
1 + ejz

)
diverges for Re(z) ≥

0 and converges absolutely for Re(z) < 0.

42.3. Show that the infinite product
∏∞

j=1

(
1 + zj/j

)
is uniformly and

absolutely convergent for |z| ≤ r, where 0 < r < 1.

42.4. Show that the infinite product
∏∞

j=1 (1 + 1/jz) is uniformly and
absolutely convergent in the half-plane Re(z) ≥ 1+ ϵ, where ϵ > 0. Use the
principal value of jz.

42.5. Show that the infinite product
∏∞

j=1

(
1− z2/j2

)
is uniformly and

absolutely convergent in any closed and bounded region, where z is not a
positive or negative integer.

42.6. Show that the infinite product

{(
1− z

1

)
ez
}{(

1 +
z

1

)
e−z
}{(

1− z

2

)
ez/2

}{(
1 +

z

2

)
e−z/2

}
· · ·

is uniformly and absolutely convergent in any closed and bounded region,
where z is not a positive or negative integer.

42.7 (Blaschke Product). Let the sequence {zn} be such that 0 <
|zn| < 1 for all n and

∑∞
j=1(1 − |zj|) converges. Show that the infinite
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product

f(z) =
∞∏

j=1

zj − z

1− zjz

|zj|
zj

converges uniformly on the disk B(0, r), 0 < r < 1. Hence, f(z) is analytic
on B(0, 1), zn, n = 1, 2, · · · are its zeros, f(z) has no other zeros, and
|f(z)| ≤ 1.

Answers and Hints

42.1. (a). 1/2, (b). 2, (c). 1/3.
42.2. For Re(z) ≥ 0 use the necessary condition for convergence, and for
Re(z) < 0 use Corollary 42.1.
42.3. |bn(z)| = |zn|/n ≤ rn. Now use Corollary 42.1.
42.4. Use Corollary 42.1.
42.5. Use Corollary 42.1.

42.6. Since
(
1− z

n

)
ez/n = 1 + bn(z), where bn(z) = −

∑∞
j=2

(j−1)
j!

(
z
n

)j
,

we have |bn(z)| ≤
∑∞

j=2
1

(j−2)!

(
R
n

)j
=
(
R
n

)2
eR/n ≤ e

(
R
n

)2
when n > R.

Similarly, we have
(
1 + z

n

)
e−z/n = 1+ cn(z), where |cn(z)| ≤ e

(
R
n

)2
when

n > R. Now use Corollary 42.1.
42.7. Follows from Corollary 42.1 since

bj(z) :=
zj−z
1−zjz

|zj|
zj
− 1 = −

1+z
|zj |
zj

1−zzj
(1− |zj |)

satisfies

|bj(z)| ≤ 1+|z|
1−|z||zj| (1− |zj |) ≤ 1+r

1−r (1 − |zj|) =: Mj for all z ∈ B(0, r)

and
∑∞

j=1 Mj converges.



Lecture 43
Weierstrass’s Factorization

Theorem

In this lecture, we shall provide representations of entire functions as
finite/infinite products involving their finite/infinite zeros. We begin with
the following simple cases.

Theorem 43.1. If an entire function f(z) has no zeros, then f(z) is
of the form f(z) = eg(z), where g(z) is an entire function.

Proof. Clearly, the function

h(z) =
f ′(z)

f(z)
=

d

dz
Log f(z)

is entire, and hence

∫ z

0
h(ξ)dξ = Log f(ξ)

∣∣∣
z

0
= Log f(z)− Log f(0).

Thus, f(z) = eg(z), where g(z) =
∫ z
0 h(ξ)dξ + Log f(0).

Theorem 43.2. Let z1, · · · , zm be the distinct zeros of an entire func-
tion f(z), where zj is of order kj , j = 1, · · · ,m. Then, f(z) is of the form

f(z) = (z − z1)
k1 · · · (z − zm)kmeg(z), (43.1)

where g(z) is an entire function.

Proof. It suffices to note that the function

F (z) =
f(z)

(z − z1)k1 · · · (z − zm)km

is entire and has no zeros. The result now follows from Theorem 43.1.

Example 43.1. In Theorem 43.2, if g(z) is a constant, then f(z) is a
polynomial. Otherwise, it is an entire transcendental function.

Remark 43.1. If f1(z) and f2(z) are two entire functions having the
same zeros with the same multiplicities, then f1(z) = f2(z)eg(z), where g(z)

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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is an entire function. Conversely, if g(z) is an entire function, then f(z)eg(z)

has the same zeros as f(z), counting multiplicities.

Now let us assume that the entire function f(z) has an infinite number
of zeros, say z1, z2, · · · , which have been ordered in increasing absolute
value; i.e., |z1| ≤ |z2| ≤ · · · . Clearly, |zn| → ∞, for otherwise the function
f(z) will be identically zero (see Corollary 26.3). In view of Examples 42.4
and 42.5, the function f(z) cannot be represented as A

∏∞
j=1(1 − z/zj) or

A
∏∞

j=1(z − zj). In fact, to find a proper representation of such a function,
we need Weierstrass’s elementary functions:

E0(z) = (1−z), Eℓ(z) = (1−z) exp(z+(z2/2)+· · ·+(zℓ/ℓ)), ℓ = 1, 2, · · ·

and the following lemmas.

Lemma 43.1. Each elementary function Eℓ(z), ℓ = 0, 1, 2, · · · is an
entire function having a simple zero at z = 1. Furthermore,

(i). E′
ℓ(z) = −zℓ exp(z + (z2/2) + · · · + (zℓ/ℓ)),

(ii). if Eℓ(z) =
∑∞

j=0 ajz
j is the power series expansion of Eℓ(z) about

z = 0, then a0 = 1, a1 = a2 = · · · = aℓ = 0 and aj ≤ 0 for j > ℓ, and

(iii). if |z| ≤ 1, then |Eℓ(z)− 1| ≤ |z|ℓ+1.

Proof. (i). Follows by a direct verification.

(ii). That a0 = 1 is obvious. Since E′
ℓ(z) has a zero of multiplicity ℓ at 0,

and since term-by-term differentiation is permissible, in Eℓ(z) =
∑∞

j=0 ajz
j,

it follows that a1 = a2 = · · · = aℓ = 0. Next, in the expansion of −E′
ℓ(z) =

zℓ exp(z + (z2/2) + · · ·+ (zℓ/ℓ)), the coefficient of each zj is a nonnegative
real number. Hence, the coefficients in the expansion of Eℓ(z) must be
nonpositive.

(iii). From part (ii), we have

|Eℓ(z)−1| ≤

∣∣∣∣∣∣

∞∑

j=ℓ+1

ajz
j

∣∣∣∣∣∣
≤

∞∑

j=ℓ+1

|aj ||z|j ≤ |z|ℓ+1
∞∑

j=ℓ+1

(−aj)|z|j−ℓ−1.

Now, since Eℓ(1) = 0 = 1 +
∑∞

j=ℓ+1 aj or −
∑∞

j=ℓ+1 aj = 1, for |z| ≤ 1 it
follows that

|Eℓ(z)− 1| ≤ |z|ℓ+1

⎛

⎝
∞∑

j=ℓ+1

−aj

⎞

⎠ · 1 ≤ |z|ℓ+1.

Corollary 43.1. For any nonzero zj , |Eℓ(z/zj) − 1| ≤ |z/zj|ℓ+1 for
|z| ≤ |zj |.
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Lemma 43.2. Let {zn} be a sequence of complex numbers such that
zn ̸= 0, n = 1, 2, · · · and |zn| → ∞ as n → ∞. Then, there exists a
sequence of nonnegative integers {ℓn} such that the series

∑∞
j=1 |z/zj|ℓj+1

is uniformly convergent on every closed disk B(0, r), r <∞.

Proof. Let ℓn = n − 1, n = 1, 2, · · · . Since |zn| → ∞ as n → ∞, there
exists N large enough so that |zn| ≥ 2r for n ≥ N. For all these n and for
|z| ≤ r, we have

∣∣∣∣
z

zn

∣∣∣∣
ℓn+1

=

∣∣∣∣
z

zn

∣∣∣∣
n

≤
( r

2r

)n
=

1

2n
.

The result now follows from Theorem 22.4.

The main result of this lecture is the following theorem.

Theorem 43.3 (Weierstrass’s Factorization Theorem). Let
{zn} be a sequence of complex numbers such that zn ̸= 0, n = 1, 2, · · ·
and |zn| → ∞ as n → ∞, and let m be a nonnegative integer. Further-
more, let {ℓn} be a sequence of nonnegative integers such that the series∑∞

j=1 |z/zj|ℓj+1 converges uniformly on compact subsets of the complex
plane (in view of Lemma 43.2, such a choice is always possible). Then,

f(z) = zm
∞∏

j=1

Eℓj

(
z

zj

)
(43.2)

represents an entire function. This function has a zero at z = 0 of mul-
tiplicity m and at each zj , j = 1, 2, · · · of multiplicity kj ; here, kj is the
number of times zj occurs in the sequence {zn}.

Proof. Since Eℓn(z/zn) = 1 + (Eℓn(z/zn) − 1), in view of Theo-
rem 42.6, (43.2) converges uniformly and absolutely provided the series∑∞

j=1(Eℓj (z/zj) − 1) converges uniformly and absolutely on every disk
of finite radius. Let |z| ≤ r. Then, there exists N large enough so that
|z/zn| ≤ 1 for n ≥ N. But, then in view of Corollary 43.1, we have
|Eℓn(z/zn)− 1| ≤ |z/zn|ℓn+1. Since ℓn can be chosen as in Lemma 43.2, it
follows that the series

∑∞
j=1 |z/zj|ℓj+1 converges uniformly on the closed

disk B(0, r), which in turn implies that the series
∑∞

j=1(Eℓj (z/zj)−1) con-

verges uniformly and absolutely on B(0, r). Finally, since r > 0 is arbitrary,
in (43.2) the limit function f(z) is entire and has the prescribed zeros.

Remark 43.2. Since the sequence of positive integers {ℓn} can be
chosen differently, the representation (43.2) is not unique.

Remark 43.3. The general entire function with simple zeros at z =
zn, n = 1, 2, · · · and a zero of multiplicity m at z = 0 is given by f(z)eg(z)

where f(z) is as in (43.2) and g(z) is an arbitrary entire function.
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Example 43.2. The function sin πz is entire and has simple zeros
at n = 0,±1,±2, · · · . In Theorem 43.3, we let ℓn = 1 for each n. Since∑n

j=1 |z/n|2 converges uniformly on every disk of finite radius, the function

P (z) = z
∞∏

j=1

(
1− z

j

)(
1 +

z

j

)
= z

∞∏

j=1

(
1− z2

j2

)

is entire and has simple zeros at nonzero integers. Thus, in view of Remark
43.3, it follows that

sinπz = eg(z) z
∞∏

j=1

(
1− z2

j2

)
, (43.3)

where the entire function g(z) has to be determined. For this, differentiating
both sides of (43.3) and using Remark 42.1, we obtain

π cosπz =

⎛

⎝g′(z) +
1

z
+

∞∑

j=1

−2z
j2 − z2

⎞

⎠ sinπz,

which is the same as

π cotπz = g′(z) +
1

z
+

∞∑

j=1

(
1

z − j
+

1

z + j

)

for all z such that sinπz ̸= 0; i.e., for all z ̸= n. Hence, we have

g′′(z) =
∞∑

j=−∞

1

(z − j)2
− π2

sin2 πz
.

Now we observe that the function g′′(z) is periodic of period 1. Also, since
| sinπz|2 = sin2 πx + sinh2 πy it follows that for 0 ≤ x ≤ 1, |y| ≥ 1, the
function g′′(z) converges uniformly to zero as y → ∞. This ensures that
|g′′(z)| is bounded in the strip 0 ≤ x ≤ 1, |y| ≥ 0. But then, by periodicity,
|g′′(z)| is bounded on the whole complex plane. By Theorem 18.6, g′′(z)
must be a constant, and since the limit is zero, the constant must also be
zero; i.e., g′′(z) = 0. This leads to the interesting identity

∞∑

j=−∞

1

(z − j)2
=

π2

sin2 πz
. (43.4)

Thus, g′(z) must be a constant. But, since g′(z) = −g′(−z), this constant
also must be zero. Hence, we also have the identity

π cotπz =
1

z
+

∞∑

j=1

(
1

z − j
+

1

z + j

)
. (43.5)
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Therefore, g(z) must be a constant, say eg(z) = c, and thus (43.3) can be
written as

π
sinπz

πz
= c

∞∏

j=1

(
1−

z2

j2

)
. (43.6)

Taking z → 0 on both sides of (43.6) gives c = π. Thus, we have the infinite
product expansion

sin πz = πz
∞∏

j=1

(
1− z2

j2

)
. (43.7)

Remark 43.4. For z = 1/2, (43.7) reduces to Wallis’s formula

π

2
=

∞∏

j=1

(2j)2

(2j + 1)(2j − 1)
=

2 · 2 · 4 · 4 · 6 · 6 · 8 · 8 · · ·
1 · 3 · 3 · 5 · 5 · 7 · 7 · 9 · · · . (43.8)

Remark 43.5. From (43.7), it follows that

sinhπz = πz
∞∏

j=1

(
1 +

z2

j2

)
. (43.9)

Remark 43.6. Since

2N+1∑

j=−2N−1

(−1)j
z − j

=
N∑

j=−N

1

z − 2j
−

N∑

j=−N−1

1

z − 1− 2j

=
1

z
+

N∑

j=1

(
1

z − 2j
+

1

z + 2j

)
− 1

z + 1 + 2N

− 1

z − 1
−

N∑

j=1

(
1

z − 1− 2j
+

1

z − 1 + 2j

)

as N →∞, from (43.5), we find

∞∑

j=−∞

(−1)j

z − j
=

π

2
cot

πz

2
− π

2
cot

π(z − 1)

2
,

which immediately gives the series

π

sinπz
=

∞∑

j=−∞

(−1)j

z − j
. (43.10)

Remark 43.7. In (43.10), replace z by z − 1/2 to get

π

cosπz
=

∞∑

j=−∞

2(−1)j+1

2z − 1− 2j
, (43.11)
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which for z = 0 gives the Gregory-Leibniz series

π

4
=

∞∑

j=0

(−1)j

2j + 1
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · . (43.12)

Remark 43.8. From the expansions above the following series are
immediate

1

sinh z
=

1

z
− 2z

z2 + π2
+

2z

z2 + 4π2
− 2z

z2 + 9π2
+ · · · , (43.13)

1

cosh z
=

π

(π/2)2 + z2
− 3π

(3π/2)2 + z2
+

5π

(5π/2)2 + z2
− · · · , (43.14)

and

tanh z =
2z

(π/2)2 + z2
+

2z

(3π/2)2 + z2
+

2z

(5π/2)2 + z2
+ · · · . (43.15)



Lecture 44
Mittag-Leffler Theorem

In this lecture, we shall construct a meromorphic function in the entire
complex plane with preassigned poles and the corresponding principal parts.

Recall that a function is meromorphic in a region if it is analytic except
for isolated singularities which are at most poles. In what follows, if nec-
essary, we shall redefine the function at its removable singularities, so that
it has only poles. Clearly, a meromorphic function in the entire complex
plane can have at most a finite number of poles in every bounded subset.
Otherwise, there will be a finite limit point of poles, and this limit point
will be an essential singularity. If z0 is a pole of order m of a function f(z),
then in a neighborhood of z0, f(z) = G(z) + g(z), where g(z) is analytic
at z0 and

G(z) =
a−m

(z − z0)m
+

a−m+1

(z − z0)m−1
+ · · ·+ a−1

(z − z0)

is the principal part of f(z) at z0 (observe that G(z) is a rational function).
Thus, with a pole, the principal part of the function at the pole is always
associated. In this lecture for a given sequence of complex numbers {zn}
and a sequence of functions {Gn(z)} of the type G(z) above, we shall con-
struct a meromorphic function f(z) that has poles at zn, n = 1, 2, · · · with
the corresponding principal parts Gn(z). The construction of such a func-
tion f(z) is trivial if the number of points zn is finite, say N. In fact, then

f(z) =
∑N

j=1 Gj(z) + g(z), where g(z) is analytic, is the required function.
When the number of points zn is infinite, we have the following theorem.

Theorem 44.1 (Mittag-Leffler Theorem). Let {zn} be a se-
quence of complex numbers such that 0 < |z1| ≤ |z2| ≤ · · · and, limn→∞ |zn| =
∞, and for each n, let Gn(z) be the rational function given by

Gn(z) =
an−m(n)

(z − zn)m(n)
+

an−m(n)+1

(z − zn)m(n)−1
+ · · ·+

an−1

(z − zn)
.

Then, there exist polynomials hn(z), n = 1, 2, · · · such that

f(z) =
∞∑

j=1

(Gj(z) − hj(z)) (44.1)

defines a meromorphic function with poles at zn, n = 1, 2, · · · and principal
parts Gn(z), respectively.
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Proof. Consider the power series expansion of the principal part Gn(z)
in the neighborhood of the point z = 0; i.e.,

Gn(z) = a(n)0 + a(n)1 z + · · ·+ a(n)ℓ zℓ + · · · . (44.2)

Clearly, this series is convergent in the open disk B(0, |zn|), and its con-
vergence is uniform in every closed disk of radius strictly less than |zn|; in
particular, in the open disk B(0, |zn|/2). Let hn(z) = a(n)0 + a(n)1 z + · · · +
a(n)N(n)z

N(n), where N(n) is so large that

|Gn(z)− hn(z)| =

∣∣∣∣∣∣

∞∑

k=N(n)+1

a(n)k zk

∣∣∣∣∣∣
≤ 1

2n
, z ∈ B(0, |zn|/2). (44.3)

Now consider a disk B(0, r), r > 0, and let n0 = n0(r) be the smallest
integer such that |zn| > 2r for all n > n0. Since B(0, r) ⊂ B(0, |zn|/2)
for all n > n0, B(0, r) contains none of the points zn0+1, zn0+2, · · · . Thus,
(44.3) holds for all n > n0 and z ∈ B(0, r). Therefore, by Theorem 22.4,
the series

∞∑

j=n0+1

[Gj(z)− hj(z)]

converges uniformly on B(0, r) and hence represents an analytic function
Qn0(z), on B(0, r). Thus, if f(z) =

∑∞
j=1[Gj(z) − hj(z)], we have the

representation

f(z) = fn0(z) +Qn0(z), z ∈ B(0, r),

where Qn0(z) is analytic on B(0, r), and the partial sum

fn0(z) =
n0∑

j=1

[Gj(z) − hj(z)]

is a rational function whose poles in B(0, r) are those points of the sequence
{zn} that lie in B(0, r). Moreover, the principal part of fn0(z), and hence of
f(z), at any point zn ∈ B(0, r) is just Gn(z). Finally, since r can be chosen
arbitrarily large, the result follows.

Remark 44.1. In Theorem 44.1, if z0 = 0 is one of the points of the
sequence {zn} with the given rational function G0(z), then in (44.1) we
need to add a corresponding term.

Remark 44.2. If f1(z) and f2(z) are meromorphic functions with the
same poles and the same corresponding principal parts, then their differ-
ence f1(z) − f2(z) is analytic in the entire plane, and hence equals to an
entire function. Conversely, the addition of an entire function to a given
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meromorphic function does not alter its poles and the corresponding prin-
cipal part. Hence, if g(z) is an entire function, then (44.1) can be replaced
by

f(z) =
∞∑

j=1

(Gj(z)− hj(z)) + g(z). (44.4)

This representation is called a partial fraction expansion of f(z).

Example 44.1. Consider the problem of finding a meromorphic
function with simple poles at each integer n and with the principal part
Gn(z) = 1/(z−n) at n. The series

∑∞
j=−∞ Gj(z) =

∑∞
j=−∞ 1/(z− j) does

not converge uniformly for noninteger z in B(0, r) for any r > 0. However,
for any n ̸= 0,

∣∣∣∣
1

z − n
+

1

n

∣∣∣∣ =

∣∣∣∣
z

n(z − n)

∣∣∣∣ =
1

n2

|z|
|(z/n)− 1| ≤

|z|
n2

for large n. Hence, for noninteger z with |z| ≤ r, the series

∑

j ̸=0

(
1

z − j
+

1

j

)

converges uniformly for each r > 0. Hence, in Theorem 44.1, letting hn(z) =
1/n for each nonzero integer n, we have that

1

z
+
∑

j ̸=0

(
1

z − j
+

1

j

)
=

1

z
+

∞∑

j=1

(
1

z − j
+

1

j
+

1

z + j
− 1

j

)

=
1

z
+

∞∑

j=1

(
2z

z2 − j2

)

is a meromorphic function with simple poles at integers and the princi-
pal part 1/(z − n) at each integer n. Thus, in view of (43.5), the desired
meromorphic function is π cotπz.

Example 44.2. Consider the problem of constructing a meromorphic
function with double poles at each integer n and with the principal part
Gn(z) = 1/(z − n)2 at n. The series

∑∞
j=−∞ Gj(z) =

∑∞
j=−∞ 1/(z − j)2

converges uniformly and absolutely for noninteger z in B(0, r) for any r > 0.
Hence, in Theorem 44.1, letting hn(z) = 0 for each integer n, we find the
desired meromorphic function

∑∞
j=−∞ 1/(z − j)2, which in view of (43.4)

is the same as π2/ sin2 πz.

Example 44.3. Let {zn} be a sequence of complex numbers such that
0 < |z1| < |z2| < · · · and limn→∞ |zn| = ∞, and let {An} be a sequence
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of arbitrary complex numbers. We shall find an entire function f(z) such
that

f(zn) = An, n = 1, 2, · · · . (44.5)

This is a simple interpolation problem. For this, first we follow Theorem
43.3 to construct an entire function φ(z) with simple zeros at the points
z1, z2, · · · ,

φ(z) =
∞∏

j=1

(
1− z

zj

)
exp

(
z

zj
+

z2

2z2j
+ · · ·+ zj

jzjj

)

.

Then, we compute the derivative φ′(z) at every point zn, which gives a
sequence of nonzero complex numbers {φ′(zn)}. Next, we use Theorem
44.1 to find a meromorphic function ψ(z) with simple poles at the points
z1, z2, · · · and the corresponding principal parts

An

φ′(zn)(z − zn)
, n = 1, 2, · · · ;

i.e.,

ψ(z) =
∞∑

j=1

[
Aj

φ′(zj)(z − zj)
− hj(z)

]
,

where hj(z) are suitably chosen polynomials. Then, the desired function is
f(z) = φ(z)ψ(z). For this, clearly f(z) is entire, and since

f(zn) = lim
z→zn

φ(z)ψ(z) = lim
z→zn

[
φ(z)− φ(zn)

z − zn
ψ(z)(z − zn)

]
=
φ′(zn)An

φ′(zn)
,

it satisfies the conditions (44.5).

Finally, we state the following result, which provides an explicit partial
fraction expansion of a meromorphic function f(z).

Theorem 44.2. Let f(z) be a meromorphic function, and let {γn} be
a sequence of closed rectifiable Jordan curves with the following properties:

1. The origin lies inside each curve γn, n = 1, 2, · · · .
2. None of the curves passes through poles of f(z).

3. γn ⊂ I(γn+1), n = 1, 2, · · · .
4. If rn is the distance from the origin to γn, then limn→∞ rn =∞.

Let the poles of f(z) be ordered in such a way that γn contains the first
mn + 1 poles z0 = 0, z1, · · · , zmn , with principal parts G0(z), G1(z), · · · ,
Gmn(z), so that mn < mn+1, n = 1, 2, · · · . Moreover, suppose that, for
some integer p ≥ −1,

lim sup
n→∞

∫

γn

|f(ξ)|
|ξ|p+1

ds < ∞, (44.6)
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where ds = |dξ|. Then, at an arbitrary regular point of f(z),

f(z) = lim
n→∞

mn∑

j=0

Gj(z), p = −1, (44.7)

and

f(z) = lim
n→∞

mn∑

j=0

[Gj(z)− hj(z)], p > −1, (44.8)

where hn(z) are polynomials of degree at most p. The convergence in both
(44.7) and (44.8) is uniform on every compact set containing no poles of
f(z).

Example 44.4. We shall use Theorem 44.2 to expand the function
sec z in partial fractions. For this, we choose γn to be the square with
center at the origin and sides of length 2nπ parallel to the coordinate axis.
Clearly, for z = ±nπ + iy and z = x± inπ, respectively, we have

| sec z| =
1

cosh y
and | sec z| <

1

sinhnπ
,

and hence ∫

γn

| sec ξ|ds < 2

∫ nπ

−nπ

dy

cosh y
+ 4nπ

1

sinhnπ
,

which shows that (44.6) holds with p = −1. Inside γn, the function sec z has
simple poles at the points z = (j − 1/2)π, − n+ 1 ≤ j ≤ n. Furthermore,
since, in view of (31.2),

R

[
sec z,

(
j − 1

2

)
π

]
= lim

z→(j−1/2)π

(z − 1/2)π

cos z
= − 1

sin(j − 1/2)π
= (−1)n,

the principal part of sec z at the pole z = (j − 1/2)π is Gj(z) = (−1)j/[z−
(j−1/2)π]. Furthermore, since z = 0 is not a pole of sec z, we have G0(z) =
0. Hence, (44.7) gives

sec z = lim
n→∞

n∑

j=−n+1

(−1)j

z − (j − 1/2)π
=

∞∑

j=1

(−1)j (2j − 1)π

z2 − (j − 1/2)2π2
,

which converges uniformly on every compact set containing none of the
points z = (j − 1/2)π, j = 0,±1,±2, · · · .



Lecture 45
Periodic Functions

Recall from Lecture 8 that a complex number ω ̸= 0 is a period of a
function f(z) if f(z + ω) = f(z) for all z. For example, ez has the period
2πi, and sin z and cos z have the period 2π. If ω1 and ω2 are periods of
f(z), then

f(z + ω1 + ω2) = f(z + ω1) = f(z);

i.e., ω1+ω2 is also a period. In particular, if ω is a period, then nω is also a
period, where n is any integer. The following results for periodic functions
are important:

R1. Let f(z) be a meromorphic periodic function with period ω. Then, ω
is also a period of all derivatives of f(z). In fact, differentiating n times the
relation f(z + ω) = f(z), we get f (n)(z + ω) = f (n)(z).

R2. Let f(z) be a meromorphic periodic function with period ω, and let
there exist a meromorphic function F (z) such that F ′(z) = f(z). Then,
there exists a constant c = c(ω) such that F (z + ω) − F (z) = c. Indeed,
since F ′(z+ω)−F ′(z) = f(z+ω)−f(z) = 0, the function F (z+ω)−F (z)
must be a constant. Furthermore, F (z+2ω) = F (z+ω+ω) = F (z+ω)+c =
F (z)+ 2c. Also, replacing z by z−ω, the relation F (z+ω)−F (z) = c can
be written as F (z−ω)−F (z) = −c. Hence, we have F (z+nω) = F (z)+nc
for all integers n by induction.

The function f(z) is said to be simply periodic if all its periods are of
the form nω. The functions ez, sin z, and cos z are simply periodic. The
function f(z) is called doubly periodic if all of its periods are of the form
n1ω1 + n2ω2, where n1 and n2 are arbitrary integers and ω2/ω1 is not real.
Here ω1 and ω2 are called fundamental periods for f(z).

A pair of fundamental periods is not unique. If (ω′
1,ω

′
2) is also a pair of

fundamental periods, then there are integers a, b, c, d such that
(
ω′
1

ω′
2

)
=

(
a b
c d

)(
ω1

ω2

)
.

Since a, b, c, d are real, then
(
ω′
1

ω′
2

)
=

(
a b
c d

)(
ω1

ω2

)
,

so (
ω′
1 ω′

1

ω′
2 ω′

2

)
=

(
a b
c d

)(
ω1 ω1

ω2 ω2

)
.
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Similarly, there are also integers a′, b′, c′, d′ such that
(
ω1 ω1

ω2 ω2

)
=

(
a′ b′

c′ d′

)(
ω′
1 ω′

1

ω′
2 ω′

2

)
,

so (
ω1 ω1

ω2 ω2

)
=

(
a′ b′

c′ d′

)(
a b
c d

)(
ω1 ω1

ω2 ω2

)
.

Since
∣∣∣∣
ω1 ω1

ω2 ω2

∣∣∣∣ = ω1ω2 − ω1ω2 = − 2i Imω1ω2 = − 2i |ω1|2 Im
ω2

ω1
̸= 0,

this implies that ∣∣∣∣
a′ b′

c′ d′

∣∣∣∣

∣∣∣∣
a b
c d

∣∣∣∣ = 1,

and hence ∣∣∣∣
a b
c d

∣∣∣∣ =

∣∣∣∣
a′ b′

c′ d′

∣∣∣∣ = ± 1

since each determinant is an integer.

A doubly periodic and meromorphic function is called an elliptic func-
tion. Elliptic functions have been studied extensively, particularly because
of their importance in algebra and number theory.

Example 45.1. Weierstrass’s elliptic function with periods ω1 and ω2

is defined by

℘(z;ω1,ω2) =
1

z2
+

∑

(n1,n2 )̸=(0,0)

{
1

(z − n1ω1 − n2ω2)2
− 1

(n1ω1 + n2ω2)2

}
.

Alternatively, ℘(z) may be defined in terms of τ = ω2/ω1 as

℘(z; τ) =
1

z2
+

∑

(n1,n2 )̸=(0,0)

{
1

(z − n1 − n2τ)2
− 1

(n1 + n2τ)2

}
.

These two definitions are related by

℘(z; τ) = ℘(z; 1, τ)

and

℘(z;ω1,ω2) =
℘(z/ω1;ω2/ω1)

ω2
1

.

Let f(z) be an elliptic function with fundamental periods ω1,ω2. Any
parallelogramP with vertices of the form z0, z0+ω1, z0+ω2, and z0+ω1+ω2,
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for some z0 ∈ C, is called a fundamental parallelogram for f(z). First we
prove the following elementary result.

Theorem 45.1. If f(z) is a nonconstant elliptic function and P is a
fundamental parallelogram for f(z), then there is a pole of f(z) in P.

Proof. If not, then f(z) is bounded on P. But then it is bounded every-
where by the periodicity, and hence constant by Liouville’s Theorem.

An immediate consequence of Theorem 45.1 is the following corollary.

Corollary 45.1. If f(z) is an entire elliptic function, then f(z) is a
constant.

Since the poles of f(z) are isolated, there are only a finite number of
them in the compact set P, so the point z0 may be chosen such that there
are no poles on the boundary of P. Then, we have the following result.

Theorem 45.2. If f(z) is an elliptic function and P is a fundamental
parallelogram for f(z) with no poles of f(z) on its boundary, then

∫

∂P
f(z)dz = 0.

Proof. Since f has periods ω1,ω2, the integrals over opposite sides of P
cancel each other out, and hence the contour integral vanishes.

Combining this theorem with the residue theorem now gives the follow-
ing corollary.

Corollary 45.2. The sum of the residues of f(z) in P is zero.

Thus, f(z) cannot have a single simple pole in P ; it must have at least
two simple poles or a higher-order pole.

Since the zeros of f(z) are the poles of 1/f (z), which is also an elliptic
function with P as a fundamental parallelogram, f(z) also cannot have a
single simple zero in P ; it must have at least two simple zeros or a zero
of higher multiplicity. In particular, f(z) cannot attain any complex value
only once in P, counting multiplicities. Indeed, if f(z) attains c ∈ C only
once in P, then f(z) − c is an elliptic function with P as a fundamental
parallelogram having a single simple zero there.

Now let f(z) be a nonconstant elliptic function, let a1, · · · , aj be the dis-
tinct poles of f(z) in the fundamental parallelogram P, and let m1, · · · ,mj

be their respective multiplicities. The number

m =
j∑

l=1

ml
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(i.e., the total number of poles of f(z) in P counting multiplicities) is called
the order of f(z). Since f(z) must have at least two simple poles or a higher-
order pole, m ≥ 2.

Example 45.2. The function ℘(z) of Example 45.1 has only a single
pole of order 2 in any fundamental parallelogram, and hence it is of order
2. Its derivative

℘′(z;ω1,ω2) = − 2

z3
−

∑

(n1,n2) ̸=(0,0)

2

(z − n1ω1 − n2ω2)3

has order 3.

Note that P may be further chosen so that there are also no zeros of f(z)
on its boundary. Let b1, · · · , bk be the distinct zeros in P, with respective
multiplicities n1, · · · , nk. We have the following result.

Theorem 45.3. If f(z) is a nonconstant elliptic function and P is a
fundamental parallelogram for f(z) with no poles or zeros of f(z) on its
boundary, then

k∑

l=1

nl = m.

Proof. We have

f(z) =
(z − b1)n1 · · · (z − bk)nk

(z − a1)m1 · · · (z − aj)mj
g(z), z ∈ P

for some analytic function g(z) with no zeros in P. A simple calculation
shows that

f ′(z)

f(z)
= −

j∑

l=1

ml

z − al
+

k∑

l=1

nl

z − bl
+

g′(z)

g(z)
.

Applying the Residue Theorem and noting that g′(z)/g(z) is analytic in P
gives

1

2πi

∫

∂P

f ′(z)

f(z)
dz = −

j∑

l=1

ml +
k∑

l=1

nl.

On the other hand, f ′(z)/f(z) is also an elliptic function with P as a
fundamental parallelogram, so this integral is zero by Theorem 45.2.

Since f(z) attains the complex value c precisely at the zeros of the
elliptic function f(z)−c, for which P is again a fundamental parallelogram,
we have the following corollary.
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Corollary 45.3. The function f(z) attains every complex value m-
times in P, counting multiplicities.

Example 45.3. By Example 45.2 and Corollary 45.3, the function
℘′(z) has three zeros in the fundamental parallelogram P with vertices
0,ω1,ω2, and ω1 + ω2. Let us determine these zeros. Since ℘′(z) is an odd
periodic function

℘′(z) = − ℘′(−z) = − ℘′(−z + ω)

for any period ω, and taking z = ω/2 gives

℘′(ω/2) = − ℘′(ω/2),

which implies
℘′(ω/2) = 0.

In particular, ω1/2,ω2/2, (ω1 + ω2)/2 are the zeros of ℘′(z) in P .

We end this lecture by deriving a differential equation satisfied by the
function ℘(z). Referring to the example above, ℘′(z) has simple zeros at
ω1/2,ω2/2, and (ω1 + ω2)/2 and a pole of order 3 at z = 0, so the function

f(z) = ℘′2(z)

has zeros of order 2 at ω1/2,ω2/2, (ω1 + ω2)/2 and a pole of order 6 at
z = 0. Let

e1 = ℘(ω1/2), e2 = ℘(ω2/2), e3 = ℘((ω1 + ω2)/2),

and consider the function

g(z) = (℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

Since ω1/2 and ω2/2, (ω1+ω2)/2 are simple zeros of ℘′(z), they are double
zeros of ℘(z) − e1,℘(z) − e2, and ℘(z) − e3, respectively, so g(z) also has
zeros of order 2 at ω1/2,ω2/2, and (ω1 + ω2)/2 and a pole of order 6 at
z = 0. Then, f(z)/g(z) is an entire elliptic function, and hence constant by
Corollary 45.2, so

f(z) = Ag(z)

for some A ∈ C. Comparing the coefficients of 1/z6 on the two sides shows
that A = 4, so ℘(z) satisfies the differential equation

℘′2(z) = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3).



Lecture 46
The Riemann Zeta Function

The Riemann zeta function is one of the most important functions of
classical mathematics, with a variety of applications in analytic number
theory. In this lecture, we shall study some of its elementary properties.

Recall that for any positive real number r and a complex number z, rz =

ezLog r is a well-defined complex number, and if z = x+ iy, then

|rz | =
∣∣∣e(x+iy)Log r

∣∣∣ =
∣∣∣exLog r

∣∣∣
∣∣∣eiyLog r

∣∣∣ = rx = rRe(z).

Let D1 be the open half-plane D1 = {z ∈ C : Re(z) > 1}. The Riemann
zeta function is defined on D1 by the equation

ζ(z) =
∞∑

j=1

1

jz
. (46.1)

Analyticity property. Note that, for any δ > 0 and all z ∈ D1 such
that Re(z) ≥ 1 + δ,

∞∑

j=1

∣∣∣∣
1

jz

∣∣∣∣ ≤
∞∑

j=1

1

j1+δ
< ∞,

i.e., the series in (46.1) converges uniformly and absolutely for z with
Re(z) ≥ 1 + δ. In particular, the series converges uniformly on compact

subsets of D1. Now, since for each j the function 1/jz = e−zLog j is entire,
it follows that the function ζ(z) is analytic on D1. Moreover, in view of
Corollary 22.4, for any k ≥ 1 and all z ∈ D1, we have

ζ(k)(z) =
∞∑

j=1

(−1)k (Log j)
k

jz
. (46.2)

Connection with prime numbers. Note that
(
1− 1

2z

)
ζ(z) = 1 +

1

3z
+

1

5z
+

1

7z
+ · · ·

as all even terms cancel each other, and also
(
1− 1

3z

)(
1− 1

2z

)
ζ(z) = 1 +

1

5z
+

1

7z
+

1

11z
+ · · · .
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This time all terms having 3 as a factor in the denominator cancel each
other. Proceeding in this way, if p1, p2, · · · , pk are the first k prime numbers,
then we have

k∏

j=1

(
1− 1

pzj

)
ζ(z) = 1 +

∑

m

1

mz
,

where m consists of those positive integers that do not have p1, p2, · · · , pk
as a factor. Thus, letting k →∞, which is permissable, we obtain

∞∏

j=1

(
1− 1

pzj

)
ζ(z) = 1,

which is the same as

1

ζ(z)
=

∞∏

j=1

(

1−
1

pzj

)

, (46.3)

where the product on the right is over all the primes and converges for
Re(z) > 1.

Analytic continuation. This is accomplished step by step by ex-
tending the function first to the domain D0 = {z ∈ C : Re(z) > 0}, next
to the domain D−1 = {z ∈ C : Re(z) > −1}, and so on, adding a vertical
strip to the domain at each step. Observe that, for each n, the function

gn(z) =
1

nz−1
− 1

(n+ 1)z−1

is entire, with a zero at 1. Hence, for each n, the function φn(z) defined by

φn(z) =
1

z − 1

(
1

nz−1
− 1

(n+ 1)z−1

)
=

∫ 1

0

dt

(n+ t)z
=

∫ n+1

n

dt

tz
(46.4)

is also entire. Similarly, for each n, the function fn(z) defined by the
difference of two entire functions,

fn(z) =
1

(n+ 1)z
−φn(z) =

1

(n+ 1)z
−
∫ 1

0

dt

(n+ t)z
= −z

∫ 1

0

t

(n+ t)z+1
dt,

(46.5)
is also entire. Moreover, for all z, we also have the estimate

|fn(z)| ≤ |− z|
∫ 1

0

t

|(n+ t)z+1|
dt ≤ |z|

∫ 1

0

1

(n+ t)Re(z)+1
,

and hence, if z is such that Re(z) > δ and |z| < M for some δ > 0 and
M > 0, we have

|fn(z)| ≤ M
1

n1+δ
,



The Riemann Zeta Function 305

which implies that
∑∞

j=1 fj(z) converges uniformly on compact sets of D0,
and therefore defines an analytic function on D0. On the other hand, using
(46.5), we have, for z ∈ D1,

ζ(z) = 1 +
1

2z
+

1

3z
+ · · · = 1 +

∞∑

j=1

1

(j + 1)z

= 1 +
∞∑

j=1

(∫ 1

0

dt

(j + t)z
+

1

(j + 1)z
−
∫ 1

0

dt

(j + t)z

)

= 1 +
∞∑

j=1

∫ 1

0

dt

(j + t)z
− z

∞∑

j=1

∫ 1

0

t

(j + t)z+1
dt

= 1 +

∫ ∞

1

dt

tz
− z

∞∑

j=1

∫ 1

0

t

(j + t)z+1
dt,

and hence

ζ(z) = 1 +
1

z − 1
− z

∞∑

j=1

∫ 1

0

t

(j + t)z+1
dt. (46.6)

Thus, for z ∈ D1, ζ(z) is given by (46.6). But, in (46.6) the last term is
analytic on D0, while 1 + 1/(z − 1) is meromorphic on the entire complex
plane with a simple pole at 1. Hence, the function defined by the right-
hand side of (46.6) is a meromorphic function on D0 with a simple pole at
1 and coincides with the definition of the Riemann zeta function on D1.
Therefore, we can define the function ζ(z) on D0 by (46.6). This extends
ζ(z) from D1 to D0.

We can similarly extend the function ζ(z) to D−1. Note that

−z
∫ 1

0

t

(n+ t)z+1
dt = − z

2(n+ 1)z+1
− z(z + 1)

2

∫ 1

0

t2

(n+ t)z+2
dt. (46.7)

Both the terms on the right-hand side of (46.7) define entire functions.
Moreover, the series

−
∞∑

j=1

z(z + 1)

2

∫ 1

0

t2

(j + t)z+2
dt

now converges uniformly for z such that |z| < M and Re(z) > δ > −1 for
any δ > −1 and M > 0 and thus converges uniformly on compact subsets
of D−1, and therefore defines an analytic function there. Now, from (46.6)
and (46.7), we have

ζ(z) = 1+
1

z − 1
−

z

2
[ζ(z+1)−1]−

z(z + 1)

2

∞∑

j=1

∫ 1

0

t2

(j + t)z+2
dt, (46.8)
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which is analytic everywhere on D−1 except at 1, where it has a simple
pole. Note that [ζ(z + 1) − 1] has a simple pole at z = 0, and hence
(z/2)[ζ(z + 1)− 1] is analytic at z = 0.

The extension of the domain of ζ(z) from D−1 to D−2 follows similarly.
Indeed, integration by parts first gives

∫ 1

0

t2

(n+ t)z+2
dt =

1

3(n+ 1)z+2
+

(z + 2)

3

∫ 1

0

t3

(n+ t)z+3
dt,

and then its substitution in (46.8) leads to

ζ(z) = 1 +
1

z − 1
− z

2!
[ζ(z + 1)− 1]− z(z + 1)

3!
[ζ(z + 2)− 1]

−z(z + 1)(z + 2)

3!

∞∑

j=1

∫ 1

0

t3

(j + t)z+3
dt, z ∈ D−2.

The extension of the Riemann zeta function ζ(z) over the entire complex
plane follows analogously. It is a meromorphic function with a single pole
at z = 1. The residue of ζ(z) at 1 is one.

Relation between gamma and zeta functions. In the definition of
gamma function in (33.17), we change t to jt, where j is a positive integer,
to get

Γ(z) = jz
∫ ∞

0
e−jttz−1dt, Re(z) > 0.

Hence, it follows that

Γ(z)
∞∑

j=1

1

jz
= Γ(z)ζ(z) =

∞∑

j=1

∫ ∞

0
e−jttz−1dt, Re(z) > 1.

It can be shown that the order of summation and integration on the right-
hand side can be interchanged, so that, for Re(z) > 1, we have

Γ(z)ζ(z) =

∫ ∞

0

⎛

⎝
∞∑

j=1

e−jt

⎞

⎠ tz−1dt =

∫ ∞

0

tz−1

et − 1
dt

and hence

ζ(z) =
1

Γ(z)

∫ ∞

0

tz−1

et − 1
dt, Re(z) > 1. (46.9)

Using this relation between the gamma and zeta functions, it is possible to
extend ζ(z) first to D0 and then to D−1, and so on, to the whole plane.

Riemann hypothesis. The series (46.1) for real z was introduced
by Euler in 1787. In Example 36.1, we have seen that ζ(2) = π2/6 and
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ζ(4) = π4/90. In fact, ζ(2n) can be calculated for all positive integers
n. From elementary calculus, we know that ζ(1) diverges. The study of
ζ(2n+ 1) is significantly more difficult. In 1979, Apéry proved that ζ(3) is
irrational, but no similar results are known for other odd integers. Riemann
in 1859 used the zeta function over the complex numbers for the first time
to study the distribution of the prime numbers. This function has zeros on
the real axis only at the negative integers −2,−4,−6, · · · . One of the most
important open problems in mathematics today is the Riemann hypothesis,
which is a conjecture made by Riemann, who stated that the analytic con-
tinuation of the zeta function has infinitely many nonreal roots and that
all these roots lie on the critical line x = 1/2. This conjecture was on the
list of 23 problems David Hilbert proposed in 1900 as being most worthy of
solution in the coming century. However, it has defeated the finest minds
in the world. In recent years computers have been brought to bear on the
conjecture, and by 2005 it had been verified that the first 100 billion zeros
were on the critical line-but it does not constitute a proof.



Lecture 47
Bieberbach’s Conjecture

Let S be the class of functions that are analytic and one-to-one in the
unit disk B(0, 1) and are normalized by the conditions f(0) = 0 and f ′(0) =
1. The class S has many interesting properties. A function f ∈ S in terms
of Maclaurin’s series can be expressed as

f(z) = z + a2z
2 + a3z

3 + · · · . (47.1)

In 1916, Ludwig Bieberbach (1886-1982), a German mathematician (re-
membered as a notorious uniform-wearing Nazi and vicious anti-Semite,
who sought to eliminate Jews from the profession of German mathematics)
conjectured that in (47.1) the coefficients |an| ≤ n, n ≥ 2. This conjecture
attracted the attention of several distinguished mathematicians. The proof
for the case n = 2 was known to Bieberbach. In 1923, K. Löwner used a
differential equation to treat the case n = 3, whereas in 1925 Littlewood
proved that |an| ≤ en for all n, showing that the Bieberbach conjecture
is true up to a factor of e. Several authors later reduced the constant in
the inequality below e. Variational methods were employed in the 1930s,
which led to the conjecture established for n = 4 in 1955 by Garabedian
and Schiffer and for n = 6 by Pederson in 1968 and Ozawa in 1969. The
case n = 5 was settled by Pederson and Schiffer in 1972. From time to
time, proofs of other special cases were announced, but they have not been
substantiated. Finally, twelve years later, Louis de Branges in 1984 proved
the general case. As expected, his proof is not simple, it ran to over 350
pages. At one point, even a computer was used to validate the work; how-
ever, the proof itself does not rely on a machine. In recent years, the proof
of Bieberbach’s conjecture (also now known as de Branges’s Theorem) has
been shortened considerably, but still it is outside the scope of our book.
In this lecture, we shall prove the conjecture for the case n = 2, and for the
general case the reader can refer to [27]. Our proof requires the following
result.

Theorem 47.1 (Bieberbach’s Area Theorem). Let g ∈ T ,
where T is the class of functions that have Laurent’s expansion

w = g(z) = z + c0 +
c1
z

+
c2
z2

+ · · · , (47.2)

which are analytic and one-to-one in {z : |z| > 1} except for a pole at
infinity. Then,

∞∑

j=1

j|cj |2 ≤ 1. (47.3)
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Proof. We assume that c0 = 0; otherwise, we can replace w − c0 by
w. Since the function g is one-to-one, it maps the circle z = reiθ, 0 ≤
θ ≤ 2π, r > 1 onto a closed contour γ. Clearly, γ can be written as
w(θ) = u(θ) + iv(θ), 0 ≤ θ ≤ 2π, where w = g(z) is as in (47.2) with
c0 = 0. The area A(Ω), where Ω is the region enclosed by γ, is given by

A(Ω) =

∫ 2π

0
u(θ)v′(θ)dθ, (47.4)

where v′(θ) is the derivative of v(θ) with respect to θ. Now, from (47.2),
we have

2u(θ) = w(θ) + w(θ) = reiθ + re−iθ +
∞∑

j=1

cje−ijθ + cjeijθ

rj

and

2iv′(θ) = w′(θ)− w′(θ) = i

⎡

⎣reiθ + re−iθ −
∞∑

j=1

jcje−ijθ + jcjeijθ

rj

⎤

⎦ .

Thus, from (47.4), we obtain

A(Ω) = πr2 − π
∞∑

j=1

j|cj |2r−2j .

Since the area is always positive, it follows that

∞∑

j=1

j|cj |2r−2j ≤ r2. (47.5)

The inequality (47.3) now follows by letting r → 1 in (47.5).

The main result of this lecture is the following theorem.

Theorem 47.2 (Bieberbach’s Conjecture for n = 2). Let
f ∈ S be as in (47.1). Then, |a2| ≤ 2.

Proof. The proof requires the following three steps.

Step 1. F (z) = [f(1/z)]−1 ∈ T . For this, first we shall show that F (z)
is one-to-one. Assume that [f(1/z1)]−1 = [f(1/z2)]−1, where |z1| > 1 and
|z2| > 1. Then, we have

f

(
1

z1

)
= f

(
1

z2

)
,

∣∣∣∣
1

z1

∣∣∣∣ > 1 and

∣∣∣∣
1

z2

∣∣∣∣ > 1.
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The one-to-one property of [f(1/z)]−1 for |z| > 1 now follows from the
one-to-one property of f(z) for |z| < 1.

Next, we shall demonstrate that F (z) is analytic for |z| > 1. If we can
show that f(1/z) ̸= 0 for |z| > 1, then from the analyticity of f(z) on
B(0, 1) it will follow that F (z) is analytic for |z| > 1. Let z0 be such that
0 < |1/z0| < 1 and f(1/z0) = 0, but then f(0) = f(1/z0) = 0, which
contradicts the one-to-one property of f(z) on B(0, 1).

Step 2. If f(z) ∈ S, then F1(z) = z
√
f(z2)/z2 ∈ S. For this, since

F1(z) = z(1 + a2z
2 + a3z

4 + a4z
6 + · · ·)1/2, (47.6)

the function F1(z) is analytic with F1(0) = 0 and F ′
1(0) = 1. Moreover,

F1(z) ̸= 0 for z ̸= 0. To show that F1(z) is one-to-one on B(0, 1), assume
that F1(z1) = F1(z2). But this implies that f(z21) = f(z22), and hence,
in view of the one-to-one property of f(z), we must have z21 = z22 ; i.e.,
z1 = ±z2. Now notice that F1(−z) = −F1(z); i.e., F1(z) is an odd function.
Hence, z1 = −z2 gives F1(z1) = F1(−z2) = −F1(z2); i.e., then F1(z1) ̸=
F1(z2). Therefore, z1 = z2 is the only solution of F1(z1) = F1(z2).

Step 3. From (47.6), it follows that F ′′′
1 (0) = 3a2, and hence

F1(z) = z +
1

2
a2z

3 + · · · .

Since, by Step 1, [F1(1/z)]−1 ∈ T , we have

1

F1

(
1

z

) =
1

1

z

[
1 +

1

2
a2

1

z2
+ · · ·

] = z − 1

2
a2

1

z
+ · · · ,

which in view of Theorem 47.1 implies that

2

∣∣∣∣
1

2
a2

∣∣∣∣
2

≤ 1,

and hence certainly we must have |a2| ≤ 2.

Remark 47.1. The inequality |a2| ≤ 2 in Theorem 47.2 is the best
possible. For this, we consider the function

w = h(z) =
z

(1− λz)2 = z + 2λz2 + 3λ2z3 + · · · ,

where |λ| = 1. We claim that this function is one-to-one on S. In fact, we
have z1

(1− λz1)2
=

z2
(1− λz2)2
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if and only if
(z1 − z2)(1− λ2z1z2) = 0.

However, since 1 − λ2z1z2 ̸= 0 as |z1| < 1 and |z2| < 1, it follows that
z1 = z2. It is also clear that the function h(z) is analytic in B(0, 1). Thus,
h(z) is the desired function that belongs to S for which |an| = n. This
function is known as Koebe’s function. It can be shown that this is the
only function for which |an| = n. Furthermore, for λ = 1, w = h(z) maps
B(0, 1) onto the entire w-plane with a branch cut −∞ < u < −1/4, v = 0.

We conclude this lecture by proving the following interesting result.

Theorem 47.3 (Koebe’s Covering Theorem). If f ∈ S and
f(z) ̸= c for |z| < 1, then |c| ≥ 1/4; i.e., if the point c is not in the image
of f(z), z ∈ B(0, 1), then the distance between c and the origin is at least
1/4.

Proof. Since f(z) ̸= c, from (47.1), it follows that the function

g(z) =
cf(z)

c− f(z)
= z +

(
a2 +

1

c

)
z2 + · · ·

is analytic and one-to-one on B(0, 1). Thus, from Theorem 47.2, it follows
that ∣∣∣∣

1

c

∣∣∣∣ − |a2| ≤
∣∣∣∣a2 +

1

c

∣∣∣∣ ≤ 2,

which in view of |a2| ≤ 2 gives

∣∣∣∣
1

c

∣∣∣∣ ≤ 2 + |a2| ≤ 4,

i.e., |c| ≥ 1/4.

Remark 47.2. Theorem 47.3 shows that for each f ∈ S the image
w = f(z), z ∈ B(0, 1) in the w-plane contains the disk {w : |w| < 1/4}.

Remark 47.3. There is a beautiful regularity theorem of Hayman,
which he established in 1953. The limit limn→∞ |an|/n exists for every
f ∈ S and is smaller than 1 unless f is a Koebe’s function.



Lecture 48
The Riemann Surfaces

A Riemann surface is an ingenious construct for visualizing a multi-
valued function. We treat all branches of a multi-valued function as a
single-valued function on a domain that consists of many sheets of the z-
plane. These sheets are then glued together so that in moving from one
sheet to another we pass continuously from one branch of the multi-valued
function to another. This glued structure of sheets is called a Riemann
surface for the multi-valued function. For example, in a multi-story car
park, floors can be thought of as sheets of the z-plane, that are glued by
the ramps on which cars can go from one level to another. Riemann surfaces
have proved to be of inestimable value, especially in the study of algebraic
functions. Although there is much literature on the subject, in this lecture
we shall construct Riemann surfaces for some simple functions.

Riemann surface for w = z1/2. Recall from Lecture 9, that this
function has two branches, represented by the single-valued functions f1(z)
and f2(z) (see Figure 48.1). The respective domains S1 and S2 of these
functions are obtained by cutting the z-plane along the negative x-axis.
The range R1 for f1(z) consists of the right half-plane and the positive v-
axis; the range R2 for f2(z) consists of the left half-plane and the negative
v-axis. The sets R1 and R2 are glued together along the positive and
negative v-axes to form the w-plane with the origin deleted.

S1

x

y

u

v

w=f1(z)

z=w2

R1

x

y

S2

u

v

w=f2(z)

z=w2

R2

Figure 48.1
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Now we place these two copies of the cut z-plane S1 and S2 directly
on each other so that the upper sheet S1 maps to the right w half-plane
R1, and the lower sheet S2 maps to the left w half-plane R2. The dashed
edge of S1 is glued to the black edge of S2, and the dashed edge of S2 is
glued to the black edge of S1. The surface R thus obtained is a Riemann
surface for the mapping w = z1/2 (for portions of S1 and S2 see Figure
48.2). Although in a physical sense this gluing procedure is impossible, on
R the function w = z1/2 is single-valued, and continuous for all z ̸= 0.

•
S1

S2

Figure 48.2

O

Riemann surface for w = z1/n. Recall that this function has n
branches, represented by the single-valued functions

fk(z) = |z|1/n
(
cos

arg z + 2kπ

n
+ i sin

arg z + 2kπ

n

)
, k = 0, 1, · · · , n−1.

The respective domains S0, S1, · · · , Sn−1 of these functions are obtained by
cutting the z-plane along the negative x-axis. Now we place these n copies
of the cut z-plane directly on each other. Let s+k and s−k denote the black
and dashed edges of Sk. We glue s−0 to s+1 , s−1 to s+2 , · · · , s

−
n−2 to s+n−1,

and finally s−n−1 to s+0 . This results in an n-sheeted Riemann surface R (see
Figure 48.3 for n = 4). All n sheets meet at the branch point z = 0. On R,
the function w = z1/n is single-valued, and continuous for all z ̸= 0.

Figure 48.3

•

S0

S1
S2
S3

O

The Riemann Surfaces
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Riemann surface for w = log z. Recall that

log z = Log |z|+ i arg z = Log |z|+ iArg z + 2kπi, k = 0,±1,±2, · · ·

is a countably many-valued function. Thus, its Riemann surface requires
infinitely many copies Sk, k = · · · ,−n, · · · ,−1, 0, 1, · · · , n, · · · of the z-plane
cut along the negative x-axis. As earlier, we place these infinite copies of the
cut z-plane directly on each other and let s+k and s−k denote the black and
dashed edges of Sk. For each integer k, we glue s+k to s−k+1. The Riemann
surface for the function w = log z looks like a spiral staircase that extends
upward on the sheets S1, S2, · · · and downward on the sheets S−1, S−2, · · ·
(for portions of S1, S0, and S−1, see Figure 48.4).

S1

S0

S−1

Figure 48.4

Riemann surface for w = ez . This function maps each parallel
strip (k− 1)2π < y < k · 2π onto a sheet with a cut along the positive axis.
The sheets are attached to each other so that they form an endless screw
in the w-plane. The origin will not be a point of the Riemann surface due
to the fact that ez is never zero.

Riemann surface for w = cos z. This function maps each parallel
strip (k − 1)π < x < kπ onto a sheet with a cut along the real axis from
−∞ to −1 and from 1 to ∞. The line z = kπ corresponds to both edges
of the positive cut if k is even and to the edges of the negative cut if k
is odd. If we consider two strips that are adjacent along the line z = kπ,
then the edges of the corresponding cuts must be joined crosswise so as to
generate a simple branch point at w = ±1. The resulting Riemann surface
has infinitely many simple branch points over w = 1 and w = −1 that
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alternatingly connect the odd and even sheets. Figure 48.5 represents a
cross section of the surface in the case that the cuts are chosen parallel to
each other. Here, any two points on the same level are joined by an arc
that does not intersect any of the cuts.

Figure 48.5

Riemann surface for w = sin z. Since w = sin z = cos(π/2 − z),
the Riemann surface for w = sin z is the same as for w = cos z.

Riemann surface for w = tan z. The Riemann surface has in-
finitely many sheets with two logarithmic branch points above w = ±i.
It is constructed by joining an infinite number of w-planes with a cut
u = 0, |v| ≤ 1, corresponding to the vertical strips kπ < x < (k + 1)π.

Riemann surface for w = cot z. Since cot z = tan(π/2 − z), the
Riemann surface for w = cot z is the same as for w = tan z.

Riemann surface for w = cosh z. Since cosh z = cos iz, the
Riemann surface for w = cosh z is the same as for w = cos z.

Riemann surface for w = sinh z. Since sinh z = −i sin iz, the
Riemann surface for w = sinh z is obtained by rotating the surface for
w = sin z through π/2 about the origin.

Riemann surface for w = tanh z. Since tanh z = −i tan iz, the
Riemann surface for w = tanh z is obtained by rotating the surface for
w = tan z through π/2 about the origin.

Riemann surface for w = coth z. Since coth z = i cot iz, the
Riemann surface for w = coth z is the same as for w = tanh z.

The Riemann Surfaces



Lecture 49
Julia and Mandelbrot Sets

In this lecture, we shall discuss the geometric and topological features
of the complex plane associated with dynamical systems whose evolution
is governed by the iterative scheme zn+1 = f(zn), z0 = p where f(z) is
a complex valued function and p ∈ C. Such systems occur in physical,
engineering, medical, and aesthetic problems, especially those exhibiting
chaotic behavior.

The word fractal is related to the words fractured and fraction, meaning
broken or not whole. This term was coined in 1975 by Benoit Mandelbrot
to describe objects that in a certain sense can have dimensions that are not
whole numbers; however, the fractal phenomenon had been noticed earlier,
in 1918, by the French mathematicians Gaston Julia and Pierre Fatou when
exploring iterations of the complex functions; i.e., analyzing the complex
sequence {zn} generated by the iterating scheme

zn+1 = f(zn), z0 = p ∈ C. (49.1)

The findings of Julia and Fatou did not receive much attention because
during that period computer graphics were not available. With the recent
advancement of computers, the study of complex iterative sequences has
attracted many prominent mathematicians and computer scientists. We
shall discuss some of their interesting results for the quadratic function
fc(z) = z2+c and show graphically how the iterates for such a simple func-
tion produce startling pictures. For this, we need the following definitions.

Let f(z) be an analytic function in C. A point z0 is called an attracting
point (repelling point) for the function f(z) if |f ′(z0)| < 1 (|f ′(z0)| > 1). A
q-cycle for f(z) is a set Q = {z0, z1, · · · , zq−1} of q complex numbers such
that zn+1 = f(zn), n = 0, 1, · · · , q − 2, and f(zq−1) = z0. If q = 1, then
z0 is a fixed point of f(z). Each zn ∈ Q is called a periodic point. In fact,
once zn = f(zn−1) reaches a periodic point, thereafter it cycles indefinitely
through the points of the cycle. The q-cycle is said to be attracting (re-
pelling) if |F ′

q(z0)| < 1 (|F ′
q(z0)| > 1), where Fq is the composition of f with

itself n times, e.g., when q = 2, then F2(z) = (f ◦ f)(z) = f(f(z)). From
the chain rule, it immediately follows that the derivative of Fq(z) takes the
same value at each point of the q-cycle. The significance of an attracting
point is explained in the following result.

Theorem 49.1. If z∗ is an attracting fixed point of f(z), then there
exists a disk B(z∗, r) such that f(z) draws any point z ∈ B(z∗, r) toward
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z∗, in the sense that |f(z)− z∗| < |z− z∗|. Furthermore, the sequence {zn}
generated by (49.1) with any z0 = z ∈ B(z∗, r) converges to z∗.

Proof. Since f(z) is analytic, for every ϵ > 0 there exists some r > 0
such that if z ∈ B(z∗, r), then

∣∣∣∣
f(z)− f(z∗)

z − z∗
− f ′(z∗)

∣∣∣∣ < ϵ.

Since |f ′(z∗)| < 1, we can let ϵ = 1− |f ′(z∗)| to obtain
∣∣∣∣
f(z)− f(z∗)

z − z∗

∣∣∣∣− |f ′(z∗)| ≤
∣∣∣∣
f(z)− f(z∗)

z − z∗
− f ′(z∗)

∣∣∣∣ < 1− |f ′(z∗)|,

which immediately gives |f(z)−z∗| < |z−z∗|.Hence, there exists a c ∈ (0, 1)
such that for all z ∈ B(z∗, r), |f(z) − z∗| ≤ c|z − z∗|. Thus, in particular,
if z0 ∈ B(z∗, r), then |z1 − z∗| = |f(z0) − z∗| ≤ c|z0 − z∗| ≤ cr; i.e.,
z1 ∈ B(z∗, cr). Furthermore, |z2− z∗| = |f(z1)− z∗| ≤ c|z1− z∗| ≤ c2r; i.e.,
z2 ∈ B(x∗, c2r). Now, an easy induction gives zn ∈ B(z∗, cnr), and this in
turn implies that zn → z0.

Example 49.1. For the function fc(z) = z2 + c, z∗ is a fixed point
if and only if fc(z∗) = z∗, which gives z∗1 = (1 +

√
1− 4c)/2 and z∗2 =

(1−
√
1− 4c)/2, where the square root designates the principal square root

function. Since f ′(z) = 2z, the fixed point z∗1 (z∗2) is attracting if and only
if |1 +

√
1− 4c| < 1 (|1 −

√
1− 4c| < 1). In particular, for the function

f(z) = z2 the fixed points are z∗1 = 1 and z∗2 = 0. The fixed point 1 is
repelling, whereas the fixed point 0 is attracting. In fact, the iterative
scheme (49.1) gives zn = p2n, and hence, if |p| < 1, then zn → 0; if |p > 1,
then |zn| → ∞; and if |p| = 1, the sequence {zn} either oscillates around
the unit circle or converges to 1. Thus, the unit circle divides the complex
plane into two regions separated by the unit circle. A starting value p in
one region results in zn being attracted to 0 and in the other region results
in repulsion.

The nature of the sequence {zn,c(p)} generated by (49.1) for the function
fc(z) = z2 + c depends critically on the choice of c. Thus, for a fixed c, we
define the sets

Ec = {p : |zn,c(p)|→∞} (escape set)

Kc = C\Ec (keep set).

The following properties of these sets are known:

P1. z ∈ Ec (Kc) if and only if − z ∈ Ec (Kc).

P2. z ∈ Ec (Kc) implies that fc(z) ∈ Ec (Kc).

P3. Kc ⊆ B(0, rc), where rc is the nonnegative root (if it exists) of the
equation x2 + c = x.
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P4. Ec is open and connected.

P5. Kc is closed and simply connected.

P6. Kc is connected if and only if 0 ∈ Kc (Fatou-Julia Theorem). In
particular, the sets K0 and Ki are connected.

P7. If the point z0 is a periodic attractor for fc(z), then it is an interior
point of Kc.

P8. If the point z0 is a periodic repeller for fc(z), then it is on the boundary
∂Kc of Kc.

The boundary ∂Kc of Kc is known as the Julia set for the function
fc(z), and the set Kc ∪ ∂Kc is called the filled-in Julia set. For an assigned
value of c, the Julia set of fc(z) can be viewed as a curve that divides
the complex plane into two regions. From Example 49.1, it is clear that
the Julia set for f0(z) is the unit circle |z| = 1. It turns out that Kc is a
nice simple set only when c = 0 or c = −2. Mandelbrot discovered that
for every other value of c the Julia set of fc(z) is a fractal. In fact, it
exhibits a complicated structure under any degree of magnification and
describes an object whose dimensionality might not be a whole number. It
may fragment into a multitude of tiny flecks (called Fatou dusts), with Kc

having no interior points at all.

The Mandelbrot set denoted as M is defined as

M = {c : zn,c(0) does not tend to infinity} .

Clearly, c ∈M if and only if 0 ∈ Kc. The Fatou-Julia Theorem characterizes
M in terms of Kc as

M = {c : Kc is connected}.

Theorem 49.2. B(0, 1/4) ⊆M ⊆ B(0, 2).

Proof. To prove B(0, 1/4) ⊆ M by inductive arguments, we shall show
that |zn,c(0)| ≤ 1/2, n ≥ 1. Clearly, if |c| ≤ 1/4, then |z1,c(0)| = |c| ≤ 1/4.
Now, assuming that |zn,c(0)| ≤ 1/2, we have |zn+1,c(0)| = |zn,c(0) + c| ≤
|zn,c(0)|2 + |c| ≤ 1/4 + 1/4 = 1/2. To prove M ⊆ B(0, 2), we shall show
that, if |c| > 2, then c ̸∈M. Clearly, |z1,c(0)| = |c| > 2, and

|z2,c(0)| = |z21,c(0) + c| = |z1,c(0)||z1,c(0) + c/z1,c(0)|
≥ |z1,c(0)|(|z1,c(0)|− |c|/|z1,c(0)|) = |c|(|c|− 1),

which also implies that |z2,c(0)| > |c|. Next, we have

|z3,c(0)| ≥ |z2,c(0)|(|z2,c(0)|− |c|/|z2,c(0)|) > |z2,c(0)|(|c|− 1) ≥ |c|(|c|− 1)2.

Continuing in this way, we find

|zn,c(0)| > |c|(|c|− 1)n−1,
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which in view of |c| > 2 implies that |zn,c(0)|→∞.

For |c| ≤ 2, if we encounter an iterate zn,c(0) such that |zn,c(0)| > 2,
then as above it follows that

|zn+m,c(0)| > |zn,c(0)|(|zn,c(0)|− 1)m,

which immediately implies that |zn,c(0)|→∞, and this means that c ̸∈M.
It is believed that if we reach z1000,c(0) such that |z1000,c(0)| ≤ 2, then there
is very little probability that the sequence will diverge to infinity. We can
then, with great safety, say that c ∈M.

The elements of the Mandelbrot set M for values of c in the range
−2 ≤ Re c ≤ 1, − 1.5 ≤ Im c ≤ 1.5 are plotted in Figure 49.1.

Figure 49.1

The following properties of the set M are known:

Q1. If c is any real number greater than 1/4, then c ̸∈M.

Q2. M is a closed subset of B(0, 2), and hence compact.

Q3. M is symmetric about the real axis, which it intersects in the interval
[−2, 1/4].
Q4. M is simply connected.

The set M is not self-similar, although it may look that way. There are
subtle variations in its infinite complexity. The boundary of the set M is
its most fascinating aspect. A magnification of a portion of the boundary
of M in Figure 49.2 reveals its fractal nature and the presence of infinitely
many hairlike branching filaments. The connectedness of M relies on the
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existence of these filaments. A further magnification is shown in Figure
49.3. These pictures justify the statement of Hubbard that the Mandelbrot
set M is the most complicated object in mathematics.

Figure 49.2

Figure 49.3

Finally, we remark that the connection between chaotic systems and
fractals has been explored in many recent books.



Lecture 50
History of Complex Numbers

The problem of complex numbers dates back to the 1st century, when
Heron of Alexandria (about 75 AD) attempted to find the volume of a
frustum of a pyramid, which required computing the square root of 81−144
(though negative numbers were not conceived in the Hellenistic world).
We also have the following quotation from Bhaskara Acharya (working in
486 AD), a Hindu mathematician: “The square of a positive number, also
that of a negative number, is positive: and the square root of a positive
number is two-fold, positive and negative; there is no square root of a
negative number, for a negative number is not square.” Later, around 850
AD, another Hindu mathematician, Mahavira Acharya, wrote: “As in the
nature of things, a negative (quantity) is not a square (quantity), it has
therefore no square root.” In 1545, the Italian mathematician, physician,
gambler, and philosopher Girolamo Cardano (1501-76) published his Ars
Magna (The Great Art), in which he described algebraic methods for solving
cubic and quartic equations. This book was a great event in mathematics.
In fact, it was the first major achievement in algebra in 3000 years, after the
Babylonians showed how to solve quadratic equations. Cardano also dealt
with quadratics in his book. One of the problems that he called “manifestly
impossible” is the following: Divide 10 into two parts whose product is 40;
i.e., find the solution of x+ y = 10, xy = 40, or, equivalently, the solution
of the quadratic equation 40−x(10−x) = x2−10x+40 = 0, which has the
roots 5 +

√
−15 and 5−

√
−15. Cardano formally multiplied 5 +

√
−15 by

5−
√
−15 and obtained 40; however, to calculations he said “putting aside

the mental tortures involved.” He did not pursue the matter but concluded
that the result was “as subtle as it is useless.” This event was historic
since it was the first time the square root of a negative number had been
explicitly written down. For the cubic equation x3 = ax + b, the so-called
Cardano formula is

x =
3

√√√√ b

2
+

√(
b

2

)2

−
(a
3

)3
+

3

√√√√ b

2
−

√(
b

2

)2

−
(a
3

)3
.

When applied to the historic example x3 = 15x+ 4, the formula yields

x =
3

√
2 +
√
−121 +

3

√
2−
√
−121.

Although Cardano claimed that his general formula for the solution of the
cubic equation was inapplicable in this case (because of the appearance of
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√
−121), square roots of negative numbers could no longer be so lightly

dismissed. Whereas for the quadratic equation (e.g., x2 +1 = 0) one could
say that no solution exists, for the cubic x3 = 15x + 4 a real solution,
namely x = 4, does exist; in fact, the two other solutions, −2 ±

√
3, are

also real. It now remained to reconcile the formal and “meaningless” so-
lution x = 3

√
2 +
√
−121 + 3

√
2−
√
−121 of x3 = 15x+ 4, found by using

Cardano’s formula, with the solution x = 4, found by inspection. The task
was undertaken by the hydraulic engineer Rafael Bombelli (1526-73) about
thirty years after the publication of Cardano’s work.

Bombelli had the “wild thought” that since the radicals 2+
√
−121 and

2−
√
−121 differ only in sign, the same might be true of their cube roots.

Thus, he let

3

√
2 +
√
−121 = a+

√
−b and

3

√
2−
√
−121 = a−

√
−b

and proceeded to solve for a and b by manipulating these expressions ac-
cording to the established rules for real variables. He deduced that a = 2
and b = 1 and thereby showed that, indeed,

3

√
2 +
√
−121 + 3

√
2−
√
−121 = (2 +

√
−1) + (2−

√
−1) = 4.

Bombelli had thus given meaning to the “meaningless.” This event signaled
the birth of complex numbers. A breakthrough was achieved by thinking
the unthinkable and daring to present it in public. Thus, the complex num-
bers forced themselves in connection with the solutions of cubic equations
rather than the quadratic equations.

To formalize his discovery, Bombelli developed a calculus of operations
with complex numbers. His rules, in our symbolism, are (−i)(−i) = − 1
and

(±1)i = ± i, (+i)(+i) = − 1, (−i)(+i) = + 1,

(±1)(−i) = ∓ i, (+i)(−i) = + 1.

He also considered examples involving addition and multiplication of com-
plex numbers, such as 8i+ (−5i) = + 3i and

(
3

√
4 +
√
2i

)(
3

√
3 +
√
8i

)
=

3

√
8 + 11

√
2i.

Bombelli thus laid the foundation stone of the theory of complex num-
bers. However, his work was only the beginning of the saga of complex
numbers. Although his book l’Algebra was widely read, complex numbers
were shrouded in mystery, little understood, and often entirely ignored. In
fact, for complex numbers Simon Stevin (1548-1620) in 1585 remarked that
“there is enough legitimate matter, even infinitely much, to exercise one-
self without occupying oneself and wasting time on uncertainties.” John
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Wallis (1616-1703) had pondered and puzzled over the meaning of imag-
inary numbers in geometry. He wrote, “These Imaginary Quantities (as
they are commonly called) arising from the Supposed Root of a Negative
Square (when they happen) are reputed to imply that the Case proposed is
Impossible.” Gottfried Wilhelm von Leibniz (1646-1716) made the follow-
ing statement in 1702: “The imaginary numbers are a fine and wonderful
refuge of the Divine Sprit, almost an amphibian between being and non-
being.” Christiaan Huygens (1629-95) a prominent Dutch mathematician,
astronomer, physicist, horologist, and writer of early science fiction, was
just as puzzled as Leibniz. In reply to a query he wrote to Leibniz: “One
would never have believed that

√
1 +
√
−3+

√
1−
√
−3 =

√
6 and there is

something hidden in this which is incomprehensible to us.” Leonhard Euler
(1707-83) was candidly astonished by the remarkable fact that expressions
such as

√
−1,

√
−2, etc., are neither nothing, nor greater than nothing, nor

less than nothing, which necessarily constitutes them imaginary or impos-
sible. In fact, he was confused by the absurdity

√
(−4)(−9) =

√
36 = 6 ̸=√

−4
√
−9 = (2i)(3i) = 6i2 = −6.

Similar doubts concerning the meaning and legitimacy of complex num-
bers persisted for two and a half centuries. Nevertheless, during the same
period complex numbers were extensively used and a considerable amount
of theoretical work was done by such distinguished mathematicians as René
Descartes (1596-1650) (who coined the term imaginary number, before
him these numbers were called sophisticated or subtle), and Euler (who
was the first to designate

√
−1 by i); Abraham de Moivre (1667-1754)

in 1730 noted that the complicated identities relating trigonometric func-
tions of an integer multiple of an angle to powers of trigonometric func-
tions of that angle could be simply reexpressed by the well-known formula
(cos θ + i sin θ)n = cosnθ + i sinnθ and many others. Complex numbers
also found applications in map projection by Johann Heinrich Lambert
(1728-77) and by Jean le Rond d’Alembert (1717-83) in hydrodynamics.

The desire for a logically satisfactory explanation of complex numbers
became manifest in the latter part of the 18th century, on philosophical, if
not on utilitarian grounds. With the advent of the Age of Reason, when
mathematics was held up as a model to be followed not only in the natural
sciences but also in philosophy as well as political and social thought, the
inadequacy of a rational explanation of complex numbers was disturbing.
By 1831, the great German mathematician Karl Friedrich Gauss (1777-
1855) had overcome his scruples concerning complex numbers (the phrase
complex numbers is due to him) and, in connection with a work on number
theory, published his results on the geometric representation of complex
numbers as points in the plane. However, from Gauss’s diary, which was
left among his papers, it is clear that he was already in possession of this in-
terpretation by 1797. Through this representation, Gauss clarified the “true
metaphysics of imaginary numbers” and bestowed on them complete fran-
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chise in mathematics. Similar representations by the Norwegian surveyor
Casper Wessel (1745-1818) in 1797 and by the Swiss clerk Jean-Robert Ar-
gand (1768-1822) in 1806 went largely unnoticed. The concept modulus of
complex numbers is due to Argand, and absolute value, for modulus, is due
to Karl Theodor Wilhelm Weierstrass (1815-97). The Cartesian coordinate
system called the complex plane or Argand diagram is also named after the
same Argand. Mention should also be made of an excellent little treatise by
C.V. Mourey (1828), in which the foundations for the theory of directional
numbers are scientifically laid. The general acceptance of the theory is not
a little due to the labors of Augustin Louis Cauchy (1789-1857) and Niels
Henrik Abel (1802-29), especially the latter, who was the first to boldly use
complex numbers, with a success that is well-known.

Geometric applications of complex numbers appeared in several mem-
oirs of prominent mathematicians such as August Ferdinand Möbius (1790-
1868), George Peacock (1791-1858), Giusto Bellavitis (1803-80), Augustus
De Morgan (1806-71), Ernst Kummer (1810-93), and Leopold Kronecker
(1823-91). In the next three decades, further development took place. Es-
pecially, in 1833 William Rowan Hamilton (1805-65) gave an essentially
rigorous algebraic definition of complex numbers as pairs of real numbers.
However, a lack of confidence in them persisted; for example, the English
mathematician and astronomer George Airy (1801-92) declared: “I have not
the smallest confidence in any result which is essentially obtained by the
use of imaginary symbols.” The English logician George Boole (1815-64)
in 1854 called

√
−1 an “uninterpretable symbol.” The German mathemati-

cian Leopold Kronecker believed that mathematics should deal only with
whole numbers and with a finite number of operations, and is credited with
saying: “God made the natural numbers; all else is the work of man.” He
felt that irrational, imaginary, and all other numbers excluding the positive
integers were man’s work and therefore unreliable. However, the French
mathematician Jacques Salomon Hadamard (1865-1963) said the shortest
path between two truths in the real domain passes through the complex
domain. By the latter part of the 19th century, all vestiges of mystery and
distrust of complex numbers could be said to have disappeared, although
some resistance continued among a few textbook writers well into the 20th
century. Nowadays, complex numbers are viewed in the following different
ways:

1. points or vectors in the plane;

2. ordered pairs of real numbers;

3. operators (i.e., rotations of vectors in the plane);

4. numbers of the form a+ bi, with a and b real numbers;

5. polynomials with real coefficients modulo x2 + 1;

6. matrices of the form

[
a b
−b a

]
, with a and b real numbers;
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7. an algebraically closed complete field (a field is an algebraic structure
that has the four operations of arithmetic).

The foregoing descriptions of complex numbers are not the end of the
story. Various developments in the 19th and 20th centuries enabled us
to gain a deeper insight into the role of complex numbers in mathematics
(algebra, analysis, geometry, and the most fundamental work of Peter Gus-
tav Lejeune Dirichlet (1805-59) in number theory); engineering (stresses
and strains on beams, resonance phenomena in structures as different as
tall buildings and suspension bridges, control theory, signal analysis, quan-
tum mechanics, fluid dynamics, electric circuits, aircraft wings, and elec-
tromagnetic waves); and physics (relativity, fractals, and the Schrödinger
equation).

Although scholars who employ complex numbers in their work today do
not think of them as mysterious, these quantities still have an aura for the
mathematically naive. For example, the famous 20th-century French intel-
lectual and psychoanalyst Jacques Lacan (1901-81) saw a sexual meaning
in
√
−1.
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