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PREFACE

Take care of the sense, and the sounds will take care of themselves. Alice in
Wonderland

After having lectured for several decades on complex variables to pro-
spective engineers and physicists, I have definite and, I hope, not unrealistic
ideas about their requirements and preferences.

Students are students. Since they are required to take several courses, they
may study some subjects just for the examination, with the intention of
forgetting what they have learned after the examination. Yet they may (and
the more intelligent and purposeful students do) ask pertinent questions
about the subject: Is it interesting? Can I use it?

These questions are fully justiﬁed The instructor of a more advanced
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mathematician should try to put himself into the position of his students
whoare prospective physicists or engineers. Before going into heavy definitions

and lengthy proofs, the student wants to satisfy himself that the subject is

interesting and useful enough to expend his time and effort on deﬁmtlons
and proofs.

Having realized these points as I taught successive generations of students,
I adapted my lectures to their standpoint. I evolved the following guidelines.

Start from something that is familiar, useful, or challenging—from some
connection with the world around us, from the prospect of some application,
or from an intuitive idea.

Do not be afraid of using colloquial language when it is more suggestive
than the conventional precise terminology. In fact, do not introduce technical
terms before the student can understand the need for them.

Do not enter too early or too far into the heavy details of a proof. First,
give a general idea or just the intuitive germ of the proof.

Generally, realize that the natural way to learn is to learn by stages.
First, we want to see an outline of the subject in order to perceive a
concrete source or a possible use. Then, gradually, as we can see use,
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connections, and interest, we accept more willingly the responsibility of filling
in the details.

The ideas just stated influenced the organization of this book.

Whenever the mathematical context offers a natural opportunity, there are
a few words inserted about concrete phenomena or connected general ideas.
Before the introduction of a formal definition, the intervening ideas may be
previously discussed by examples or in more colloquial language. The
proofs emphasize the main points and may leave to the student, now and
then, more intermediate points than usual. The most notable departure from
the usual is to be found, however, in the ‘“Examples and Comments’’ that
follow most sections and each chapter. There are, of course, the examples
of the standard kind that offer an opportunity to practice what has been
explained in the text. Yet there is what is not usual—a definite effort to let
the student learn the subject by stages and by his own work. Some problems
or comments ask the student to reconsider the definitions and proofs given in
the text, directing his attention to more subtle points. Other problems intro-
duce new material: a proof different from the one given in the text, or gener-
alizations of (or analogues to) the facts considered, encouraging the student
toward further study. Moreover, even the simpler problems, insofar as is
possible, are arranged to give the student an opportunity to face a variety of
research situations that will awaken his curiosity and initiative.

I hope that this book is useful not only to future engineers and physicists
but also to future mathematicians. Mathematical concepts and facts gain in
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with general ideas, and if we obtain them by our own work through suc-
cessive stages instead of in one lump.

The course presented here has been taught sev

me and by my friend and colleague, Gordon E. Latta, who shares my
pedagogical ideas. I am grateful to him for sharing the writing which, because
of other interests and duties, I was not able to do alone.

We may have achieved less than we hoped for at various points and in
various respects, yet we still think that this book is a modest concrete con-
tribution to the widespread debate about the lines along which the instruction
in the universities should evolve.

George Polya
Stanford, August 1974
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HINTS TO THE READER

Section 4.3 means Section 3 of Chapter 4.

Subsection (b) of Section 4.3 is quoted in that section simply as (b), or
Subsection (b), but in any other section as Section 4.3 (b).

Formula (2) of Section 4.3 is quoted in that section simply as (2), or
Formula (2), but in any other section as Formula 4.3 (2). (In Chapter 1, the
rules of basic importance are labeled with Roman numerals.)

We distinguish two kinds of exercises (examples, comments, and problems).
Some are attached to a complete chapter and are printed at the end of the
chapter, and others are attached to a single section of a chapter and are
printed at the end of that section. The two kinds are labeled differently:
the third exercise attached to Chapter 4 is numbered 4.3 and quoted as Ex.

A2 luie tha shied Aamntan ntéanhad Qanéin AN malhaead A9 2 A
4.5, out tne tnira exercise attacnea to section 4.2 is numbered 4.2.3 and

quoted as Ex. 4.2.3.
As a rule, the exercises attached to whole chapters are more difficult than

) .
the exercises attached to single sections; but there are exception
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are not very rare.

(S) is printed at the end of the problems attached to sections, the solution of
which is given at the end of the chapter.

The solution may give just the result (for more straightforward problems)
or just a sketch or a hint, and more details are given only when the problem
is more important or more difficult. A serious understanding of the solution
demands work from the reader—and the reader will profit more if he does a
good part of the work before he looks at the solution.

Hints to facilitate the solution of problems are placed in square brackets
[ ]—do not look at the hints too early. Problems related to each other are
often printed near each other, and therefore a look at the surrounding
problems may help.

Most problems are only numbered, but some (more important or more
interesting) problems have titles.

Iff. The abbreviation “iff”” stands for the phrase *if and only if.”
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Read with a paper and pencil in hand. Carry out intermediate steps of
calculation, build up the figures yourself, and add one part after the other as
they arise in the reasoning.

Note. The last two chapters are of particular interest to the reader who
studies complex variables in view of their applications. He is introduced to
physical applications by Chapter 8 and to analytical applications by Chapter
9. These chapters are somewhat more demanding. Especially, the reader
should acquire from other sources a more complete understanding of the
physical theories that can only be hinted in this text.

The student should study at least the first six chapters and should do, if not
all, then a substantial part of the problems attached to the sections. He should
do as many chapter problems as his time allows, and he should pick and
choose. He should also select problems that are closer to his interest or to his
major study. He may (and he will, we hope) come back to the chapters and
the problems skipped—he may need them in later studies.

An instructor, weighing the available time and the interest and preparation
of the students, may consider omitting some of the more demanding topics
and a good part, or even almost all, of the more demanding problems.

Solutions to exercises attached to whole chapters are not provided (except
in a few cases; then they follow the problem or the other solutions at the end
of the chapter concerned). The instructor may find an opportunity to discuss
some solutions, for example, in practice sessions. The student may consult
more extensive textbooks on complex variables. Some exercises are not usually
treated in these textbooks, as, for instance, at the end of the first chapter;
information can be found in G. Polya and G. Szeg6, Problems and Theorems
in Analysis (Springer, Vol. 1, 1972, and Vol. 2, 1974*).

For instance, for exercise 1.18 on p. 26 of this book, see problem III 22
in Polya-Szegd Vol. 1, p. 107, of which the solution is on p. 301 of the same
Vol. 1. It may be useful to look not only at the problem quoted but also at the
neighboring problems.

Thus,
FOR EXERCISE SEE PROBLEM (Polya-Szego)
1.5 VIl
1.13 IT 80
1.15 IT 90
1.17 III 18
i.18 IiI 22
1.19 IIT 23
1.26 VII 14
2.10.1 III 8

* As this goes to press, Vol. 2 is about to appear but is not yet in print. Both volumes are
available in German.
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FOR EXERCISE

2.10.2
2.24
2.33
3.4
3.5
3.21
3.22
3.36
5.8
6.7.9
6.2
6.30
6.34
6.39
6.42
6.43
6.44
6.45
7.4.1
94.1
9.4.2
953

SEE PROBLEM (Polya-Szego)

IIT 9
III 31
III 34
III 58
III 55.4
III 122
IIT 106
ITI 124
IIT 169
IIT 280
IIT 174
I 194
IIT 192
ITI 209
IIT 120
III 175
III 176
IIT 275
III 174
II 202
IT 205
IT 204

Hints to the Reader

G.P.
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Chapter | COMPLEX
ONE | NUMBERS

In introducing complex numbers, we stress their analogy with real numbers.
Complex numbers are subject to the same algebraic laws of addition, sub-
traction, multiplication, and division as real numbers, and they are used
similarly in describing geometrical and physical situations.

1.1 REAL NUMBERS

We make no attempt to explain what real numbers are but, instead,
remind ourselves how they are used. From time to time we require some
particular type of real number, such as a negative integer, a rational number,
or an irrational number, and we shall assume that these terms are meaningful

to the reader.
(a) Let us denote real numbers by the letters a, b, ¢c,..., 2, y,.... We
can perform the operations of addition, subtraction, multiplication, and

division using real numbers, and these operations obey the following rules

() a4+ b = b + a, the commutative law of addition.
(II) ab = ba, the commutative law of multiplication.
(II) (a + b) + ¢ = a + (b + c¢), the associative law of addition.
(IV) (ab)c = a(bc), the associative law of multiplication.
(V) (a + b)c = ac + bc, the distributive law.
(VI) Given a, b, there is a uniquely determined x such that

a+x=50

the law of unique inverse of addition.
(VII) Given a, b, there is a uniquely determined « such that

ax = b,
provided that a # 0, the law of unique inverse of multiplication.

1



Figure 1.1

n 1 P
v H X

The absolute value of the number a is denoted by |a|; for instance, |2| = 2,
| —2| = 2. We mention two rules dealing with absolute values:

(VIID) |a + b] = |a] + [b]

(IX) |ab| = |a| |b]

(b) Real numbers may be interpreted as marks on a straight line. As is
usually done, we consider an infinite straight line (the x-axis) drawn from
left to right in a horizontal plane. We select a point we call the origin, and a
certain (arbitrary) unit of length (see Figure 1.1). Then « refers to the point
on the line |x| units from the origin, to the right if > 0, and to the left if
x < 0. Correspondingly, each point of the line yields a real number x. We
refer to it as the real line.

(c¢) Real numbers can be used to describe vectors along a fixed straight
line (such as the real line). Clearly this interpretation of real numbers is
somewhat artificial, but it does pave the way for a very useful interpretation
of complex numbers.

We recall that the notion of vector is obtained by abstraction from the
notion of displacement. Displacement is the operation of transferring a
particle from point 4 to point B. Such displacement has a magnitude, a
direction, and an initial point (4). We now regard two displacements as
equivalent (equal) if they have the same magnitude and the same direction
(Figure 1.2). If the whole space is shifted as a rigid body, without rotation,
all its points undergo equivalent displacements, and we call such a change
of position a vector. Thus, a vector has a definite magnitude and a definite

direction, but no specified initial point. A vector is represented by a directed
line segment. Two such segments represent the same vector if they are
parallel and have the same length and sense (direction). Accordingly, if
“is a point on the real line,” we may (if it is convenient or to our advantage
to do so) interpret x as a vector, of length ||, parallel to the line, and pointing

to the right if # > 0, or to the left if < 0.

Figure 1.2

B B’
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1.2 COMPLEX NUMBERS

If we apply the usual procedure for solving quadratic equations to the
equation

224+1=0

we obtain the roots v/—1 and —v/ —1. There being no real number whose
square is —1, such roots (when they arose for example in constructing a
certain triangle) were regarded as “‘impossible’” or “‘imaginary” and were
discarded.

The procedure for solving quadratic equations was essentially known in
Babylonia, around 2000 B.C., but the mathematicians of those days did not
speculate about the nature of imaginary roots. Such speculation started in
the sixteenth and seventeenth centuries, and mathematicians gradually found
that the rules of algebra may be applied to imaginary quantities, and that the
introduction of such quantities may simplify certain questions. By the
eighteenth century, imaginary numbers were being introduced so frequentiy
that Euler found it convenient to introduce i as standing for /—1. This
notation is almost universally used today (except in electrical engineering,
where j, not i, is used).

Today, complex numbers play an important role in almost all branches of
mathematics and mathematical physics. To the student who is not familiar
with complex numbers, large parts of algebra, of trigonometry, of the integral
calculus, and of the theory of ordinary and partial differential equations must
remain inaccessible.

1.3 COMPLEX NUMBERS AS MARKS IN A PLANE

2 P VY. R R . s,

1& c bybl.Clll lll I.I.I.C uisuai PUbll.lUll [FIEUIC l J}
To each complex number x + iy we associate the point (, ¥) and conversely.
In this way, a one-to-one correspondence is set up between complex numbers
z = x 4+ iy and points of the plane (z, y). We shall use the terminology *“the

r‘!....... . - s
L OIisiacr a ICL tan 1gul ar ¢oorai

Figure 1.3

A

a (xv)
(x,v)

4
®
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point 2”’, or “the point x 4 iy in place of the longer (but more precise)
statement ‘‘the point (x, y) that corresponds to the complex number
z =z + iy.” The z-axis consists of the real numbers = 4+ 0i = z, and the
points on the y-axis are marked iy, y real. As a concession to history and
tradition, we call numbers of the form iy purely imaginary. Also, we call the 2-
axis the real axis, the y-axis the imaginary axis, x the real part of x + iy, and
y the imaginary part of « + iy. In symbols

x =Rz y=1Iz

The distance from the origin to the point z is Ja? + y2, called the absolute
value or modulus of z and denoted by |2|:

(1) ol — fan
L) Il = V&

In terms of the polar coordinates of z = x + iy,

(2) x=rcosf y=rsinb
we write
(3) z=2x 4+ iy = r(cos 0 + isin 0)

The terminology for complex numbers differs from analytic geometry; we
call the distance r the absolute value of 2

r=|z|
and we call the angle 6 the argument, or the phase of z.
6 = argz

It follows from (2) that

= tan @

8 l=

22yt =1t

Hence r Z 0 is uniquely determined, while 6 can have any one of an infinite
set of values and still satisfy (2). In fact, if § satisfies (2), then all of the angles

ey 0 —A47, 0 — 27,0, 0 4 27, 0 + 4m, .

satisfy it just as well. As an agreement, or convention, we pick out the value
between 0 and 2,
0=60< 27

and call it the principal value of arg z.*

* Other texts may define —» < @ < = as the principal-value range. Alternately, it may be
advantageous to consider this range of arg z instead of the principal-value range.
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A point is determined by its rectangular coordinates and determines them
completely. If x,, »,, «,, y, are real, and

(4) Ty + Yy = 23+ 1Yy
then
(5) I = &g Y1 = Y2

The single equation (4) between complex numbers is equivalent to two
equations (5) between real numbers.

The corresponding relations in polar coordinates are less simple. If r,, 6,,
ry, 0, are real, r,, r, = 0, we can infer from

ry(cos 0, 4 isin 6,) = ry(cos 0, + isin 6,)
that

ry rs

e n ctre vy mmer evamdl i L __i N Fa] T - n R P 4 | Fa] b4
It r; = U, we can say notning aoout ¢,, ;. 1f r; > U, then ¢; — 7, 1s an

integral multiple of 2.
6, =0, + 2nnw n=0,4+1, +£2,...

Comparing Figures 1.3 and 1.4, we survey the expressions for the rectangular
and polar coordinates of the point z in terms of the complex number z:

(6) x =Rz y=1Iz r=|z| 6 = argz

121 i
AasuFs i A 11i\R

for the complex numbers

@243 (8 (b) =54 12i
() —1+ V3 (d) —1—i

1.3.2  For which points of the plane is Rz = Iz?

Figure 1.4

My

\q,\ Iz

J/arg z

Y
®
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1.3.3 Regard the coordinate axes and the two lines bisecting the angles
between the axes as mirrors, and list and plot all the points that can be
obtained by successive reflections in these mirrors from the point 3 4 2i.

1.3.4 Show that

Rz + Iz
——— = |2| £ |Rz| + |12 (8)

J2
1.4 COMPLEX NUMBERS AS VECTORS IN A PLANE

Consider a vector in a plane containing a system of rectangular coordinates
(Figure 1.5). The projections of this vector onto the 2- and y-axes have

Figure 1.5

definite magnitude and direction (sense) and so may be regarded as vectors on

separate lines. These projections (components) determine the magnitude
and direction of the vector, but not its initial point. In the absence of any

D
ectio 1e vecto initial point. In the absen
other requirement, it is convenient to choose the origin as the initial point
of the vector; then its projections #, y on the x- and y-axes represent the

vector x + iy, whose terminal point coincides with the point x 4 iy.

1.41  The initial point of a line segment is —3 + 2i, and its terminal
point is 7 + 12i. Find the vector represented by the segment, and obtain
its absolute value and direction.

1.5 ADDITION AND SUBTRACTION

In the remainder of this text, we frequently interpret our results involving
complex numbers in terms of points in a plane or in terms of vectors in a
plane (and, occasionally, both ways). We are never forced to make these
interpretations, but we do so when it is to our advantage.

6 Chapter One



For instance, let us interpret the addition of complex numbers in light of
the vector interpretation. If the vector 2, = x, 4+ iy, carries a particle
(point) from A4 to B, and the vector z, = x, + iy, carries the particle from
B to C, then we call 2, 4 z, the vector carrying the particle from 4 to C
(Figure 1.6). In terms of the projections of the vectors on the axes, we have

(1) (@ + i) + (@2 + 1) = (2 + x) + i(y; + v2)

and verify the rule: adding complex numbers, we add real parts to real parts
and imaginary parts to imaginary parts.
Recalling the properties of addition of real numbers from Section 1.1,

wea caa that
FTw Jww LILWSL

(2) 2yt 2 =234+ 2

which is also clear from the figure and emphasizes the “‘parallelogram law”
of vector addition. Again

(3) (2, + 29) + 23 = 2; + (22 + 2,)

is the associative law of addition. We readily see how this law follows from
the properties of real numbers and from (1). We leave the proof of unique
inverse of addition as an exercise.

As an example of the value of an interpretation, we note in Figure 1.6
that z,, z; and 2, + z, form the sides of a triangle. Since one side of a triangle
cannot exceed the sum of the other two sides

4 |2y + 22| = 2] + 2]

The modulus of a sum is not greater than the sum of the moduli. This result
(Equation 4) is usually called the ““triangle inequality” (see Problem 1.12).

Addition and Subtraction 7



1.5.1 Find z; + z; and z; — 2z, by computation and a figure

@ z=14+i zg=1—2i (S)
14
J2

1.5.2 Establish the associative law of addition

(b) 2, =2 2g =

2y + (23 + 23) = (2, + 25) + 24

by considering real and imaginary parts, and draw a figure to visualize its
geometric meaning,

1.5.3 Describe geometrically the conditions imposed on 2, and z, by the
equation

(@) |2y + 22| = |z] + |2,
(b) |2y + 25| = 124| — |24 (S)

1.5.4  Deduce that
Iz — [2all = [z, — 2
first by interpreting the quantities involved geometrically, and then by an

application of the triangle inequality.

1.5.5  If three sides of a quadrilateral, considered as vectors drawn in a
suitable direction, are z,, z,, and z;, show that the fourth side is given by
z; + 23 + 25. Deduce that

|21 + 2 + 23] = [%] + [2a] + 23]

1.5.6  Generalize the result of Example 1.5.5 to a polygon of n + 1 sides.

1.6 MULTIPLICATION AND DIVISION

Rather than attempt to interpret the product of two complex numbers as a
vector operation, let us fall back on the formal application of the laws of
algebra
(1) 22, = (21 + fy)(2, + iyy)

= 2,2 — YyY2 + (Y2 + 22Y,)
8 Chapter One



Figure 1.7

+.‘)’

-

|
|
' \
| iz
Loy
X2 : \\
\
Y :
' y.
| . 5 : 2
L = : > X
-Y2 X3

where we have expanded the bracketed terms and replaced ii by —1. This
formula contains a number of special cases worth noting. If y, = 0,2, = p >
0, we find

(a) pz; = px; + ipy,
which preserves the direction of z, but multiplies its length by p.
(b) v, =0, 2, = —1
—2; = — (23 + ip) = (—2,) + 1(—¥2)
Here the length of z, is preserved, but its direction is reversed. Combining
(a) and (b),
—p2y = —pZy -+ i(—py,) p>0

We observe that multiplication by i rotates the vector z, = (2, 4+ iy,)
through 90° in the positive (counterclockwise) direction. Two applications
of this operation yield i(iz;) = —z, in which the direction of z, gets reversed,
as in (b).

In polar coordinates, Equation 1 assumes a particularly useful and

o anm un vk e et

important form
(2) 2,25 = ryra(cos 6, + isin 6,)(cos 6, + isin 8,)
= ryrg[cos (6; + 65) + isin (6; + 6,)]
In multiplying complex numbers, we multiply the absolute values and add the
arguments.

Multiplication and Division 9



It is instructive to reconsider the special cases (a), (b), and (c) in light of (2)
and, at the same time, observe how the commutative and associative laws of
multiplication follow from (2) and the corresponding laws for real numbers.

(d) We now examine division, or the unique inverse to multiplication.
Consider the equation

3) 2 = 2,
being given z,, 2, with z unknown. From (3) we obtain the two real equations
TE—YPY =% UE+TLY=Y

These equations are equivalent to
@? + n¥x = 22 + Y,
(2 + 1Py = —y2 + 1Y,

which have unique solutions z, y, provided that x,2 4 y,% £ 0. This unique
inverse of multiplication exists unless z,2 + y,2 =0; 2, =0, y, = 0; z; = 0.
Excluding z, = 0, we find that

Zy _ %%y + %Y + i(— %% + 21Y,)

2 2
2] "+ %

Zz =

In Section 1.8 we shall find a more convenient way of computing the quotients
of complex numbers. For the moment, we are concerned mainly with the
verification that the laws of algebra are valid for complex numbers.

1.6.1  Perform the indicated operations, and reduce the numbers to the
form = + iy.

(@) 44+ 3D@4 + 203 — (1 — i) (S)
b i
®) (— 1)@ —2)i—3)
(© /3 -1
(d) i * Zwherez=cosﬂ+ isin@
—z

(e V2 (cos @ + isin a)(cos B + isin f) where

aT

O<a<s 0<B<™
2 2

and
o = arctan 2 f§ = arctan 3

10  Chapter One



1.6.2  Establish the associative law of multiplication
21 (2%3) = (24%2)23

by considering absolute values and arguments.

1.6.3 Establish the distributive law

2,(23 + 23) = 212, + 2124
1.64 Show that if z;z; = 0, then either 2, =0 or z;, =0 (or both).

1.6.5 If z, #-2,, show that

la |
1«11

| [2q] — |2

21

2o + 24

<

|20 Y
(-
(-
[ F,]
=
3
o
&
-

z"® = [r (cos 0 + isin 6)]*
= r" (cos nf + i sin nf)
for positive integral values of n. (The case r = 1 of this result is known as
de Moivre’s theorem).
1.6.7 Derive from de Moivre’s theorem that
(a) cos 20 = cos? @ — sin% 0 (S)
(b) sin 260 = 2 sin 6 cos 6 (S)
(¢) cos 360 = cos® 6 — 3 cos 6 sinZ 6§
(d) sin 30 = 3 cos? 6 sin § — sin® 6
1.6.8  Assuming, as usual, that

r(cos@ +isinf) ==z + iy
show that

rﬂ cos ne = 2" — (Z) x"_zyz + (:) x"4y4 _— e e

r*sin nf = ('11) a1y — (’;) Vol R

1.6.9  Show that the formula of Example 1.6.6 holds also for the cases
n= —1, —2, —3, and so on, for any negative integer n. [Show first that

z7l = r1(cos 0 — isin 6)
and then apply Example 1.6.6.]

Multiplication and Division 11



1.6.10  The complex numbers z; and z, mark the two endpoints of a
straight-line segment. Find the complex number that marks (a) the midpoint
of the segment, and (b) the point that divides the segment in the proportion
1:2 and is closer to z, than to z,. (S)

1.6.11 The complex numbers z,, z,, and z; mark the three vertices of a
triangle. Find the complex number that marks the centroid of the triangle.
(The centroid divides in the ratio 1:2 a median that joins the midpoint of a
side to the opposite vertex.)

1.7 SUMMARY AND NOTATION
From this point on, we shall use complex numbers of the form
(1) z==z+ iy

and may speak of “the point 2z of the plane,” or the ‘“‘vector z.” When
necessary to refer to the various real numbers associated with z, we let

(2) x = Rz, y =Iz, r=|z|, 6 = argz

The laws of algebra, as outlined in Section 1.1, apply equally to the whole set
of complex numbers. Accordingly, the term ‘‘number” will always mean
complex number (with real numbers as special cases), although in such
statements as Rc = a,Ic = b, it is understood that for this particular

discussion, a and b are real.
As a special convention, of the last six letters of the alphabet

u’ v’ w’ x’ y’ <
u, v, z, y have real, and w and z complex values, with

z=x -+ iy

w=u-+iv
although there will be exceptions to this rule (but not without adequate
warning).

Example 1. Write

|z — ¢| = [(x — a)® + (y — b)?] /2

is the distance between the points ¢ and z. Now consider ¢ as a constant
(fixed) and z as a variable. Let p > 0 be another constant. The equation

e —cl=p
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states that each point z is at the same distance from the fixed point c. Therefore
the equation represents a circle.
The inequality
|z —cl <p

states that z is inside the circle just discussed.

Example 2. Let zq, z,, 23, 24 denote four complex numbers linked by the
equation
3) Z3—2+2—2=0

Consider the points z;, z;, 23, 2, in the plane. What is the geometric inter-
pretation of Equation 3?

We write (3) in the form
ML~k o al o Ak d B e o e mceh e Sm flm o e Ak L alio . T___ a1l ___ 1
1Ilal 1>, LIIC UllCuicU llIlC‘bCBlIlClll. JUllllllg #g LU 41 IldS LIIC S4lllC lcngm allda
direction as the segment joining 2, to z,. Therefore, the points z,, 2,, 23, z,,
taken in this order, are the vertices of a parallelogram.

We write (3) in the form

That is, two sides of the parallelogram, joining z, to z; and z, to z, respectively,
which we have not mentioned before, are also parallel and equal in length.
We write (3) in the form

2 2
Thaot io +tha dAinannn 1Aaftha mnenllalAaarnsmm sAntmninag tha vartav o 44 thn ~smmnnién
114t 15, LIe UIGBUIIGI vl Liiu PalallClUBI.all.l. JUII.H.I.IS LIIVC VUI1LCA 01 LV L1IC UPPUS".C
verteX z; has the same midpoint as the diagonal joining z, to z,; see Example

1.6.10(a).
Again, we write (3) in the form
z1+za_l{zl+z2+zs+z4}
2 2t 2 2

That is, the common midpoint of the diagonals we have just considered is
also the midpoint of the segment joining the midpoints of two opposite
sides. The endpoints of the first side are 2, and z,, and the endpoints of the
other side are z, and z,.

We can prove many other theorems of elementary plane geometry in the
same way, that is, by algebraical manipulation and geometrical interpretation
of equations between complex numbers. See, for instance, Examples 1.7.4
and 1.29,

Summary and Notation 13



1.7.1 Describe geometrically the regions of the z-plane determined by the
following inequalities

o
2
S

(a) 3z 4+ 2| <1
(b) 3z — 2| <1
(c)0<argz <«
(d) > Sargz=w

e)Iz=2

O RA+)<0
(g R:2> 0

() lo— 1l + |z +

(i) R2? + L2 = 0
MDIlz—pl=p+Rz p>0

_—
A
-

1.7.2 Assuming that p > 0 and p # 1, show that the locus of the points z
for which

1 —z
1 42
is a circle. What is the locus for p =17

1.7.3  Find the set of all points z for which

174  Oneachsideof a y i
square. Join the center of each quare o the center of the quare descrlbed on
the opposite side. Show, by complex numbers, that the two segments thus
obtained are of equal length and are perpendicular to each other.

(Let 2a, 2b, 2¢, and 2d be the vertices of the given quadrilateral, encoun-
tered in this order by a person who walks counterclockwise along the

perimeter, and express the four centers.) (S)

$
U‘Q
$

1.7.5 Show, by complex numbers, that the line joining the midpoints of
two sides of a triangle is parallel to the third side and half its length.

1.7.6  Show, by complex numbers, that the three medians of a triangle
pass through the same point—the centroid—which divides each median in the
ratio 2:1. (Let a, b, and ¢ be the three vertices of the triangie; a median
joins the midpoint of the side with endpoints b and ¢ to the opposite vertex

a) (S)
14  Chapter One



1.8 CONJUGATE NUMBERS

Two complex numbers are called conjugate if they are represented by points

symmetrical to each other with respect to the real axis. The number conjugate

to z is denoted by z. If we use our standard notation and write

z=x 4+ 1y
then
Z=x—1y

In other terms, if we leave x as it is, but interchange ¥ and —y, then we
interchange z and z. (Or leave z, y as they are, and interchange i and —i.)
We have (also standard notation)

z = r(cos 6 + 1 sin 6)

Z = r(cos 0 — isin 8) = r[cos (—6) + isin (—8)]

2zZZ2=x24 Yyt =r2 = |z|®

These formulas are often useful. For instance, they lead quickly to various
expressions for 1/z, the reciprocal of z:

1 z x—iy 1 ,
=T = , = —(cos @ — isin 6)
z 7] x4y r
Let us write
2. = . L . = r.{cog B, L 5sin B.)
) 1 1 *Jg1 TIAWYS V] TT s Sail Vg

where ,, ¥,, ry, 0, are real and r; positive, as the notation suggests. Then we
can express the quotient z,/z as follows:

21 %42 r

(1) 2 =2 = 2cos (6, — ) + isin (6; — 6)]
r

If we wish to write the conjugate of a composite expression we use longer
horizontal lines. For instance, if we suppose, as usual that x and y are real,

22 = (z + iy): = 2% — y? — 2ixy.

With this notation, we may express concisely the most important rules
concerning conjugate complex numbers:

(X) a+b=da+b (XI) ab=ab
(XII) a=a

The rules are easy to verify and easy to describe intuitively: the symmetrical
to a composite number is obtained by composing the symmetricals to the

Conjugate Numbers 15



component numbers. This statement takes a more usual but somewhat less-
intuitive form is instead of ‘‘symmetrical to” we say ‘‘conjugate of.” T*~
statement remains valid even if the composite number is derived from t
components, not by a single addition or multiplication, but by any combin
tion of additions, subtractions, multiplications, and divisions. For instanc

. b b
d——=a—
¢ ¢
1.8.1 Verify that
Rz = 4(z + 2)
2=z —3)
yA
2| = |2l
argz = —argz

1.8.2 Show that
(a) 2 =77 (b) (&) =)

(c) (Z—‘) = é (d) (i) = —iz

Zq 2

1.8.3  Solve Example 1.6.9, starting from

1.8.4  Verify that
(l+ab(l4+ab)—(a+ba+b=01—aa)l —bb)

1.8.5 Assuming that |z;| < | and |z] < 1, show that (Example 1.8.4):
|2y + 2o < |1 + 2, 2, (S)

1.8.6  Express the reflection (the mirror image) of z in the lines
(A =0
(b) y==
(c) y = kx k real

in terms of z. [If w is the image point required by (c), and arctan k = «,

w(cos oo — i sin &) = z(cos o — 7 sin o)]
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1.8.7  Let z be a point inside the unit square with verticesat 0, 1,1 4 4, i.

(a) Express the mirror images of z with respect to each of the four sides in
terms of z.

(b) Each image can then be reflected in the other sides, yielding an infinite
set of reflections. Find these points for the special case in which z lies at the
center of the square.

1.9 VECTORIAL OPERATIONS

We are given certain vectors in the plane, represented by directed line-
segments. These vectors may have some physical significance as displace-
ments, velocities, and foices, for example. We may represent these vectors by
complex numbers a, b, . . . z; in order to do so we must choose a system of
coordinates. Physical phenomena do not depend, however, on our choice of
the coordinate system. Therefore, we should pay particular attention to
operations with vectors whose results are independent of the choice of the
coordinate system; we call such operations vectorial operations.

For instance, addition is a vectorial operation. In fact, being given the
vectors a and b, we find a + b as the third side of a triangle whose other
sides are @ and b. In constructing this triangle, we make no use whatever of the
coordinate system and could ignore its position altogether (Figure 1.6).

There are a few other simple vectorial operations. Let

«=arga f=argh

Then
a = |a| (cos « + isin &), b = |b| (cos f + isin f§)
ab = |a| |b] [cos (B — «) + isin (8 — )]
and, therefore,
(D Rab = |a| |b| cos (B — &)

(2 Iab = |a| |b] sin (B — )

The operations expressed by (1) and (2) are vectorial operations.

In fact, the angle § — « is the angle between the vectors a and b; if we wish
to rotate vector a so that it coincides in direction with b, we must rotate it
through the angle § — «. Thus (1) is the product of the lengths of both
vectors multiplied by the cosine of the included angle; it has a significance
independent of the choice of the coordinate system. The expression has
physical significance if the vector a is a force acting on a particle that moves
along b. Observe that |a| cos (f — «) is the projection of vector a on the
direction of vector b, or the component of the force a acting in the direction
of the displacement . Multiplying this component by the distance through
which the particle is moved, |b|, we obtain (1) that is, therefore, the work
done when a particle is moved along the displacement b by a force a.

Vectorial Operations 17



If we construct a parallelogram whose sides are vectors @ and b, and we
consider b as the base, the altitude of the parallelogram is |a| sin (8 — «).
Thus (2) is the area of the parallelogram, and so it has a significance inde-
pendent of the choice of the coordinate system. The expression (2) has physical
significance if vector a is the velocity of a uniformly moving fluid layer whose
thickness measured at right angles to the plane is unity. Foir the sake of
concreteness, let our plane be horizontal, and let the fluid glide over it. Let us
pay attention to those particles of the fluid that cross the line segment 5 in
unit time; they fill a parallelepiped whose base is a rectangle with sides
|b| and 1 and whose altitude is |a] sin (§ — «). Therefore, the volume of the
fluid crossing in unit time is just (2). This volume of fluid is called the flux
across b.

We may condense th
cussed into the formula
(3) ab = Rab + ilab = work + i flux

(¢
-
Pt
-
1]
]
ol
=t

which is not quite orthodox but is easy to remember.

If the reader is familiar with the elements of vector analysis (which is not
required), he may observe that Rab is the scalar product of the vectors aand b,
and Iab is closely connected with their vector product.

For the discussion of the sign of Iab, see Example 1.9.1 and 1.9.2.

1.9.1 Lay down vector a, take its endpoint as the initial point of vector b,
and complete the parallelogram of which @ and b so constructed are consecu-

tive sides. The area of this parallelogram, taken with a certain sign, is Iab.
On what geometric feature does the sign depend? See Figure 1.8. (S)

UL ILAQlElG |8 ¢ Lus 8w A=/

1.9.2 If a and b are interchanged, Rab remains unchanged, but Iab
changes sign. Visualize the geometric ground for this change: what is the
difference between the two parallelograms one of which is so connected with
1ab as the other is with 1ba?

1.9.3 Let a and b be complex numbers,
arga=o argh=_4

Figure 1.8 ,/’1
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consider the triangle with vertices a, b, and 0, and show that the square on the

side opposite to 0 is
)@ — b) = |a|® + [b]2 — 2 |a| |b] cos (f — «)

= 7

What theorem of elementary geometry is expressed by this equation?

1.9.4  How is the expression
(2aabb — a?b® — a*b%)[16

connected with the triangle considered in Example 1.9.3? (S)

1.9.5 Prove that

fe 1 E\2 1 £ L\2 ’1,.2 1 L2
T 0)f r@—U) = a4 1T 0
What is the geometrical interpretation ? (S)

1.9.6  Letz;,z,z,,...,z2,denote the vertices of a polygon, described in the
positive sense. Show that the value of the expression

(292, + zoZp + 0 + 2,2, + 2 Z,)

remains unchanged by translations and rotations of the polygon. What is
the geometric meaning of this value? (S)

1.9.7  Consider the centroid of a triangle and the distances from the
centroid to the vertices: let G stand for the sum of the squares of these three

Ainbneemnn oes A O L slan sum ~f bl ..,-n nean ~E LLA LL..AA AarAdan Al ¢lan buminanela
ulbldllLCD allu LJ 1VLl L11C duUl]]l vl LG b\.i ualcdy Ul L1IIC L1 C OIUCY Ul. l.llC ulauslc
Show that

(You are at liberty to choose the location of the triangle with respect to the
coordinate system. What location may be the most advantageous?) (S)

1.9.8 (continued) We consider two mass distributions connected with
the same triangle. Both have the same total mass and (as you should convince
yourself) the same centroid.

1. The mass is distributed uniformly, with surface density 1, over the area
of the triangle.

A Nan thicd Afthna tAtnl canaa .- concentrated in eac ¥V Atbawr -~
Z. UTIC tiira o1 LIIC LULAL 111add 1d LCULIVLIILL alCU lll CGL CLLCA U

L

Let 7 stand for the polar moment of inertia in case 1, I* in case 2. (The
polar moment of inertia is cnmnuted with respect to an axis nemendmular

to the plane of the triangle and passing through the centrond) Show that
I* =41
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(Take for granted the expression I = A4S/36 where A4 is the area of the
triangle.) (S)

1.9.9  Let p satisfy the equation

PP+p+1=0
Show that the quantity
Q = la+ pb+ p*l*

remains unchanged by translations and rotations of the triangle with vertices
a,b,c. (S)

1.9.10 (continued) Express Q as a linear combination of 4 and J/4 with
H £

Pwnme=ls 1 O O\ QY
Laalllpiv 1.7.0). (2}

(continued)  Check your result in the particular case of the equi-
t

1.9.12 (continued)  Of all triangles with a given area A4 the equilateral
triangle has the minimum polar moment of inertia I. (S)

1.10 LIMITS

The reader should be familiar with the concept of limit in the real domain,
at least to a certain extent. Then he can easily acquire the concept of limit in
the complex domain, to the same extent, because (1) these concepts are closely
analogous and (2) it is easy to reduce the case of complex numbers to that of
real numbers.

(a) There are various sorts of limiting processes of which the simplest is
concerned with an infinite sequence of numbers 2, z;, 23 . . . . These numbers,
as the notation suggests, are assumed to be complex. We wish to understand
the meaning of the sentence *“z,, tends to z as n tends to infinity” or, what is the
same thing, the meaning of the formula
(1) limz, =z

n—* e
The meaning is, roughly, that z, becomes undistinguishable from z when n
becomes large. More precisely, the difference |z, — 2| is arbitrarily small when
n is sufficiently large. Still more explicitly, the absolute value of the difference
between a term of the sequence and the limit of the sequence, that is |z, — 2|,
becomes and remains smaller than any preassigned positive quantity, however
small, provided that » is sufficiently large.

We may express the same thing in geometrical terms if we represent all
numbers concerned as points in the plane. What is the connection between a
sequence of points, z,, 2,, 23, . .., and its limit point, z? The distance of a
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term of the sequence from the limit, |z, — z|, becomes arbitrarily small when
n is sufficiently large. In order to present this idea more clearly let us draw a
small circle around the point z as center. If the points z, 25, 23, . .. of the
sequence have z as the limit point, then at most a finite number of them can lie
outside the circle. An overwhelming majority of them, that is, an infinite
number, must be inside the circle; and this is true for any circle about z,
however small. Now let us suppose that we observe the points through a
given means of observation such as a microscope; then the circle can be
drawn so small that the infinite number of points remaining inside it become,
for us, indistinguishable from the limit point z. If we wish to express in-
tuitively the relative positions of the points z,, z,, 23, . .. and of their limit
point z we may say that 2,, z,, 25, . . . ““cluster’” around z.

hy Th 1 A 1 - al ntt

s 2 ey £11% .
(U) 1€ raiation expresseu Uj (1) 18 ‘C‘Lilii'v'alé‘u O

(2) lim|z, —z| =0
n—+w
and we can understand the meaning of Equation 1 if we are acquainted with
complex numbers and with the concept of limit insofar as it is concerned with
real numbers alone.
There is another way of explaining the relation (1) in terms of real quantities.
We write

Zp =2, +1Yy, z=2x+4+1y

with real z,,, y,,, #, y; then the one complex equation (1) is equivalent to the
two real equations

(3) limz, =« limy, =y
and again, the understanding of these equations requires only a knowledge of
limits as applied to real numbers.

Observe that

Izn - Z|2 = (xn - x)2 +(yn - y)2

If the left-hand side of this equation is very small, both terms on the right-
hand side must be very small, and the converse is also obvious. Thus we see
that Equation 2 is actually equivalent to the two equations (3).

Example. Since
Q=21 +z4+ " +2=14+z4"F2"—2—-+ —2" =z
=1—2""
we have
__ ,n+l
4 1+z+z2+-~+z"=1—1—z——
—z
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Let us examine whether the left-hand side tends to a limit as » tends to
infinity. In fact,

Lz 42—

and the absolute value of the right-hand side is

|Z|ﬂ+1

|1 — 2|

Now, this expression tends to zero when n — oo provided that |z| < 1 since a
high power of a proper fraction is very small. Using the definition of the limit

237a wmmnzr wmresida rree sl

lim(l4+z+42"4+2)=T""

n—to L — &

We mean the same thing when, using the more convenient notation of
infinite series, as for real numbers, we write

1
1 —z

(5) l4+z4224+224 - =

we have supposed that |z| < 1.

We can obtain further useful results from (5) by using the fact that this one
complex equation is equivalent to two real equations. This principle can be
applied to (5) just as it stands, but we obtain the result in a simpler form if we
first transform slightly by multiplying both sides by 2 and then subtracting 1,
getting

1 42
1 — 2

(6) 1 42242224224 =

We now separate both sides (6) into their real and imaginary parts. To
separate the left-hand side we write z in the form

z = r(cos 6@ + isin 6)
Then by Example 1.6.6 we obtain
2" = r™(cos nf + isin nf)
1 4 2r(cos @ 4 isin@) 4+ - + 2r"(cos nf + isinnf) 4 - - -

(7) 14 rcosf + irsinf
1 —rcosf —irsinf
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To separate the right-hand side into its real and imaginary parts we observe
that it equals [compare Section 1.8 (1)]

f1 L
LT

- ﬂ_L-'-a:nﬂ
r VvV T O OolLl VYV

(1 — rcos 0)% + r*sin®* 6

Now, equating the real and the imaginary parts in (7) and separating, we
finally obtain

hﬁﬂ
U

1 — r?

1—2rcosﬂ+r2
né
6 +

1 4+2rcos® +2r¥cos20 + -+ + 2r*cosn+ -+ =

rsinf 4+ r’sin20 4 - 4 r"sinnf 4 - =

1—2. co

-

l’
4

These results hold provided |2| < 1, that is, provided r < 1. We could not
obtain them with equal facility without using complex quantities.

1.10.1 Has the following sequence a limit and, if it has one, what is the
limit?

@ 1,i, —1, —i, 1,i, —1, —i, 1, . .. (S)
1 i li 1 i 1
b 1_ T T S S T I S
() 27 3 4’5’6 7 8 9 (5)
l+l 1+12 1 4+ i 1+ i\
o8- (B (A (R
2 7\ 2 7 \ /

2
@ 3+4i,(3+4i)2’ (3+4i)3’“-,(3+4i)"

d 3 d

1.10.2 For which values of z does

2z n
lim (:) exist?
n—+o \Z

1.10.3  Assuming the convergence of X |a,|, prove the convergence of the
five series

Z(la,| + Ra,), Z(la,| — Ra,), Z(la,| + 1a,), Z(la,| —1a,), 2a,
Additional Examples and Comments on Chapter One

1.1  The mirror image of the face of a clock is so placed on the complex
plane that the center of the face coincides with the origin, and when the
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hour hand points to z on the unit circle, the minute hand points to z!2. When

both hands point in the same direction z = 2!2 or, since z # 0,

Express similarly, by an equation, that the two hands
(a) Point in opposite directions.
(b) Are perpendicular to each other.
(¢) Include an angle equal to any multiple of 90°.

1.2 Compute (2 + i)(3 + /) and prove that

— TN
-_— Al

& 13

1.3 Compute (5 — /)*(1 4+ i) and prove that
T — darctan + — arctan 533

(This relation, due to Machin, has been used to compute = with high accuracy:
the series expansion of the first term on the right hand side is easy to evaluate,
that of the second term converges very fast.)

1.4 Prove that

1.5 Derive from de Moivre’s theorem (Example 1.6.6) the fact that
cos n @ is a polynomial of degree » in cos 6, and sin n 6/sin 6 is a polynomial
of degree n — 1 in cos 0. (They are called Tchebycheff polynomials.)

1.6  Given z; and z, as fixed points, describe the locus of the point

z1 + t(zy — 2,)
where ¢ is variable and

(a) ¢ is real
b)o=r=1

1.7 Let z,, z,, and z; be the vertices of a triangle, and p;, p,, and p,
nonnegative real numbers such that

Prtpetpa=1
Show that the point

Z2 = P12 + Pa?s + Pazs
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lies in the interior or on the boundary of the triangle and, conversely, that
any point z so situated can be represented in the given form with appropriate
P1» Pes and py. (Example 1.6) (S)

1.8 If, in Example 1.7, p, = p, = p,, where is the point z?

1.9  Analogously to Example 1.7, characterize the interior of a convex
quadrilateral with vertices z;, z,, 23, and z,.

1.10 The points represented by the complex numbers z,, z,, and 0 are
noncollinear. Prove that it is possible to express any complex number z in the

form
z = az, + bz,

where a and b are real. Furthermore, this representation is unique.

1 414 TL oLl . I | PR | -p— ~L i PO I S
1.11 I e poils z;, 29, alld 25 alc COLIICAr, SNOW dl 1cal nuinocrs
a, b, and ¢ not all equal 0 exist so that

a+b+c=0

azy + bz, + c23 =10

112 THE TRIANGLE INEQUALITY

The fact
lz. <+ 2zl
1”1 Z1

IA

lz.l 4+ |2
1¥11 =

iIs obvious when we regard z,, 2,, and z; 4+ z, as three vectors forming a
triangle. However, as there are occasions when such geometric arguments are
less immediate, we must be prepared to deduce such inequalities by analytical
means. We might well proceed this way:
2, + 2o* = (21 + 2)(z; + %)
= 2121 + 2%, + 2122 + 252,

= |2,|* + 2R(2:Z2) + |2l

= |21l® + 2 [24Z2] + 24

= |2)]® + 2 [2y] |ze] + [2]®

= (lz| + |zl )
Try to see some of the simple geometry hidden by this algebraic approach.

1.13  The inequality
IR2.25| = |2 |2l
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(cf. the derivation in Example 1.12) is equivalent to an inequality between real

numbers (components of the vectors z; and z,):

(.2, 4+ 4
vVl o4 . v d

(a) What is the geometric interpretation of this inequality ?

(b) Could you extend it to vectors in three dimensional space?

(c) Could you extend it to n dimensions?

1.14 The inequality considered in Example 1.13 can be derived by

consideration of the quadratic equation in ¢
(@t + 2 + (Wit + 1> =0
(a) How?
(b) Can you extend this derivation to » dimensions?

1.15 Prove the triangle inequality in » dimensions

[ + 9+ + (@, +9,)T2 =

[22 4+ - + x,2J1/2 4 [y + - + y 2]V /2

1.16  Show that
|20 + 2, + 2o+ -+ 2| 2 2] — |2] — |2e] — -+ — |2,

1.17  We consider the polynomial
P2y=ap"+ a2t + a2 2+ -+ +a,
and assume that g, # 0, a,, # 0‘. Show that
(a) the equation
|aol ™ + |ay| 2™ + - =« + |a,4| 2 — |a,] =0
has just one positive root r, and

(b) P(2) does not vanish in the circle |z] < r.

1.18  If the coefficients of the equation
ae" + az2" 14 a2+ 4 a,=0

are positive and nondecreasing, that is, 0 < g, <g, <a, <"

equation has no root in the circle |z| < 1.

1.19  If the coefficients of the equation

az"+ a4 az" 4+ 4+a,=0
26  Chapter One
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are positive, and r and R denote the minimum and the maximum among the »

ratios
4 a; 4, an

b ] 9 8y
a, a; 4a, an

the equation has no root outside the annular region

r=ld =R
(To remember this result, observe that this annular region contains the roots
of all the equations
az+a,=0,az+a,=0,...,a, 124+ a, =0)

120 nncnﬂl'\p rnrnon nrmad hvu

A edeiny il 1 LN LIIU 1\.’51 14 AW ALLLWNR} wr

y tho
z"[n! is greater in absolute value than the other terms of the mﬁmt series

1.21 Let 4 and B denote complex constants, and z a complex variable.
Assume that B # 0, and show that 4 + 4 + BZ + Bz = 0 is the equation of
an (arbitrary) straight line.

122  Let A, B, and C denote complex constants, and z a complex variable.
Show that
A4+ A+ B+ B+ (C+C)22=0

is the equation of an (arbitrary) circle. (Degenerate cases, especially straight
lines, are included.)

1.23 Show that the three points a, b, and ¢ are coilinear (beiong to the
same straight line) if, and only if

1 a
1 b

S
Il
<

n

1 ¢

1.24 Show that the four points a, b, ¢, and d are concyclic (belong to
the same circle) if, and only if

1 a a aa
1 b b bb
. .|=0
1 ¢ ¢é ¢¢
1 d d dd
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1.25 The three complex numbers z, z,, z,, determine the three vertices of a
triangle, and w, w;, w, the corresponding vertices of another triangle. The
two triangles are similar if, and only if

1 1 1
Z 2y 2| =0
W Wy Wy

The case of degenerate triangles must be appropriately interpreted.

1.26 In the equation
e+ Crpzp + 000+ €12, =0
Co12y + CopZy + *** + Cop2, = 0

cnlzl + Cnole + e + Cpnin = 0

the coefficients and the unknowns are complex numbers:
Cin = @iy + iby, z, =z, + iy,

In order that these equations have not only the trivial solution z, = z, =
...=zn=03 that iS, x1=x2=“.xn=y1=y2='°.=yn=0: it is
necessary and sufficient that the determinant |c,;,|¢ = 0. This determi-
nantal equation gives two equations between the 2n* real numbers a;,, b;,.
On the other hand, we can write the original system as 2» linear homogeneous
equations for the 2n unknowns. The necessary and sufficient condition for the
existence of nontrivial solutions in this cases is the vanishing of a single
determinant, that is, one equation connecting the coefficients a;,, b;,. In

o e PR Y ) |

what way are these results consistent?
1.27 Show that z,, z,, 2, form an equilateral triangle if, and only if,
7% 4 25 + 2y = 2923 + 232 + 212,

1.28 On each side of a given (arbitrary) triangle describe an exterior
equilateral triangle. Show, by complex numbers, that the centers of these
three equilateral triangles are the vertices of a fourth equilateral triangle.
(Let 2a, 2b, and 2c be the vertices of the given triangle, counterclockwise
ordered. Express the sides of the triangle whose vertices are the three centers
as vectors in terms of

u=b—ec, v=c—a, w=a—b

and of p which has one of the values considered in Example 1.9.9. Similar
to Example 1.7.4.)
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1.29 If a quadrilateral inscribed in a circle is such that the centroid of the
vertices lies at the center of the circle, then the quadrilateral is a rectangle.

(Choose an advantageous location for the centroid and consider the
biquadratic equation of which the four vertices are the roots.)

1.30 PROPOSITION DUE TO GAUSS

Let OA4, OB, and OC be the three edges of a cube at its vertex O. Let O
coincide with the origin of the complex plane, and let the complex numbers
a, b, and ¢ mark the projections onto the complex plane of the three vertices
A, B, and C respectively. For this situation, it is necessary and sufficient that
the three complex numbers satisfy the equation.

@+ +ct=0
(Some knowledge of the algebra of orthogonal transformations may help.)

131  Assuming that there are three noncollinear points a, b, and ¢ such
that the three limits

lim |z, — af lim |z, — b| lim |z, — ]

n— o n—+w 7w

exist, show that lim,,_,, z, exists too.
(Could you draw the same conclusion without assuming that a, b, and c are

noncollinear?)
1.32
lac — bd|® + |ad + belt = (laf® + [BI®)(|c|? + |d]?)

1.33  Quarernions are obtained by a further extension of the notion of
number. We may pass from complex numbers to quaternions just so as we
have passed from real numbers: the analogy is strong, although not complete.
In spelling out this analogy, the following examples may also shed some light
on the nature of complex numbers. The odd numbered examples 1.33 (the
present one), 1.35, 1.37, 1.39, and 1.41 form a sequence, and refer to each
other; the examples 1.34, 1.36, 1.38, 1.40, and 1.42 are similarly connected,
and form a parallel sequence. Examples 1.43 to 1.46 deal with another
aspect of the theory of quaternions

T attare Aannta sanl mnnembhars o oaam vy ualm’-\n- ia Aafinad
LACLLGLD UCIIULD 1wl llulllu\vlb n (’Uf P‘ fIAITIUCT 10 Advillivu

pair of real numbers (z, ). Equality, addition, and multiplication of complex
numbers are defined as follows:

(a, b) = (¢, d) iff a=c¢, b=d
(ab)+ (c,d)=(a+c,b+4d)
(a, b)(c, d) = (ac — bd, ad + bc)

Il OIGCICh

W
&
i

j2 ]
(e}
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Show that
(a) (a, b)(c, 0) = (ac, bc)
(b) (a,b) = (1, 0)(a, 0) + (0, 1)(b, 0)

1.34  Letters denote complex numbers. A quaternion is defined as an
ordered pair of complex numbers (z, w). Equality, addition, and multipli-
cation are defined as follows:

(a, b) = (c, d) iff a=c, b=d

(a,0) + (c,d)y=(a+ ¢, b+ d)

(a, b)(c, d) = (ac — bd, ad + bc)
Show that

(a) (a, b)(c, 0) = (ac, bc)
(b) (a, b) = (1, 0)(a, 0) + (0, 1)(b, 0)

1 3= w7 m o ab
L1390 We make a

si
complex nu b . We set

Show that, with this notation,
ii=(—1,0)
(a, 0} = i(a, 0)
(a, b) = (a,0) + i(b, 0)

1.36  We make a single exception: just the letter j will be used to denote a
quaternion. We set

0, )=
Show that, with this notation,
jji=(10
(a, 0) = j(a, 0)
(a, b) = (a, 0) +j(5, 0)
1.37  We define (a,b), the conjugate to the complex number (a, b) by
(a,b) = (a, —b)

Then we define |(a, b)|, the absolute value of the complex number (a, b), as
the nonnegative square root of the nonnegative real number |(a, b)|% given by

(a, b)(a, b) = (la, b)[?, 0)
Express |(a, b)|? in terms of a and b.
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138  We define (a, b), the conjugate to the quaternion (a, b) by
(a,5) = (4, —b)
Then, we define |(a, b)|, the absolute value of the quaternion (a, b), as the
nonnegative square root of the nonnegative real number |(a, b)|* given by
(a, b)(a, b) = (I(a, b)*, 0)

Express |(a, b)|? in terms of a and b.

1.39  We introduce a new operation: multiplication of a complex number
(a, b) by a real number c, defined by

[Observe that (a, b)c = (a, b)(c, 0).] Then the complex numbers appear as
““vectors’’ which are “linear combinations” of two ‘‘fundamental” vectors,
(1,0) and (0, 1)

(a,b) = (1,0)a + (0, 1)b

See Example 1.33. We shall write this last equation in the conventionally
abbreviated form (see Example 1.35)

(a,b)=a+ib

Convince yourself that all the rules (I) to (XI11) stated in Sections 1.1 and 1.8
remain valid for the complex numbers so introduced.

1.40  We introduce a new operation: multiplication of a quaternion (a, b)
by a complex number ¢, defined by
(a, b)c = (ac, bc)
[Observe that (a, b)c = (a, b)(c,0).] Then the quaternions appear as
““vectors,”” which are “linear combinations” of two “fundamental” vectors,
(1,0)and (0, 1)
(a,b) = (1,0)a + (0, 1)b

See Example 1.34. We shall write this equation in the conventionally abbre-
viated form (see Example 1.36)

(a,b) =a+jb

Convince yourself that the rules (I) to (XII) stated in Sections 1.1 and 1.8
remain valid, with two exceptions, (II) and (XI): the multiplication of
quaternions is noncommutative. As a sort of compensation, we have the rule,

which you should prove:

(a + jb)(c + jd) = (¢ + jd)* (a + jb)
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1.41 The task of verification imposed by Example 1.39 is considerably
alleviated if you are acquainted with matrix algebra. Then you can define a
complex number as a matrix with real elements:

wo=(;7)

By this definition, the rules of Example 1.33 and the rules (I) to (XII) follow
from well-known rules on matrices. What is the determinant of the above
matrix?

1.42  The task of verification imposed by Example 1.40 is considerably
alleviated if you are acquainted with matrix algebra. Then you can define a
quaternion as a matrix with complex elements:

(a— b)

((‘t’, b) = -
\b a}

By this definition, the rules of Example 1.34, and the rules (I) to (X) with the
exception of (II), and also (XII), and the rule stated in Example 1.40 follow
from well-known rules on matrices. What is the determinant of the above
matrix?

1.43 Define the quaternion k by the equation

1. o Y
.9 JLv—1i)

and show that
jk=—kj=i ki=—ik=j ij=—ji=k
il =jj=kk = —1

1.44 Let s, z, y, and z denote real numbers, and put
a=s+ iz, b=y —i:
so that, by Example 1.43,
a+jb=s+4ix+ jy+ kz
Of this quaternion a + jb
s is termed the scalar part, and

ix + jy -+ kz the vecrorial part
Show that
@+ b2 = * + 2%+ o + 2
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1.45

Find the scalar part and the vectorial part of the product
(iz + jy + k2)(ix' + jy' + k2)

where 2', ¥', 7', just as x, y, z, are real. (Do you recognize the result?)

1.46

Prove the identity in real numbers

(s2 + 22 + y2 -+ 22)(5”2 + x'2 + y'2 -+ z'z)

= (ss' —ax' —yy — 22’02 + (s2' + x5’ + y2' — 2y’ )’
+ sy +ys' 22— a2+ (577 + 25" + ay — yx')?

which is due to Euler and analogous to

(22 + ¥ (@2 + ¥'2) = (22’ — yy')* + (2y’ + y2)?

HINTS AND SOLUTIONS FOR CHAPTER ONE
131 |24 3il=./13  arg(2 + 3i) = arctan }
1.34 0= (z—y)® 22y < 2 4 ¢
(x + ¥’ =24 4+ 2¢°
|2l + |yl <&+t = |2
V2
1.5.3 z =0, z,, 2, are collinear
1.6.1 100
1.67 cos20 + isin20 = (cos 0 + isin 0)> = cos® 0 — sin? 6 +
2i cos § sin @
1610 2z + 3(z — 2)
1.7.1 (a) The interior of a circle, center at z = —#%, radius }.
fhy Tha intariar Af an allitnea fAar of L1 avae Afmatney and . /;
\ll} 11l 11lILwiiIV1 Vi Qll DIIIPD\', 1Vwl 4L I]., [ ¥, L= ] "'l’\lll.ﬂJUl.} LI Ly J
(minor).
1.7.6  The midpoint of side b, ¢ is (b + ¢)/2, and the point } the distance

toward a on the line joining (b + ¢)[2 to a is (a + b + ¢){3; use
symmetry.
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1.8.5 From Example 1.8.4
21 + zl* + (1 — |41 — [2l®) = (1 + Z22)(1 + 232)
Thus [2; + 2] <1 + Z12], || <1, [25] <1

1.9.1 Iab = |qa| |b| sin (f — o)
The area of the oriented parallelogram (positive if the shortest rota-
tion from a to b is in the positive sense.)
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Chapter COMPLEX
TWO FUNCTIONS

Complex functions of a complex variable can be obtained by extension
of the usual analytic expressions to complex numbers, and can be used in
problems dealing with maps or two dimensional vector fields. Accordingly we
have to survey the subject from three different viewpoints in succession.

2.1 EXTENSION TO THE COMPLEX DOMAIN

The most useful functions of a real variable are those that can be repre-
sented by some simple formula, such as

2

y=1—=x Yy = Yy = arctan x

8 =

From our point of view, there is a great difference between the first two
examples and the last one; it is much easier to extend the first two functions
to the complex domain than the last one.

Dealing with real functions of a real variable, we usually denote the
independent variable by « and the dependent variable by y. It is convenient
to emphasize that we deal with complex functions of a complex variable
by using other letters. Let z stand for the independent complex variable and
w for the dependent complex variable.* With this notation, we may consider
the expressions

(1) w=1—2 w=2i
Z

for arbitrary complex z (excepting, in the second case, the value z =10
which makes the denominator vanish); to each value of z considered, there

* We may easily remember these letters with a little knowledge of German: z means “Zahl"”
{number) and w means “Wert" (the corresponding value).
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corresponds a uniquely determined value w that we can compute, since
we know how to add, subtract, multiply, and divide complex numbers.
Therefore, each formula (1) represents a well-defined function of the complex
variable.

Our examples (1) belong to the simplest type of functions that can be
extended to the complex domain. Let 4y, a,, . . . , a,, denote any complex (or
real) constants. The expression

(2) w=a,+ az+ az* + -+ a,z"

is a polynomial in z of degree m provided that a,, # 0. It yields a well-
defined value w, which we can compute by addition, subtraction, and
multiplication, for any complex value z, and so it represents a function of z
defined for all complex values, or in the whole plane. The last phrase suggests
that we should represent the variable complex number z as a “moving”
point, ranging over the whole plane.

Let also by, by,...,b5, be given complex or real constants, b, # 0.
The rational fraction

Gyt az+ -+ a,2"
bo + bz 4+ -+ b2"

is a quotient of two polynomials. It yields a well-defined value, w, which we
can compute by the four fundamental arithmetical operations except when
z 1s a root of the denominator. Except for the points corresponding to these
roots, the formula (3) defines w as a rational function of z in the whole
plane. A polynomial such as (2) may be considered as an extreme special
case of a rational function in which the degree, n, of the denominator ((3)) is
equal to 0.

The first example (1) is a polynomial, the second one a rational fraction.
It is more difficult to extend to the complex domain functions that are not
rational. After due preparation, we shall discuss arctan z in Section 2.8.

3)

2.2 EXPONENTIAL FUNCTION

The function €%, where e = 2.71 - - - is the base of natural logarithms, is
called the exponential function; it is sometimes convenient to write
(1) ¢ = exp (2)

Wishing to extend the definition of the exponential function to complex
numbers we cannot start from the expression (1) because we have not yet
considered powers with complex exponents. The best we can do is start from
the well-known expansion of ¢” into powers of x and replace « by z. Thus we
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define the exponential function for complex values of the variable by the
series

£

(2) exp(z) =1 + 0

2 3
2 8
+ 2! + 3! +
(We postpone considerations of convergence; see Examples 2.1 and 2.2.)
If x and 2’ are real numbers, then

(3) e & = ot

by the ordinary rule for the muitiplication of powers with the same base.
This formula leads us to examine the product exp (2) - exp (z") where z and
Z, as the choice of the letters suggests, denote arbitrary complex numbers.
By the definition (2)

'2

2 '
exp (2) exp (2') = (1+5+7’—+---)(1+%+§—'+---)

iy 2!
z 22 2 24

_1+1: to Tt T

z' 22’ z%2 222
+1!+1!1!+2!1!+3!1! +
AR AR A S S
+2!+1!2!+2!2!+ +3!+1!3'+

rd
+E._+...+...

4!

=1+%(z+z’)+%(z2+2zz’+z'2)
+ %(z3 + 32% + 3222 4+ 2'%)

+ i(zd. + 4zaz: + 622212 + 4zz:3 + zﬂl) + Ve e

242 (242 (z4+2)P +2)
1! + 2! + 3! + 4! +

=1+

The last line represents exp (z + 2'). In order to obtain this result, we have
collected in the product of the two infinite series the terms appropriately
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and we have made use of the binomial theorem. (For discussion of the
convergence, refer to 3.10.) We have obtained

4 4

Y — avyn {2 L
J w1 ~)

Ul\l.l ~

(AN ayn {2} ayn {»

for arbitrary complex numbers z and 2’
After this result we should not shrink from defining e* for arbitrary complex
z. We identify e* with exp (z) and write henceforward

2 3

z .z z 2
(5) L+ o+t =

This definition is reasonable because it implies the generalization of (2),
that is, see (4),

(6) e%e? = ez+z'

We put this formula in a box to emphasize its importance.

2.2.1 Bearing in mind the definition of e* for complex values of z, prove:

(S)

2.3 TRIGONOMETRIC FUNCTIONS

We now apply the method that has succeeded so well in the case of the
exponential function to the trigonometric functions sine and cosine. We
define these functions for arbitrary complex z by the expansions

2 4 6

z z z
@ cosz=l-nta et
3 25 z?
(2) smz—z—3'+5!+7'+
It follows immediately that
(3) cos (—z) = cos z sin (—z) = —sinz

since the series (1) contains only even powers of z and (2) only odd powers.
The series (1) and (2) appear to be related to the exponential series,
Section 2.2 (5). We cannot help observing a certain regularity if we write
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the three series as follows:

e=1+-+_-—+-+_+_+
1. A b 4. I
z2 Z‘
cosz—1—2'+4!—
2 2
sin 2 = '—3!+5'+

We may observe that the signs in the last two series recur periodically with
the period 4. If we observe also that the powers of i/ have the same sort of
periodicity:

=1, it= —1, 3= —i, it=1, i* =1, t=—1,...

then we come very near to the discovery of Euler, who, introducing the
number /, found a remarkable relation between the functions cos z, sin z,
and e=.

The foregoing remarks suggest the idea of substituting iz for z in the
exponential series. Disposing the terms appropriately, we write

e_q_ 2 2 2 z 2 2 )
YT 6'+ +(1' YT

Using (1) and (2), we obtain the very important formula

4) el = cos z + I sin z

This is Euler’s theorem. It has many and various applications; its discovery
was, in fact, one of the prmcnpal incentives to further investigation of
complex numbers.

Substituting —2 for z in (4) and taking (3) in account, we obtain
(5) e =cosz—isinz
Combining (4) and (5) by addition and subtraction, we obtain

iz —iz iz —iz
e e : e —e
(6) cOs 2 = + sinz =——"—
2 2i

Thus we have obtained expressions for the trigonometric functions cosine
and sine in terms of the exponential function. If we do not consider complex
values of the variable, we have no such expressions.

By (4) and (5), or by (6), the study of trigonometric functions is reduced to
that of the exponential function. For instance, we can deduce (3) from (6).
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Again, by formula 2.2 (6) we have
ei(z+z.) — el'z . eiZ'

and hence, applying (4), we obtain

(7) cos (z + 2') + i(sin z + 2')
= (cos z + 7 sin z)(cos z' + i sin 2')
= c0S 2 cOs z=sin z sin 2z’ + i(sin z cos z' 4 ¢os z sin 2')
Similarly, starting from
e—i(z42) = g—iz . g—i7
and using (5), we obtain

(8) cos(z+ 2') —isin(z + 2)
= €Os 2 ¢Os z—sin z sin 2’ — i(sin z cos 2’ + coOs 2 sin 2’)

Combining (7) and (8) by addition and subtraction we obtain
(9) cos (z + z') = cos zcos 2’ — sin zsin 2’
(10) sin (z + 2’} = sin z cos 2’ + cos zsin 2’

These formulas have thus been shown to be true for arbitrary complex
values of z and 2’. (For real values of the variables see Section 2.5, Example 1.)
It is worthwhile observing that we have derived them from the simpler
analogous equation, Section 2.2 (6).

After the preceding results, we have no difficulty in extending the definition
of the other trigonometric functions in a similar way. Thus, we have, for all
complex values of z which do not make the denominator vanish,

H £z ,—iz
(11) tanz = S02 _le —e

2.3.1 Compute e for z = 0, in[2, im, 3inf2. (S)

2.3.2  Using Section 2.3 (6), verify the following trigonometric identities,
valid for all complex numbers:

/o
(a) sin (; — ) = cos z (S
(b) sin®z 4 cos’z =1
2tanz
¢)tan2z = ———
©) 1 — tan®z
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2.3.3  Use Section 2.3 (4) to show that

(a) e = ¢
(WY ozl — o
\U} |C« | [ =3

2.34  Show that e* % O for every complex value of z. (S)

2.3.5 Show that, for z = x + iy, x and y real,

v

. 2N\
sin 2| = sin? z 4+ (£&——%
| | 5

2.3.6  Find all zeros of sin z. (Do not neglect the possibility of complex
zeros.) (S)

We consider here some general consequences that we shall have to use
continually and postpone until the next section certain exercises that are
desirable but not indispensable.

(a) Supposing as usual

z=z4+ iy

where x and y are real, we have, by Sections 2.2 (6) and 2.3 (4)
(1) e* = otV = g% - ol
= €*cos Y + ie*siny

Using this formula and the usual tables of logarithms and trigonometric
functions, we can compute numerically the real and imaginary parts of the
exponential function for any given complex value of z.

(b) We know that the trigonometric functions cosine and sine, considered
for real values of the variable, have the common period 27, that is

cos (¥ + 27) =cosy, sin(y + 27) = siny.

But, if we change z into z + 2ni, the real part  remains unchanged, and
only the imaginary part y is changed into y + 2z, Therefore, by (1)

£N ~2+2ri
\<7 <

Thus the exponential function is periodic; it has the purely imaginary
period 2.

It is worthwhile to show the same fact in a slightly different manner.
If n is an integer.

z

—
-_—C

cos2nm =1 sin2nm =0
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and therefore

(3) e®"" = cos 2nw + isin 2nm =1
Hence
(4) ez+2mn' —_ ez . e2mu' — ez

This last equation is apparently more general than (2) which is contained in
it as a special case for » = 1. But we may easily derive (4) from (2) by
repeated application. For instance,

ztHdnmi _ e(z+2nm’)+2nm’ z+2nai z

e = ¢ = e
We obtain similarly that
ez—2m’ — e(z—2m‘)+§ﬂ' — ez
and so on.
(¢) Since
cosm = —1 sin7r =20
we have
é"=cosnm+isinm=—1

We may remember this result in the form

(5) "4+ 1=0

Somebody called this the ‘“most beautiful” formula since, he said, it
combines the five “most important” numbers, 0, 1, /, 7, and e.
(d) If we write as usual

z=2x 4+ iy x = rcos@ y=rsinf
then, by 2.3 (4),

(6) z = re*

We shall make extensive use of this concise expression of a complex number
in polar coordinates, whicn we may also write in the form

(7) 2= |¢] € *

(e) If, in formula (6), we take r = 1, we obtain the complex number
e'?, with real 8. The vector e is a unit vector, that is, its length is 1; unit
vectors are useful in specifying directions. The point ¢* is a point on the
circle with center 0 and radius 1; this circle is called the unit circle.

119 rd
iw

2.4.1 Compute numericaily (a) ¥ (S), (b) e2*13 (c) e~ 1+2,

2.4.2 Show that sin (z 4+ 27) = sin z also for complex values of z. (S)
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2.4.3  Show that tan z, as a function of the complex variable z, is periodic
with the period 7.

244  Write 3 — 2/ in the form Section 2.4 (6).
2.4.5  Find all solutions of the equation

=1+ (S)
2.4.6  Find all solutions of the equation

sinz=~1
2.4.7 Find R(ei%"). (S)

24.8  Find I(¢™ %),

(8]
i
\e
"T]
Q
]

2.5 FURTHER APPLICATIONS OF EULER’S THEOREM

The formulas 2.2 (6) and 2.3 (4) (extension of the ordinary rule for multi-
plying powers to the case of complex exponents, and Euler’s theorem)
are extremely useful in dealing with trigonometric functions, even if we
consider such functions only for real values of the variable. We shall discuss a
few examples. If the reader has time, he should also solve some of the similar
exercises 2.5.1 to 2.5.10 at the end of this section.

Example 1. We wish to derive the well-known formulas for cos (a + 8)
and sin (x + f) from Sections 2.2 (6) and 2.3 (4) but, in contrast with
Section 2.3, we restrict ourselves to real values. This is suggested by the
notation; we write « and § instead of z and z’, which we used in Section 2.3.
We proceed as follows:

cos (o + B) + isin(o + f)

— ei(a+ﬂ)

_ Ata . LB

- [ 4

= (cos o + isina)(cos f + isin f)

— rnoarne R cir v oiny B L ifocim e vne B L rne o ot A)

_— WU U WU P olll W ol H T l\Dlll W LUVo H T WU K o1l 'J}
Comparing the first line with the last line, and separating the real part from

the imaginary part, we obtain the desired formulas.
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This derivation supposes that the values involved are real but, nevertheless,
the result remains valid even if the values involved are complex as shown in
Section 2.3. The following examples are of a similar nature but we shall not
insist on repeating our remark. Later, we shall be in a better position to
understand the true reason of such happenings.

Example 2. Express sin 30 in terms of sin §. We appeal again to our basic
formulas 2.2 (6) and 2.3 (4).

cos 30 + isin 30 = &% = €9 ¢ ¢
= (€")® = (cos 6 + isin 0)°
= c0s® 6 + 3icos®Osin 6 — 3cos Osin® 6 — isin®6
Equating the imaginary parts of the first and last terms, we have
sin 30 = 3 cos® 0 sin 6 — sin® @
= 3sin § — 4sin® 0
which is the desired result; we used the relation

cos?@ =1—sin’6

Example 3. Express cos? 0 as a linear combination of the cosines of the

multiples of 6, that is, of 1, cos 6, cos 26, . . ..
Using Section 2.3 (6), we have

e‘IO + e—iﬂ)ll
2

= 5( 4 46%9 4 6 + de~0 4 ¢~40)
= 2% + 3 cos 20 + §cos 40

we used again Section 2.3 (6). The expression we have obtained for cost 6
is useful when we wish to calculate the integral of this function.

cost O = (

Example 4. Sum the series
14 2cosB+ 2cos20+ "+ 2cosnb
To solve this problem, which is important in the theory of Fourier series,
the proposed expression in the form:
ik ERRE X2 B K A RERE X
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This is a geometric series with initial term e~*", quotient e, and 2n + 1
terms, whose sum is equal to

,—iné Siln+1)8 Aln+(1/2)18 ,—iln4-(1/2)18
— € € " =€ -

e —
1 — ¢'° - 128 _ —(1/2)i0

. 0
sin (2n 4+ 1) -
_ 2

. 0

sin —

2

The point is to transform the fraction so that it appears as a quotient of real
quantities. We attained this end by multiplying the numerator and de-
nominator by e ‘* and using Section 2.3 (6). We can, however, proceed
differently; the fraction in question is also equal to

(o—in® __ Silntl)8yq __ ,—i0y coenf — roclpn L 130
\‘v W ,\‘- W ’ _ WD R A Vs \" F] LJV
(1 — %1 — ™) 1 —cosf

Thus, we have obtained

sin (2n + 1)2

14+ 2cos@ 4+ 2cos20 4 -+ 2cosnf =

. 0
1 sin —
(1) 5
cos n — cos(n + 1)0
1 —cosf
2.5.1 Express cos nx in terms of cosx forn = 2,3, 4. (S)

2cos?x — 1, 4cos®x — 3cosx,8costxr — 8cosx 4 1
2.5.2  Express sin nz in terms of sin x forn = 5, 7.
2.5.3 Express sin nzfsin  in terms of cos x for n = 2, 3, 4.

2.5.4 Express (cos )" as a linear combination of the multiples of 1, cos #,
cos2x,...,cosnxforn=2 3, 5.

iy =y

2.5.5 Find | cos® x dx.

2.5.6 Express (sin 2)” as a linear combination of 1, cosx, cos 2z, ...,
cosnx forn =2,4,6. (S)
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2.5.7 Express (sinx)* as a linear combination of sinz, sin2z,...,
sin nx forn =3, 5, 7.

2.5.8 Find | sin® z d.
2.5.9 Show that
cos (¢« + 8 + y) = cos « cos f§ cos ¥
— cos o sin g sin p
— cos fsin y sin o
— cos y sin o sin f

and find an analogous expression for sin (x + 8 + y).

2.5.10 Show that

7/2 _
L cost zdz=2.1.3.. =1 (S)

2.6 LOGARITHMS

We now extend to the complex domain the concept of natural logarithms,
which we call shortly logarithms. We say that w is the logarithm of z, and
write

(D) w = logz
if and only if
(2) z=e"v

Thus, we have defined the logarithmic function for complex values of the
variable. By our definition, the two relations (1) and (2) are fully equivalent;
both have exactly the same meaning. We have discussed the exponential
function before in Section 2.2, defining it by a series, see Section 2.2 (5),
and so we know the full import of Equation 2. Knowing how to pass from
w to z by (2), we are Zoing to study how to pass in the inverse direction, from
z to w, by (1). In mathematical terminology we are going to study the logarith-

mic function as the inverse function of the exponential function.
We write, see Section 2.4 (6)

Vww i wwhdwas )

(3) z=re® w=u+iv

with real 6, u, v and positive r. [We exclude the case r = 0; see subsection

21 V5 £ 1A e

(e).] Then we may write (2) in the form
ret'e — eu+iv —_ eu . eiv
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The modulus of the left-hand side is r, and its argument 6. Now, if two
complex numbers are equal, their absolute values are equal, and the difference
of their arguments is an integral multiple of 27 (Section 1.3). Therefore

eu=r v=9+2n-rr

where n is an integer. But r is a positive number, and v a real number.
Therefore, the connection between r and u is well known; it is the con-
nection between a positive number and its natural logarithm, considered in
the theory of real functions. With this meaning of the term “logarithm,”
we rewrite the last relations in the form

(4 u=Ilogr v=20+4 2nn
By (1), (3), and (4)

(5) lo

™
I

logr 4+ i(0 4+ 2n=7)
lva L l .\v 1 L) }

aa

which we may also write in the form
(6) logz =log |2| + iargz

In order to be able to use these formulas correctly we have to emphasize a
few points that were taken into account in the derivation but that are not
sufficiently expressed by the final form.

(a) The sign “log” is used with two different meanings on the two sides of
(5), and the same applies to (6). On the left-hand side we take logarithms of
arbitrary complex numbers, using the new, unrestricted meaning of the
term. On the right-hand side we take the logarithm of the positive number
r = |2|, using the old meaning of the term, which is restricted to real and
uniquely determined logarithms of positive numbers.

It would be natural to expect that the new definition of logarithm, when
applied to positive numbers, should give the same result as the old definition;
then the above distinction would be unnecessary. This point will be cleared up
in what follows.

(b) The real part of a complex logarithm is uniquely determined, as we
have just said, but the imaginary part has infinitely many values, the differ-
ence between any two values being an integral multiple of 2#. This in-
determination of I logz is shown explicitly by (5) and implicitly by (6):
arg z has infinitely many values as we have discussed in Section 1.3.

(c) Out of the infinitely many values of log z that are originally equally
permissible, we select the value whose imaginary part is between 0 and 2~
and cali it the principal value of the logarithm. In other words, in order to
obtain the principal value of the logarithm we have to choose, in (6), the
principal value of arg z. One of the limits 0 and 2= must be included and the
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other excluded; the usual convention is that
0=<Ilogz < 2=

if log z represents the principal value. Compare Section 1.3.
(d) The principal value of the logarithm of a positive number is real;
it is the logarithm in the old acception of the term. For instance

log 10 = 2.302585 - - - + 2nmi

to obtain the principal value we have to choose n = 0. Thus, as a direct
consequence of its definition as the inverse of the exponential function, the
logarithm has many values, is a multivalued function for all values of the

ahla nla fn al valiias Ten thia 1o tha 1
val.la.U1C, alDU I.UI. PUDILIVC lcal yaiuuwy. l.l.l Lllla ].abl. \,a.ac, Ulll] I.ll‘- Pllllbll.’al

value is real, and so only this value was encountered in the theory of real
numbers. The difference between the usages of the term “log” on the two

mrlr-c of (R\ is that on the rlnhf hand mrlp logarithm is rpefnﬂfpd to mean the
b T AAWSLANE I b“ll‘lllll A AWUOLALWw LWL AAWweSAd VAiGW

prmcnpal value, while on the left-hand side it is not so restricted.
Observe that no value of the logarithm of —1 is real, since

log (—1) = =i + 2n7i = (2n + 1)=i

and that the same is true of any negative number.

(e} In the foregoing we have considered the logarithm of any complex
number, except 0. If z = 0, our formulas (5) and (6) fail completely. First,
r = |z| = 0 and no finite real number can be considered as log 0. Second,
arg 0 is completely indeterminate, as we have discussed in Section 1.3.
It is reasonable to regard the logarithmic function as undefined for z = 0.

We cannot be too careful in discussing the several values of the logarithm

nea atmarismbasnd ooanise o A nanim o A Losna o P R YL | wrall
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as physical interpretations, as we shall see later.

2.6.1  Find the principal value of the following logarithms

(a) log (1 — i) (S)

(b) log (1 + ) whene=f
AN lAow PO N .~ 0 .~ a _z .
JU 'l"‘-'} UKV S o7 V=7

2.6.2 Solve the equations

(a) & =
(b) cosz =2
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2.6.3  Show that log z;z, = log z; + log z, is not neccssarlly correct if the
logarithms are restricted to principal values, but is always correct in the
broader sense.

2.64  Verify that the usual laws of logarithms remain valid for arbitrary
(nonzero) complex numbers.

(a) log 2" = nlog=z n a positive integer
(b) log? — log z, — log z,
2

(c) logz™ = —nlogz

2.6.5 If z = re z5% 1 show that

Riog(z— 1) =2log (I — 2rcos 6 + r?

2,7 POWERS

We use the concept of logarithm that we have just acquired to extend the
concept of power to complex numbers. Being given a complex constant a, we
define z* by the equation

(1) 20 — eﬂ log #z

Having represented the exponential function by a series [2.2 (5)] and dis-
cussed the values of the logarithmic function [2.6 (5)] we understand the

~F tha -
exact lu‘c‘aﬁlfis Ol the usul.-uaud Sld‘c‘ Of (1} If 4 wWe use p‘olar CGOi’dluateS rand

6 in expressing z, and also Section 2.6 (5), we may rewrite (1) in the form

(2) z® = exp {a[log r + i(6 + 2n=)]}

The last factor contains the indeterminate integer #, and so the function
z¢ of z may be multivalued. Whether it actually is, depends on the nature of
the number a; we illustrate this point by examples.

Example 1.  Take a = 2. Then, by (2),

22 = exp [2(log r + i6) + 4nmi]

2( log r410) 2,201

= ¢ =re

we used Section 2.4 (4). Thus the function z2 turns out to be single-valued,
which stands to reason, since we have here a rational function.
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Example 2. Take a = 4. Then, by (2),

z'/t = exp [}(log r + i0) + nmi]
— (_l)nr1/2et'(8/2)
— 20D

the plus sign being valid when » is even and minus when » is odd.

r1/2 denotes the positive square root of the positive number r. Thus, the
square root is a two-valued function in the complex domain, just as it is
in the real domain.

This observation can be generalized. If » denotes a positive integer, the
n'? root is an n-valued function. See Example 2.7.12.

Example 3. Take a = i. Then, by (2),

z' = exp [i(log r + i0 + 2n7i)]

this function has an infinity of different values. For instance,
(_1)1 — e—(2n+1):r

the simplest value being obtained for n = —1. (Not only e and =, but also
€’ is irrational—this fact, however, is very difficult to prove.)

2.71 Find all values of

(a) i (S)
(b) (1 + iy

(c) log (#1/%)

(d) log [log (cos 0 + i sin 6)]

2.7.2  Extraction of roots. From the definition of the general power given
in this section, and by the use of de Moivre’s (or Euler’s) theorem, we can
easily evaluate a power of a complex number with any rational exponent.
Let p and ¢ be integers, ¢ > 1. We define w = 27/¢ as the solution of the
equation

wq=zp

of degree ¢ in w. If we introduce polar coordinates r and 0 for z, and p and ¢
for w, then

p(cos g + isin qd) = r®(cos pb + isin ph)
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Solving for p, ¢, we have

p = r”< the real positive (usual) root, and
qé¢ =pb + 2nm, n =0, £1, £2,...
q q
Thus,
W = Pew — rn/qefpaloezmrt/a’ n= 0, :|:1, :|:2, o

Because of the periodicity of the exponential function, there are only ¢
distinct values of e?"*¥/e that is, forn =0,1,2,..., ¢ — 1. The required
roots are then given by

i
W = 2?4 = pP/ag 1’0/082#1’11/0’ n=0,12...,g—1

Takez =1, p = 1, and plot the ¢ points for ¢ = 2, 3, 4, and 6.

273 Find the indicated roots:
(a) (—1)"® (S)
3/2
(b) (cos 2?77 + isin 2?‘")

(€) (14 i)
274  Prove that the square roots of i are £+ (1 + i)/\/ 2.

3
-l
h

Show that the cube roots of unity are

—14i/3 —-1-iJ/3
2 2

27.6  Find (a) The cube roots of —1.
(b) The 6th roots of i.
(¢) The cube roots of 1 — /.

Illustrate graphically.

2.7.7 Solve #* 4+ 4 =0, and factor #* + 4 into two real quadratic

fartnr Q)

4 AW LWL s. \U}

2.7.8  Express the square roots of z = = + iy in terms of x and y.
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279  Verify that the ordinary formula for the solution of the quadratic
equation
a*4+bz4+c=0

holds for complex coefficients a, b, c.
2.7.10  Find all values of /3 + 4i + /3 — 4i

2.7.11  Find the »™ roots of unity and show that they lie at the vertices of a
regular polygon of » sides inscribed in the unit circle. (S)

2712  Let p be a third root of unity and let m and » take all integral
values 0, £1, £2, . . . independently of each other. The set of points m + np
consists of the vertices of congruent equilateral triangles that cover the
whole plane without gaps or overlapping. Discard from this set of points those

maining set. (S)

2.8 INVERSE TRIGONOMETRIC FUNCTIONS

Summarizing the foregoing, we may say that, in the complex domain, the
exponential function is the common source of trigonometric functions,
logarithms, and powers. Also the inverse trigonometric functions can be
reduced to logarithms and hence, ultimately, to the exponential function.
However, we are not going to treat this subject exhaustively in the text;
one example will be enough to show the general trend.

Example. We define arctan z as the inverse function of the tangent func-
tion. We write

(1) w = arctan z
iff
(2) z=tanw

Thus, these two relations, (1) and (2), are fully equivalent, both having
exactly the same meaning. Now, by Section 2.3 (11), Equation 2 is equivalent
to

Solving this equation for e**, we obtain

eziw=1+zz
1 —iz
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and hence, taking logarithms of both sides and using (1), we get

1 1 4 iz

arctan z = — log ——

2i T1—iz
We know, from Section 2.6, that the logarithmic function has an infinity
of values the difference between any two of its values being an integral
multiple of 2. Therefore, (3) shows that the function arctan z has an
infinity of values, the difference between any two being an integral multiple
of 7. Thus the connection between the various values of the infinitely many-
valued function arctan z is exactly the same in the complex domain as in the

real domain.

[ B « B | T al o £ - s 1 ) . ,1 aN
8.1 Show that (@) arcsinz = —riog (k. = v1 — 2%)

(b) arccos z = —ilog (z + NP 1)

.8.2  Find (a) arctan 2i (S)
(b) arctan (1 — i)

283 Iflogz=a+ ib,zlogz = p + ig show that

a
arctan p_ arctan— — b

q

2.9 GENERAL REMARKS

After having discussed some examples, we consider now the concept of a
complex function of a complex variable in general. If, to every complex
number z belonging to a certain domain, there corresponds a complex
value w, we say that w is a function of z

(1) w = f(2)

In the foregoing sections we have discussed a few important cases in which
we can compute the value for w corresponding to the number z by some def-
inite simple process. Now we consider the connection between z and w
abstractly, apart from any specified, concrete computational operation.

The equation (1) between complex numbers must be equivalent to two
equations between real numbers. We write

(2) z=ux 4+ iy w=u-iv

z, ¥, u, v being real variables. If z is given, x and ¥ are given, and the con-
verse is also true. But if 2 is given, the law expressed by (1) permits us to
find the complex value w and, therefore, also the real part ¥ of w. Thus u is
determined by x and y, that is, the real variable u is a function of two real
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variables x and y. Similarly, » must be a function of  and ¥, and we express
both facts by writing

3) u=d,y)  ©=9p,)

EN

the letters ¢ and v standing here for real functions. We may combine (1),
(2), and (3) and write

(4) S+ iy) = $(=z, 9) + iy(z, y)

Summarizing, we see that a complex function of a complex variable is equiva-
lent to two coordinated real functions of two real variables; (1) is equivalent
to (3).

If this is so, why should we consider complex functions at all? Real
r'liﬂl\,*:l‘\ﬂﬂ AR - WL . rﬁm:l:ﬂ”' :r L) nﬂmnlav PII-I\*:A- ;ﬂ Aﬂl\:n-ﬂlﬁﬂ‘ e ﬂr\:ﬂ Ar
LUILILLIVIIY alv 11iVIV lalllllial , 11 a LUllllJlCA 1UulivLIviI 1D cqunvalcul. v a lJCl.ll. Ul
real functions, what is the point in introducing the less familiar complex
functions ?

X
If the two real functions u and » are chose

particular connection between them, then there is really not much point in
combining them into a complex function. There are, however, cases in which
the two real functions are so closely correlated that it is advantageous to
condense the two relations (3) into the one relation (1). We are going to
consider, in Sections 2.12 and 2.13, geometrical and physical situations that
are more concisely and more intuitively described by one relation of the form
(1) than by two relations of the form (3). Before discussing the case in which
both variables—the dependent and the independent—are complex, we
shall consider, in Sections 2.10 and 2.11, the simpler cases in which one of
these two variables is complex and the other real.

ndnm and thara ic nn
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2.9.1 SINGLE-VALUED, MULTIVALUED

A function is essentially a rule of correspondence. For instance, by virtue

of the equation
w=1—22

there corresponds to every complex value assigned to z a complex value of
w. Generally, we consider complex functions of a complex variable z. Such a
function f(z) determines exactly one complex number w corresponding to
each complex number z that belongs to a certain set D; we express such a rule
of correspondence by writing

w=f(z)

.....

For instance, all four functionsw =1 — 2%, w = ¢*, w = cos 2z, w = sin 2
have the same domain of definition: the whole z-plane, the set of all complex
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numbers z. The domain of definition of the function

W =

B | —

can be termed the punctured plane: it is “punctured” at the origin, it com-
prises all complex numbers with the single exception of the value z = 0.

A function in the sense here circumscribed should be more precisely
termed a single-valued function. Some of the functions we have considered
in this chapter are not single valued: the logarithm, the inverse trigonometric
functions, and a power with a nonintegral exponent are multivalued functions.

Certain difficulties inherent in the subject matter of our study oblige us
to treat these two kinds of functions differently: unless the contrary is
explicitly stated, any general explanation about functions refers to single-
valued functions. We cannot avoid considering examples of multivalued
functions, but each example of this kind should be considered on its own
merits until later when we shall be prepared for examining multivalued
functions generally. Logarithm, powers, and inverse trigonometric functions
are our principal examples; since the logarithm is used for defining the
others, the most important example of a multivalued complex function of a
complex variable is log =.

The definition of the principal value of log z, given in Section 2.6(c), may
appear as ‘‘artificial” (Why cut out just this ‘“‘chunk” of the logarithm ?)
and this definition certainly introduces an *“‘unnatural” discontinuity (along
the positive half of the real axis.) The aim of this definition is, however, to
introduce a single-valued function: the principal value of logz is single-
valued; its domain of definition is the punctured plane (punctured at the
origin.)

There is a general hint behind this example: by cutting out some ap-
propriate single-valued ‘“‘chunk’ from any multivalued function (by re-
stricting “‘artificially” its domain of definition) we could make available
for it our general remarks on single valued functions.

2.10 COMPLEX FUNCTION OF A REAL VARIABLE:
KINEMATIC REPRESENTATION

We consider the complex variable z as a function of the real variable ¢.

(1) =/

We write, as usual, z = z + iy with real # and y. The iaw expressed by (1)
determines, to each real number ¢, a corresponding complex value z and,
therefore, also the real part « of z. Thus x is a function of ¢, and so is y.
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We express this by writing

(2) x=¢() y=19p()

where ¢ and y stand for real functions.

In choosing the letters x, , and ¢ we aimed at a simple and natural inter-
pretation of the relations (2). We regard ¢ as the time, and « and y as the
rectangular coordinates of a point whose motion is described by the two
equations (2). Now the position of a point in a plane can be given not only
by its rectangular coordinates,  and y, but also by the complex number
z = z 4 iy. Equation 1 expresses the fact that the position of the point z
depends on the time, and so it characterizes, even more concisely than the
two equivalent equations (2), the motion of the point.

Example.  If ¢ and p are constants, ¢ complex and p positive, then the
equation
z = ¢ + pe'

expresses that z moves along a circle with center ¢ and radius p. The point 2
proceeds counterclockwise with angular velocity 1.

If t is measured in minutes and we wish to represent the motion of the
point of the minute hand of a watch, we should change the equation into

z2=c + re—2ln't/60
2.10.1 If a and 4 denote positive constants and ¢ the time, the three
equations

(a) 2, = ia + at
(¢) z = ia + at — ihe™*

represent three moving points. What kind of motion is produced and along
what curve?

2.10.2 If a, b, and A denote positive constants and ¢ the time, the three
equations

(a) z; = (a + b)e*
(b) 2, = —h exp [i(a + b)t/b]
(¢) z = (a + b)e’ — hexp [i(a + b)/b]

represent three moving points. What kind of motion is produced and along
what curve?
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2.10.3 If a, b, and h denote positive constants and ¢ the time, the three
equations

(a) 2z, = (a — b)e"
(b) z, = hexp [—i(a — b)t/b]
(c) 2 = (a— b)e'*+ hexp [—i(a — b)/b]

represent three moving points. What kind of motion is produced and along
what curve?

2.11 REAL FUNCTIONS OF A COMPLEX VARIABLE:
GRAPHICAL REPRESENTATION

of the ¢
z = x + iy. Then u is determined by « and y, and so u is, in fact, a function
of the two real variables « and y
(1 u = $(z,9)

In order to represent (1) graphically, we interpret x, ¥, and u as rectangular
coordinates of a point in space. We can choose z arbitrarily (in a certain
domain), and then u is determined by (1). Since « and y vary, the point (2, ¥,
u) will move in space and describe a surface. A surface is a two-dimensional
locus in space representing a function of two independent real variables
just as a curve is a one-dimensional locus in a plane representing a function
of one independent real variable.

Surfaces in space and curves in a plane are analogous in theory but very
different in practice. A curve in a plane is easy to draw, even fairly accurately,
but surfaces exist usually only in our imagination; it is too troublesome to
construct them in plaster or other material. Therefore, we often prefer to
proceed differently. We consider the numbers x and y for which ¢ takes some
preassigned value g, that is, we consider the equation

(2) ¢z, y)=a

The points (x, y) satisfying Equation 2 form a curve that we may appropri-
ately call a Jevel curve of the function ¢(x, y) corresponding to the level a.
We plot in a plane a series of level curves, corresponding to a series of
equidistant levels

We consider the real variable u as a function

3
3
4]
v
<
V]
-
o
=5
y']

N ama

a=...,—2h, —h,0,h,2h,...

where & is a suitably chosen positive number. These curves form a chart
of level curves of the function ¢. Such a chart gives us detailed information
about the function ¢(z, ¥); using it, we can visualize the distribution of the
values of the function. If we wish to make our chart accurate we choose a
small value of 4 and, theoretically, nothing prevents us from choosing 4
arbitrarily small and making our chart arbitrarily precise.
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By the way, the two graphical representations are closely connected. Let us
imagine, in three-dimensional space, the planes whose equations are

u = nh

withn =0, 1, 2,.... The plane u = 0 is the x, y-coordinate plane, and the
other planes are parallel to it and equidistant. Let all these planes intersect
the surface representing the function (1), and project all the lines of inter-
section orthogonally onto the z, y-coordinate plane. What we obtain is the
chart of level curves.

(If the surface given by (1) is a part of the earth’s surface, a landscape of
hills and dales, the chart of level curves obtained by projection onto the
horizontal z-plane and reduced on an appropriate scale is called a “contour

In dealing with a complex function of a complex variable we can often
use with good effect either of the two representations discussed. Let 2 and
w be complex, x and y real, z = 2 + iy and w = f(2).

Now, |w|, the modulus of f{(z), can be considered as a real function of the
two real variables « and . In fact, |w| is determined by x and ¥ since

(3) Il = 1f(= + iy)|

We may represent |[w| as a function of « and y either by a surface, called by
some authors the “modular surface” of f(z), or by a chart of level lines.
The coordinates of a variable point of the modular surface of f(z) are z, y, |w|,
the last coordinate |w| being given by (3). The chart contains the level lines of
|w| whose equations are, withn =0, 1, 2, ...,

| f(x + iy)| = nh
Example. Describe the modular surface and construct a chart of level
lines of the exponential function, w = e*.

We have
Wl = |e"+7] = |e* - &'V] = &
Therefore, |w| is constant along straight lines parallel to the imaginary axis.
The modular surface is described by a moving straight line parallel to the
imaginary axis; it is a cylindrical surface whose cross-section is the well-
known exponential curve. To construct a chart we put

w=h,2h, 3h,...

x = log h, log 2k, log 34, . ..
Any slide rule shows lengths proportional to these numbers. Choosing
h =1 we obtain Figure 2.1 on which the real axis is a dotted line and the
level lines are marked with the corresponding values of |w| in the z-plane;
x and |w| are the coordinates in the plane of the cross-section.
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Figure 2.1
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2.12 COMPLEX FUNCTIONS OF A COMPLEX VARIABLE:
GRAPHICAL REPRESENTATION ON TWO PLANES

Many methods of constructing maps are known, and many are in actual
use, but no one map is perfect. The surface of the earth is spherical, or
nearly so. Any map of this curved surface constructed on a flat sheet of
paper is bound to be distorted in some respect. (This can be proved but
anybody can be led to suspecting it just by peeling potatoes.) Let us now
consider two different maps of the globe, on two different planes. Let x
and y be the rectangular coordinates of a variable point on the first plane,
u and v on the second plane. We write, as usual,

x4 iy=z ut+iv=w

The two maps may look fairly different if they are constructed by different
methods, but there is a correspondence between their points. An arbitrarily
given point z on the first map represents a certain point on the surface of the
globe that is also represented by a certain point w on the second map;
this point w corresponds to the given point z. The position of the point w
depends on the position of the point z to which it corresponds, that is,
w is a function of z:

1) w = f(2)

When the point z describes a curve, for instance, the image of a certain
river, or the image of the boundary line of two countries, on the first map,
the point w also moves along a curve that is the image of the same river, or
boundary line, on the second map.

We mentioned the globe in order to connect our ideas with something
useful and familiar, but, in fact, we may disregard the globe. We consider
two planes: the z-plane, in which the point z varies, and the w-plane, in which
the point w varies. If a relation of the form (1) holds, we can assign to any
point z of the z-plane, within a certain domain, a corresponding point w
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in the w-plane. We call a correspondence of this sort a mapping of the z-
plane onto the w-plane. Mapping of a plane onto another plane represents
graphically a complex function of a complex variable.

It is instructive to realize that the representations discussed in Sections
2.10 and 2.11 are closely connected with the representation we are discussing
now.

Let us assign some constant value to y, for example, b. Then z =« + ib
moves along a horizontal straight line and

2) w = f(z + ib)

becomes a complex function of the real variable z. Let * move with unit
speed. Then the corresponding point w describes in its plane a certain curve

[ Y-Y-9Y

with a certain (variable) speed. This is the kinematic representation we
have discussed in Section 2.10.
Let us choose a positive number 4, and consider in the w-plane the se-

11 f rrancante 1
n f concentric circles

|w| = h, 2h, 3h, . ..

The points in the z-plane that are mapped onto these circles satisfy the
conditions

(3) |f(x + iy)| = h, 2h, 3h, . ..

respectively. Each equation represents a certain line in the z-plane, a level
line of the function’s absolute value as we said in Section 2.11. The sequence
of these lines (3), or the whole chart of the level lines in the z-plane, is mapped

onto the sequence of the circles (2) in the w-plane.
Generalizing this idea, we may consider any family of curves in one
plane and investigate onto which family of curves it is mapped in the other

plane.

Example.  The z-plane is mapped onto the w-plane by the function
w = 2%

Which lines of the z-plane are mapped onto the straight lines parallel to the
coordinate axes of the w-plane ?
We have
u+iv=(x+ iy)?
and, therefore
u=2a*— y? v = 2zy

A line parallel to the imaginary axis of the w-plane is characterized by the
equation ¥ = a, where a is a constant and its image in the z-plane has the

equation
22 —y=a

60 Chapter Two



Figure 2.2
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This equation, in which a is regarded as a parameter, represents a family of
hyperbolas whose asymptotes bisect the angles between the axes of the
z-plane. A line » = b of the w-plane is the image of

vy = b

we have here a family of hyperbolas in the z-plane whose asymptotes are the
axes (Figure 2.2).

2.13 COMPLEX FUNCTIONS OF A COMPLEX VARIABLE:
PHYSICAL REPRESENTATION IN ONE PLANE

Let us focus our attention on a point in a large, steadily flowing river.
Many particles of water pass this point, always different particles as time
goes by, but they all pass at the same speed if the flow is really steady.
Thus a certain speed belongs to this point, represented by a vector having a
definite magnitude and direction. In general, to each point of the stream a
well-defined vector is attached, representing the velocity of the flow at that
point. The steady flow of a river suggests to us the important concept of a
vector-field.

For the purpose in view, we must specialize the general concept of a
vector-field. Let us imagine that the flow of the water is exactly alike in all
horizontal layers. This may be approximately so in the middle portion of a
large river, sufficiently far from both banks, the bottom, and the surface.
We should, however, idealize the case and imagine that the physical state is
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exactly the same in all horizontal planes, and that, therefore, the vectors
attached to the various points of a vertical straight line agree both in magni-
tude and in direction, all being horizontal. We have sufficient knowledge of
such a vector-field if we know the physical state and especially the velocities
in any arbitrarily chosen horizontal plane. This sort of field, being adequately
represented by the vectors in one plane, in two dimensions, is called a
two-dimensional vector-field.

Now we may return to the study of a complex function of a complex
variable. We consider as before the function

(1) w = f(z)
We represent as before the ludcpcud‘c‘ﬁt variable z as a p‘" tina pla ie, the
z-plane. We represent, however (and here we depart from our former stand-

e
point) the complex value w, conjugate to w, as a vector issuing from the
poi e

nmnlay ualnn w. as fiinetinn nf‘o |e datarminad hy a and en ic |n
Ul.lll.’l.\vl\ Y i , 32 4L Wllwilivil Vi , IV Wwilwililillliwes UJ Rl1% OV 1T F¥

From any point z, within a certain domain, we can draw a vector w, which
we can construct or compute using (1). These vectors attached to the points
represent a two dimensional vector-field. The vector varies in general from
point to point, both in magnitude and in direction. The function (1) expresses
the law of variation and describes adequately the vector-field. We may also
say that the vector-field represents concretely the function. As the vector-
field may be interpreted as a field of flow or as a field of force of any kind,
we see here an opening for various applications.

It may seem strange that we have insisted on regarding w, and not w, as the
vector issuing from the point z but, in fact, this choice is more advantageous,
as we shall see in the next chapter.

Example.  Find the magnitude and the direction of the vector w, being
given that

|-

Let r denote as usual the absolute value, and 6 the phase, of z [as in Section
2.4 (6)]. Then

The direction of the vector w is the same as the direction of the vector drawn
from the origin to the point z where w is applied, and the absolute value of
w is the reciprocal of the value of r. In other words, w can be considered as
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a force radially outward from the origin and inversely proportional to the
distance from the origin, that is, a source of repulsive force.

Additional Examples and Comments on Chapter Two

2.1 SOME TESTS FOR CONVERGENCE

The reader is expected to have some facility in treating infinite series with
real terms. We shall try, however, to get along without more delicate con-
siderations of convergence, especially in the beginning. We list here some
simple tests for convergence that, once established for series with real terms,
can be easily extended to series with complex terms.

(D) If la| + lag| + lag| + - -+ is convergent, then a, + a, + az + -+ -
is convergent (and is called ‘“‘absolutely convergent”).

This fact was established in Example 1.10.3.

PREpLY -

n—wm
(III) If |a,|*'" or la, i/a,| tends to a limit less than unity when n — oo,
then the series a; + a; + a3 + - - - is convergent; if, however, one or the
other expression exhibited tends to alimit greater than unity or to oo, the series
is divergent. (If the limit is exactly 1, or if there is no limit, the test yields
no immediate information.)
The application of (II) to the geometric series

c+czH+c24 24

with initial term ¢ # 0 and ratio z shows that this series is divergent when
|z] > 1 (it is convergent when |z| < 1 as we have seen in Section 1.10).
The application of (III) to the same series shows only that it is divergent
when |z| > 1: here is a case in which (II) is (in one respect) more informative
than (III).

If the test (III) is applicable and shows convergence, it shows absolute
convergence: in fact, if it is applicable to XZa,, it is just as applicable to
X|a,|. This simple remark is often useful.

Show that the series introduced in Sections 2.2 (5), 2.3 (1), and 2.3 (2) are
absolutely convergent for all complex values of z. (Which test is the most
convenient ?)

2.2 POWER SERIES

The examples considered in Example 2.1 (the geometric series and the
series defining e, cos z, and sin 2) are particular cases of the general series

ot izt Fcgt 4
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which is called a power series: its successive terms contain the successive
powers

0 L1 L2 n
20 21 22 . .27, ..

The constants

€Coy C15 Coy+ + + Cpy o s

are called the coefficients of the power series. A power series is given if the
sequence of its coefficients is given; z stands for a complex variable.

We begin the study of power series by considering a subclass, a more
accessible particular case: we assume the existence of the limit

lim|c,|V" = 1/R

n— o0

in an extended sense, including the following two extreme cases:

|F|n |1/” fnnr]e tn n wacat P — N and iflimls 11/ — 0N we
o LV W’ o JOwl Iv — U’ 411\ 11 111]] L # LY ) -

Show, under this assumption, that

(a) If R is a positive number, the power series is convergent for 2| < R
and divergent for [z| > R.

(b) If R = 0, the power series is convergent for z = 0 and for no other
value of z.

(¢} If R = oo, the power series is convergent for all complex values of z.

i tha Anoca fa\ tha smnwa eariac 1
1 LIV Ladow \a) Lilw PUWD[ owiivdy 1

- anm ™
111 Wb ldil l.lUlll

s

the cnrcle with center 0 and radius R, and in pomt outside this circle,

which is called the circle of convergence of the p ower series; R is termed the
hi

radiue nfﬁnn: oraonre {(Dhecarve that nnt _lng wae eaid nhnnf convergence or
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divergence in points on the periphery of the circle of convergence where
|z2] = R.)

In the case (b) the circle of convergence reduces to one point and the
radius of convergence is 0.

In the case (c) the circle of convergence encompasses the whole plane
and the radius of convergence is infinite.

The power series for e%, cos z, and sin z illustrate case (c), the geometric
series exemplifies case (a) with R = 1.

2.3 (continued)  The radius of convergence R can also be computed
by the relation

limn ln In |
1M jCp 1€y =
n—aw

— 1/DR
1

1faN

provided that the limit on the left-hand side exists.
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2.4  Find the radius of convergence of the following power series

oo n

(&) S—,
o (n + 1)°
(b) Zn"z"

() in‘"z”

(d) ﬁ”—, o S)

2.5  If the power series Xc,z" belongs to the subclass considered in
Example 2.2, it has the same radius of convergence as the power series
Xnc,z2".

2.6 POWER SERIES (continued; see Example 2.2.)

We wish to determine the region of convergence of the power series:
1 + 3z 4+ 52,2 + 2858 + 344 + 5525 + 2626 + -

To state more clearly the rule of formation of this series, we exhibit three
consecutive terms in a general situation:

. + 23k23k + 33k+123k+1 + 53k+223k+2 + PN

This power series does not belong to the subclass considered in Example
2.2, and the tests of Example 2.1 (III) do not apply: neither |a,,,/a,|, nor
|a,|*/" tends to a limit when n — co.

Yet the proposed series is compounded of three geometric series:

1 4 (22)3 + (22)6 +4 - 4 (22)37: +

z 4 (32)* + (32)" + -+ + (32)*+1 4+
(52)2 -+ (52)5 -+ (52)8 SR ( z)3k+2 + -
These are con nt when the ra less than 1 in absolute value, and so

wvergent when the ratio is
they converge for
PP <1 PPl |52 < I
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respectively. When the most restrictive of these three conditions is satisfied,
that is, when the point z is contained in the circle

all three series converge and so their sum, the proposed series, converges too.
When, however, |z| 2 }, the general term of the proposed series does not
tend to 0, and so the series cannot converge, by virtue of Example 2.1 (II).
In the case considered in Example 2.2 the limit of |c,|'/” determines the
radius of convergence. In the case just discussed this limit does not exist:
the sequence considered has three ““points of accumulation™, the numbers 2,

3, and 5; and the radius of convergence turns out to be 1, the reciprocal of the
largest of these three numbers.

lﬂp\“ﬂﬂn ﬂI\ﬁﬂAﬂ

fim|c, V" = 1R

n—+w
where the left hand side represents the largest value of accumulation, or
upper limit of indetermination, of |c,|*’", and R is the radius of convergence
of the power series 2¢,2". We omit the proof that requires, of course, precise
knowledge of the concept of lim.

2.7
(@t+a+a+-)bo+bi+b+)=ct+atet- -
provided that both factors on the left-hand side are absolutely convergent
series, and
Co = @by + @ 1by + @, sby + - + aib,

The usual proof of this proposition given in the theory of infinite series with
real terms immediately extends to the case of complex terms.

Revise the proof of Section 2.2 (6) in the light of this proposition.

2.8 Show that

lime _1=1
z—0 2z

2.9  Show that a power series solution of the functional equation

[@) =2+ /()

must be of the form

f(z)=c+2+23+z4+28+216+_
where c is an (arbitrary) constant.
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2.10  Let p denote a positive number, x a positive variable. Show that
(a) 2Pe*— 0 when 2z — o
(b) x?logx—0  whenz— ©
(c) z?logx—0 when ¢ — 0

[(a) is more interesting when p is large, (b) and (c) are more interesting when
p is small.]

2.11 Let a;, a,, . . . a, denote complex numbers, and b,, b,, ... b, real
numbers,

by<b, < - <b,

Prove: If
] nblz 1 ~u nbﬁz 1 s = = 1 = nbnz - N
U 7 T Ut ° T " T T Uyt = U
(= 0 means identically zero) then
Vsl T — 4+ + T — n

212  Starting from the origin, go one unit eastward, then the same
length northward, then } of the length just described westward, the } of the
last length southward, and so on, going in turn east, north, west, south, and
describing 1/n of the length described just before at the (n + 1)-st step.
The path forms a sort of “angular spiral” that winds an infinity of times
around a certain point; which point is it?

2.13  Extend the result of Example 1.19, with necessary modifications, to
power series.

Assume that the radius of convergence of the power series

—_— -2 1

£ ) 1 -~ 1 ”r PRI
J\=) Ho T H12 T o T

is R, R > 0, and that a, 5% 0. Prove:
(a) The power series
|ay| — |ay|x — |ap|a? — |agla® — - - -

vanishes either in no point, or in just one point * = r, of the interval 0 < z <
R; in the former case set, by definition, r = R.
(b) f(2) does not vanish in the circle |z| < r

2.14  Extend the result of Example 1.1 to power series.

Prove:
If f(z) = X7 a,z", with a, positive and nonincreasing, then f(z) # 0 in the
circle |z < 1

2.15 Prove directly from the power series that cos z # 0 for [2| < V2.
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2.16

(

(n)?
by definition. Show that Jy(2) # 0 for 2] < 2.

)211
£
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2.17  The hyperbolic functions are defined analogously to the trigono-
metric functions:

z2 24 26
coshz=1l++nta™
) 28 2% 27
S|nhz—z+3!+5!+7!+
tanhz = sinh 2 cothz = !
cosh 2 tanh z
sechz = cschz = —
cosh z sinh z

(A more condensed notation is sometimes used for cosh z and sinh z,
that is, ch z and sh z respectively.)

Verify the following analogues of Euler’s formula for the hyperbolic
functions:

(a) coshz = e te
2
(b) sinhz = € —€
(¢) e” = coshz + sinh z

2.18 Whereas

cos?z + sin?z =1
show that

cosh?z — sinh®z =1

2.19  Let r denote a real variable and compare the two complex valued
functions of ¢:

z2=c0St -+ isint
2z = cosh ¢z + i sinh ¢
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Figure 2.3

p
/ ¢
z =cost+isint z=cht +isht

Show (as an illustration to Section 2.10) that the first equation represents
motion along the (unit) circle while the second represents motion along an
(equilateral) hyperbola; see parts I and II of Figure 2.3.

2.20 (continued) = Compare the two shaded areas I and II in Figure 2.3.
Both areas are included in the same way: by an arc of the curve whose end-
point corresponds to the general value ¢, and initial point to the particular
value ¢ = 0, of the parameter, and by two straight lines drawn to these two
points from the origin. Compute both areas.

[The general expression for such a *“‘sectorial” area is

1 [t/ dy dx\ |7

20 \%ar Y ar) ]

2Jo\ dt dt
221  For real values of z, there is a remarkable analogy between the pair
cos x, sin x, and the pair cosh «, sinh x, but there is no ““direct’ connection.

For complex values of the variable, however, there is such a connection.
Prove the following identities:

(a) cosh z = cos iz

(b) sinhz = —isiniz

(c) cosz = cos xcoshy — isinxsinhy
(d) |sin z|® = sin® 2 4 sinh®y

(e) |cosh z|®> = sinh?x 4 cos?y

2.22  Verify the following rule concerning identities among the hyper-
bolic functions:

Every trigonometric identity remains valid when each trigonometric
function is replaced by the corresponding hyperbolic function provided we
change the SIGN of each term that contains a product of two SINES.
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For example,

cos (¢ + f) = cos a cos f§ — sin a sin

gives
cosh (¢ 4+ f) = cosh « cosh # + sinh o« sinh §
while
sin (e 4+ f) = sin a cos B + cos o sin §
gives

sinh (« + #) = sinh o cosh 8 + cosh « sinh g

(Note that a product such as tan o tan § involves the product of two sines.)

2.23  Consider the equation

1 L | 1

+ + -+ =0
where z;, 2, . .. 2, are given points and z is the unknown, and explore its
algebraical and mechanical significance.

(a) How is the equation connected with the polynomial P(2) of degree n
whose roots are z;, 25, . . .2,?

(b) Each of the terms on the left-hand side is connected with a force that
originates in one of the given points and acts on the point z whose situation
has to be determined from the equation. How? (Section 2.13.)

- T,

EOREM OF GAUSS

224. A TH
The least convex polygon containing the roots of a polynomial contains
also the roots of its derivative.

[If the points 2y, z,, . . . 2, are marked with nails, a lightly stretched rubber
band encompassing all these nails indicates the least-containing convex

polygon that is sometimes called the “‘convex hull” of the set (zy, 2, . . . 2,,).]

2.25  If a polynomial has only real roots, then also its derivative has only
real roots, and the least interval containing the roots of the polynomial
contains also the roots of its derivative.

2.26 (More precise than Example 2.24.) The least convex polygon P
containing the roots of a polynomial contains any root of the polynomial’s
derivative in its interior, except in the following two cases:

(a) P reduces to a line segment and so it has no interior (Example 2.25).
(b) A root of the derivative coincides with a (multiple) root of the poly-
nomial on the boundary of P.
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2.27  If your proof for Example 2.24 is based on mechanical considera-
tions, find another proof that is free of mechanical considerations. (Such a
proof may eventually help you to clarify your mechanical ideas.)

2.28  Consider the equation
G—2z2)+(E—2)+ " "+(E—2,)=0
where z;, z,, . . . 2, are given points. The solution
2= (23 +2 4+ - +2,)n

is called the centroid of the points z;, 2, ...z, (More exactly, z is the
centroid of a system of » equal masses placed in the »n given points.)

Show that the relation between the system of # points and their centroid is
unchanged by translations and rotations of the coordinate system.

2.29  The centroid of the n vertices of a regular polygon with » sides is the
center of the circle circumscribed about the regular polygon.

(The centroid of the n points representing the n'" roots of unity is the
origin.)

2.30  The least convex polygon containing » given points contains their
centroid in its interior, provided it has an interior (that is, provided it does
not reduce to a line segment.)

This assertion may appear obvious on mechanical grounds. Give a proof
that is free of mechanical considerations.

231 A straight line passing through the centroid of » given points
divides the plane into two half-planes.
Prove that there are only two possible cases:

(a) Either all n given points lie on the lme,
(b) Or each of the two half-planes contains at least one of the given points
in its interior (there are “‘points on both sides.”)

2.32  There are n + 2 particles: n movable particles constrained to
remain in the interval —1 < # < 1, each having the same positive unit
charge, and two particles fixed at the points * = —1 and # = 1, respectively,
each having the charge . The n movable particles are in a state of equilibrium
under the forces produced; the force between two particles is repulsive,
proportional to the product of the charges, and inversely proportional to
the distance between them. Show that the » particles lie at z,, z,, ..., z,,
the zeros of the Legendre polynomial of degree n, P, (x). [The Legendre
polynomial P, () satisfies the differential equation

(1 — 2®P,"(x) — 22P,' (%) + n(n + 1)P,(x) = 0]
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2.33 Let

21, 29, - . . , 2,, D€ complex numbers
Pi1> Pos - - - » Pm POSItiVE Nnumbers
AR) =z — 210z — 29) * - (z — 2,,)
4 4 m
B(z)=( L4 =2 4.4 4 )A(z)
z2—2; z—2z z2—z,

C(z) a polynomial
P(z) a polynomial satisfying the differential equation
A() P"(z) + 2B(z) P'2) + C(z) P(z) + 0

Y W

Show that the least convex polygon containing the roots of A(z) contains
also the roots of P(z).

2.34 CRITICISM

Reconsider the contents of the chapter and the problems solved and
notice such points that seem to need a more rigid treatment supplementing
the more intuitive and heuristic considerations offered.

HINTS AND SOLUTIONS FOR CHAPTER TWO

221 e*-ef=¢"=1]
231 1,4, —1, —i
expi{— —z) —exp —i{Z — 2
2.3.2(a) xp 5 Z eXp —! ?) ie™" + ie'*
= = CO§ 2
2i 2i
234 |e)| =" #0allx

236 0=sinz= i—zj.—e_tz or =1
2i
e ¥cos2x =] esin2z =0
Hence sin 2z = ( cos 2z = 1 y=0
r=nm,n=0, £1, £2,...

z = nm n = integer
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2.4(d)

oy | _ (n 4 D™ !

u, (n+1)! n"

= (1 +i) |2l > e 2|
n

||

1
e|2|<1$|2|<‘e

2.4.1(a) ¥ = cos (13) + isin (13)

2.4.2

2.4.5

24.7

ei(z+2:r) - e—i(z+2:r) el* — e it

sin (z + 27) = Y = ’y = 8in 2

€ =1+4i=é€(cosy + isiny)

& 1 Z aa I}
1 ol

3
>

A0 A1 — Vel —1
on— C _—

N
€

&% (cos®y + sin*y) = * =2
tany =1t

x = }log2 y=f+2mr n = integer

R(er‘za) — R(ei(x2—y2+2i.ry))

= =¥V cos (22 — y?)

2.5.1 cos2x =2cos?x — 1

cos3xr =4cosdx — 3cosx

cosd4x = R(cos z + isin x)* = 8 cos?x — 8 cos?x + 1

2.5.6 sin®x= (1 — cos?x)® =1 — 3cos®x + 3 cos* x — cos® z (see Section

2.5.1)
/2
2510 I» =L
= In—l
I = 2n — 1
2n
Io =;_T

LI — 1

r/2

cos®™ x dx =f cos®**? z(1 — sin® ) dx

0

! I, on integration by parts

Hints and Solutions for Chapter Two
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261 log(l —i)=}log2 — %’ 4 2mi

271  if=¢"%" =exp z[? + 2n-rri:| = exp (— 23 — 2n71')

2.7.3 (=D = () =8 /0 |k =0,1,2,...,5
2.7.7 (2 4 22 + 2)(a* — 22 + 2)
2711 2, =" k=0,1,...,n—1
|2 =1 |21 — 2] = [€77" — 1]
so that all sides are equal.

2.7.12 A quilted diagram formed by the vertices of regular hexagons.

28.2 arctan2i = 1 log1 —2
2i 142

=2l_[—10g3 + in] 4+ nnw
[
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Chapter DIFFERENTIATION:
THREE ANALYTIC FUNCTIONS

Differentiation is the most important analytic operation that we can

perform on real functions. We are going to extend this operation to the

complex domain. A complex function of a complex variable is equivalent to a
pair of real functions of two real variables; only if the pair is exceptionally
well assorted can we differentiate the complex function. Such well-assorted
pairs of real functions have remarkable properties and are represented by
mappingsand vector fields of exceptional geometrical and physical importance.

3.1 DERIVATIVES

Not much knowledge of differential calculus is needed to convince us of the
usefulness of derivatives in the solution of geometrical and physical problems.
Thus we naturally wish to extend the concept of the derivative to the complex

domain. We consider the complex variable w as a function of the independent
complex variable 2

w = f(2)

and we say, repeating word for word the familiar definition, that the derivative
of w with respect to z is defined to be the limit

0 o JG+ 89 — [G)

Az—0 Az

The denominator of the fraction considered, Az, i1s the increment of the
independent variable z, the numerator is the corresponding increment of the
function f(z), and the derivative itself is defined as the limit of the quotient
of the increments when Az, the increment of the independent variable,
approaches 0. The derivative may or may not exist; the function f(z) may, or
may not, be differentiable. If the limit (1) exists, we use for it the familiar
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notation; we write

(2) llmf(z + A“Z? —f(Z) =f’(2) _ df;(z) — W’ — dj_w
Az—0 Az az az

and we speak of the derivative of w with respect to z, or the derivative of the
function f(z).

For the simplest complex functions, which can be obtained by the extension
of familiar operations to the complex domain (see Chapter 2), the derivatives
can often be found by the methods used in the real domain.

Example. Find the derivative of the function w = 22
Let z receive the increment Az. The corresponding increment of w is
Aw = (z 4+ Az)? — 22 = 2z2Az 4 Az?
and the quotient of increments

A
3) A—w=2z+Az

r4

When Az approaches 0, the right-hand side of (3) tends obviously to 2z.
Therefore,

4) By =— =22

3.1.1 Using the definition of the derivative, obtain the derivatives of

r

(a) f(=) = .
(b) f(z) = 2" (S)
() f(z) = ¢

3.1.2 Show that the following functions do not have a derivative with
respect to the complex variable z.

(@) flx)=z2
(b) fz) == (S)
313 f(z) = ‘-""—%"’T—;Tx’ 2% 0
£(0) =0

Prove that (f(z) — f(0))/(z= — 0) — 0 as z — 0 along any radius vector, but not
as z — 0 in any manner. (S)
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3.2 RULES FOR DIFFERENTIATION

We can extend the familiar rules for differentiation to the complex domain
without adding any essentially new ideas to the proofs. All we have to dois to
convince ourselves, as in the example of the foregoing section, that the
intervening rules and concepts apply to complex numbers and complex
functions just as they apply to real numbers and real functions.

Let c denote a constant, and w and W functions of the complex variable z.
We have the following rules:

(1) w+ WYy =w 4+ W
(2) wWwW) =w'W + wW’
wY wW —wW’
3 —|=
3 (W) w?
(4) ¢=0
(3) (ew) = ew’
aw 1
6 —_— =
6) i
dw
7 aw _ dw dw
dz dw dz

Some of these rules require an explanation that, however, is scarcely different
from the familiar explanations required in the real domain. Thus, (3) supposes
that W does not vanish at the point z considered. Rule 6 supposes that the
two relations

w=f() and z = g(w)

are exactly equivalent (so that the two functions considered are inverse to
each other) and that

v g'(w)

exists and does not vanish. Rule 7 supposes that
W=fw) w=g@

and that the derivatives on the right-hand side of (7) exist. This rule allows
us to calculate the derivative of the composite function

W = flg()]
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It can also be written in the more explicit but somewhat less intuitive form

d
YO _ s tgong @
It 1s obvious that
dz
2 =—=1
dz

Applying this and Rule 2 to w = z and W = 2, we find that
() =1z242-1=2

the result we have derived directly in Section 3.1 (4). Using what we have just
obtained, and applying Rule 2 again, we obtain

(28) = (22:2) =2z-2 4221 = 322
Repeating the process we see that, in general,
®) (2" = nzmt

for any positive integer n. (We may use mathematical induction if we insist on
formal rigor.)

Using Rule 8 together with the foregoing rules we are able to differentiate
the simplest functions (in fact, any rational function) in the usual way. For
instance, if ¢,, ¢y, . . . , ¢, are constants, we find by combined application of
(1), (4), (5), and (8) that

(ot ciz+cz+ - +c2™ =c; + 202+ -+ + ncz™?!

It is natural to suspect that this formula extends to an infinite series of the
form
~ P | P, 2 I . 1 -~ R 1 . ..
Co T C12 T Co™ T T Cpt” T
that we call a power series in z; the constants ¢,, ¢;, €o, ..., Cy,...are
called the coefficients of the power series. Thus, we are led to the formula

(9) (co+crz4co2®+cz®+ ) =c1 4 2¢2 + 3¢c22 + - -

Of course, we have not proved (9) rigorously. Its truth, however, is strongly
suggested by the preceding and a rigorous proof may be given (Section 3.10).

Applymg the foregoing rules to a few well-chosen examples, we may
convince ourselves that all the familiar formal rules of the differential calculus
remain valid in the complex.

Example 1. For complex values of z we defined the exponential function
by the power series
2 3 n
=1+ R TR vl AL St
2! n!
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see Section 2.2 (1). Applying (9), we find

2 n—1
@y =+ 2 = o mm
12t 3 n!
4 22 zﬂ—l
=14 — 4+ =4 f—p -
1 2! (n_1)g+

That is, we have the same rule as in the real domain:

(10) () = ¢

Example 2. For complex values of z, we have defined the trigonometric
functions cos z and sin z by the power series

2 4
2 2

cosz=1——+4—— -+
2! 4!

) 28 2

sinz =2 — — 4 —— -
3t 5!

see Section 2.3. Applying (9), we find

, 2z 42 62° 827
Cosz) ==+ " e T

32 54 6
_B et n

3t 5 7!

(sinz) =1

After obvious simplification, we find that just as in the real domain:
(11) (cosz) = —sin z

(12) (sinz) = cosz

Example 3. Find (tan z)'.
From (3), (11), and (12),

sinz) cosz-cosz — sinz(—sinz 1
r
(tan z) = = =

COS 2 cos®z cos? z

3.2.1 Show that (a) (arctan z) =
ow that (2) (arctan z) = —

1

\/1—22

(b) (arcsinz) =
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3.2.2 Verify that (a) (cosh z)’ = sinh 2
(b) (tanh 2)’ = sech?z

3.23 Show that (log z)’ =

z

32.4  Find (a) (™%’  (b) (log cos 2)’

3.2.5 Find (cos v/ ;)’ and (¢**) and verify that the answers are consistent
with the answers obtained by differentiating the appropriate infinite series
term by term

Solution: (cos \fz) = — A0 ;Zz
2\/2

z 22 2° ‘

=( “ataTat )

2! 4! 6! 8!

2 3t 5t M
1sin /2
2 \/z
. sinz ) I
3.2.6 Show that lim —— = (sin z)’l
z—0 2Z z=0
1 CcOS z
I = —(cos z)’
z—0 z z=0

3.3 ANALYTIC CONDITION FOR DIFFERENTIABILITY:
THE CAUCHY-RIEMANN EQUATIONS

Formally, that is, from the stand point of formal rules, the differentiation
of complex functions appears to be scarcely different from the differentiation
of real functions. Materially, there is a great difference. In the real domain,
differentiability is the normal case; practically all real functions of a real
variable that intervene naturally in geometrical or physical problems possess
a derivative. In the complex domain, differentiability is exceptional; that is,
only in exceptional cases does the expression in Section 3.1 (1) have a definite
limiting value.
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Proceeding with our study, we shall have ample opportunity to understand
this fundamental point. We can, however, already understand it to a certain
extent. Let us remember that a complex function of a complex variable is
equivalent to a pair of real functions of two real variables (2.9). If wis a
function of z

w = f(2)
and
w=u-+iv, z=x + iy

with real u, v, «, y, then both v and » are functions of x and 7,

u= ‘)—"(xa )R v = p(z, Y)

Conversely, we may take any two real functions v and v of the variables
and y and compound them into a complex function ¥ + iv. Now, if we take
two real functions  and v at random, there are chances that they will turn
out to be an ill-assorted pair, and then the resulting complex function will not
be differentiable. Thus, the odds appear to be against differentiability.

If we wish to see the point more clearly we have to investigate the conditions
that ¥ and v must satisfy in order that w = u + /v should be a differentiable
function of z = « + iy. If w is differentiable, the quotient of the increments
Aw[Az must tend to a limit when Az approaches 0 in any manner whatever.
Now Az can approach 0 in many ways,* especially (a) through real values
and (b) through purely imaginary values.

(a) We change z into z 4+ Az by changing « alone and leaving ¥ unchanged.
Then the increment of z is real,

(1a) Az = Ax

and

(2a) Aw=Au+iAyp
where

Amu = ¢(x + Ax’ y) - ¢(x= y): A:cv = ’P(x + Ax’ y) - W(x’ y)

The subscript # in A u and A v emphasizes that these increments are due to a
partial change of z; only the real part « is changed, the imaginary part y does
not vary. From (la) and (2a) it follows that

Aw _ A Apw

T ¢

Az Az Az
and hence
(3a) iim&v=iim%+iiim——A”v=@+i@
Az-0 Az Az-o0 Az az-0 Ax Oz ox

* This remark, the meaning of which is not entirely obvious, is illustrated by Example 3.1.3.
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The derivatives on the right-hand side are partial derivatives with respect to =
since the increments A u and A_v resulted from a partial change of z, y being
constant.

(b) Now we change z into z 4+ Az by changing y alone and leaving «
unchanged. Then the increment of z is purely imaginary.

(1b) Az =iy
(2b) Aw = Au +iAp

Au=d¢x,y+Ay)y — fz,9) Ap =y y+ Ay — vz, 9)

Az y Ay
and hence
CAw 1 Au . Ap du Ov
(3b) lim — =- lim =+ +1lim * = —i— 4 —
az-0 Az i ay—0Ay  av-o0 Ay dy 0Oy

In (3a) and (3b), we arrived at different expressions, but this is under-
standable; the difference of expressions originates from the difference in the
choice of the increment Az, see (1a) and (1b). Yet in whatever manner Az
approaches 0, the quotient Aw/Az is supposed to tend to the same limit,
according to the definition of the derivative. Therefore, (3a) and (3b),
although different in form, must be equal in value and so we obtain

a_ . o o
ox ox oy oy

This is a necessary condition for the existence of the derivative. We can

present condition (4) in various ways. We can separate the real and imaginary
parts and write

) u_d u_ _ @

9z 8y oy o=
Or we may prefer the (not quite orthodox) form

©) v _ ow

ox idy
that exhibits strikingly the main point of the foregoing argument [(compare
(3a) and (3b)]: differentiating horizontally or vertically, in the real or in the
purely imaginary direction, we obtain the same value for the derivative.
It can be shown that the conditions (5) are not only necessary but also
(essentially) sufficient for the existence of the derivative. We do not insist
on the proof here (see Example 3.10) but we state the result. The validity of
the equations (5) is a necessary and sufficient condition for the existence of the
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derivative of the complex function u + iv, provided that the partial derivatives
ou/0x, Oufdy, dv[ox, Ov/dy exist and are continuous.

The equations (5) are called the Cauchy-Riemann equations: they form a
system of two linear homogeneous partial differential equations of the first
order. The main point is that they clear up essentially the question raised at
the beginning of this section. We know now under which conditions a pair
of real functions « and v is well- assorted and forms a differentiable complex
function u + iv: the functions ¥ and v must satisfy the Cauchy-Riemann

equations (5). A pair of functions so assorted is called a pair of conjugate
Junctions.

Example I.  Are the real and imaginary parts of the exponential function
e* conjugate functions?
From

u + iv = & = e“(cos y + isin y)

du ov .
P = e cos ¥ ax—e“smy
ou

L o1 v @
= —e’siny — =¢e"cosy
dy dy

The Cauchy-Riemann equations are satisfied, and so our ¥ and v are conjugate
functions; therefore the exponential function must possess a derivative. This

we know already, see Section 3.2 (10). Using (6), we can compute the
derivative in two different ways:

dw Ow " ..
— =— = ¢(cos ¥ + isin
5. oa ( + Y)
=la—w=—:e“’( —sin ¥ + i cos y) = ¢
i 0y
Example 2. Are the real and imaginary parts of z conjugate functions?
From
ut+iv=ax4+iy=2—iy
follows
u_, w_,
ox ox
u_, dw__,
oy oy

The first Cauchy-Riemann equation is not satisfied, our ¥ and v are not
conjugate functions, and so z considered as function of z is not a differentiable
function.
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3.3.1  Examine the Cauchy-Riemann conditions for the following func-

tions, and state which of them are differentiable:

o~

A —_ Vo
2 =2

2] 173 -
o Y ~

+
b x + iy?

(c) w = e ¥(cos « + isin x)

o
A A
I

w

+ Y
x2+y2 x2+y2

(d) w=

3.3.2  Show that for the single-valued analytic function
-{ 8 . 6)
w=\/5=\/r(cos5+ism£) 0<0<27
u and v satisfy the Cauchy-Riemann equations

3.3.3  In polar coordinates

w = f(z) = f(re")

Show that the Cauchy-Riemann equations become

1 1
ur=_vo U,.=—_u3
r r
Solution: g = Au +, iv) = A(u. + ) if # constant
Az A(re™) e Ar
A(u + iv) .
= —(—+—,.) if r constant
r A(e®®)

Passing to the limit (Ar — 0 or A@ — 0) we have
S'(2) = e (u, + iv,)

e .
= —— (uy + ivy)
ir
3.3.4  Find a conjugate to
u(z, y) = x® — 3z
3.3.5  Find a conjugate to

u(x, y) = cos £ cosh ¥

—
v

(8)

(8

3.3.6  Assume that f(z) is analytic, and f'(z) = 0. Show that f(z) =

constant. (S)
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3.4 GRAPHICAL INTERPRETATION OF DIFFERENTIABILITY:
CONFORMAL MAPPING

Any complex function of a complex variable can be represented graphicaily
by the mapping of one plane onto another plane, but not every such function
is differentiable. In order that w should be a differentiable function of z, a
certain condition must be satisfied. Analytically, this condition is expressed
by the Cauchy-Riemann equations. But what does this condition signify
graphically? Which property of the mapping distinguishes a differentiable
complex function from a nondifferentiable complex function?

The derivative is the limit of the quotient of the increments. If w as function
of z is differentiable, this limit must exist in whatever manner the increment of
z approaches 0. Let us compare two different increments of z; let A,z and A,z
denote these increments, and let A,w and A,w denote the corresponding
increments of w. Then the three points in the z-plane

z, z + Az, z 4+ A,z
are mapped onto the three points in the w-plane
w, w4 Aw, w4+ A,w
respectively, that is,

w = f(z) w4 Aw=f(z + A32) w4+ Agw = f(z + Ayz)

See Figure 3.1. Welet A,z and A,z approach 0. We suppose that the derivative
exists; since its value is independent of the manner in which the increment of
Az approaches 0, we have

—_
[—
e’
=
-
=
I
[y
-y
=
I
S
—
o]
v

z—plane w—plane
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Let us restrict ourselves to the consideration of the case in which the
derivative at the point z does not vanish,

AN
J =P 7TV

If this is so, we can infer from (1) that

AwA '
(2) lim 1 ZgZ — f (Z) =1
a0 Az Agw  f(2)

Apz—0
The meaning of this equation is that approximately (symbolized by =
instead of =)

L
=
>

1 2%

Az Ayw

P

n
23

A,
4) ==
2z Aw
and the smaller A,z and A,z are, the better is the approximation.
Now, the complex equation (4) is equivalent to the following two real
equations:

(5) Dpz|  |Agw
[Az]  |Aw
A,z Ayw
6 — = —
(6) LW arg A

In order to see the geometric significance of these equations, let us fix our
attention on the triangle in the z-plane with vertices z, z + Az, z 4+ Ayz, and
on the corresponding triangle in the w-plane with vertices w, w + A,w,
w 4+ A,w. Equation 6 expresses the fact that the angle at z in the first triangle
is equal to the angle at w in the second triangle (equal in magnitude and
sense). Equation 5 expresses the fact that the corresponding sides of the two
triangles, which include the equal angles at z and w, are proportional.
Therefore, by virtue of the two equations (5) and (6), or of the single equation
(4), the triangles are similar.

The equation (4) on which the whole argument is based is only approximate,
not exact; it tends to become exact as A,z and A,z approach 0. Therefore, we
have to state our result carefully : If the derivative exists and is different from 0,
corresponding triangles tend to become similar when their dimensions tend to 0.
Or, in other words, if the function represented by the mapping is differentiable,
infinitesimal parts of the planes that are mapped onto each other are similar,
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provided that dw/dz # 0. A mapping of this sort in which the infinitesimal
parts are of the same form is termed conformal. Thus, we can say quite
shortly that a differentiable function yields a conformal mapping. We may add
(see Example 3.10.12) that only differentiable functions yield conformal
mappings. Thus we know now which property of the mapping distinguishes
the differentiable complex functions from the nondifferentiable complex
functions.

The conformality of the mapping can be expressed in another manner
that is, in fact, more distinct. We may be able to visualize the situation more
clearly if we take it more concretely. Let us imagine (as in Section 2.12) that
we have two geographic maps, one in the z-plane and one in the w-plane,
both representing the same part of the surface of the globe. The corresponding

points z and w represent the same geographic point, for example, a point
where a river crosses the boundary line of two countries (Figure 3.2). Let
z + A,z be a point on the boundary line in the first map. Then, of course,
w 4+ A,w is the corresponding point on the boundary line in the second map.
Similarly, let the points z 4+ A,z and w 4 A represent the same point of the
river, each in its plane. When A,z is small it almost coincides in direction with
the tangent to the boundary line at the point z. In fact, all four increments
Az, Agz, Ayw, A,w tend to coincide with the direction of certain tangents, of
which two are issued from the point z in the 2-plane and two are issued from
the point i in the w-plane; on the other hand, two are tangent to a boundary
line and two to a river line. But, as we have said before, the angle between
Az and A,z tends to be equal, in magnitude and sense, to the angle between
Ayw and Agw. Therefore, the angle between the boundary line and the river
must be the same on both maps. If the derivative exists, the angles between
corresponding lines are equal, in magnitude and sense, unless the derivative

vanishes at the point of intersection.

Figure 3.2

\\
z—plane w—plane
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We can summarize our argument by saying that a conformal transformation
is necessarily angle preserving. We take this term to mean that corresponding
angles are equal both in magnitude and sense.

Example. Let us reconsider the example of Section 2.12. The function
w = 22 is obviously differentiable and so the mapping is angle preserving
(except at z = 0 where the derivative 2z vanishes). Now, the straight lines
parallel to the imaginary axis of the w-plane intersect, at right angles, the
straight lines parallel to the real axis. Therefore, the two sets of hyperbolas,
which we have found (Section 2.12) to be the mapping of the above two sets
of straight lines onto the z-plane, also intersect at right angles (Figure 3.2).

wrrhiné e lan ~ruswrn

2 41 A e o ala A~ ¢ ~ o
Je'Re d Al wilial 411515 UV LG LULVeD

Rz2 =1, Rz3 =1z meet?

342  Plotafew of the curves r = const, 6 = const for w = 1/z, and verify
that they intersect orthogonally.

3.4.3 Plot a few of the curves u = const, v = const for w = 1z, and
verify that they intersect orthogonally.

344  Plotafewof the curvesu = const,v = constforw = (z — 1)/(z + 1)
and verify that they intersect orthogonally.

3.4.5 w = f(z) is analytic. Prove that the curves u(x,y) = const,
v(x, y) = const intersect orthogonally provided f'(z) # 0 at the point of
intersection,

3.4.6 Show that the slopes of the level curves u(x, ¥) = const, v(z, y) =
const for the analytic function f (2) = u + iv are, respectively, cot [arg f'(z)],

—tan [arg f'(2)].

3.5 PHYSICAL INTERPRETATION OF DIFFERENTIABILITY:
SOURCELESS AND IRROTATIONAL VECTOR-FIELDS

Any complex function of a complex variable can be represented by a two-
dimensional vector-field (as we have discussed in Section 2.13) but not every
such function is differentiable. In order that w should be a differentiable
function of z, a certain condition must be satisfied. Analytically this condition
is expressed by the Cauchy-Riemann equations. Graphically, the condition is
expressed by a particular property of the mapping representing the complex
function: the mapping is conformal. But what does the condition signify
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physically? Which particular property of the vector-field distinguishes a
differentiable complex function from a nondifferentiable complex function?

The clarity of the answer to this question depends very much on a good
notation. Let z denote a variable point of our two-dimensional vector-field,
and let w be the vector attached to the point z, as in Section 2.13. Let x and ¥
denote the coordinates of the point z, as usual, and v and v the components of
the vector w. Then we have

z=2+ iy
W=u -+ iv
and, passing to the conjugate quantity,
(1) w=u—iv
We consider w as function of z
w=u—iv=f@)=f(z+iy)

If this function is differentiable, we can obtain the value of the derivative by
differentiating horizontally or vertically, that is, giving to 2 either a real or a
purely imaginary increment, and therefore, according Section 3.3 (6)

dw 10w
@ 5= 1 0
x i 0y
or [we insist on notation (1)]
du .Ov  1f{ou . 0Ov)
gé _ ;& _1f{gE _
ox dx i (ay ay)

Decomposing the foregoing complex equation into two real equations we
obtain

du 0v
3 — 4+ —=0
3 dx 0y

dv ou
4 Gv_ou_
) ox oy

These equations express that the function represented by our vector-field is
differentiable. They are susceptible of an important physical interpretation
that we shall explain in the present section. In explaining it, we consider
alternately fields of flow and fields of force, and we take for granted certain
physical concepts that will be discussed more thoroughly in the next section.

(a) We can express the physical significance of Equation 3 more in-
tuitively if we regard our two-dimensional vector-field as a field of flow, and
the vector w as a velocity, the intensity of the current at the point 2. The

Physical Interpretation of Differentiability: Vector-Fields 89



expression

() +

TP
D
<

(3]
D
w2

is termed the divergence of the vector w and is usually represented by the
symbol div w. The divergence measures the outflow per unit volume in a closed
neighborhood of the point z. [More details follow in Section 3.6 (d).] If the
divergence is positive, the point z acts as a ‘“‘source,” and if the divergence is
negative, the point acts as a “sink.” Equation 3 states that the outflow
vanishes, that is, that the point is neither a source nor a sink. If the divergence
vanishes at every point, the field is called sourceless. For instance, the field
of steady flow of an incompressible fluid is sourceless; across any closed
surface just as much matter goes in as out, so that the net outfiow is zero.
Equation 3 characterizes a sourceless vector-field.

(b) We can express the physical significance of Equation 4 more in-
tuitively if we regard our two-dimensional vector-field as a field of force, and
the vector W as a force, the intensity of the field at the point z. The expression

o _u
dx 0Oy

is termed the cur! of the vector w. The curl measures work per unit area.
We mean the work done by the field when a small particle, under the influence
of the field, describes a closed curve surrounding the point z. This work
divided by the area enclosed by the curve, tends to the expression (6), the
curl of w, when the dimensions of the curve approach 0. More details follow
in Section 3.6 (b). In a conservative field of force, the work along any closed
curve is zero, and therefore the curl vanishes at every point. If the curl
vanishes at each point, the field is called irrotational. (This term is connected
with still another interpretation of the curl that we can just hint at here:
the curl measures the rotation of an element of volume when W is the small
displacement of a point in an elastic or plastic body.) Equation 4 char-
acterizes an irrotational vector-field.

(c) Let us summarize the foregoing discussion. The differentiability of the
function

(6)

=u—iv=f(z) = f(z+ iy)
is linked to the complex equation (2), which is equivalent to the two real
equations (3) and (4), expressing that the divergence and the curl of w
vanish; and if these two quantities vanish throughout a field, the field is both

TLhacalnen o d:r. sl ameeet e oo alnse ol o
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sourceless and irrotational.
complex variable is represented by a sourceless and irrotational field but a
nondifferentiable function is not represented by such a field.
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Example.  The vector-field considered in the example of Section 2.13 is
sourceless and irrotational, since the function is differentiable

a1y _ _1

dz\z} 2
We must, however, be careful to exclude from the field the origin where the
function is not differentiable, not even continuous.

In fact, if we visualize the magnitude and direction of the vector w = 1/z,
which we have discussed in Section 2.13, we may regard the field as represent-
ing a horizontal sheet of water, flowing uniformly in all directions away from
the origin where, we may imagine, it is being pumped up continually from

some underground source. The exnstence of the derivative in all points
differant fram 0 chawe fhaf tha Or

WSLILWwE Wil L1AWVIIL UV JIAWV YT LILLEL Lilw

3.6 DIVERGENCE AND CURL

The aim of the present section is to discuss more thoroughly the two
concepts on which the physical interpretation of the differentiability of a com-
plex function is based : divergence and curl. We consider a two-dimensional
vector-field. The magnitude and direction of the vector with components
u and v depend on the position of the variable point with coordinates x and ¥
to which the vector is attached; that is

u=u(r,y) v=0uvz1Y)

We should not forget that a so-called two-dimensional field is, in fact,
extended throughout three-dimensional space but has a particularly simple
structure: it is stratified, its physical state being the same in all strata parallel
to the «, y-plane (as we have discussed in Section 2.13). Various questions
concerning the special case of two-dimensional fields can be better understood
after a short consideration of the general case. When we have to discuss
general, three-dimensional fields we call the vector of the field w, using heavy
print.

(a) We begin with the consideration of a general, three-dimensional field.
We regard it as a field of force and we let w denote the force in a (variable)
point of the field. We wish to express the work performed by the field when a

particle, under the influence of the field, describes a given curve C.

Cancidar a moaint of f" and lat Ao Annnfn tha alamant nf the are and w. the
LOMSIGET a PUINIL O1 L, &llG 101 &5 GLIIOW e CICiliCit Of uae 4l afiu "t ulc

tangential component of w; that is, the projection of w on the tangent of C.

Then the work is obviously
fad

Jwt ds

the integral being extended over the whole curve C.
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Figure 3.3

(x—h, y +h) (x +h, y +h)

®n

(x—h, y—Fh) (x+h, y—h)

(b) Now, we descend to the consideration of a special two dimensional
field. We regard w as a force. We wish to compute W, the work performed by
the field when a particle, moving counterclockwise, describes the perimeter of
a square of center z and side 2A; the sides are parallel to the axes (Figure 3.3)

Of the four sides of the square, let us consider the east side first. This side is
parallel to the y-axis and, along it, the particle moves northward. The position
of the moving particle is given by the complex number

24+ h+is

where s varies from —# to A. The tangential component of w, that is, the
component in the direction of the path, is v or, more explicitly

v(x+ h,y+5)
and so the work along the east side of the square is

(1) f hhv(x +h g+ s)ds

This is a simple special case of the expression mentioned under (a). The work
along the west side is

(03] —f_:v(x—h,y+s)ds

the minus sign before the integral is due to the southward movement of the
particle. The work along the remaining two sides of the square is computed
similarly, and the expression for the work around the whole perimeter of the
square may be written as

~h

W=J"[v(x+h,y+s)—v(x—h,y+s)
(3) -

—u(xz+s,y+ h)y+ u(x+ s,y — h)]ds
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The two integrals (1) and (2) contribute the first two terms to the integrand
in (3).

We compute now the work per unit area, dividing (3) by the area of the
square:

w _1 "[v(m+h,y+s)—v(x—h,y+s)
4h* 2h J 2h

_u(x+s,y+h)—u(x+s,y—h)]ds
2h

Finally, we pass to the limit, letting the side of the square approach zero.
Observe that for any (continuous and differentiable) function ¢(x)

¢(x + h) — $(x — h)

4

® e 2h = ¢
6) mﬁ fhw + s)ds = ()

[The left-hand side of (6) is the mean value of the function ¢(x) over an
interval that shrinks into the point z as & approaches 0.] Dealing with (4), we
face a sort of superposition of the two processes (5) and (6); we obtain*

. W _0v Ou _
® i = e oy

Thus, the curl of the vector w = u + iv measures the work per unit area in
the immediate neighborhood of the point z = « + iy, as stated in Section
3.5 (b).

(c) We return to the consideration of a general three-dimensional field.
We regard it now as a field of flow, and for the sake of simplicity, we admit
that the flow is steady and the streaming fluid incompressible. We wish to
express F, the volume of fluid crossing a given surface S in unit time.

Let dS denote an element of S and w the velocity of the current across the
surface-element dS. If all the particles passing dS in a unit span of time were to
retain their velocities, they would fill, at the end of that span of time, a
prism whose (infinitesimal) base is dS and whose lateral edge is w. This
prism is in general oblique; its volume is w,, dS where w,, denotes the normal
component of w, thatis, the altitude of the prism. Therefore, the volume of the
fluid crossing the whole surface S in unit time is

®) | (w, ds

* A quite strict proof has to appeal to two so-called *‘mean value theorems,” first to the theorem of
the differential calculus, then to the theorem of the integral calculus.
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the integral being extended over the whole surface S. (The surface S has two
sides. We have to designate one of the sides as the “inner” side and the other
as the “‘outer’ side. The component w,, is taken as positive when it is directed
from the inner to the outer side, or parallel to the so-called exterior normal.)

The integral (8) is called the flux of the vector w across the surface S. The
flux may have a physical significance even if wis not the intensity of a current,
but some other sort of vector.

(d) Now, we redescend to the consideration of a special two-dimensional
field. We regard the complex number W as the intensity of a two-dimensional
stationary current. We wish to compute the flux F across the perimeter of a
square of center z and side 24.

The term “flux™ stands in this statement as an abbreviation for “flux per

thi~l naaa *? nevAd tha 1n a Aatailad ade avmlann
uuu. uu\,nucoa ana even tne la.u.cx more aciaiica bAlJl\-GDlUll neeas CAPlalla'

tion. Therefore, let us visualize the situation. Between the z-plane, which we
regard as horizontal and another horizontal plane at unit distance above the

2- nlana thara ic a launr nf fhn finald nf nnlf I’hlnl{npee Thp narhnlns nf‘ thls

l“llv, Liidwiliw 1 J LidWw Llwiwnwd AW L AA W l-’ ial

layer passing above the perimeter of the square mentioned in our problem
pass, in fact, across the lateral surface of a right prism whose base is the given
square and whose altitude is 1. ““Flux across the perimeter of the square”
means indeed the flux across the lateral surface of the prism described.
We should add that we consider the outgoing flow as positive.

Having well understood the terms of the problem, we pass to its solution.
Of the four sides of the square, let us consider the east side first. The com-
ponent of w normal to this side is ¥ or, more explicitly,

u(z+ h,y + s)

where s varies from —#A to A. The flux across the east side is

©) [t + by +as

In fact, we compute the flux across a lateral face of the prism just described,
which is a rectangle perpendicular to the z-plane; its base is the east side of our
square and its altitude is 1. The element of the area of this rectangle is 1 ds
that, by the definition of the flux (8), has to be multiplied by the normal
component of the vector w, which is u. Integrating, we obtain (9).

The flux across the west side of the square is

(10) —fhu(x— h,y + s)ds

The minus sign results from the fact that the component of # in the direction
of the exterior normal is —u (and not u). The flux across the remaining two
sides of the square is computed similarly, and the expression for the flux
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across the whole perimeter of the square may be written as

h
[+ by + ) —ue— by + )
(] 1) J—h
+v(x+s,y+ h)—v(x+ s,y — h)]ds
The integrals (9) and (10) contribute the first two terms to theintegrand in (11).
We obtain the flux per unit volume by dividing (11) by the volume of the
prism:
_L_j_”F@+hy+ﬂ—uu—hy+ﬂ
4h®  2h J-» 2h

v(x+s,y+h)—v(x+ s,y — h)] ,
+ o ds

F inally, we let the side of the square approach 0. The mathematical difficulty
(

is certainly not greater than it was in the case of (4); we obtain

(12)

A

(13) lim— =2 4+ &

Thus, the divergence of the vector w = u -+ iv measures the outflow per unit
volume in the immediate neighborhood of the point z = x + iy as stated in
Section 3.5 (a).

(e) It is desirable to complete the foregoing discussion by studying the
concepts of divergence and curl in a general vector-field. By seeing clearly

APV ATIOL AT 1 8alAda Rta 10 g rrn gartaral fen

haw th 1 £ tvra_d;
now tne Sp‘c‘Ci?u case of two-dimensional fields fits into a more geiicra iramc,

we may improve our understanding of the whole subject. See Example 3.39.

3.6.1 Regarding the vector field w = 1/z first as a velocity field of a fluid,

and then as a field of force, compute the flux across, and the work done by the
field along, a circle of radius r centered at the origin.

3.6.2 For the vector field w = 1/z, find the curves (streamlines) whose
tangent at each point have the direction of the vector-field (whose slope is

vfu).

3.7 LAPLACE’S EQUATION

We return to the analytic condition of differentiability; w = w + iv is a
differentiable function of z = z + iy if, and only if, it satisfies the Cauchy-
Riemann equations

ou Ov Ou ov

ox Oy oy ox
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See Section 3.3 (5). We observe that we can eliminate one of the two con-
jugate functions ¥ and v from these two equations. In fact, differentiating the
first equation with respect to z, the second with respect to ¥, and adding, we
obtain
0°u | 0°u
1 +—=0

M ox*  oy®
This equation is called Laplace’s equation or, more precisely, Laplace’s
equation for two-dimensional fields. Laplace’s equation is of great importance
in mathematical physics, and we shall return to it in later chapters. At the
present stage, however, we restrict ourselves to a short comment.

Equation 1 shows that the real part # of a differentiable complex function
w = u + iv of the complex variable z = x + iy cannot be chosen at random.
In fact, ¥ must satisfy Laplace’s equation (1). Neither can the imaginary part
be chosen arbitrarily; in fact, v must also satisfy Laplace’s equation,

d* . v

+
oz*  oy®
To show (2), we can proceed as we did in deriving (1), by eliminating & from
the Cauchy-Riemann equations. Or we may observe that, w = u - iv being
differentiable,

2) =0

—iw=0v— iu

is differentiable too and that, therefore, its real part, which is v, must satisfy
Laplace’s equation and so we have (2).

Dnoln thn waml muad Tssmatennwt) nanta AL -
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complex variable satisfy Laplace’s equation.

3.7.1 u(x, y) is a solution of Laplace’s eq

interior of a rectangular region. Show that the xnsts an analytic function
u + iv in this region, which is uniquely determined, except for an additive
constant.

Solution:  Definev, = u,
v
v =f u(x, s)ds + h(x)
vo
where A() is (with respect to ¥) an arbitrary *“constant of integration.” Then

v
U, =J u,.(x, s)ds + h'(x)
vo

ry

= — J u,(z,s)ds + h'(x)

= _uy(xa y) + uy(x’ ?lo) + h’(x)
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The C-R equations are satisfied if 4'(%) = u, (x, y,), which determines A(x)
except for a constant of integration.

3.72  Show that the product of two harmonic functions is itself harmonic
if one is the conjugate of the other.

3.8 ANALYTIC FUNCTIONS

We call a complex function of a complex variable analytic if it is differenti-
able. The term is appropriate. Differentiation is the most important operation
of mathematical analysis, and therefore it is natural to call a function ad-
mitting this operation analytic.*

A function f(z) is said to be analytic in a region of the z-plane if it has a
derivative at each point of that region. For instance, the function ¢ is analytic
in the whole plane, and z is nowhere analytic; this is shown by the solution of
Examples | and 2 of Section 3.3.

Turning to a general example, let us suppose that both w and W are
analytic functions of z. That is, we suppose that the derivatives w' and W'
exist. But then also the derivative of wW exists; in fact, it can be computed
according to the familiar rule:

(wW) =wW + wW’

Consequently, wW is also analytic; rhe product of two analytic functions in an
analytic function.

We have used the familiar ruie for the differentiation of a product. Using,
in the same way, the other simple rules of the differential calculus, we find
analogous results, especially the following: a function obtained from analytic
Junctions by the four fundamental arithmetical operations—addition, subtrac-
tion, multiplication, and division—is an analytic function provided, of course,
that points at which a division by 0 occurs are excluded.

Apply this rule to z (which is an analytic function of z, the derivative
being 1) and to any constants (which are also analytic functions, the derivative
being 0. From 2z and constants we can obtain any rational function by the
four fundamental arithmetic operations, and so we find the proposition that
any rational function is an analytic function. We must, of course, exclude the
points at which the denominator vanishes; at such points the function is,
strictly speaking, not even defined [as we shortly mentioned in connection
with Section 2.1 (3)].

Another familiar rule of the differential calculus, Section 3.2 (7), yields the

proposition that an analytic function of an analytic function is an analytic

* Various other terms are used by some authors, instead of analytic, such as holomorphic
regular, regular analytic, and synectic, for example.
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function. For instance, e is an analytic function. Still another rule, Section
3.2 (6), leads to the proposition that the inverse function of an analytic function
is an analytic function, provided that the points at which the derivative of
the original function vanishes are excluded. For instance, log z is an analytic
function since it is the inverse of the exponential function.

We can summarize the preceding by the somewhat vague but suggestive
statement that the class of analytic functions is “‘self-sufficient.” If we need
the result of simple operations performed on analytic functions, we need not
look for it outside the class; we can find the desired result within the class of
analytic functions. The same fact is expressed in other terms by saying that
the set of analytic functions is closed with respect to the operations considered.

201 Qlaees
JeOel D HIUW

(S =S -

142

so that
S(—D)"E =log(l +2) |7 <1
1 n

The series is single valued, while the logarithm is infinitely multivalued.
Which one of the determinations of log (1 + 2) is represented by the series?

Solution: (log1 4 2) = T— (=D |z < 1
0

= (32,

log(1 +2) =3 (=" 4 C
1 n

Let z = 0, then we have log 1 = C, and here C = 0 so that we have the
principal value branch of the logarithm.

3.9 SUMMARY AND OUTLOOK

Taking a complex function of a complex variable ‘“at random,” we have
little chance to hit upon an analytic function. Among complex functions of a
complex variable, analytic functions form a small and select class; only
functions fulfilling certain strict conditions are admitted. In the foregoing
sections, we have investigated the conditions characterizing differentiable
functions (i.e., analytic functions) from three different standpoints: analytic-
ally, graphically, and physically.
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A function is analytic if its real and imaginary parts satisfy the Cauchy-
Riemann equations.

A function is analytic if it is represented by a conformal, angle-preserving
mapping of one plane onto another.

A function is analytic if it is represented by a sourceless and irrotational
two-dimensional vector-field.

Strictly speaking, we should have said *“if and only if”* instead of the short
“if” in all of the three foregoing statements; the conditions given are both
necessary and sufficient. Therefore, the three conditions, although strikingly
different in form, are equivalent. And we have not yet exhausted the various
forms of the conditions that characterizes analyticity. We shall find still other
remarkable and surprising forms later, in studying the expansion and inte-
gration of analytic functions in Chapters Four, Six, and Seven.

There is a condition for analyticity that is so simple that we can state it here
although we are very far yet from proving it. We know that any rational
function is an analytic function (Section 3.8). It is plausible (although not so
easy to prove) that a function that is a limit of rational functions is also an
analytic function (provided that the convergence is uniform). Yet it is sur-
prising that the converse is also true: any analytic function is either a rational
function or the limit of a (uniformly convergent) sequence of rational func-
tions (Section 6.24). The class of analytic functions is small as we said before,
but it is an extremely interesting class and contains almost all functions
useful in physical problems. In the sections that follow, we shall study
only analytic complex functions of a complex variable.

Although we have scarcely taken the very first steps in the theory of
analytic functions, we may forsee already that this theory has manifold and
remarkable connections. In particular (this is the point most important for
us), analytic functions constitute a powerful tool for solving problems of
mathematical physics and engineering.

Additional Examples and Comments on Chapter Three

COMMENT 1. InSection 3.3, we obtained the Cauchy-Riemann equations
as being necessary for the existence of a derivative with respect to the complex
variable z. We show here that these conditions are also sufficient.

We are given two functions u(x, y) and v(z, y) satisfying

in a neighborhood of a point (,, %,), and know in addition that these
derivatives are continuous in this neighborhood. Accordingly, we must
show that with f(2) = u + iv, AffAz = [f(z, + Az) — f(2,)]/Az tends to a
unique limit as Az — 0 in any manner whatever. Let us set Az = & + ik.
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3.01
A_f u(xo + h, yo + k) — u(,, ?/o) U(xo + h, Yo + k) — v(Zg, Yo)

Az h + ik h + ik
u(xg + h, yo + k) — u(xg, yo + k) u(y, Yo + k) — u(,, y,)
= X + X
h + ik h + ik

+ two similar terms with v(z, ) in place of u(z, y).

Each of the two quotients in u(z, ¥) now have one of the two variables the
same (¥, + kin thefirst, z,in the second), and we are essentially involved with
a function of one variable only.

What is useful to know here is the mean value theorem for the differential
calculus, as well as the definition of continuity. Let us recall these.

f(x) is continuous at ¥ = x, if [f(x) — f(%,)| can be made less than any
preassigned quantity merely by restricting | — x,| to a suitable interval. An

Al‘!l\ I nt atatarm nf mMaAro IIOAPIII Pnr A AalIrancan IC‘
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f(ze + h) = f(2) + &(zy, h) where lim &(z,, h) = 0

h—0
The mean value theorem states

[ + h) — f(=)
h

If, in addition (as we shall require), f'(x) is also continuous at * = x,, we can
combine the two statements into the single equation

= f'(%) ry < &<+ h

3.02 f(2o + h) = f(x) + hf'(%o) + he(xo, h)

where lim e(xg, h) = 0
r—0

Applying the result 3.02 to 3.01, we have

Af  hu(xy, Yo) + ku,(xy, Yo) + ihvz(xt)a Yo) + i kv (%o, Yo)

3.03 - =
Az h + ik h + ik h + ik h + ik
he, key ihe, ike,
+h+ik+h+ik+h+ik+h+ik
where
limey =20 v=123,4
h.e—0
Using the Cauchy-Riemann conditions, Section 3.10.3 becomes
A_f _ . h(ey + ies) + k(es + iey)
Az u (%o, Yo) + 10y, Yo) + h+ ik
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Now

‘ h Iél ' k =<1 so that
lh <+ ikl

Lh + ik

= &l + e + |83| + |€4|—"035 h,k—0

'_ - “z(xo’ yo) - iv:c(x()a yo)
Az

That is, f'(z) exists, and equals v, + iv,.

COMMENT 2. We have verified, in special cases, that the result of
differentiating a power series term by term is consistent with the result
obtained from differentiating other forms of the function. For example

z2n+1

\"(Zn)'li o (2n 4+ 1)!

z —z\! 7 __ o,z
(cosh z) = (e +e )= (g____e_) = sinh 2
2 2

(r‘neh ,\'

inh
..... = gimnmnh z

and

In addition, we have seen (Example 2.14.4) that a differentiated power
series has the same radius of convergence as the original series.

To prove that, in general, we can differentiate power series term by term,
two things are required (1) that the function f (z) = 20 2™ is mdeed

ﬂ
o thot ¢hhna £z nlls ffnvnnmtintad canian aanlf a.I... A i\
aucuy llb, auu \L}' tniat uic I.Ul.lllall.y UlllCICllllalCU oL1ICy ID lLDCll LliC uc Va-l-lvc
of (2).
LemMa.  If f(z) = D¢ a,2™ converges for |z| < R, then f(z) is analytic

in |z| < R, and f'(z) = 3¢ na,2".

PROOF. For any z in |z2| < R, let # be an arbitrary complex number so
that |z| + 4] < R. Then

M _fet+h—f6)_§, @b =2

Az h h
Now
n__n —1 n—2 1
(4 h’)' £ - l:z“ + nz""'h + n(n X i R4 — z"jl;"
et n(n — l)z”_2h + n(n — 1)}(n — 2)z"7° I

2! 3!
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This gives us

Af 2 o n(n — 1)z*2 nn — 1)(n — 22" ,
= _ . h Bt
Az g ga [ 21 + 31 + ]
) _ ] — 1 - -2 o
~ Sna | 0 Sl e 2™ |
0 2 2 3!
n—2)(n-—3 n—
4 i(' )21 ‘|h|2+---]
had n(n — 1 e
= 11 S ol S o]+

We can now draw our conclusions: the series on the right converges (and hence
is finite) for |z|] < R, |z| 4+ |A| < R, since the radius of convergence of a
differentiated power series is the same as for the given series; when 4 — 0,
then, the right-hand side tends to zero, so that Af/Az does indeed tend to
a limit, that is, f(2) is analytic. The derivative is clearly > na,z»t.

3.1 Regarding z = (z + 2)/2, ¥y = (2 — 2)/2i as a change of independent
variables from z, ¥ to z, Z, show (in relying on the usual rules) that

0_90 ,0
oz 0Oz + 0z
3 {2 @)
oy ’(az az)
@ @ 92

+ — =
ox® 0yt 0z 0%
(Note. 0/0z is not to be confused with d/dz: the first is the partial derivative

with respect to 2, with Z held fixed; the second is the usual derivative with
respect to the complex variable z in the sense of Section 3.1.)

3.2  With the notation of Example 3.1, any function of the two variables
x, Y, f(x,y) can be written

_ +z z—2z —
f(z,9) —f( o ) = &&D)
Show that the Cauchy-Riemann equations become
0 )
o =0 in which case g'(z) = g
0% 02
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3.3  With the notation of Example 3.1 show that Laplace’s equation
becomes 0%4/020z = 0, whose general solution (involving two arbitrary
functions) is

u=f(z)+ g@

Conversely, if f, g are analytic functions, then show that u(x, ) = f(2) + g@)
is harmonic.

34 A standard abbreviation for the Laplacian operator 9%/0z2 + 02%/0y?
is A. Show that, for f(z) analytic

AlfE)|* =411
3.5 Given ¢(,y), let A, ¢ be its Laplacian. Let w = f(z) be analytic;
make the change of variables z, ¥, to u, v and consider ¢ as a function of u, v.
Show that

And =40,,81@)
3.6 Find a particular solution of

A = zy

2i 4i
o , ., 27 2
L ormai lnl.egrauon gi veS P = L
8i 48i
XY o
= == (2* + ¥
12

A general solution is thus (zy{12) (22 4+ %% + Rf(z), where f(z) is any analytic
function.

3.7  Find (a) a general solution of A(A¢) = 0 and (b) a particular
integral for A(A¢) = zy.

3.8 Let 0/0f and 0/0n be directional derivatives in two perpendicular

directions so that a positive rotation by 90° leads from £ to 7. Then show
thatw = u < ivis analytic if, and only if, 4, = v,, 4, = —uv;, and the deriva-

tives are continuous.

39  fi(2), fo(2), - - ., fa(2z) are analytic, and [f,(2)|* + | (2> + - - +
| f»(2)|* is harmonic. Prove that each f,(z) is a constant.
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3.10  Show that f(z) = u + iv, analytic in a region R, is identically a
constant in R if any of the following statements hold:

(a) u=0

(b)) v=20

(¢} | f(z)| = const

(d) f(2) is differentiable

3.11  f(2) = Re™ is analytic. Show that

R.=R R,= —Ryp
and that * & Y *
f’(z)_alogR . 1_3_1;)

T i

f(z) T oz ox

3.12  Suppose w = f(z) gives rise to a conformal map of a region R in the
z-plane onto a region R’ of the w-plane. That is, any curve in R with a
continuously turning tangent is mapped onto a corresponding curve in R’,
with a continuously turning tangent; moreover, any two such curves in R
that intersect at an angle 0 are mapped onto curves in R’ that intersect at the
same angle 6; the two angles agree not only in magnitude, but also in sense.
Assume that ¥ and v have continuous partial derivatives of the first order
(w = u + iv as usual) and prove that f(z) is analytic in R.

Solution: Let 2 = ¢(#), ¥y = y(#) be the parametric representation of a
curve C in R with continuously turning tangent, that is ¢(¢) and (z), the
derivatives with respect to ¢, exist and are continuous; C passes through a
certain pomt zo of R and its slope at z, is tan 7 = w(to)/qb(to)

Then u = u[d(s), w(8)], v =v[d(®), w(?)] is a a parametric repre ertatio*;
of the image C’ of Cin R’; let w, be the image of z,; then the slope of C’ at

the point w, is

vmql; +uy v, +ytant

uzqé +uy u,+u,tanr
Let tan y = v,[u, stand for the slope of the image in R’ at w, of a parallel
to the x-axis through z, in R. The conformality the mapping requires that C
and the horizontal direction at z, include the same angle as C’ and the

image of this direction at w,, and so the slope of C’ at w, must be tan (y + 7)
which quantity developed stands on the left-hand side of the equation:

v, +u,tant v, 4y, tanr

u,— v, tant u, 4 u,tanr

This must hold whatever the direction of C at the point z, may be, that is,
we have here an identity in tan r. By straightforward manipulation, the
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identity yields the two equations

u (v, —u,) — v (u, +v)=0
vv, — u,) + uu, +v,)=0

This is a system of two linear homogeneous equations with determinant
u,2 + v,%; unless this determinant vanishes, both unknowns must vanish and
so we must have

v, —u, =0 u, +v,=0

the Cauchy-Riemann equations. If, however, the determinant vanishes.
that is u, = 0 and v, = 0, we interchange the roles of the x- and the y-axis.
If ©2 4+ v,2 > 0, we obtain again the same conclusion. If, however, all four
partial derivatives u,, v,, ¥,, and v, vanish, the Cauchy-Riemann equations
trivially hold.

3.13 Given u(x,y) = 2%y, v(z,y) = 2® + y%, show that the level
lines 4 = const, v = const intersect orthogonally, but that the mapping is not
conformal.

Solution: See 3.12.

3.14  Under a conformal mapping by w = f(z), show that the /inear
magnification at z is |f'(2)| (that is, an element of arc ds in the z-plane is
multiplied by |f’(z)| in the w-plane); also show that the area or superficial
magnification is | f*(z)|2. Thus show that a region D of the z-plane is mapped
onto a region of the w-plane whose area

" ~

A= JD J /@I dz dy.

3.15  The rectangle in the z-plane bounded by the lines z = 0, z = 2,
y =0, y = n/4 is mapped by w = coshz onto a domain in the w-plane.
Show that the area of this image domain is (7 sinh 4 — 8)/16.

Solution:  See Example 3.14.
16 he numbers a, ¢ are real, 0 < ¢ < #. Find the area in the w-plane
of the image of the rectangle

™
1

e

a—c<rx<a+c —c<y<ec

under the mapping w = ¢*. Find the ratio of the areas of the corresponding
domains, and show that this ratio approaches ¢%* as ¢ — 0.
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3.17 w = f(z) is analytic in |z] < R, and maps the circle |2| = r < Ronto
a curve C. Show that the length of C is

rer
J |f'(re®)| r db
0
Solution: See Example 3.14.

3.18  Locate the points of equal linear magnification for the mapping
w = 2% (Example 3.14). The change in the direction of a line element under
the mapping w = f(2) is arg f'(z), and we might call it the phase shift at 2
[provided f'(z) # 0]. Locate the points of equal phase shift.

3.19 Locate the points of equal linear magnification for w = (az + b)/
(cz + d), ad — bc = 1 and, in particular, for unit magnification.

TN Varify that 27 ,i20 Jn _ n
l.l“ J (S AF ) wr

ol ¥ Wi IIJ c

321  f(z) = X7 a,z"is analytic in |z| < R. Show that

(a) |f(re®)|* = z a,d, _,e0=n)
0

2r a0
(b) f |f(re®)?df =273 r*" |a,|?
0 0
Solution: Example 3.20.

3.22 w = f(z) maps the circle [z] = r onto a curve C of the w-plane.
Show that the curvature of C is

)
1 Rz

1 PG

P 1)

(1/p = d¢|/ds, where ¢ is the angle between the tangent to the curve and the
positive real axis and s the arc length.)

3.23  If the radius of curvature of a curve is of constant sign, the curve

ctaue nn tha ecama aida Af 1te tangant Qurh ~Anrvae ara rallad Anmns A Lina
Ol-a]t’ Wil Ltilv odlllv JluUw UVl ILD l.alls\-«lll- HMUWIL VUL YWY dlw Wddllivild LU"U‘:A I 1l

segment joining any two points of the convex set bounded by a closed convex
curve passes through points of the set only. Show that a sufficient condition

for the cgnvr—‘vlfv of the i image Qf |z2| = r under w = f(a\ 1S that
WO
f(z)
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Solution: Example 3.22.

3.24 Prove that

f(z)=1+§oc(oc—1)"'(oc—n+1)z,,

n!

is analytic for |z| < 1, and that f'(2) = af(z)/(1 + 2). Thus show that
[(A+2)7f)] =0 and f(z) =(1+2)

Solution: The coefficients

e —1)- - (a—n+1) <I0CI(Ioc|+1)---(|oc|+1+n)
n! | = n!

The ‘P root test shows that

o(n + k)!

0 n!

n
r

converges for r < 1, hence so does our series. Differentiating,

’ < —1)--- — 1 n—t
f(z)=;°t(ot )(n _(Olt)! n+ 1),

ma(m—l)"'(“_")zu m“(“_l)'“(m_n-]-l)z"

(1+2)f'(2)=§ "y +; (n — 1!

_m+§oc(oc—1)"-(oc—n+1)z,,(oc—n+1)

T4 (n — 1y! n

=« f(2)
This expresses the fact that [(1 4 z)~* f(2)]" = 0 so that

f(z) = (1 4+ 2)* - const
Let z = 0; f(0) = 1 so that the constant is 1.

325  As well as infinite series, there are other limiting operations of
considerable importance in analysis. One of these is infinite products. For
example, see Example 2.5.10

f"” 7 1 3 35 2n — 1

cos*rrxdr=—---=-.=...
0 2 2 4 6 2n
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The integral tends to zero as n — o0 and, more precisely, it can be shown
(Example 10.4.1) that

- 2:4-6---2n 1
Vo e s -/
or that (this is Wallis’ product)
z=lim2-24‘46'6“. 2n - 2n
2 a»w1-:33:55-7 @Cn-—0D2n+1)

n
Pn=“1u2"'“n=H“k
}

where the symbol T is to products as > is to sums. If P,, is to tend to a limit
as n — oo, then P,,, tends to the same limit, so that (P, )/P, = u, 1 — I
provided, of course that P,, # 0 and P, +> 0. We exclude, for the moment,
the possibility that P, = O for any n, that is, that any u, = 0, and regard the
case P, — 0 as divergence. Then a necessary condition for convergence,
that is, that lim,_, ,, P, exists and differs from 0, is that u,, — 1. We emphasize
this fact by writing u, = 1 + a,

P,=T110 + ay)
1
and then the necessary condition of convergence is

lima, =0

n—"w

(a) For all real values of =, except for z = 0,

1 L » o~ o
1 e 5 ©

(b) Ifa, =0, and

0 a,+a,+ - +a,=38,
cn
1485, =P, <é
(c) Ifa, =0 oSS
a, and 114 +a,)
1 1

are equiconvergent, that is, they converge or diverge together, the convergence
or divergence of one implies the same behavior of the other.

Solution: (a) That

2 x3 x‘l

x _ XL L x ..
CElF Lttty >
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is obvious when = > 0, and is seen from the series when —1 < « < 0 (the
terms alternate in sign and decrease in absolute value), and is again obvious
when z = —1.

(b) Since a,, a,, . . ., a, are positive,

Po=(+a)l +ay)---(1+a,)
=l4+a,4+a,+--4+a,+aa,+ - +aa,*:"a,
>1+4S,

On the other hand,

P,=(4a)(1+ag): - -(1+a,)<ee® =5
(c) Both S, and P, are monotonically increasing. It has been shown under

(b) that the boundedness of one implies the boundedness of the other.
Hence they are equiconvergent.

326  Assume that 0 < a, < | and prove that

a

iaﬂ and JJ{d —a,)

1

are equiconvergent.

3.27  Using the result of Example 3.8.1, that is, that the principal value

branch of
2

=_- 2z —

0
190(1 -+ Z-\ = T(—IVH-I
o\ i s PAIRN s
1

x |N:s
o ]

3

A
4= ...

3

B |

show that, for |z| < },
llog (1 4+ 2)| < 2 |z|

328 IfTI? (1 + la,)) converges, the product T (1 + a,) is absolutely
convergent. Show that an absolutely convergent product of complex terms a,,
is also convergent. (Use Example 3.27.)

3.29 Show that
[a) 22
i (-2

1 n

converges for all z. (It can be shown that this product equals sin 7z/nz)

3.30 Show that

Z 2 z z
P, =cos—cos~cos—---cos—
2 4 6 2n
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tends to a continuous limit, for all z, as n — oo.

Solution: Withcosz =1 + a,

»2 ~4 5
a=cosz—1=—5+i_a+...
|2%| 20z)F 2|7
<=
al =T (142
= 2 2! 4

IA

2|2
— cosh 1 for |z|<1
A

The n'® term in the product is cos z[2n = 1 + a,, with

112

1z1°

< ——
la,| = " cosh 1

provided n is sufficiently large. This series is absolutely convergent (Example
3.28).

3.31 Show that

. x. . &
. 3sin—5sin-—

x x x sin 5
COS—COS—CO§— *** =

2 4 6 x x x

3.32  Show that there exists a power series

w=f(zy=1+4 %anz
satisfying '
W 4w 42w =
Furthermore, show that this series converges for all z.
3.33 A conformal mapping, by an analytic function w = f(z), is called

univalent in a region R if the image point corresponding to each z in R is
covered precisely once. That is, f(2,) # f(z,) for z; # 2;,. Show that

(a) z2is univalent for Iz > 0
\ s M L

(b) 22 + 2z + 3 is univalent for |z| < |
3.34 Show that w = sin z is univalent for |z| < =.

3.35 If w = f(2) is univalent in |z| < 1, and f(0) = 0, show thatz = g(w),
the inverse function, is single valued (and univalent) for |w| sufficiently small.
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3.36 Let w = f(2) = z + D7 a,2z" be univalent in |z| < 1. Show that the
area of the image of |z| < r, where r < 1, is

/ L] \

ﬂ:(rz + Z n |an|2 r2ﬂ)
2

Solution: See Examples 3.14, 3.21, and 3.33.

3.37 w = f(z) is univalent in |z| < 1. Show that the area of the image of
thecircle 2| < r,r < 1,is

r fo C17Cre® P do

Solution:

Area = f J () dz dy = i f Af @) d= dy

1 r2r rr d d) 1 dZ] 012
== a(rL) 4 1L dr do
4 Jo ,[) l:dr(r dr + r do? £ dr

1 r2r

=:".JO

r 4 | f(re®)|? rdﬁ
dr 0

d 27 ]
=ir— | 1f(re®)l*db
dr Jo

(from Example 3.4).

3.38 If f(2) is an analytic function defined in the region R there is an
analytic function f*(z) defined and analytic in the region R, symmetric to R
with respect to the real axis, such that

J(@) =17(2)
Solution: = f(2) maps the region R of the z-plane conformally, with
conservation of the sense of the angles, onto a region S of the w-plane;
f(?) maps R onto S reversing the angles. By symmetry with respect to the real
axis of the w-plane we obtain f*(z) that maps R onto S conformally without
reversing the angles (Example 3.12).

3.39  Let us visualize a region in three-dimensional space in which we have
a general vector-field W, with components u(z, ¥, 2), v(z, y, 2), and w(z, ¥, 2).
At a point z, y, z of our region, we construct a cube, centered at z, y, z with
sides of length 24, and faces parallel to the coordinate planes.

(a) Regarding W as the velocity vector of a fluid moving through our region
compute the total flux of fluid (volume per unit time) crossing the six faces
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of the cube. The limiting value, as # — 0, of the flux divided by the volume,
is called the divergence of the vector-field at the point z, ¥, 2. Show that this is
U, + v, + w,.

(b) Regarding W as a field of force, compute the work done by the field in
moving a particle in the positive sense (i.e., so that a right-hand screw advances
in the direction of the outer normal when rotated in this direction) around the
periphery of each face of the cube. If we assign the direction of the outer
normal to each of these elements of work, we have three pairs of equal
vectors, forming the three components of a vector. The limiting form of this
vector, per unit area, as # — 0, is called the cur! of the vector-field. Show that
the curl of W has the components

w, — U,, U, — Wy, v, — U,

SOLUTIONS FOR CHAPTER THREE
3.1.1(b) Call Az = h

M _fiTh—i_ JiEh—i JiEht
Az h B h Jith+ [z
_ 1 1
IE ENAEN:
3.1.2(b) AfjAz = Axf(Ax + iAy) tends to different limits
as

Az — 0 (giving zero)

E?
o>
7

Ay — 0 (giving 1)
3.1.3 Consider y = ka3,
33.1(a) u=2x v=20
u, +v, =0
u,—v,=2#0 not analytic in z
3.3.4 u= x® — 3xy? u + iv analytic
(a) v, = u, = 32t — 3y*
v = 322y — y® + h(x)
(b) v, = 6y + h'(z) = —u, = bay
K@y=0, h@)=c
) u+iv==2+ci, ¢ = any real constant
336 f'@)=0saysu,=v,=u,=0v,=0
identically in «, y. Hence ¥ = const, v = const.
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Chapter CONFORMAL MAPPING BY
FOUR GIVEN FUNCTIONS

We examine some particular—and particularly simple and useful—
conformal mappings and vector-fields generated by the elementary analytic
functions studied in Chapters 2 and 3. We investigate, so to speak, the
“‘conformal geometry of elementary functions.”

4.1 THE STEREOGRAPHIC OR PTOLEMY PROJECTION

A map is a representation of the whole surface of the earth, or of a part of it,
on a plane. Lines on the earth’s surface (coastlines, rivers, and boundaries)
are represented by corresponding plane curves; angles included by rivers and
boundary lines, for example, at their intersection are represented by angles
formed by the corresponding intersecting plane curves. The map would be
perfect if it preserved all angles and reduced all distances measured along
curves on the same scale. Unfortunately, such a perfect map is impossible
(see end of p. 142). Yet, it is possible to construct a “semiperfect’” map that,
although it distorts the distances, preserves all angles; such a map is called
conformal.

We begin by constructing a conformal map of the sphere; it is usually
called the stereographic projection. This is an important map in many respects,
also historically; it was invented by the great Greek astronomer Ptolemy.

As indicated, we regard the earth as a perfect sphere and scale its radius
down to unity. In terms of rectangular coordinates (&, 7, {), the equation of

the sphere is B4+ =1

We regard the point (0, 0, 1) as the north pole N; then the equator is the
intersection of the sphere with the plane { = 0, which we shall call the
equatorial plane. If we pass a straight line through the north pole N, and
any other point, P of the earth’s surface, this line intersects the equatorial
plane { = 0 in a unique point P’ (Figure 4.1).

Let us denote the rectangular coordinates of P’ by (x, y, 0) or, since { = 0
for all points in this plane, we merely write (z, ¥) for P’. Thus, with each point
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Figure 4.1

P(&, n, ) on the sphere, we associate a unique point P’(x, ¥) in the equatorial
plane. Conversely, to each point P’(x, ¥) in the equatorial plane, we find a
unique corresponding point on the sphere by joining P’ to the north pole
(producing the line beyond P’ if necessary), and obtaining the intersection
P(&, n, {) of this line with the sphere. [For instance, if P’ is the origin (0, 0),
P is the south pole (0, 0, —1).] This mapping, or one-to-one correspondence
of points of the sphere with points of the plane, is called the stereographic
projection.

Actually, we have only obtained a map of those points of the sphere that
are distinct from the north pole. It is convenient to include into our mapping
the north pole as well. To achieve this, let P(&, 7, {) on the sphere approach
the north pole and observe what happens to the image point P’(z, ¥) in the
equatorial plane. As P approaches N, the line through P and N approaches
tangency at N, and P’ tends to infinity. Since there is only one north pole,
we say that the plane has only one point at infinity: as P(&, n, {) approaches
N, the point P’ approaches the point at infinity. Thus, by adding one
“infinite point” to the z-, y-plane, we make the plane closed in the sense that
now each point of the plane corresponds to precisely one point of the
closed sphere, and conversely.

This concept of the point at infinity is an extremely useful one, and the
stereographic mapping helps us to visualize the behavior of points at large
distances from the origin by interpreting them as being near the north pole
on the sphere.

The relation between P(£, n, {) and P’(z, ) is readily obtained in terms of
the coordinates of these points. Thus, from similar triangles in Figure 4.2,
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Figure 4.2

P' (x, y)

we obtain

op' 1

z_Y¥_ —

& n 00 1-U

(the right-hand part of Figure 4.2 is the orthogonal projection of the spatial
configuration onto the z-plane.) Hence

& n
1 =— =
or, associating z = x - iy with the point (z, ¥),
&+ ip
2 =2 i =
(2) + 1y 1 —¢

From now on, we shall often say ““the point z”” instead of the point P’(x, ¥)
and call the equatorial plane the z-plane, or the x 4 iy-plane.

Many of the properties of the stereographic projection become almost
transparent when we consider what happens to the parallels of latitude and
the meridians of longitude under the mapping. Any parallel of latitude, when
its points are joined to N, gives rise to a cone (the axis of which is the
diameter through N, the axis of the globe) so that the curve in the z-plane
corresponding to a parallel of latitude is the intersection of this cone with the
z-plane, that is, a circle, centered at the origin. Similarly, meridians of
longitude are intersections of the sphere with planes passing through the
axis of the sphere (the axis of the globe, the diameter through N and the
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south pole). The image of a meridian of longitude is thus the intersection of
two planes through the origin, or a straight line, which passes through the
origin. Thus, the grid formed by the parallels of latitude and meridians of
longitude maps onto a grid of concentric circies and radial straight lines
(identical with the coordinate lines r = const and & = const in polar co-
ordinates). We observe further that in both grids the two families of curves
intersect at right angles. This is a particular case of a more comprehensive
fact: we shall show that the srereographic projection is angle preserving.

4.1.1 Find the stereographic image of
(a) The equator of the sphere {

y

4

flhy Tha rtha hamicmhara

\U} .l.ll‘.r uUl l.llblu ll\vllllﬂl)llblb
(¢) The hemisphere n > 0.

4.1.2 Show that the coordinates of the point on the sphere of which z is the
stereographic projection are

z4z i(z — %) |2|> — 1
5 ] > 17 | J— . C ] '—2—
22 + 1 22 + 1 2 + 1
Another form of these relations is sometimes preferable:
. 2 2
6 + ”7 = 4 1 zl 12 1 - C = « 112
1+ |z° 1+ f2)°
[Start from (2).] (S)
4.1.3 Let 2; and 2, be the stereographic images of the points P; and P,

of the sphere, respectively. Show that the distance between P; and P, (the
length of the chord joining them) is

2 |2y — 2
VA + 1P + [zl
(This “chordal distance” may be small even if |z; — 2| is large.) (S)

414  Let Pl’ and P,’ be the stereographic images of the points P and P
~ | ol 1..-.
v

L ]
£ e¢hn cmhava ...-.n...n-a- QL A~ tlanéd ¢lan £AI1A mre botmcnmelan on
1 L1 DPI. iCl CDIJCDI.I VCI._Y OIIUW lllal. l.llC uJuUWlus llldllB > dll

F]

U
-
—r
o
fom
-
_
fo%
=

ANPI Pz NANP2P1
(Example 4.1.5) (S)

4.1.5  Express in terms of z the distances NP', NP, and their product
(notation of Section 4.1.) (S)
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4.1.6  The two points P; and P, of the sphere are at opposite ends of a
diameter. Show that their stereographic images, z, and z,, satisfy z;z, = —1.

(S)

4.2 PROPERTIES OF THE STEREOGRAPHIC PROJECTION

In the last section we saw that certain circles on the sphere (parallels of
latitude) map onto circles while other circles on the sphere (meridians of
longitude) map onto straight lines. In addition, there is a more comprehensive
fact: every circle of the sphere maps onto a circle or a straight line of the
plane.

(a) A circle on the sphere is the intersection of the sphere with a plane.

.........
north pole N. The projecting line through ¥ and any point of such a circle
lies in the plane determining the circle. Therefore, the image point lies in the
intersection of this plane with the equatorial plane, that is, in a straight line:
this straight line is the image of the circle through the north pole. What
we have shown contains the particular case of the meridians. On the other
hand, a circle on the sphere not passing through the north pole maps onto
some finite closed curve (not passing through the point at infinity), and so
its image is certainly not a straight line.

(b) To see all this analytically, we express by equations the fact that a
circle on the sphere is the intersection of the sphere with some plane: a point
(&, 1, 0) of such a circle satisfies both equations

§2+??2+£2=1, Ag T UT

where we suppose that 1% 4+ u? 4+ v = ] and p = 0. We recall that in this
notation, 4, u, » are direction cosines of the normal to the plane, and p is the
distance from the origin to the plane. In our case, p < | in order that the
sphere and the plane should actually intersect. By using Section 4.1 (1), we
have

E=2(1-10), n=yl-1

and we rewrite our equations in the form

(A2 + w)l —H+v{=p
- E+y)+ =1
We can divide the second equation by 1 — , by discarding only the north

pole, { = 1. Elimination of { yields the desired image in the  + Jy-plane of

the circle on the sphere:
(1) (p— ) +y* + 1) =2(2x + py — v)

This is the equation of a circle if p # v, and the equation of a straight line if
p = »; our derivation is completely general and gives the answer in all
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cases. The significance of the case p = v is seen from the equation of the plane

in this case:
Al 4+ un+v(l—1)=0

Such a plane passes through the north pole (0, 0, 1), determines a circle
passing through the north pole, and so our calculation confirms what we
have seen above by a simple geometric argument; the image of such a circle is
a straight line.

We see that a circle on the sphere always maps onto a circle on the plane,
unless the circle on the sphere passes through the north pole. Let us now
approach this exceptional case by continuous change; (1) can be transformed
into

{ A ¥ 1-—p
\x p—v} \y p—v} (p — )

and hence we see that as p — » — 0, both the center and the radius of the
circle tend to luﬁuu._y \p should not tend to l), and the circle becomes a
straight line. It is convenient to think of straight lines as being circles of
infinite radius, and with this understanding we have the comprehensive
statement: the stereographic mapping sends circles on the sphere onto circles
on the plane.

(c) We are now in a position to show that angles are preserved under the
stereographic mapping. The curves C; and C, on the sphere intersect at an
angle « at the point P. This statement tacitly assumes that the curves have
tangents at their point of intersection, and that the angle « is the angle between
these tangents. Let C;’ and C,’ be the images in the plane of C; and C, under
the stereographic mapping, respectively, and let «’ be the angle between these
image curves at their point of intersection P’, the image of P; see Figure 4.3.
Now the angles o and o' are determined solely by the tangents to the curves
in question at their points of intersection; moreover, it is intuitively clear
that curves tangent to each other are projected onto image-curves tangent to
each other. Thus, we may replace each of the curves C; and C, by any other
curve (€.g., a circle) that passes through and has the same tangent at the point
of intersection P. In particular, let us replace each curve by a special circle
that passes through the north pole. This is a natural choice; in fact, the
tangents to C,’ and C,’ at their point of intersection P’ (which form the angle
a') are precisely the stereographic images of the two circles just introduced,
respectively. Next, the two circles through N intersect at the same angle «,
both at the point P and at the north pole N, by virtue of the sphere’s sym-
metry. Now, the tangent plane to the sphere at the north pole N is obviously
parallel to the equatorial z-plane. Observe that these two parallel planes are
intersected in parallel lines by any third (nonparallel) plane. The plane of a
circle passing through the north pole N is such a third plane. Therefore, the
sides of the angle « with vertex at N are parallel to the sides of the angle o
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Figure 4.3

C;
Co

with vertex at the intersection P’ of C,’ and C,'. This shows that «" = «; the
angles are preserved.

(Remark on method. Our argument has reduced the proof of a general
theorem to the proof of a special case—to the case in which the intersecting
curves in the equatorial plane are straight lines.)

(d) Let us apply some of the geometry we have learned. We map the
z-plane stereographically onto the sphere, then rotate the sphere 180° about
the &-axis, and finally map the sphere back stereographically onto the z-
plane. The point originally at z has moved so eventually to another location
of the plane that we call w; thus, w is a function of 2. The explicit form of the
mapping is obtained as follows: first z is projected into (&, %, {); then the
rotation sends £ into &, # into —#, and { into —{; finally (§, —g, — ) is
projected back into w. Thus by a proper application of Section 4.1 (2),

_§—in §+ iy .
14 ¢ 1-¢

Elimination of &, , { between these relations and &% + %% + (%2 = 1 yields
= w(2). A shorter computation gives

_b—ip E+in E4+n 10
1+ 1-¢ 1= 1-°0
or, w = l/z; it is remarkable that a rotation of the sphere induces such a

simple mapping of the plane onto itself.

Now, a conformal map of a conformal map is obviously conformal, and a
circle-preserving map of a circle-preserving map is obviously circle-preserving.
We already know that the mapping given by the analytic function w = 1/z is

w whereas z =

1

W:*2z
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conformal, as long as we avoid z = 0. From its relation to the rotation of the
sphere we have just considered, we see a geometric reason for this fact and,
in addition, we see that w = 1/z maps circles onto circles, with straight lines
as limiting cases of circles. Thus the special mapping w = 1/z possesses a very
elegant and simple geometric property connecting circles and straight lines.
In the next section we shall get acquainted with further conformal trans-
formations that leave the family of circles invariant, that is, that map circles
onto circles; we shall investigate some of their more important geometrical
properties.

4.2.1 Show that

§—in 1
<z

W=

1+¢
by substituting for £, %, { their expressions in terms of z found in Example
4.1.2. (S)

4.2.2 w = f(z) is obtained by mapping z stereographically onto P on the
sphere, then rotating the sphere 90° in the clockwise direction about the &-axis,
sending P to a new position P*, and then mapping P* stereographically onto
the { = 0 plane, calling this latter point w. Find w = f(2) explicitly. (S)

42.3  Verify that repeated application of the mapping function of
Example 4.2.2 corresponds to a rotation of 180° about the £-axis, that is

. AR i . zl _— i . 1

2y =i - and w=i ~ imply  w=-

24+ i 2+ z
A M A T 1 a1 a 1 b I F Bl | 4 ) . _ F o R ’ 1.
4.2.4 rind the center and radius of the stereographic 1mage ot the circie

on the sphere:
8494 2=1, f=p, 0<p<l

43 THE BILINEAR TRANSFORMATION

(a) Besides the special mapping considered in the previous section, there
are other, more obvious mappings that are conformal and send circles into
circles. As the first of these, we consider the parallel translation that carries
the point (z,y) into (x 4+ a,y+b),or z=2+iyintoz+c=ax+a+
ity + b):

(1) w=z++c

Not only does the parallel translation leave circles invariant: it moves the
plane as a rigid body and leaves the shape and size of any figure unaltered.
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In fact, it leaves all directions unaltered; it carries any straight line onto a
parallel straight line. It carries all points along parallel paths; hence the name.

Another motion of the plane is rotation about a fixed point. It is sufficient
to consider only rotations about the origin, so that z goes into

(2) w= €%

We recall that in light of our interpretation of complex numbers as vectors,
(2) merely states that the vector z is rotated through an angle « in the counter-
clockwise direction: ¢’ is a unit vector.

A third elementary mapping that preserves circles is the uniform stretching
or dilatation that carries z into pz, and y into py where p > 0, so that z is
carried into

(3 w=pz, p>0

(If p < 1 we have, in fact, a compression, but we may call it “‘stretching”
icatinn huy 1 ench 1

as we call division by 2 mult tion by 4— such is the m

tin
ES i

language.)

(b) The mappings given by (1), (2), and (3) change any figure into a
similar figure, and any mapping formed by compounding them has the same
property and so, especially, it will preserve angles and map circles onto
circles. The most general mapping we can achieve by a succession of these
three mappings has the form w = az 4+ b, where a and b are complex
constants; if we denote by « the argument of a, so that @ = |a| €**, then the

transformation of z into w:

w=az+ b=|ale*z+ b

can be achieved by three successive transformations:

z, = €% rotation
z, = |a| 2, stretching
w=2,4+ b translation

(c) We now introduce the mapping w = 1/z as a fourth basic circle
preserving conformal mapping. The most general combination of w = 1/z
with (1), (2), and (3) yields an expression of the form*

(4 w=az+b
cz+ d

where a, b, ¢, d are complex constants. Conversely, every function of the
form (4) can be conceived as a combination of the four basic mappings

* This mapping was studied extensively by the German mathematician M&bius and in many
references, transformations of the form (4) are called Moblus transformations.
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described above. If ¢ = 0, we must have d 7 0 and we fall back on the case

discussed in subsection (b). If, however ¢ # 0, we can represent (4) in the
form

a bec—ad |1
5 = —
) W c+ c cz+d
and
zn=cz+d
1
Zy = —
21
w=g_!_bc—ad'z2
c c

shows a sequence of three successive transformations achieving the desired
racnlt

(d) From (5) we see that when ad — bc = 0, the mapping becomes
w = afc which is not a particularly interesting mapping: it throws the whole
z-plane into a single point; we call it a degenerate mapping. In the rest of this
chapter we exclude this degenerate case and insist on ad — bc # 0.

(We could go even further. The mapping function w = (az + b)/(cz + d)is
unaltered if we multiply numeratorand denominator bythe same nonzero con-
stant k; such multiplication changes the expression ad — bcinto k%*(ad — bc),
and we may choose k so that this expression becomes unity. When it is
convenient to do so, we may thus consider ad — bc to be equal to 1.)

A more symmetric form of (4) is obtained by multiplying through by
cz + d, giving

(6) cwz+dw—az—b=0

which is linear in z for each fixed w, and linear in w for each fixed z. Accord-
ingly we call the expression in (6) bilinear and the transformation given by
w = (az + b)/(cz + d) a bilinear transformation. From the symmetry of

Equation (6) we see that the inverse of a bilinear mapping is also bilinear;
we find, in fact, that

z=L"'f’ (—a)(—d)—b-c#0

cw — a

4.4 PROPERTIES OF THE BILINEAR TRANSFORMATION

(a) The bilinear transformation is built up by repeated applications of the
four basic transformations w = z + ¢, w = €z, w = pz, and w = 1/z. For
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example, if we follow a translation by taking the reciprocal, we have

Z1i=2+4c¢

1
W= =
Z1
or, eliminating z;, w = 1/(z 4+ ¢). That is, we obtain w = 1/(z + ¢) by

substituting z + ¢ for z in w = 1/z.
The most general transformation we can compound by applying succes-
sively our four basic transformations is the bilinear transformation.

If in w = (az + b)/cz + d) we set z = (a2, + B)/(yz; + J), the result can
be nothing else but another bilinear transformation

a2, + by
c1zy + dy
(Express ay, by, ¢, d; in terms of a, b, ¢, d, «, 8, y, 6.) In this way we see

a group in technical language: the inverse of any such transformation, and
the successive application of any two such transformations, yields another
bilinear transformation.

(b) We already know that the mapping given by w = (az + b)/(cz + d)is
conformal, since it is composed of a sequence of conformal mappings.
Moreover, we have here an analytic function; for a verification, we may
compute w’ = (ad — bc)/(cz + d)? which exists and is different from zero

for each finite z # —d/c. We know further that each bilinear transformation
is circle preserving and maps circles into circles.

Let us ask now whether it is possible to map the circumference of any
given circle C; onto the circumference of another given circle C, by a bilinear
transformation. Now, a circle is determined by any three points on its
circumference. We could solve our mapping problem by choosing three points
z1, %3, 23 0N C; and requiring them to map into w,, w,, wy on C,, respectively;
see Figure 4.4. Is this a reasonable approach?

We note that w = (az + b)/(cz + d) contains in fact, four arbitrary
constants a, b, ¢, d, but only three independent ratios. If ad — bc # 0, at
least one of the two coefficients ¢ and d is not zero. Suppose ¢ 7 0; then

a4,45

C C
w=—

e

c
and the transformation is completely determined by knowing a/c, bfc, and
d[c. Thus we should be able to require three conditions of our mapping, and

the mapping of z, into wy, z, into w, and z3 into w, should determine the map-
ping. Remember also that circles map into circles; therefore, if z, maps into
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Figure 4.4

w
23

21 w3
¢,

w, for b = 1, 2, 3, the circle through z,, z,, z; will map into a circle passing

through wy, wy, wg, and so will be uniquely determined. If the three points in

either plane are collinear then, of course, the circle in that plane becomes a
special circle, a straight line.

The mapping of C; onto C, is thus accomplished if we can find a, b, ¢, d'so
that

C 0y

‘>

(1) .
cz, + d

A glance at (1) shows that the system of equations is equivalent to three
homogeneous algebraic equations of first degree for a, b, ¢, d, so that a
solution always exists and can be computed from linear equations.

(c) There is, however, another approach that is often preferable. Let us
recall that inversion and successive application of bilinear transformations
yield bilinear transformations. Hence the required bilinear relation between
w and z could be given in the form

aw + _az+ b
yw+ 6 cz+d
where we have plenty of freedom in choosing the eight constants «, 8, 6, y,
a, b, ¢, and d.
Let us now observe this: when the numerator on one side vanishes, the

numerator on the other side must vanish too, and the denominators are
analogously connected. This leads us to set up the desired relation in the form

@) w—w1=kz—z1

W — W, Z —Z
g 4] ~ &

wherein the constant k is not yet determined (we expect, however, that
k # 0). The form (2) renders certain that w = w; corresponds to z =z,
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and w = w, to z = z,. It remains to express that z = z; corresponds to w = wy:

Wa — Wy 23 — %1

Wg — Wy Z3 — Zg

By division, we get rid of k and obtain the desired bilinear transformation
in the form

(3)

W—WIW3—W2 2—2123—22

W— WeWg— Wy 2z — 2323 — 2
From (3) we see immediately the correspondence of
W = Wy, We, Wy to % =21y Zpy 23

respectively, since both sides become simultaneously 0, co and 1 in these three

cases, respectively. This makes (3) easy to remember.
fAy Tha avnracql tha laft_haond qida Af 2\ g 1:q1 11" ta ad tha

\u} 1nC CXPICssion oOn wnd 18it-nanG siad oI (o) 18 usuany wrmea the
cross-ratio of the four points w, w;, ws, ws. Hence, we can express the
contents of (3) by saying that a bilinear transformation leaves the cross-ratio
invariant.

The cross-ratio of the four points w, wy, w,, Wy is often denoted by (w, wy,
we, Ws). We shall seldom use this symbol, and we do not enter into explaining
the importance of the cross-ratio in other branches of mathematics.

(¢) There is much more to say about bilinear transformations in general,
and about certain particular bilinear transformations: we refer to the exercises
and comments following this section and the ones at the end of this chapter.

44.1  Find the image of the circle |z — i| = 1 under the bilinear mapping

= (z.-:\l(z-l-i\ (S)
i\ JivE T \/

Solution: (a) Since the given circle does not pass through z = —i
(where w becomes infinite), the image is a finite curve, and hence a circle.

(b) w is real for z on the imaginary axis (i.e., the imaginary axis of the
z-plane maps onto the real axis of the w-plane). Since the imaginary axis of
the z-plane forms a diameter of the given circle, conformality shows that the
real axis forms a diameter of the image circle. Thus, corresponding to z = 0,

2i we have w = —1, 4, and these are the endpoints of a diameter. The image
circle is thus |w + l| = %.

AWAw Aw wiawwur H

44.2  Find the image of |2 — i| = | under w = 1/z.

4.4.3  Show that formula 4.4 (3) remains essentially valid when one of the
points z;, 2y, z, lies at infinity, or one of wy, w,, w, lies at infinity, or both.
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4.4.4 Set

ZI_Z2Z4_ZS

=2

(215 225 23, 24) =
21 - 2'.3 34 - 22
Then, the 24 permutations of z,, z,, z3, 2, yield 24 expressions for the cross-
ratio. Show that there are only six distinct values of these expressions, and
that all six are bilinear functions of . (S)

Solution:  The value of the cross-ratio remains unchanged when we
interchange

(a) z, with z, and z, with z,
..........

\U) 21 with Zq AN 24 with z <y
(¢) z, with z, and z; with z,

as well as (d) when we leave 24, z,, 24, 2, unchanged (the identical permutation).

Thus there are 6 blocks each containing four equivalent expressions of the
cross-ratio. We find the six different values by leaving 2, unchanged and
permuting z,, 24, 2,. Thus we obtain

1 1 A—1
A 1—-2  1-1 A

4.4.5 Find the six distinct values of (0, 1, oo, 2).

Solution: See Example 4.4.4.

A4 6 Assumine that w = (az + h\lf(/w + rf\ gnmq the mannine corre-

fefmel?  SaSdiallll A5 aalL W e 5 YL gppiaip SALER

sponding to a rotation of the sphere, by 90° clockwnse about the £-axis,
deduce the values of a, b, ¢, d from the fact that a second application of the
same mapping gives w = 1/z.

4.47  Find the bilinear mapping that maps z = 1, i, —iintow = —1, i
— i respectively. Into what region does the interior of the unit circle of the
z-plane map?

Q The manninog w — —1/» af Fvamnla A A7 cande 2 — 7 inta u = 7
"Fe"We U 4 1iw lllulJlJlus LLd IIH i l.lﬂ“llll}lb he Lha O ) UVU\-IO ~ l ll..ll- Fv LY
and z = —iinto w = —i. These points are called fixed points of the mapping.
For the general bilinear mapping, the fixed points are obtained by solving the

equation

equation
_az+b_
cz+d
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Find the fixed points of the mappings

(@) w= —i E—1 (S)
z 1
b =z+1
(b) w 1
w—i_z+1
(c)w+i_z—1

44.9  Find the most general bilinear transformation w = (az + b)/(cz + d)
having z = 41 as its fixed points.

4.4.10 In Exercise 4.4.9, show that

w—l_kz—l

w+1_ z4+1

for a suitable k.

4.4.11  Assuming that w = (az + b)/(cz + d) has two fixed points z, and
z,, show that the transformation can be written

w— 2, z— 2,
_k..._

. W - Z2 Z -_— 22
for a suitable constant k.

4.4.12 GEOMETRICAL INVERSION

Two points are inverse points with respect to a given circle if’:

(a) They lie on the same “radius’™ (half line through the center).
(b) The product of their distances from the center equals the square of the
radius of the circle.

Show that z,, z, are inverse points with respect to the circle [z — a|] = Rif,
and only if

(21 — a)(z, — a) = R® (S)

4.4.13  The general equation of a circle can be written (4 + A)zz + Bz +
Bz 4+ C+ C=0 (see Example 1.22).
If 21, 2, are related by the equation

(A4 Az, + B2y + B2, +C+C=0
show that z; and 2, are inverse points of the above circle. (Assume A 7 0.)
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4.4.14  In Example 4.4.13, if A — 0, the circle becomes a straight line as a
limit. What is the limiting position of a pair of inverse points in the circle,
when 4 — 0?

4.5 THE TRANSFORMATION w = z?

We now turn to a study of some of the mapping properties of the other
elementary functions we have been considering. One of the simplest of these
is the general power w = z® with integral exponent ». We will content
ourselves with the case n = 2. (For n =1, w = z is merely the identity;

Figure 4.5

y v 20,
92 291
B3
e,).’e\ 81 'Le'l-

X u

n = 0 gives w = 1, sending every point zintow = l;and w = lfz,n = —1,

we have already considered.)

Since p

—(#) =2z
dz

which is continuous for all finite z, and # 0 for all zexcept z = 0, we observe
that w = 2% gives a conformal mapping of any finite region of the z-plane that
excludes z = 0, into a corresponding region of the w-plane. Of particular
interest here is the mapping near z = 0. Since the derivative vanishes atz = 0,
we know nothing as yet about the nature of the mapping there. Let us
examine some special cases. Consider a region bounded by two radial lines
emanating from the origin (Figure 4.5).

W= pe' = 2% = (re’®)t = rlete
Hence p = r%, ¢ = 20. The line § = 0, maps into ¢ = 20,, while 6 = 0,
maps into ¢ = 20,, and the angle 6, — 6, goes over into 2(6, — 6,). Thus
angles are doubled at the origin. (It is equally easy to see that in the general
case w = 2™ the angles at the origin are multiplied by n if n > 0.) We cannot
expect a mapping to be conformal at a point, then, unless w' = f'(2) is
distinct from zero at this point. Points at which the derivative vanishes are
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called critical points of the mapping function. (We shall see later, that the
case w = z" is typical; see Section 6.5.)

We can take advantage of this scaling of angles; for example, we can map
the quarter-plane z > 0, y > 0 conformally onto the upper half-plane
v > 0 by employing the mapping w = 2% (Figure 2.2).

4.5.1 Show that, under the transformation w = 22, the upper half-plane
Iz > 0 is mapped onto the whole of the w-plane with the exception of the
points on the positive real axis of w. Similarly show that the region Iz < 0 is
mapped onto the same region.

Figure 4.6

Z w

4.5.2  Find the image of the unit semicircle of the z-plane, 0 < 8 < =,
0 <r <1, under “inversion’” about z = —1, that is, under w = 1/(z + 1).
Thus find a mapping (or sequence of mappings) that transform the unit
semicircle onto the upper half w-plane.

4.6 THE TRANSFORMATION w = ¢*

Setting w = pe'® and z = = + iy, we obtain w = pe’® = ¢* = ¢* - ¢V and
hence

p=é€" ¢ =1y + 2nn

where, if we insist on the principal value of the phase, 0 < ¢ < 27, so thatn
must be chosen accordingly depending on the value of y. Since

4y

az
the mapping is conformal everywhere. Observe that a rectangle in the z-plane
bounded by lines # = const and y = const maps into a *““mixed quadrilateral”
bounded by arcs of concentric circles p = const and radial lines ¢ = const
(Figure 4.6). (Consider at first only rectangles of which the vertical sides,
parallel to the y-axis, are shorter than 27; afterwards we may increase the
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Figure 4.7

4 w

length of the vertical sides to, and beyond, 2= and see what happens.)
Some limiting cases of the above mapping are of interest. Thus the half strip
0 <y <=, x<0gives Figure 4.7. while 0 <y <7, —00 < 2 < o0 gives
Figure 4.8 which shows that w = ¢* maps the infinite strip 0 <y < =,
— o0 < x < oo conformally onto the upper half-plane. We could now com-
bine this result with a bilinear map and map the half plane onto some other
circular region, the unit circle, for example, and have a map of the strip
directly onto the unit circle. What function will do the mapping?

4.6.1 In what region of the w-plane is mapped the infinite strip —7 < y <
7 by the exponential function w = €*?

Figure 4.8

AY

D y=nm C

-3

A4 B
z

Aﬂ

o= U
C DA B
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4.7 THE MERCATOR MAP

The stereographic projection yields a conformal map of the sphere on the

nlana feae Qartinn 4 1Y and thicic the anlv man af thie Lind wa have cancidarad
l.ll“llv \UVV AAWwW' LIV AL 'T.l.}’ RALAWE LI1ILAIW IV Lidlw Ulll.J l.l..l.“l.’ WA RAALY IMVILAWE VY W LIWE Vo WV LIDIW W AWl

so far. Yet, in starting from this one map, we can easily obtain any number of
other angle-preserving maps of the sphere, by mapping the plane conformally
onto itself by an arbitrary analytic function; in fact, a conformal map of a
conformal map is again conformal. The exponential function leads here to a
result of practical importance in navigation.

Figure 4.9

il
m 3

Thus the (&, n, {)-sphere is mapped conformally onto the w-plane. We
introduce spherical polar coordinates; let ¢ denote the latitude, and 6 the
longitude. Then, see Figure 4.9,

IA
IA

w . ko .
—=S¢d=— —nZ0<n and we have
2 2

& =cos $cos

7 = cos ¢ sin §

{ =sin¢
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and by Section 4.1 (2)

co
Zz =

1
1

7]
B9
&

e
N4

Q1
31

Thus
¢ 'ﬂ)
u=Ilogtan |— + — =0
£ (2+4 v

and the spherical surface is represented conformally on the infinite strip
—r S v<m —o0 <u< oo. Lines u = const correspond to parallels of
latitude, and » = const to meridians of longitude; especially, ¥ = 0 cor-
responds to the equator, and » = =, and also v = —=, to the date line

Figure 4.10

A

(see Figure 4.10). This is the well-known Mercator map; let us say a word on
its use in navigation.

If the helmsman steers the ship so that its motion includes a fixed angle with
the due north, the ship sails a ‘“‘constant compass course,’”” or ‘“rhumb line”

on the sphere that cuts each meridian of longitude at the same angle. (Do
not neglect, of course, magnetic deviations, or use a gyro-compass—we have
neglected already the deviation of the globe from the exactly spherical shape.)
Thanks to conformality, the image of a rhumb line in the w-plane cuts each
straight line v = const at the same angle—and so it must be a straight
line itself. Hence a constant compass course can be plotted on the Mercator
map with a straightedge.

Additional Examples and Comments on Chapter Four

4.1  The mapping w = l/z corresponds to a rotation of the sphere 180°
about the £-axis. What transformation of the sphere is induced by w = 1/z?

4.2  Show that each circle cutting |2| = 1 orthogonally is mapped into
itself under w = 1/z.
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4.3  Find the circle on the sphere that is the stereographic image of the
circle
lz— al| =R

That is, find 4, «, », and p of the equation of the plane

A+ un+vi=p
that cuts the sphere to form the circle (see Section 4.2). (S)

4.4 Find the center and radius of the image of the circle |z — a| =~
under the mapping w = 1/z.

A
%

z w

(1N

4.5  Prove that the bilinear transformation maps circles onto circles by
showing that
A+ Az +B:+B24+C+C=0
becomes
(A +AWwWr+Bw+Bw+C +C =0

when w = (az + b)/(cz + d).

4.6  Given any circle, and a pair of points z,, 2z, that are inverse points in
this circle, show that the bilinear transformation w = (az + b)/(cz + d) maps
the circle and inverse points of the z-plane into an image circle, and points
w,, Wy, Which are themselves inverse points in the image circle (see Examples
4.4.12 and 4.4.13).

COMMENT 1. The results of Exercises 4.5 and 4.6 provide us with a
rapid and elegant method of constructing particular bilinear mappings.
Consider, for example, the problem of finding the most general bilinear
transformation that maps the upper half-plane onto the unit circle (Figure
4.11). Let w = (az + b)/(cz + d). Then some point of the upper half-plane
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is mapped onto w = 0; call this point «. The inverse of « in the z-plane
“circle” is &, which maps onto the inverse of w = 0 in the circle |w| = 1,
that is, onto w = oco.
Thus 4z — )
ez — &)

So far, we have not specified that the circle in the w-plane is the unit circle,
just that it is centered at w = 0. Setting z = x, we have

a

T — o

gx—oc‘
¢

clla —o c

since x — & = # — a. In other words, afc = ¢, for some real §, and we have

Z— o

w = ¢'f I >0

z— 0o

47  Show that the most general bilinear mapping that sends the unit
circle |z] < | onto the unit circle |w| < 1 is

—

w= et el < 1
az — 1
4.8 For the elementary functions we have considered so far, the mappings

from the z-plane to the w-plane are continuous in the ciosed domains consist-
ing of the regions and their boundaries. In order to determine the map of a
given region, then, we merely determine the image of the boundary of the

+ *

region, and determine on which side of this boundary the image region lies.
Show that the following rule follows from conformality: if we walk along the
boundary of a region in the z-plane in that direction for which our left hand
points to the interior of the region, then the same orientation holds for the
image curve and region; that is, we proceed from A towards C in the z-plane
so that our left hand points to the interior of the region, and if the image of
the boundary arc ABCis A’'B'C’, then the interior of the image region lies on

the left as we proceed from A’ towards C’ (Figure 4.12).

Solution: At any point B of the boundary curve (which we assume has a
tangent), let BC be one arc, and BD another arc making a small angle « at B,
with BD lying in the interior of the given region. From conformality, the
images of BC, BD are B'C’, B'D’, meeting at the same angle «, and in the
same sense. In the diagram above, we must rotate in a counterclockwise
direction to go from BC to BD, and thus also to go from B'C’ to B'D’.
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Figure 4.12

Y. A

z—plane w—plane

4.9  For each of the following bilinear transformations, determine the
image region corresponding to 2] < 1.

e—il+i wHli4i

(a) X .= -
z4+il—i wH+ii41

—1

b) w ="

(b) w 1
22— 3

C =

(c) w z2 i

zls 225
_az+b
cz 4+ d
can be written as
w—z 2 —z
t_ g 1
W - 22 z -_— 22
See Examples 4.4.8 and 4.4.10.
Set
o N w—2 rig . iy
= pe =pe k = |kl|e
z— 2, W — 2,

Then the bilinear transformation states that
p=1klp and ' =¢+y
Interpret these statements geometrically.
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Solution: p = const gives a circle, centered on the line joining z,, z,,
so that z;, z, are inverse points in this circle. ¢ = const is a circle through
z, and z,, and the bilinear transformation transforms each of the two systems
of circles into itself, while each circle of one system cuts each circle of the
second system orthogonally.

4.11 What is the analogue of Example 4.10 for a bilinear transformation
having only a single fixed point? (In this case, if 2, is the fixed point,

1=1+k)

4.12  Show that the determinant of a product of two bilinear transiorma-
tions is the product of their determinants.

4.13 Find the

a0 (nic a
0. (p1s a

appi g = (az + b)/(cz + d) that sends 1, p, p? into

e ma
ube root of unity, ¢2"/3)

(")

sy Ly

4.14 Let z,, 25, 24, 24 In the plane project stereographically onto Py, Py, Py,
and P, on the sphere, and let P, — P, denote the length of the line joining
P, and P,. Show that

(P]_a P21 P31 Pd) = |(zl’ 22, zas Z4)|
Solution:  See Examples 4.1.3 and 4.4.4.

4.15  Show that the mapping w o= f (z) induced by an drbitrary rotation of

g Py R e

the sphere about a diameter (preceded and followed by a stereographic
projection) is bilinear. What are the fixed points in this case?

4.16 If z,, 2, are the stereographic nrmectlom of the ends of a diameter of

the sphere, and the sphere is rotated through an angle @ about this diameter,

show that
w—2z 0% — %1
— 1 _ el

W — 2, z— 2z,
Solution: See Example 4.15.

4.17 In order that
_az+ b
cz+d

corresponds to a rotation of the sphere, it is necessary and sufficient that it can

ha writtan snn tha £A
UC YYLILLG L lll Lilw I.UI. lll.

)
Q]
|
T}

o
NS
+
8Ny
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Solution: See Examples 4.15 and 4.16.

4.18  Given a circle and a curve, the set of points inverses

AI\"I\IA A tlan smninnte ~AF tlan Asrsern mern Ol #lhnt

th N 21 n
l.llC VilvIC Wl l.llC PUIIILB Ul I.IIC vulve lb a Iicw curve. QIIUW Liicat

circle (not cutting the fixed circle) is itself a circle.

h respect to

e inverse nfa
IiC INIVCISC O1 a

as

4.19  Verify that the equation of a straight line can be put in the forms

@Ax+puy=p V+p=1 2A+iu={
(L) R =p =

(€) Rze ™) =p

d)bz+bz+c+é=0

4.20 For the circle 2z = R?, let 2, be a point outside the circle. From z,,
two tangents are drawn to the circle, and the line joining the points of tangency
is constructed. This line is the polar of z,, and z, is the pole of this line. Show
that the equation of the polar of z, is R(z, z) = R®. Locate the inverse to z,
with respect to the polar of z;.

421  In the terminology of Example 4.20, let 2, lie inside or on the circle.
Then R(z, z) = R? s still called the polar of z,, and 2, the pole. Locate this
line with reference to z;.

422  Given two nonintersecting, nonconcentric circles, locate a pair of
points z; and 2, that are inverse points for both circles.

4.23  Let D be the connected domain having the two circles of Example
4.22 as its boundary. Show that D can be mapped onto an annulus k < |w| <

P _l‘-_..._a.

l Dy a DlllIlCdl transiormatior. rmu K, WﬂlLﬂ lb Lllllqll(':ly UCIIHCU

Solution:  Suppose that the mapping is possible. Then, if w,, w, are the
images of z,, z,, we must have w; and w, inverse in both circles |w| = k and
|w] = 1. That is, w;Ww, =1 and nyW, = k% which is meaningless unless
wy = 0 and w, = 0. The mapping thus must be of the form

W=Aﬁ:ﬁ)

On the other hand, for any 4, this mapping sends the two boundary circles
of D onto circles having 0 and oo as inverse points (i.e., onto a pair of circles
concentric with the origin). In order that the larger of these two circles be
w| = 1, |4] is uniquely determined, and hence so is k.

k="
r

a — 2z
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4.24 Map the annular region bounded by |z| =1, |z — 2/5| =2/5
conformally onto the annulus k¥ < |w| < 1, and find k.

Solution: See Example 4.23.

425  Verify that w = sin z maps the semi-infinite strip —n/2 < z < 7/2,
y > 0 conformally onto the upper half-plane v > 0. Note the nature of the
mapping at z = —/2, w/2 where w’'(z) = 0.

426  Show that w = z/(1 — 2)* maps the unit circle |2| < | conformally
onto the whole plane cut from — oo to —1/4. (The mapping is also uni-
valent.)

uappi g w 4/"(2 :
2 < {2 onto a domain D. Find D, t
the mapping is univalent.

o

r“gi0u |.c| < 1, 0 < arg
ts boundary, and show that

4.28 ANALYTICITY AT INFINITY

The nature of an analytic function f(z) near the point at infinity is defined
to have the corresponding properties of f(1/z) near z = 0. Thus f(z) = 2/
(1 + 2z) gives f(1/t) = 1/(1 + ), which is analytic near f =0, so that
f(2) = z[(1 + 2) is said to be analytic at infinity.

Similarly, w = f(2) is said to map a neighborhood of z = z, conformally
onto a neighborhood of w = oo if ¢t = 1/f(z) maps a neighborhood of
z = 2z, onto a neighborhood of t = 0.

Which of the following functions are analytic at infinity?

(a) €
e ()

©) ap+a,z+ -+ a,z2"
bo+ byz + -+ + b2"
Jz
d =
@ 7
4.29 Show that w = }(z 4+ 1/2) maps the portion of the upper half-plane
exterior to the unit circie conformally onto the upper half-plane. What is the
image of the upper half-semicircle |z} < 1, Iz > 0 under the same mapping?

4.30 Show that w = z 4 1/z can be written
w—2 f(z— 1)2
w2 z+41
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and so can be considered equivalent to the sequence of mappings

z—1 9 w— 2
wl__ We = W Woe =
P T | 2 1 2 [ |

Thus show that any circle passing through z =1, —1 is mapped onto a
circular arc passing through w = 2, —2.

4.31  With the notation of Example 4.30, for the mapping w = z + 1/z,
discuss the images of circles passing through z = —1, and enclosing z = +1

(a) By adding the vectors z, 1/z.
(b) By using the sequence of maps suggested in Example 4.30.

Show that the exteriors of such circles are mapped conformally onto the
exteriors of the cusp-shaped image curves (Figure 4.13).

Figure 4.13 Joukouski’s profile.

432  Generalize the results of Example 4.31 to the mapping

WliWw Wi LIlW AW WA WA LSLEEVRELAD AdARN YT ARAWER

the circles |z — 1
formally onto |w| < 1.

4.34 Show that for 0 <c <1, w=12(z—¢c)f(cz— 1) maps |s] =1
onto |w| =< 1 (taken twice).
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4.35 Find a sequence of conformal maps that transform

(a) The unit upper semicircle to the unit circle.
(b) The region bounded by three circular arcs meeting orthogonally to the
upper half-plane.

4.36  Verify the mapping of Example 4.25 by using Euler’s formula,

iz -—1Z

. — e 2
w=sinz="————  w,=e¢
2i
and the results of Example 4.29.
4.37  If u — iv is an analytic function of 2 = x + iy, and F(2) = ¢ + ip

satisfies F'(z) = u — iv, show that ¥ = const gives the general solution of the
differential equation (the path curves of the vector-field):

dy _ »9)
de  u(x, y)
Verify this result for the vector-fields
1 1
R e

4.38 Describe the locus z¢ + 4z as z varies on the unit circle.

Solution: A wheel of unit radius has its center on the rim of a circle of
radius 4, and makes four revolutions per unit time turning uniformly while its
center moves around the circle in unit time, also uniformly. The locus is the
path traced out by a point on the circumference of the smaller circle. The
ancient astronomers used such epicycles to describe the motion of the
planets.

4.39  Showthatf(z) =z + X3 a,z"is univalentin |z| < 1if >3 nla,| < 1.

COMMENT 2. Conformal mappings by multivalued functions: w =
We recall that for any complex number z = re’®, there are two square

roots: vre®®? and —+/re®?. Each of these is called a branch of the function

V7 Let us concentrate our attention on one of these, say\/ z = re*%?
Regarding w = Jz as the inverse of the single-valued function z = w?,

we see that w(z) is analytic and gives rise to a conformal mapping of each

region in which w'(z) exists and is 7 0. We must thus avoid z = 0 if our
mapping is to be conformal.
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SOLUTIONS FOR CHAPTER FOUR

4.1.2-4.1.5
Z=E+i77 izi2_§2+?72_1+C
1 —1 1= 1-¢
Hence
2 2z
1 —¢ = in =
v STt

|PyPo> = (& — &) + (e — m)* + (L — 40
= [§y + in, — (& + in)] X [&, — in, — (&, — iny)]
+[(1—=8)— (0 —=8)°

{22 22y \{ 2% 27,
- (1 Flnlt 1+ |zll2)(1 +lml 1+ |z1|2)
[ 2 R
s T e
_ 4|z, — 2,|°
T B+ (2l
Next, in the triangles NP,'P,’, NP,P,, the side

INP'P=a+ 9>+ 1 =142
NP2 =82 + n? + (L — 1)

Al-12 | A A
=‘ti:<-i + 4 _ <
1+ 127 142
|NP| |[NP'| = 2
Finally,
2|NP/|
INP,| = 2 - 2
VI+ 5 V1 + |z
2|NP,)|
|NP1| = 2
V1415 V1 + |2
2 |P,/P,|
|P1P2|= —2

V1+ 12" V1 + |2/
4.1.6 P,, P, ends of a diameter gives |P, — P| =2
Hence

|2y — 21!2 )
2 =1
(1 + [z X1 + {2,/%)
|z1|2 + |22|2 + |2122|2 + 1= |31|2 + |Zg|2 — 242, — 242,

Solutions for Chapter Four
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or
(222 + 1)(Z2o + 1) = 0 = |23, + 12

4.2.1 =TTy
1 — ¢
422 w=i—!
2+ i

4.4.12 (2, — a)(2; — a) = R?says that z; — a and 2z, — a are on the same
half-line (or z,, 2z, are on the same “radius” of the circle), and also that
the product of their lengths is R2
43 (z—aE—a) =R
49  E—inp  _E+iy
—— —a
(1-29 1-¢ 1—-¢
(a + @) + (iag —iayn + (la* — R* — 1){ =1 + |a|* — R®

Annex to Section 4.1  For an elementary proof showing that “a perfect
map is impossible’” see G. Polya, Mathematical Discovery, vol. 2, pp. 129-
132 (John Wiley & Sons, 1968).
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Chapter INTEGRATION:
FIVE | CAUCHY’S THEOREM

The subject of this chapter is the central theorem of the theory of analytic
functions, due to Cauchy. The theorem is stated in Section 5.2.

51 WORK AND FLUX

We saw in Chapter 3 an interpretation of analytic functions that gives rise
to a sourceless and irrotational two-dimensional vector-field. In this section
we extend the “point” or local property of such vector-fields, which is
expressed by the Cauchy-Riemann equations, to an “overall” or global
property.

We imagine a vector w = u + iv attached to each point (z, ) of a two-
dimensional domain. In this field, we draw a curve C with initial point a
and endpoint b.

We may consider the vector w either as a force, or as a current density in
the two-dimensional flow of a fluid. Each interpretation of the vector-field
carries its own interpretation of the curve C. Thus, considering w as a force,
it is expedient to think of C as a parh, along which a material particle may
move. The direction of such a motion, represented by the unit tangent
vector to the curve, e, is of importance here (Figure 5.1); 7 is the angle
between the tangent and the positive x-axis.

We can describe the curve in either of two directions. For definiteness (and
to conform to usual practice) we single out the counterclockwise direction as
the preferred, or positive, direction, when dealing with closed curves.
(Here and later, the term “‘closed curve” is used in the same meaning as
“simple closed curve”; see Section 5.9.)

If we interpret w as a current density, then it is natural to consider C
as a boundary across which a material point may move. For such a motion the
unit normal vector to the curve e*’, is important (Figure 5.2); v is the angle
between the normal and the positive z-axis. We take as preferred normal
direction the outer normal for the closed curves.

143



Figure 5.1 Figure 5.2

Accordingly, we have the following relation between our two unit vectors
(compare Figures 5.1 and 5.2):

(D e’ = ie"
and the corresponding real relations
(2) cos T = —siny  sinr =cosv

For all curves, closed or not, we choose the direction along the normal so
that the relations (1) and (2) remain valid.

The projections of w on the tangent and normal of C that we call w, and w,,
respectively, are real numbers, and are useful in calculating various physical
quantities.

First, regarding w as a force, let us compute the work done in transporting
a material particle along C from a to b. Let ds be the differential of arc of C
at the point z. The contribution of this element of arc to the work done is
w, ds, that is, the projection of force times the distance, so that the total
work is given by

(3) f w, ds

c

The symbol | indicates that we have to include into the sum all the elements
of the curve C.

Second, let us regard w as a current density. The amount of matter crossing
the line element ds per unit time in w, ds, or the normal component times the
length of line crossed. The total amount of matter crossing C per unit
time, the flux across C, is thus:

4) f'w., ds
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Now, see Figure 5.3,

ir

w, = Rwe™ = |w| cos (r — arg w)
=uUCoST + vsinrt

w, = Rwe™"" = |w| cos (v — arg w)
=uUcosy+ vsiny

(5)
fw,ds =f(u CoOs T 4+ vsint)ds [wv ds =f(u cos ¥ + vsin v) ds
c c c c

Figure 5.3 Figure 5.4
w
r < A
e g \\
)c Z \ N\
' \ \
\
Wp
T—argw dy ds
T
dx u

From Figure 5.4, we see that

dz dy )
—— = COST —— =Ssin-T
ds ds

cos 7 ds = dx sin 7 ds = dy
cos v ds = dy sinvds = —dx

Incorporating these into (5), we obtain

(6) [w,ds=fudx+vdy fwvds=fudy—vdx
Je c c c

If we condense the two real equations (6) into one complex equation, we
hiain
uLalil

@)

(7) fw, ds + if w, ds =f(u — iv)(dx + i dy) =f w dz
C C c C
where we have put
8) dr + i dy = dz
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What we have found is important: a physical interpretation of the com-
plex line integral. We can rephrase it in the suggestive, if unorthodox, form

% fw dz = work + i flux
C

52 THE MAIN THEOREM

We consider the particular case in which a and b, the initial and final
points of C, coincide, and C is a *“simple” closed curve, that is, a closed
curve without multiple points (does not cross itself) surrounding a domain D
of the z-plane. If an integral is extended around a closed curve, we emphasize
this circumstance by writing ¢ instead of . With this symbol, we have

£wdz=£w,.ds+i£wvds
Je C Je

(1)
= work + iflux

We recall (see Section 5.1) that each real line integral on the right hand side
of (1) has to be viewed in a different physical context. The real part is the
line integral of the tangential component of the vector w. In this case it is
convenient to interpret w as a force, C as a closed path, and the line integral
as the work done by the field of force W as a particle makes the round trip
along the closed path C. In the imaginary part of (1) we interpret C as the
boundary of a domain D, and W as a current density, so that the line integral
represents the total flux per unit time crossing the boundary C.

We now assume that the function w is analytic throughout the domain D,
including the boundary C. Then, as we have seen in Section 3.5, the field of
the vector w is both sourceless and irrotational. Since the field is irrotational,
the work done along the closed curve C vanishes. Since the field is sourceless,
the total flux across the boundary vanishes. That is, both the real and the
imaginary parts of the right side of Section 5.2 (1) vanish, so that the left
side is similarly zero. We have thus obtained an intuitive proof of Cauchy’s
theorem, the central theorem of the theory of analytic functions: If the
function w = f{(2) is analytic at each point of the domain D bounded by the
closed curve C, and on this curve itself, then

if(z) dz =0

This result, so intuitively attained, is of such extreme importance that it is
desirable to investigate more closely the underlying notion of a complex
line integral.
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5.3 COMPLEX LINE INTEGRALS

Complex line integrals are closely analogous to ordinary real integrals.

rartnrs - 1IC TRAMND ol 44 - alataloloda) n inrfragralc Iﬂ a8 roan Amnln
Tharaf: lat N firct th t nf int 1 th 14
F 8 l.l.\-r Wi Ul\-’, Awli WO AWwh-Lill 11100 Lilw \vvllb\vl.ll- ALYy 8 ll.ll-\vsl Li10 111 bllw L%l WUUlliAalll.

We focus our attention on the particular case in which the real function

(1) y = (=)

of the real variable z is continuous and takes positive values between the
limits @ and b; @ < b. We may interpret the integral of f(x) from a to b
as the area under the curve in Figure 5.5 and conceive of it as the limit of
a sum of rectangles

)
[P

’ J 'f(2) dz = lim Ef(sk)(xk — 2,y

n—+w k=

Figure 5.5

AY
/ |

|

! N

| |

I I

| |

| !

1 1

- X
a = xg Xk -1 Ek Xk Xn= b

T mnd 2ncn e 11 tlih s cmmmima som o ons onme ale n angmn  mooe Al oo ...._ bhvcad 1 1. &
L€t US récaii tnc PlCleC lllCd.lllllB Ul inc Suim O11 tn€ 1 B a U SIUcC ol

(2); see Figure 5.5. We subdivide the interval from a to b into n subintervals
by inserting the successive points 2, Z,, . . . , «,_,;. For the sake of uniformity,
we set 2, = a, x, = b. We choose any point §; in the subinterval (z;_,,
xz,). The situation is expressed by the inequalities

a=xo<§1<x1<§2<"'<xk...1<§k<xk<"'<xn=b

(In fact, we could admit = instead of < as long as »,_, < #;.) We approxi-
mate the strip under the curve that lies above the subinterval (z,_,, 7,) by a
rectangle of base z, — x,_,, the length ot the subinterval, and height f(£;),
the ordinate corresponding to the intermediate abscissa &; chosen in the
subinterval. The area of the rectangle is f/(,)(x, — 2;_,). The areas of all the n
rectangies of this kind make up the sum on the right of Section 5.3 (2). It is
intuitive that such a sum of rectangles becomes arbitrarily close to the true
value of the area under the curve if the bases of all the rectangles (the lengths

Complex Line Integrals 147



of all the subintervals) become sufficiently small, and this is precisely what
Equation 2 states.
We now consider a complex function

(3) w=f(2)

of the complex variable z. Being given two complex numbers a and b, we
regard them as two points, a and b, in the complex plane. Since these points
can be joined by infinitely many different curves, we must specify a definite
curve C, startmg from a and ending at b. We set a = 2,, 2, = b, and choose
the remaining (n + n — 1 = 2n — 1) points in the sequence a =z, {, %,

Figure 5.6

b = 2n
—-.-\
Zk
S
2k — 2
a = 2g
Cos 225 - -+ s Zgy> Cks Zs -+ « Ly 2, = b; We encounter these points in just this

order when we move steadily from a to b along the curve C (Figure 5.6).
We define the complex line integral of w = f(2) along the curve C in strict
analogy with Section 5.3 (2) as a limit:

(4) f wdz = lim Zf(gk)(zk — Zpy)

n—wk=

We pass to the limit by letting » tend to infinity, and making all the subarcs
of C, such as (z,_;, z), tend to zero. The existence of this limit is less intuitive
than in (2); we might have expected this, since the geometric meaning of (4) is
less obvious than the meaning of the integral in (2) (area). However, since the
rules of operating with complex numbers are the same as the rules for real
numbers, and the notions of limit and continuity are defined in the same terms
in the Complcx and the real domains, if the existence of one of the limits (2)
and (4) can be proved by a formal argument, then that of the other can be

proved by the same argument. Moreover, since the line integral itself has an
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intuitive meaning (see Section 5.1 (9)) we can contrive to give an intuitive
meaning to the approximating sum; see Example 5.9.

A few concrete illustrations may help the understanding of these general
ideas.

Example 1. Let ¢ denote a given constant. Find, using its definition as the
limit of a sum, the integral

[ cdz

Je

Wherever we choose the intermediate points ¢,, {,, ..., {, in their
respective intervals, the given integrand assumes the same value c at all these
points. Therefore we have to consider the sum

LiC(Zk — 4D =cF — %)+ (B —%)+ -+ (%, — %, y)]

= (2, — %) = c(b — a)

Since changing n does not alter this expression, we let n tend to infinity,
obtaining

foc dz = (b — a)

It is worth noticing that the value of the integral depends only on the
endpoints a and b, and is independent of the choice of the curve C joining
a and b. If the curve C is a closed curve, the points @ and b coincide, and the
integral vanishes. This, of course, is a very special example of the general
theorem of Cauchy, since ¢, considered as a function of z, is analytic every-

where.

Example 2. Find, using its definition as the limit of a sum, the integral

fzdz
C

We choose the two extreme positions for {;, first {;, = z,, and then {, =
z;_;- These extreme positions are, of course, admissible, although, for the
sake of brevity, we did not mention them explicitly in the foregoing general
formulation. in this way we obtain

(z dz = lim D z,(z, — 2,_;)
k=1

v

n
= limkE 212 — %)
=1
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If we do not see how to evaluate these limits, we may try to find their arith-
metic mean:

Fad

J zdz = llmzu(zk — zk-—l)
c 2

= lim 3 3(* — 22_y)
k=1

=lim[(z2 —22) + G2 — D) + - + (2,2 — 22_)]
= lim 3(z,} — z,%)
= lim §(b* — &%)
= }(b* — a%)
Agam the value ofthemtegral depends only on the en dp oints. Lettmga and b

.
[ S

l. o e ~
LUIHLIUC, w¢< LUllllllll \.;d.l.lblly § tnCoOI<in in an

Example 3. Let C be the unit circle, described in the positive direction.

Find
fz_l dz
c
as the limit of a sum.

The n'® roots of unity divide C, the path of integration, into n equal arcs.
Taking 27! at the last point of each arc, we obtain the sum

n 2mik 2mik 21ri(k -1
,Z‘ exp | — exp —exp———————

)

(1= e (-27))
n{l — exp

n
n(l—cos—+!sm2—w)

n
(0 . o . . 2w

=n(28m -—-{-tsm—)

n n

270 2m)

~n\— +i—
n n

— 2
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We have used the fact that for an infinitesimally small angle «, sin & ~ «.
This means, more precisely expressed,

sin o
—1 as x—0

o
We obtain

d-;

Cz

= 2mi

if C is the unit circle described in the counterclockwise direction.

Observe that this result does nor contradict Cauchy’s theorem. In fact,
Cauchy’s theorem supposes that the integrand is analytic at all points of the
domain enclosed by the closed curve, C, of integration, without exception.
In the present case, however, there is an exception: the function 27! ceases to
be analytic at the origin, which is the center of the circle. In fact, z~? is not
even defined at z = 0, and becomes infinite as z approaches the exceptional
point. We observe that z = 0 is the on/y exceptional point; at any other point
z7tis analytic. We see that violation of the hypothesis of Cauchy’s theorem at
even a single point may invalidate the conclusion of the theorem. One fly
may spoil the milk.

5.3.1  Evaluate [ (x + i¥®) dz along two paths joining (0, 0) to (1, I):

(a) Cconsists of a segment of the real axis from 0 to 1, and of a segment of
tha lima oo — 1 fram 20 — 0t 2 — I
Lilw 1illw W = 1 l11V111 y —_— N LV y —

(b) Cis the straight line joining (0 0) and (1, 1). (S)

817 Evaluate [t. 21/2 4> taken around the unn
L Lo T At ¥ A il W ‘, -—— 1 -v T AW LA A W L AAWE - - “rr

z!/% has its principal value. (S)

5.3.3  What is the value of the integral in Example 5.3.2, if the path is the
lower unit semicircle?

5.34 Evaluate
[
—1 Z

(a) Along the upper unit semicircle.
(b) Along the lower unit semicircle.

taken

and compare the results with ¢ dz/z taken around the unit circle.
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5.3.5  Evaluate § 2" dz for n an arbitrary integer, the path of integration
being the unit circle. (8)

5.3.6  Evaluate § (z — 2,)"dz for n an arbitrary integer, the path of
integration being a circle centered at z,.

5.3.7 Evaluate § e*/(z — z,) dz taken around a circle centered at z,.

X e*dz g= %
Solution: § = § dz o

2
z—2z (2 —2)
= enf| —— 41 +ER
J Lz — 2 ' 31 d
= 2mie®
To justify the interchange of summation and integration we can write the
integral as
Z—2Z
e % — d
g0 f#; dz + e §
and
=z 2
e 0 — 1 z— 2, (z—zo)+._
z— z, 2! 3!

is analytic inside and on C.

538 f(?)=27a,z" is analytic for |zl <R, R>1. Evaluate
$ /(2)/(z**+1) dz, the path of integration being the unit circle.

5.3.9 Evaluate § dz/z about the square with vertices at x = 41, y = +1
and show that the value is 27i.

54 RULES FOR INTEGRATION

Some of the rules for ordinary real integrals follow so immediately from the
definition of the integral as the limit of a sum that they can at once be
extended to complex line integrals. They are the following:

If p and ¢ are constants

(1) L[pf(z) + qg(d)]dz = p fcf(z) dz + q fcg(z) d-

Let a be the initial point of the curve C, b the final point of C and the
initial point of the curve C’, and ¢ the final point of C’. Let C + C’ stand for
the compound curve consisting of C and C’ described in succession; C + C’
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starts at a, passes through b and ends at c. Then

@) [ 1yde+ [ sydz=[ (a2
JC JOC+C!

Je
Let C-! denote the curve consisting of the same points as C, but described
in the opposite direction. Then

© [r@a:+] sera=o

The rule (3) can be regarded as the extreme case of (2) in which C’' = C-1,
¢ = a and the curve C 4+ C’ passes through each of its points twice, first in
one direction and then in the opposite direction (so that the two increments
dz belonging to the two passages cancel).

Let L denote the length of the curve C, and M denote a (positive) number
such that

@I =M
along the whole curve C (M is the maximum of | f(z)|, or any greater number).
Then
4) ff(z)dz =ML

c

This result is particularly important; it follows from Section 5.3 (4), and the
triangle inequality.

Thus

<tim SIfC 12 — 7]

n—rw k=1

- f 7)) 1d2]
C

= M| l|dz|
c

—M C\/dx2 + dy?

™

= M| ds
JC

=M-L
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Still other familiar rules of the integral calculus remain valid in the complex
domain if they are suitably interpreted.

5.4.1 f(2), g(z) are analytic; show that integration by parts is valid for
complex line integrals

| s0g@ = sep0| ~[ s
c c c

where f(2)g(2) lc means f(z)g(z) evaluated at the terminal end of C less its
value at the beginning of C.

5.4.2  z = g(t)is analytic. Show that.

[ r@rds=| sisotew
c o
where C is the image of C’ under the mapping z = g(1).

5.4.3 Estimate / = § dz/(1 + 2%) about |z| = R, and show that

27R
I = R>1
= R*—1
. 1 1 1
Solution: | = , = =
22 + 1 !R2e218 - 1! !R2 _ e——-w!

Geometrically, the points R? — ¢7** lie on a circle, centered at z = R? with
unit radius. The maximum value of |1/(1 + 2%)| occurs at the point nearest
the origin, and is
1
R*—1

5.4.4 Evaluate [}e'* dz

(a) Along the straight line joining the limits.

(b) Along segments of the coordinate axes joining the limits.

(c) Estimate the integrals using |f| < M - L in each case, and compare the
estimates with the values.

5.4.5 ShOW that §|z|=1 z dz = 27”.

54.6  Evaluate §Z dz taken in the positive sense about the square with
verticesatx = +1,y = +1.
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5.5 THE DIVERGENCE THEOREM

The object of this section is to prove two parallel formulas

Qudx 4+ vay = — — —}dxdy
1 d d 0 _9u\ yrd
v o ax ay
D
\ ([ {0u v
(2) Pudy —vdx = (—+—) dx dy
UC L, ax ay
D

C stands for a closed curve without multiple points described in the positive
direction and D for the domain surrounded by C; the functions 4 and v and
their partial derivatives involved are supposed to be continuous in D and on
C. We may regard u and v as the components of the vector

W=u-+iv

Remembering the formulas 5.1 (6) and the definitions given in Sections 3.5
and 3.6, we can transform (1) and (2) into

(3) f#; w, ds =ffcurl w-dxdy
¢ D
(4) § w, ds =deiv w-dxdy
c
D

respectively. In this new form, we can perceive an intuitive meaning. In fact,
remember that curl w has been defined as the limit of a ratio: the ratio of the
work along a small closed curve to the area surrounded by that curve.
Multiplying by an infinitesimal area, which we denote by dx dy, we see that

curl w dx dy = infinitesimal work
Similarly,
div w dx dy = infinitesimal flux

And now we can express (3) and (4) (or, which is the same, (1) and (2)) as
follows:

The total work along a closed path C equals the sum of the works around all
elements of the area surrounded by C. The outflow across a boundary C equals

the total outout of all sources within the area surrounded bv C
Ld vw!rw- vJ bad ] F Ry Trosrassrs v Wi FF YR aer e v}' N

MR L4 S Y ]

We shall call both theorems jointly the divergence theorem. In the literature,
these theorems and their space analogues are variously connected with the
names of Green and Gauss, or Riemann and Ostrogradsky. The divergence
theorem can be proved in various ways; for a usual short proof see Example
5.1.
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We sketch here another proof that deepens and explains more fully the
intuitive meaning emphasized by the verbal formulation.*

Draw two series of equidistant straight lines, parallel to the x-axis and to the
y-axis, respectively. These lines divide the domain D into several portions;
some of these portions are squares, others have a mixed boundary, consisting
of straight line segments and of certain arcs of C (in the simplest case of just

Figure 5.7
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one small arc of C); see Figure 5.7. Let 4, denote the area of the k'® portion
and P, its boundary curve described in the positive direction, We say that

(5) § w,ds=Y ¢ w,ds
c P,

(6) f})wvds=2§)‘ w, ds
o P,

the sums on the right hand side are extended over all the portions into which
D has been subdivided.

In fact, consider the various parts of the curve P,. Such a part may be a
straight segment separating the portion considered from one of its neighbors
whose boundary curve is P;: the segment in question belongs both to P, and to
P;, but described in opposite directions and yields, therefore, exactly opposite
contributions to the line integrals extended along P, and P; in (5) or in (6);
see Figure 5.7 and consider both work and flux; ¢f. Section 5.4 (3). Thus, the
contribution of any such straight line segment to the sums considered is
exactly nil, and nothing remains of any of these sums but the contributions of
the several arcs into which the boundary curve C has been cut by the sub-
division (any such arc belongs to just one portion). Yet these arcs make up
the whole curve C and so (5) and (6) become obvious.

* The idea of the following proof goes back to Ampére who used it in investigating the magnetic
action of electric currents; ¢f. J. C. Maxwell, A Treatise on Electricity and Magnetism, Yol. 2,
Sect. 483, 484.
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Now, by the definition of curl and divergence (see Sections 3.5 and 3.6) we
have the approximate equations

[
7 P, e ds ~ 4, curl ®

A

(8) § w,ds~ A, divw

Pk
which tend to become precise as the dimensions of the portion, and so its area
A, tend to 0. By virtue of (7) and (8), we can recognize the right-hand sides
of (5) and (6) as approximations to the double integrals on the right-hand
sides of (3) and (4), respectively, and we obtain these latter formulas in the

lhult as the d}stance l-\nhnnnn fhn nr-nghl'\nrlng nqnlr‘mfapf para"els Qf fhn

subdivision tends to 0.

5.6 A MORE FORMAL PROOF OF CAUCHY’S THEOREM
We obtained in Section 3.3 a necessary and sufficient condition that 1w (z) be
analytic; this condition can be written

dw  Ow

ox i0dy

the real and imaginary parts yielding the Cauchy-Riemann equations. We
further assumed that the derivatives of the real functions u, v in this expression
were continuous. If we combine this result with 5.5 (1) and (2) we obtain

fwdz =\ (u — iv)(dx + i dy)
C JC

f*

= udx+vdy+ifudy—vd;r
c c

-

.
f(vx —u)dxdy + iﬂ(ux + v,)dx dy
D D
=0

since

—u—iv)= %(11 — iv)

ox i 0y
so that

v,—u, =0 u,4+v,=0

at each point of D.
This proof may appear to be more different from our former proof than it
actually is. The reader should realize that the foregoing more formal proof
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in fact renders the intuitive proof of Section 5.2 just more explicit and
explains it more fully.

5.7 OTHER FORMS OF CAUCHY’S THEOREM

Up to now, we have relied on the intuition of the reader in describing
domains D, and their boundary curves C. It now becomes necessary to have

Figure 5.8
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more precise ideas of these concepts, since modifications of the results
obtained and their extension to more general cases are often needed in the
applications.

The “simplest’” domain we can think of is a set of points such as the interior
of a circle, see Figure 5.8 (a), or of a square. There are also more complicated
domains; in Figure 5.8, (b) is a ring-shaped domain between two concentric
circles: it consists of such points as the ones inside the larger (encompassing)
circle and outside the smaller (encompassed) circle. Figure 5.8 (c) consists
of the points belonging to either of two nonoverlapping circles. These three
examples illustrate very important differences.

Domains (a) and (b) are connected; any two points can be joined by a curve
wholly within the domain, that is, passing through interior points of the
domain. Clearly this is not so for (c), which is disconnected.

Let us focus our attention on connected domains.
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The essential difference between the connected domains (a) and (b) is that
while every simple closed curve in (a) encloses only points of the set, there are
simple closed curves fully contained in (b) that enclose points not belonging
to (b). We say that (a) is simply connected, while other connected domains
such as (b) are called multiply connected.

We are now in a position to give another form to Cauchy’s theorem, which
will be useful in developing the integral calculus of analytic functions.

Theorem 1.  If w = f(z) is analytic in a simply connected domain D,
and if @ and b are any two points of D, then the integral

J:f(z) dz

has the same value along every path of integration connecting the endpoints
a and b and lying entirely within D,

Wn £an see |nfn|fnrnlu fhnf fhle Fnrm nf Cancrhv’e thanram |e nnnn alant tn
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the form stated in Section 5.2; we shall use some simple facts listed in Section
5.4. Thus, let C; and C, be two paths joining @ and b and lying entirely in D.
We restrict ourselves to the simplest case in assuming that the path C; + C,™!
is a simple closed curve. (The reader should free himself from this restriction.)
Since D is simply connected, all points inside C; + C,~? belong to D and so
f (%) is analytic at all these points—we shall use this fact.

We now obtain, from Section 5.4 (2) and (3),

([ = Vreya-=( £(2) dz
\Jael Jacz/ ’ JC'),+C'2_1 ’
= § sz =

by virtue of Cauchy’s theorem, and hence

[ ;f(z) do=| 1) dz

Conversely, if we assume the proposition just proved we can derive, retracing
our steps, the form given in Section 5.2,

Cauchy’s theorem, either in its new form or in its original form found in
Section 5.2, is the starting point for almost all deeper investigations con-
cerning analytic functions. Several immediate consequences, important in
their own right, follow below.

Let C; and C, be simple closed curves, C, lying entirely in the interior of
C,. The points that are both interior to C; and exterior of C, form a domain
that is not simply but doubly connected, and is called the annular domain
determined by C; and C,.
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Figure 5.9
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Theorem 2. If (2) is single valued and analytic at all points of the annular

domain determined by C; and C,, boundaries inciuded, and both C, and C,
are described in the positive sense, then

| f@d=] se
1 2

To prove this result, we connect the two paths C; and C, by an auxiliary
path R (a “cut’) lying entirely in the annular domain (Figure 5.9).
Imagine now the right and left “banks” of the path R (the ‘“river”) pulled
apart somewhat, as in Figure 5.10.

We have “cut” the annular domain along the path R, and by cutting it we
have changed it into a simply connected domain: the path abcdefa is a non-
self-intersecting simple closed curve, enclosing only points for which f(2)
is analytic. It follows from Cauchy’s theorem that

(1) § f(z)dz =0
abedefa
the integral being taken in the positive sense. We can decompose (1) into

Uol'*f_fojf] f()dz=0

Figure 5.10
e
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the first and third integrals being taken in the positive (counterclockwise)
sense. Since the paths involved actually coincide, but are described in opposite
directions, we see that the sum of the two integrals

[ [Jrowns

cf. Section 5.4 (3), leaving

@) fc f(2)dz — fc f(z)dz =0

and this proves Theorem 2.
Imagine a moving rubber band that may change its length, shape and
10C&Li0i’i Fu.uu its lllll.ld.l PUDII.IUH whcu: it LUllllecb wu.h the Curve bl, the

rubber band moves, in sweeping across the intervening ring-shaped domain,
to its final position where it coincides with the curve C,. This rubber band

113 ”
suggests the concept of “continuous deformation” of a curve. To express

Theorem 2 intuitively, we say: the continuous deformation of the line of
integration leaves the value of the integral unchanged, provided that the
continuously deformed line sweeps across only such points at which the
integrand is analytic. Imagine the singular points at which the integrand
ceases to be analytic as nails sticking out from the plane in which the rubber
band moves and blocking its passage.

Example 4. From Example 3, Section 5.3,

~ 7

a .
f}) — = 2i
851

where C,; is the unit circle, |z = 1. From the theorem just proved, since
f(z) = 1z is analytic at each finite z # 0, we see first that

(3) dz _ 2mi

c <
where C is any curve encircling |z| = 1. Especially the result is true for any
sufficiently large circle, which will encircle any simple closed curve C en-
closing the point z = 0; and so, by a second application of Theorem 2, the
result (3) is true for any such C.

Observe that Theorem 2 supposes that f(z) is analytic in the annulus
between C, and C,, but supposes nothing about f(2) inside the interior curve
C., where f(z) can be analytic or otherwise.

In very much the same way, we establish Theorem 3.

™

Theorem 3.  Let C, be a simple closed curve. Let each of the simple
closed curves C;, C,,..., C, lie completely in the interior of C,, but
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exterior to each other (especially, they do not intersect). Then

[ ot ={ r@a:+{ stz +- - +[ f@ra
JCo JC1 JCs JOn

provided f(2) is analytic inside and on the boundary of the multiply connected
region formed by C, as the exterior boundary curve and C,,..., C, as
interior boundary curves. The integrals are all taken in the positive sense.

The proof is very similar to the proof of Theorem 2, and is clearly suggested
by Figure 5.11.

Figure 5.11
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5.8 THE INDEFINITE INTEGRAL IN THE COMPLEX DOMAIN

We are now in a position to investigate the “indefinite integral” of an
analytic function f(2).

Let us consider a simply connected domain D, and any two points, z, and 2
of D. We may connect z, and z by infinitely many curves that lie completely
in D. From Theorem 1 of the preceding section,

f@)dz=| f(z)dz
cr ca

for any two such paths C, and C,, see Figure 5.12. That is, the integral
§%,/(2) dz has a meaning that does not depend on the path of integration,
so that F(z) = §; f(2) dz is a well-determined single-valued function of z
(we can evaluate it by choosing any curve between z, and z). Let us add the
important remark that F(2) is analytic, and F’(z) = f(2). To prove this
statement, we proceed from the definition of the derivative, and construct
[F(z + Az) — F(2)]/Az (Figure 5.13).

2+Az z+Az

F(z+Az)—F(z)=f f(t)dt—rf(t)dt=[ f() dt

v Z0 v Z0 o Z
and since we may take any path connecting z and z + Az, we choose the
simplest path, which is the straight line joining the two points (this choice is
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Figure 5.12 Figure 5.13
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possible if [Az| is sufficiently small). Then

F(z 4+ Az) — F(z) i rzt+Az
=10 =1 [ w56
1) )
1 [ztas
== [f () — f(2)] at
Az Jz

Since f(z) is continuous, | f(¢) — f(2)| is small for suitably small [t — 2.
In more precise form, given any £ > 0, however small, it is possible to find a
0 > 0, so that | f(r) — f(2)| < ¢ for all |t — z| < 8. Using this fact, we may
estimate the right side of (1) as follows:

1 "2+Az | 1 “z+Az
" /() —f@)dt| = — |f(t) — f(2)| |dt]
| Az J. | = 1Az| J.

2) ,
< —e¢l|Azl =c¢
Az

Compare (1) and (2) and observe that ¢ is arbitrarily small. Thus, the
difference (AF/Az) — f(z) becomes arbitrarily small: it tends to zero as
Az — 0, and so F'(2) = f(2).

The result we have just obtained is important: the integral of a given
analytic function is itself an analytic function of the upper limit of integration

nn/f rfo rforlnnfnm l(' flsn o emn f1s nnnnn
FIVL VD FHIG 6IUDI’ Ju P EEUIT R,

We may use now for the function discussed, F(2), the usual terminology of
calculus (of the theory of real variables): the term “indefinite integral” and the
notation

F(z) =ff(z) dz
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The importance of the indefinite integral is twofold. First, we may express
the definite integral

ro roe fra
J f(x)dz = J f(z)dz — J f(z) dz
= F(b) — F(a)

as the difference of two values of the indefinite integral. Second, indefinite
integration is the inverse operation to differentiation, the indefinite integral
is the ‘““antiderivative.” Or, stated still differently, the indefinite integral F(z)
of a given function f(2) is the solution of the differential equation

© T s
dz
We need only the simplest rules for differentiation to convince us of this fact:

mamkh WL aa 1o Al _
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converse true? Is F(z) 4+ C the most general solution of (3)?

To examine this question let G(z) be an analytic function satisfying

d G(z) _
dz
Set G(z) — F(z) = w; then, from (3) and (4),

4 f(2)

w =0

If w = u + iv, where u and v are real as usual, it follows that

and hence, by the theory of the functions of two real variables, we see that

u = const v = const
Therefore, with some (complex) constant C
w=C
G(z) — F(x)=C
G(z) = F(z) + C
and so we have found the most general solution of the differential equation
(3). Expressed in other words, the difference between any two indefinite
integrals or antiderivatives is necessarily a constant.
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We are now in a position to explain Examples 1 and 2 of Section 5.3.
We found that [, ¢ dz = ¢(b — a). Since f(z) = c is an analytic function for
all z, and F(z) = cz is an indefinite integral, it follows that

b
J.cdz=[cz]2=cb—ca=c(b—a)

Analogously
b
f 2dz = [12°])) = 4(b° — a°)

We consider now Example 3 of Section 5.3, which needs more care since
f(z) = 1z is not analytic inside |z| = 1: it has a singularity at z = 0. We have

Figure 5.14

to avoid this singularity, and, moreover, we have to avoid it so that we
obtain a simply connected domain: our preceding investigation of the
indefinite integral was restricted to such a domain.

To accomplish this we ““delete” or “cut out” the positive half of the real
axis, the origin included; that is, we consider that the subset of the set of all
complex numbers that remains when the nonnegative real numbers are
excluded. We call this remaining subset the “‘cut plane”; it is a simply
connected domain: a circle, or any other simple closed curveentirely contained
in the cut plane, cannot encircle the origin or any other point that does not
belong to the cut plane.

As in Example 3 of Section 5.3, we have to integrate 1/z over the unit
circle [z| = 1. We know that any branch of log z is an antiderivative of 1/z;
yet the line of integration |z| = 1 is not entirely contained in the cut plane.
Therefore, we consider an arc of this circie, from a to b, which is still inside the
cut plane, although a and b are arbitrarily close to the point 1 and the arc is
almost a full circle (Figure 5.14).
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Now we consider [} dz/z = log b — log a; observe that we arrive at the
value log b by starting from the value log a and following the logarithmic
function as it changes continuously along the arc from a to b. Finally, we pass
to the limit letting a and b tend to 1 and the line of integration to the entire
unit circle C:

— = lim f — = lim [log 2]}
Cz

= (log €*™* 4 2n,7i) — (log 1 + 2n,7i)
= 2

In the first line, log z denotes any determined branch of the logarithmic
function. In the second line, however, log refers to the principal branch as
far as a is concerned, and to the limiting value of the principal branch with
regard to b so that

logl =0 g = 2mi

The value of the integral turns out (as it should) independent of our
arbitrary choice: it does not matter which one of the infinitely many branches
we choose for log z.

This example is instructive in several respects; it shows especially that the
indefinite integral of f(2) may be multivalued if f{2) ceases to be analytic even
at a single point of the region considered.

5.8.1 In the following integrals, C is the unit circle, || = 1, described in
the positive (counterclockwise) sense. Show that the value of each of these
integrals is zero.

" e* dz sin 2

@ |5 ® | 2
Jz—
d dz —_—
o/
*  sinh z

©) J2 42242

5.8.2  Evaluate each of the following integrals along any curve joining the
end points of integration.

(a) | cosh3zdz
J—1

(b) .e'” dz

dr‘—;;

(c) (2* — iz) dz

v—R
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583  Deforming the path of integration, transform the integral §,_, dz/z
into one taken along the real axis from 2 = — R to 2 = —§, then along the
lower semicircle |z| = §, then along the real axis from é to R, and finally
along the upper semicircle 2| = R; suppose R > 4.

5.84 Show that f2; dz/z has the same value for every path joining —1, 1,
which remains completely in the upper half-plane.

5.8.5  Evaluate (% log r dt in the cut plane, cut from O to oo on the positive
real axis, where log ¢ has its principal value.

Solution: zlogz — z 4 1.

5.9 GEOMETRIC LANGUAGE

Until the beginning of this chapter we have used certain general geometric
terms, such as “curve,” “region,” and “‘domain’ somewhat loosely. For the

reader who paid sufficient attention to the examples at hand, the danger of
misunderstanding was not great. Yet we need a stricter terminology if we wish
to deal efficiently with the geometric concepts, the importance of which became
manifest in this chapter.

(a) Curves. As in Section 2.10, we consider a complex valued function

z=2x+ iy = f(t)

Af a ranl yarmahla ¢ Wa acennma naw that f#) ie nansrancetant and dafinad in an
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interval including its endpoints, in a closed interval. We may even choose,

without real loss of generality, a specific interval. We assume that
0=sr=1

is the interval of definition of the function f(¢). We assume further that f{r) is
continuous. Then the set of values (points) assumed by f(¢) forms a curve.
This curve is described in one sense or the opposite accordingly as we consider
t as increasing from O to 1 or as decreasing from 1 to 0. The curve is closed if

(1) S0 =11

A curve that is not closed may be called an arc.

Observe that these definitions are general; they say nothing about tangents
or continuous change of direction, and so on. Thus, we regard the boundary
of a square as a closed curve, and other polygonal lines as curves, closed
curves or arcs.

A curve that has no multiple points (Which does not intersect itself) is
called a simple curve. The full definition follows: an arc is called simple if for
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any two real numbers f, and ¢,

(2) 0=p<y=1 implies [ (o) # f(t)

A closed curve is called simple if (2) is valid with the exception of the single
pair t, =0, t;, =1 for which we have (1). Thus, there is a one-to-one
continuous correspondence between the points of a simple arc and the points
of a closed interval, which is the “simplest arc.”” Similarly, there is such a
correspondence between the points of any simple closed curve and the
points of the simplest closed curve, the circle. (This follows from the definition
that postulates such a correspondence between the simple closed curve and the
interval, the two endpoints of which are identified, considered as ““coincident.”)

A SImple closed curve separates the plane into two domains: its interior and
ll.b exter lUl .l ﬂlb lb UUVIUUb lll ld.lllllld.l cascs. lUl l.ﬂC LIILIC mc UOUﬂUdly Ul a
square, the boundary of a convex polygon, and so on. The reader is advised
to visualize intuitively the surrounded interior and the unbounded exterior

moantmana alAnt anraral
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fact for the most general simple closed curve (which may be horribly compli-
cated.)

A curve is oriented when it is described in a definite sense (there are only
two different senses to choose from, as we have seen above). A simple closed
curve is positively oriented if it is described counterclockwise, as by a person
walking along it and leaving the interior to his left.

(b) Point sets, regions, and domains. The plane (the complex plane, the
z-plane) is the set of all complex numbers z = x + i/y. Any subset of this set
1s a point set. A point set is well defined for us if we know an unambiguous
rule by which we can decide of any point of the plane whether it does belong
or does not to the point set.

We wish to characterize those kinds of point sets that are most useful in our
study.

A point set S is called open if each point that belongs to S is the center of a
(sufficiently small) circular disc, each point of which also belongs to S.
(Each point of an open set is completely surrounded by points of the same
kind. No point of an open set can be the limit of a sequence of points not
belonging to that open set.) For instance, the interior of a square (to which the
points on the boundary of the square do not belong) is an open set.

An open set S'is connected if any two points z, and z, of S can be joined by
an arc in S, that is, are endpoints of an arc each point of which belongs to S.
We could say “polygonal arc, consisting of a finite number of straight line-
segments’’ instead of ““arc”; (the restriction to the more elementary kind of arc
turns out inessential on closer consideration.) For instance, the open set
consisting of the interiors of two nonoverlapping circles, see Figure 5.8(c),
is not connected.

A connected open set is called a domain.
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A region is a point set consisting of a domain D and of a subset of the
boundary points of the domain D. (The term “subset’ is used here inclusively,
including the two extreme cases, the improper subsets: the empty set and the
full set.) A good example is the region of convergence of a power series with a
positive finite radius of convergence: it contains the domain interior to the
circle of convergence, and all points or no points or some points on the circle
of convergence itself.

(c) Connectipity. The concept of a simply connected domain was intro-
duced in Section 5.7. (Read again the explanation and pay attention to the
terminology.)

The interior of a simple closed curve is a simply connected domain.
(Visualize intensively several accessible particular cases; do not worry about a
general proof.)

A domain with one hole, or annular domain, is doubly connected; see
Figures 5.8(b) and 5.9. A domain with » holes is multiply connected for
n 2 1; for n = 3 see Figure 5.11.

(d) The terminology explained in the foregoing is useful. For instance, a
line of integration, arc or closed curve, must be oriented; remember the
rule 5.4 (3). A simply connected domain must be carefully distinguished from
a multiply connected domain as the foregoing sections show, and so on.

We shall take the liberty to use the terminology introduced somewhat
“colloquially.” We shall not insist on a long complete description when a
short incomplete expression can be used with little danger of misunderstand-
ing. For instance, again and again we must consider integrals along ““positively
oriented simple closed curves.” We prefer positively oriented curves to
clockwise described curves, simple curves to self-intersecting curves. When
there is no particular reason to be especially careful or to suspect a deviation
from our general preference we may drop “positively oriented” or even
“simple” and say just ‘“‘closed curve’ instead of the longer phrase
fully stated before although, of course, only the longer phrase is
fully precise.

(e) Inreviewing formerchapters, the reader may notice thatthe terminology
just explained has been already used, although not with rigid consistency.
For instance, in conforming to the prevalent usage, we employed the term
“domain of definition” of a function although a function of a complex
variable may be defined in any point set and not just in an open connected
set. (For analytic functions, however, domains in the technical sense of the
term play a special role.)

Additional Examples and Comments on Chapter Five

COMMENT 1. Although we often lean somewhat heavily on geometric
intuition in the development of our theorems, all of these results can be
given in precise terms. Thus, in Chapter 2 we defined what we meant by a
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simple closed curve (a Jordan curve), and in this chapter we discussed various
types of domains bounded by such curves.

The curves that we admit for the purposes of integration must, of necessity,
be reasonably smooth. It is sufficient for our purpose to require only that these
curves have continuously turning tangents, or be composed of a finite number
of arcs with such tangents. In this case, each component arc may be repre-
sented parametrically in the form

z = ¢(1)
y=9@ 0=1=1

where ¢(1) and (¢) have a continuous derivative. It follows then that each
such arc has a finite length, is rectifiable. *

—st f\/ dt exists

In the following, it will be understood that each finite path of integration is a
rectifiable arc, or a finite combination of such arcs, that is, is piecewise
rectifiable, or piecewise smooth.

5.1 Establish the divergence theorem for a simply connected domain D
bounded by a smooth convex curve C; that is

[+ ) eir=[ -

5.2 Using z = x + iy Z=a — Iy
2_2,2 (2 _ 2\
dr 0z 0% kaz 62}

show that the divergence theorem can be written in the form

” fdxdy———jfdz

where f is obtained from aﬂaz by “formal integration,” that is, keeping z
fixed.

5.3  Using the divergence theorem, express the area and polar moment of
inertia of the area, bounded by a smooth simple closed curve, as a contour
integral.

Solution: Area = A =ffdx dy =ff g{dx dy
Z
D D
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where df/0z = 1. Then f = z + g(z), and

A= —

‘}
™
=,

N

[+ g@)de= -
JC

o (w
b § =
L
(o]

since g(z) is analytic.

m-tfppa [~[fers )]
D

54  Show that for the epicycloids formed by rolling a circle of radius afn
around a fixed circle of radius a,

Z—(+Dt—t™"  where t=¢"
a

When n is an integer, these epicycloids are closed curves with n cusps. Show
also that

(4 Dnt+2)

area = A =

n2

8(n 1
arc length = L = (n + )a

n

2 2
polar moment of inertia = I, = % + ‘24_"2

n

Solution:  From Figure 5.15, the length of the arc RQ is af = length of
the arc QP = (a/n)y. Hence y = n0. Let z be the coordinates of P. Then we

Figure 5.15
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reach P by going from z = 0 to the center of the small circle (ae®® + afn ™)
and then adding the vector TP, which is TQ rotated through an angle y,
that is (—afn e*®) e*®.

Thus

7 = a(n + l)eie — gei(n+1)6 —_ C_I [(n + l)f _ tﬂ-l-].]
n n

n
A=ffdxdy=—§]2dz
D

- _ ifl ‘1[(" +1) :"l“]g [(n + 1)1 — )] dt

2Jjt1=1n t

L

n‘f (n + D)(n + 2)

See Example 5.3.

5.5  Show, as in Example 5.4, that the hypocycloids, obtained by rolling
a circle of radius a/n inside a fixed circle of radius a, satisfy

P-4 1=¢
a
Find L, A, I, for these curves for # an integer.
5.6  f(2) =25 a,2" is analytic and univalent for |z| < 1. Consider the

curve C, the image of the unit circle under the mapping. Compute the area
bounded hy C. (See anmplcg 5.3 and 54.)

RS AS WERL e e W e e S D

5.7 Show that

i

5 L f(z) g(z) dz

i f 7'C) g2 dz dy = —

where f(z), g(z) are analytic inside and on C. Thus show that if P(z) is a
polynomial

P(z) = X a,%*
0
and D is the circle || < R,

| ak. | 2 R2lc+2

f PG dzdy = 73
0
D
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5.8 Let P(z) = D1 a2* be a polynomial with P(x) real. Integrate log 2
[P(z)]? along the “keyhole” contour in the z plane (cut along the positive real
axis) consisting of the unit circle, the two edges of the real axis from ¢ to 1,
and a small circle of radius £ about the origin. Show that

f (P de =33 22— < n % ja,

++

REMARK. Since this inequality is valid for every polynomial, it remains
valid for all real infinite sequences [a,] for which

“|a,|* < oo (Hilbert’s inequality)

-Ms
Z

5.9  Recalling (Example 1.9.4) that the area enclosed by the polygon with
vertices 2;, 25, . . . 2, IS

(712, + 225 + - + Z,2)

show that the area enclosed = 31 D 1_; Z.(%.,.1 — 2,)- Interpret this sum as part
of the approximating sum in the definition of §¢ z dz.

5.10  If Cis a curve joining 2;, z,, show that
&IJ Zd: = A — 3z,2,
where A is the area enclosed by C and the chord through z;, 2,
Solution:  See Example 5.9.

5.11  Let z = 2(¢) be the parametric representation of a curve in the z-y
plane (r may conveniently be interpreted as time, and - as dfdt). Show that

., dzds . ds . .
5 = =S = et — where ¢* is the unit
ds dt dt
tonagant varntar and that
|.(.|.l.|5\.ru|. 'U\yl-vl, CRALWE i

ds (ds)2d'r
tr__ v Y -
P=e dr te dt/ ds

Here e'* = ie'" is the unit inner normal, and d=/ds is the curvature of the
curve.
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5.12 The real functions x(¢), y(t) satisfy
# = (ksin t cos t)x + (ksin®t — })y

4 = (3 + ksin® )z — (ksin ¢ cos t)y
By examining z(¢) = x + iy = e'*"2 {(t), solve for 2(¢), y(1).

5.13 (2,,) is a sequence of complex numbers. Show that

=< llm,"f |z, | = llm\/lz | = lim

where lim, lim stand for the smallest and largest of the set of limit points.

lim

Solution: %2 %3, Fni1| _ | Zan
1 % Zn 21
Thus
15 Z n+1/ 1 1
ni Z’c n n + ] "

If m=1im |(2.,,){z|, only a finite number of terms of the sequence
[log |(2+,)/2:|] are less than logm — é for any 4 > 0. Similarly, if M =
li_m"\/ |2,|, there will be an infinite number of terms of the sequence
(1/n log |z,|) not exceeding log M + &. Hence, for all n sufficiently large, we

have the average of { log | 1 )
g, |
LS tog | 22|
=S log| ™[> logm — 6
nT | z, |

and also for some arbitrarily large »

1 1
< n+ (log M + &) — ;log|z1|
n
and so

1 1
(log M + &) — = log | 4]

(log m) — & < 2+

.

Since 4, &£ are arbitrary, provide

gives logm < log M, m = M.

n is sufficiently large, letting n - oo

5.14 From Example 5.13, show that

f(z) = ?anz"
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converges absolutely if

This is the ratio test.

5.15  In the notation of Example 5.2, show that the divergence theorem
yields

( Audedy =4[ [ u, dedy = —2i[ u,dz =] & as
JJ JJ) Jo Jo

D D

where 0/0v is the directional derivative in the direction of the outer normal.
Generalize this result to obtain Green’s identity

ff(vAu—uAv)dxdy =f (va—u —u@) ds
c\ Ov ov

5.3.1(b)
1 .
f(x + iy?) dz =f (x + i?)(dz + i dz) = LE2
¢ 0
5.3.2
1 |, )
f 21/2 dz = _f ezelz(iew dﬂ) — §(1 + l)
-1 0
5.8

~

0 = | log z[P(2)]* dz

1

27
= | log [P(®))® dz + f iB[P(e*)]%ie" d6
£ 0

— f 1(log z + 27i)[P(2)) d= —f%(iﬂ + log &)[P(ee™®)Pice® d6
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1 27
27 f P¥(x)dx = [ 0 P*(e*%)ie'® d ‘

JO vi i
r2

< | “op(*)P(e) db

JO

n 27 or
=2af 9d9+220,,a‘,f 8 cos (u — v)0 db
0 0

1 nEV
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Chapter CAUCHY’S INTEGRAL FORMULA
SIX AND APPLICATIONS

In this chapter we derive a representation formula for single-valued analytic
functions, called the Cauchy integral formula. As a consequence of this
integral formula we find one of the most useful properties of analytic functions:
every analytic function possesses a convergent power series expansion about
each point of analyticity.

6.1 CAUCHY’S INTEGRAL FORMULA

In Chapter 5 we studied various forms of Cauchy’s theorem and learned how
to deform the contours of integration without changing the value of the
integral of an analytic function. We learned especially that we must avoid
the singular points of the analytic function in such a deformation.

Our next task is to handle integrals whose integrands contain a finite
number of singular points inside the contour, and the principal tool that we
can use for this task is the Cauchy integral formula.

Let f(z) be any (single-valued) analytic function, free from singular points
in a region D of the z-plane, and let C be any simple (smooth) closed curve
in D, enclosing the point z,. We consider the integral

" (- § Lo
C

Z—Zo

which certainly exists, since the integrand is continuous on C, but whose
value is not necessarily zero, since f(z)/(z — z,) is not analytic inside C. We
have already considered a special case of this integral for which f(z) = 1,
and found I = 2#i; see Section 5.3.

Before proceeding with the evaluation of (1) let us try to gain some insight
into the problem by deforming the contour, as in Section 5.7, to a small
circle C; of radius é, centered at z, (Figure 6.1).

Then
,=5gf(i)£= J@
c

z — z, cs% — %o
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Since this relation is valid for all d sufficiently small, it is clear that the value of
the integral can involve the values of f{z) only in the immediate vicinity of
z = z,. Now we introduce into the integral over C; the angle ¢ as variable of
integration, where z = z, + de’*; we obtain

dz=i0e®dp = i(z — z,) d¢

@) T=i| f(zo+ de%)dg

Yet the value of Iis independent of § (provided that § is small enough so that

Figure 6.1

spection for 6 = 0, giving

I = 2xi f(z,)

Thus we have established Cauchy’s integral formula: if f(z) is single valued
and analytic inside and on the simple closed curve C, and if z, is any point
inside C,

1 z
(3) 1) 4, — 1z,

2niJoz — 2z,

From this formula we obtain yet another illustration how much the nature
of a function f{(2) of a complex variable is restricted by the requirement to be
analytic: the values of f(z) inside any curve in the region of analyticity are
aiready determined by the values of f{z) on the curve itseif.

We may call (3) a ‘““representation formula”: it represents f(z) at points
inside C in terms of the values of f{(z) on C. Let us change our notation
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slightly: instead of z, we write z, and use  as the (complex) variable of
integration. Then we can write (3) as

—_— [ J
() f&) =~ ,f}’

Because of the importance of this formula, and because of the deductions
we wish to make from it, we give an alternate, more detailed derivation as

follows:

POy
t—z
_E 0= o bt
C t—z 3) I —z
A LN . r f(t)_f(z) J'4
LT JK-C
c; t—z
1 —2mifa) = | [LO=LO] 14y

JCs t—=z

- O,If(t)—f(Z)I d$

where ¢ = z + 8¢ on C,.
Now f(1) is analvtlr- and hence continuous, at ¢t = 2z, Thus to each ¢ > 0
corresponds n > 0 so that |fit)—f(:)l <¢e for [t —2l=0 <% In

other words, no matter how small ¢ > 0 is, we have

[y

I — 27if (2)| < 2me
and since I does not depend on &, we must have
|l — 27if(2)| = O
= 27if (2)

6.1.1  From Cauchy’s formula applied to a circle of radius r centered at z,
show that

f(z) = 1 f(z + re®) do

e lhneas tlin el ~f PRUSI, (VR o _..4. oi at a ..,..:_ te thhn niamnma A tdo
alivu LGV, LG vaiuc O1 an a.ucu_yu\, 1LUIILLIvNn at a PU It Id e d.VCldBC Ul 1
values on any circle centered at that point (provided, of course, that f(z) is

analytic inside and on the circle).
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6.2 A FIRST APPLICATION TO THE EVALUATION

OF DEFINITE INTEGRALS

[ _dz dt
Example 1. 1= =
P c?+1 Jetrf+1
_ fﬁ dt
c(t+ it —1i)
where C is any simple closed curve enclosing z = i, but not z = —i (Figure

6.2). We can bring this integral in the form 6.1(3) by identifying f{(¢) with

Figure 6.2
'/—\
C

' I

T -4
1/{(¢ + i), and z with i. The value is then

27if (2) = 2111'( 1 ) =
! + i t=1

Example 2. If C enclosed z = —i, but not z = i, the value of the integral

would be — = [identify f(¢) and z in

this case].

Example 3.  Suppose C encloses both z =i and z = —/ (Figure 6.3).
Then
[— 2dt =SE 2_:1:__’_3[; dt
ct+1 ot +1 P+ 1
=a4+(—m)=0

from examples 1 and 2.
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Example 4. Now let us consider the particular curve C consisting of the
real axis from —R to R, and the upper semicircle |z = R, 0 < argz < =.
This gives

§dt/(1 + *) = # from (1) provided R > 1
o

_ fR de J‘ iRe" df
_r1 4 22  Jo1 4 R2?

—A+B

What about the limiting forms of these integrals as R — oo?

B dx
A=
—r1 4 2*
and
. B dx © dx
lim 5 = 2
R-o J-R1 4+ « —o 1 4 x
while B clearly tends to zero since the integrand tends to zero as R — oo, and
the path of integration is finite. More explicitly, let us estimate B in }‘ usual

(7] _iRe” | S"’Rdﬂ 7R
I |=JoR2E—1 R:—1

as R — oo

A First Application to the Evaluation of Deﬁnite Integrals 181



COMMENT 1. These inequalities are typical; we shall often meet with
similar inequalities, and so an additional comment is in order. We are using

i {'* iR df

|
1 4+ R% + R = Max of integrand - Length of path
0 e

=M-L
See Section 5.4.
In our case, L = =, clearly, and

_Re® |__ R
1+ R2e21'0 Il + R262:'8|
R
|R2 + e—2i8|
Figure 6.4
R? +* e.—!i.\

&

Consider the totality of points
R2 + e—2i0

These points lie on a circle centered at R? with unit radius (Figure 6.4).
The largest value of R/(R? + e%*)| occurs, for fixed R, when the denomi-
nator is smallest, which occurs at the point of the circle nearest the origin;
that is,

|R? + 729 > R*— 1 and M=

R
lim | f(x)de
R

R w J—

is called the Cauchy principal value of the integral, and is usually written
P =, f(x) dx, or {2, f() dx.
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In cases where (as here), [*, f(x) dx exists, the Cauchy principal value
obviously exists, and equals the integral.

~
e

J_w f(2) dz = lim ff(x) dz

a— o
b——mw

However it often happens that even though [, f(x) dx does not exist in the
strict sense, the Cauchy principal-value integral does exist. For instance,

w R
:‘: xdx = lim zdx

—a0 R-w J—-R
:xg\ IR
= lim (—)
R-o\2/|-R
/R2 R2\
= lim (— — —)
R-w 2 2
=lm0 =20
R-w

COMMENT 3. The final form our answer has taken is of considerable
interest and importance.
dx 7 iRe do '

dx
J as R— oo
-ool+x2

r d! P + LA
cl+ 1 J—Rl + a? Jo R*#%® 4 1

The answer itself, thatis, {%, dz/(1 4+ 2%) = = is not at all surprising, but we
have been able to find it without using the indefinite integral. This suggests
that Cauchy’s method may enable us to evaluate definite integrals even when
we do not know the indefinite integral explicitly. Indeed, such evaluations
were the first applications of the theory of analytic functions that Cauchy
developed.

6.2.1 In the following integrals, identify the appropriate f(r), and z,
[of 6.1(3)], and hence evaluate the integrals. The curve C is a large
semicircle of radius R in the upper half-plane.

3 dt et dt
—_— b >0
(a)wt2+t+1 (®) ct* + a® a
i dt
v O<a<b
© c(f® + a®)(t* + b®) <

e,
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6.2.2  Investigate the limiting forms of the integrals in Section 6.2.1 as
R —» o0. Show, by estimating the contributions to the integrals around the
semicircular arc that they tend to zero as R — co.

6.2.3  What is the value of the integral in Cauchy’s formula
$c f(1) dt/(+ — z) if 2 lies outside C? Why?

6.3 SOME CONSEQUENCES OF THE CAUCHY FORMULA:
HIGHER DERIVATIVES

There is a connection between the representation of f(z) by means of
Cauchy’s formula, and the differentiability of f{z). In fact, as

1 [ f(1)dt

2mi Ct—z

f(z) =
and
fe+ b —fG)

. 1)

as h— 0, we are led to
[+ —f)_ 1 fde 1 [ f@)dt
h 2nihJot —2—h 2wihJy t —2
provided both 2z and z 4 4 are inside C, as in Figure 6.5, and this we can
guarantee by taking / sufficiently small. Setting
A [+ k) —f()
Az h

and noting that
1 1 h

t—z—h t—z (t—z— h)(t—2)

Figure 6.5

(.
/
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we have

A_f= 1 f#; f(t) dt

Az 2mwiJo(t —2)t —2—h)
The right-hand side clearly tends to a limit, to
1 § f(2) dt
2mi C(t -_ 2)2
as h— 0, and must equal f”(2).
To show this in detail, we form
o Af 1 fyde 1 5[; f(t) dt 1 f(t) dt
Az 2miJo(t =2 2miJo(t—2)(t—2—h) 27ilo(t—2)
___h 35 f(t) dt
2mi Jo (1t — 2)%(t — 2 — h)
Hence we find
- Af 1 ff f@dt | _ |hl £ Ide]
Az 2miJo(t =2 T 2nlolt — 2|1t — 2 — B
L ML
~ 2  d°
where
M = max | f(1)]
tonC

L = length of C

d = minimum distance of z, z 4+ h to C

At first glance, it may appear as if d depends on 4, but we can easily remove
this difficulty. If &’ = min distance from 2 to C, then for |A| < 1/2(d"), the
right side of (2) becomes
|| M- L
x (d')?
which tends to zero as 4 — 0.
We have thus established the following extension of Cauchy’s formula

, 1 [ f()dt
® ro-im$ 105

valid under the same conditions as the original formula. The result is easy to
remember: we can differentiate the integral formula under the integral sign to
obtain the derivative of f(z).
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And now, we can repeat the whole process. Equation 3 gives us a formula for
f'(z), and so leads to a formula for the difference quotient

Aff _f(z+h) = f(2)
Az h
1 ()2t — 22 — h) dt
2mi Jo(t — 2)%(t — 2 — h)?

and, precisely as above, the right-hand side tends to a limit as # — 0, giving

= 2§ SO

2mi Jo (1 — 2)°

We obtain similarly, for each nonnegative integer n, that

f(t) dt

2mi C'(t _ 2)"+1

(4) @) =2

For a detailed derivation we use mathematical induction.

When we refer to the Cauchy integral formula, we shall include the derived
cases (4).

The results we have just obtained have far-reaching consequences. All that
we require of an analytic function is that it have one continuous derivative in a
region D. Cauchy’s formula shows, however, that the existence of a single

rantinnane darivativa imnliae tha avictanrcra Af darivativae Af all Ardarc
CONUNUouUs aorivative HOPICS v CAISWCNCC Ol elivaudves O1 du Oraers.

Thus, if f(z) is analytic, all derivatives f'(2), f"(2), . . . f™ (2), . . . exist, and so
they are analytic. It is remarkable that this differentiability property of

nn_nluhr' functions that follows so readilv from the !nfr-ornhll;fv nronerties

AWPAAW wA W AAW wAATER awsaa n'w—-n wAaw AL W im i LOAsaa !.J l.r l.rvly A

does not appear obtainable from the dlﬁ'erentnal calculus alone
We see also a marked difference between real functions and functions of a
complex variable; the existence of any finite number of derivatives of a
function of a real variable cannot guarantee the existence of higher derivatives.
Let us now estimate the integral (4). We assume that the path of integration
is a circle of radius r, and center z (so that |1 — z| = r), and that

(5) | fOI=M for |t —z| =r

The perimeter of the circle is 2zr, and so, by the standard inequality (Section
5.4) that we have already used in this section, we immediately obtain from
(4) and (5) that

) ) < BM
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forn =0,1,2,....Thisis Cauchy’s inequality. It is valid, in particular, when

O M = max | (1)

[t—zf=r
6.3.1  Show that every harmonic function possesses continuous partial
derivatives of all orders.

6.4 MORE CONSEQUENCES OF THE CAUCHY FORMULA:
THE PRINCIPLE OF MAXIMUM MODULUS

This section is more ““‘theoretical.” Although its contents are very important,
they will not be needed in the remainder of the present chapter.

(a) The reader should recall the definition of an entire function: a function
analytic in the whole plane (for each finite value of z) is called an entire
function. We wish to prove Liouville’s theorem: a bounded entire function is
necessarily a constant.

A function f{z) is called bounded in a region if there exists a positive number
(a bound) M, such that at each point z of the region

0 Ife =M

An entire function is called bounded, if it is bounded in its whole domain of
existence, in the whole plane; that is, if (1) is valid for all complex numbers z.

The case n = 1 of Cauchy’s inequality 6.3(6), which we have just derived,
states that

) If(2)] < "—‘

In our case, for a bounded entire function, (2) is valid for any given z with the
same value of M, independent of r. As r can be made arbitrarily large, we
must have f’(z) = 0 for any z, and so f(2) is a constant: we have proved
Liouville’s theorem (see Example 3.3.6).

(b) To arrive at the fact that is the principal concern of this section, we
consider a function f(z) that is analytic at each point inside and on the
simple closed curve C. Let us observe that [f(z)]", where n is any positive
integer, is analytic to the same extent that f(z) is. Therefore, we can apply
Cauchy’s formula to [f{2)]" instead of to f{z); we obtain for any point
z interior to C that
3 er = | Ll

2widJo t—z

Let M denote the maximum of f(#) on C, L the length of C, and d the
minimum distance from z to C. Then, by our standard estimate, there
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follows from (3) that

M"L
2)|" <
|f(2)| d
and so
4 L )I/n
) =M
(4) IOE: (2 -
Let n tend to infinity; we obtain in the limit that
(5) |l fGR =M

Remember the definition of M: it is the maximum of | f(2)| on C. Yet (5) tells
us that no value of | f(z)| inside C can exceed its maximum value on C:
what is maximum on the boundary curve is also maximum in the surrounded
closed region. In other words: the maximum of the absolute value of an
analytic function in a closed region is attained on the boundary.

This is the principle of the maximum modulus.

Tev Ffar tha a hnoa e~ A i tha Frcacnine-. thn
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need not be surrounded by a simple curve, it may be multiply connected.
Moreover, if the function is not a constant, the maximum of the absolute
value is attained only on the boundary. (In the trivial case when the function
is a constant, the maximum modulus is attained at each point.) For proofs,
see Example 6.45.

6.4.1  f(z)is entire, and M(r) = max,, |f(z)|. Show that M(r)is mono-
tone increasing as r increases.

.42  Deduce the maximum principle directly from Exampie 3.21.

=)

6.4.3  Prove the following generalization of Liouville’s theorem: if f{(z)
is entire, and |f (2)] =< M, |z|* for all z (or merely for all z qnfﬁr‘mqﬂvlaroe\

then f(z) is a polynomlal of degree ﬁ k. [Use the Cauchy mequallty for
f"(2) for any n > k.]

6.44  Prove the fundamental theorem of algebra, which states that every
polynomial, P(z) = a, + a,z + -+ *+ + a,2", with complex coefficients, has a
complex zero, that is, there is a number { = & 4 in such that P({) = 0.
[If there exists no such {, then 1/P(z) is analytic everywhere, and so is entire.
Show that this contradicts Liouville’s theorem.]

6.5 TAYLOR’S THEOREM, MACLAURIN’S THEOREM

We now examine f (z) in the neighborhood of a point of analyticity that, for
simplicity, we suppose to be at the origin. Then

1 f(r) dt

27Ti Ct—z

(1) f@) =
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Figure 6.6

\

i
NP,

C

where C is any suitable curve enclosing both points 1 =0 and ¢t = z and
lying in the region in which f(z) is analytic.

In fact, we take C to be a circle centered at the origin (Figure 6.6), restricting
z if necessary. Let C be the circle [t| = R, and |2] = r < R. Then

1 f() dt
(2) fA="—¢ ——
2 C t l—E
t
Now let
1 1
. z 1] —a
i1 —-
!
Then
o 2| o <
| = - = -
=R

for each ¢t on C; it is well known that
1
] —«
and so it is plausible that the following manipulation is valid:
1 (f(®) dt

271'10'11 E

=l4ado®+--FaF4---
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where

1 [ f@®
3 a=—@¢ — dt
(3) k 2 i Ctk+1
In order to justify the term by term integration of an infinite series, we
must establish that, along with the remainder after » terms, the integral of the

remainder after » terms tends to zero. Thus

(4) T L A
1 — o ] —
so that
2\ |
PN 1 [f(D) z 2 [2z\n1 t
JR)=—0—|1 4+ - - od i dt
2miJg t TR +kt} +1_g
t
n—1 B }
=Zakzk+ Rn
where
R, = 1 f#; z™f(t) dt
2mi Ctﬂ(t—Z)

If the infinite series is to converge, R, must tend to zero as » tends to
infinity; in fact, we can estimate R, as follows:

_ 1 [ _1f@llde |
= |

(-

~ |

In

Thus we see that R, — 0 as n — oo for each z inside C, so that

1) = T ag*

for each z such that |z2| < R, when f(z) is analytic for |z| < R. Itis clear from
our derivation that the series remains valid (and unchanged) if for C we take a
larger and larger circle (restricted only by the requirement that f(z) be
analytic inside and on C). Furthermore, from 6.3(4) we can express the
coefficients g, of the series in terms of f(2) itself:

(5) a, = 1 th)dt =f——(k)(0)

2mi Jo £ k!
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Thus we have established what we wish to call MacLaurin’s theorem:
if £(z) is analytic in a neighborhood of z = 0,

f"‘\
\-../

"’ n

f(z) =

oMs

the series converging absolutely in [z] < R, where R is the radius of the
largest circle centered at z = 0, inside which f(z) is analytic. (In MacLaurin’s
time the concept of an analytic function was unknown.)

A slightly different form of this result may be called Taylor’s theorem:
if f(2) is analytic in a neighborhood of a point z,, then f(z) can be expressed
as a series in powers of z — z,; that is, f(z) can be expanded in a power series
about z = z, with the result

(n)
f(2) = zf (zo)

(z — 2p)"
the series converging absolutely in |z — zol < R, where R is the radius of the
largest circle centered at 2, inside which f'(z) is analytic.

Taylor’s theorem can be deduced from MacLaurin’s theorem by writing

f()=f(2+2z—2), and setting z —z, =1, f(2, + {) =£1({). Then

(n)O n w £ln)
A = 2:f ()Z gf () )
Alternately,
f@=5- ¢ L% p<r<r
|t—zo|—r
=L f[fs (@) dt
2mi — %
l|t—z,,|=r' (t— zo)(l — ﬁ)

and from here we may follow the lines of the argument that started from (2).

COMMENT 1. The power series obtained in Taylor’s and MacLaurin’s
theorems are commonly called Taylor series and MacLaurin series, respec-
tively.

wnr_ L

_J‘L‘ _J r
Ye nave a oa]

a a function

®) f@) = Sy — 2

by giving as its definition the power series in (6), converging in [z — 2| < R.
Furthermore, from this definition, we found that f’(z) exists in |z — 2z,| < R,
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that f(z) so defined is analytic in |2 — 2] < R. Thus we may apply Taylor’s
theorem to this f(z), and obtain

™) f(z) = ?bﬂ(z _ )" le—z) <R

where the numbers b,, by, . . . are the Taylor series coefficients of f(z). The
obvious question now is ‘‘are the sequences a,, a,, . . . and b, by, . . . identi-
cal?”’ The answer appears to be ““obviously yes,” and gives us the uniqueness
theorem for power series.

Thus 3¢ a,(z — z,)" and D¢ b,(2 — 2z,)" converge to the same values for
each z, |z — z,| < R. If we set a, — b, = ¢, then X’ c,(z — z,)" converges
to 0 for each |z — z0| < R. Let z —» zo We have ¢, = 0. Then cl(z —2z) +

=d. 2 =2 & —— i I, ia orrvie

a2 — %) + = (2 — 2o)le; + oz — 20) + ca(z — 2)* + -+ -] is simi-
larly identlcally zero for |z — 2| < R, so that ¢ + c,(z — 2,) +
c3(z — 2g)% + - - - also is identically zero in |z — zy| < R. Again, let 2 — 2,;

thpq c = n anrl we may rppeaf the Precesc }rpf agaln We have thus Cp =

— by = 0, ¢ =a, — b, =0, and it is clear that ¢, = a, — b,, = 0, for
each positive integer n. (A strict proof can clearly be constructed by the use of
mathematical induction.)

COMMENT 2. We have yet another characterization of the collection of
analytic functions: it is identical with the collection of convergent power series.

It is thus clear that many of the manipulations involving analytic functions
in a given application may well involve performing these manipulations with
power series. Indeed, every theorem that is valid for analytic functions
implies a corresponding theorem for power series, and conversely. If we keep
these thoughts in mind, the power series manipulations become considerably
clearer. Consider the following examples.

(a) Suppose f(z), g(z) are both analytic for |z| < R,

f(z) = g a.z"  g(z) = gﬁ b,2"
then f(z) - g(z) is analytic in |2] < R, and

Of course,

=L 4. g@|

c. =
n 'dﬂ

from MacLaurin’s theorem, which appears a formidable computation (but it
is not, in reality, so difficult if we recall Leibniz’ rule for differentiating a
product). Alternately, we can, with confidence, consider the problem of
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multiplying together the two infinite series D¢ a,2", > b,2", since we know
that the resulting power series will be absolutely convergent for |2| < R. We
find the coefficient of z” in (@, + @2 + @22 + <+ )by + bz + bgz2 + - +)
1S

®) ¢y =Yab

(b) If, furthermore, g(0) # 0, then g(z) # Ofor |z| < R,, for some R, > 0,
and

f® %

|Z| < min (Rls R)

gz) o
since the left side is analytic at z = 0. Thus, we can divide power series
(provided we avoid zeros of the denominator)

ﬂlﬂ " baal

i Ahtn tha affir ad inthic ~
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or
to obtain the first few terms of the series, is to rearrange t bookkeeping in
the form

ﬂo=ao§¢f

use (8), and solve for the ‘‘undetermined coefficients,” d,, d,, d,,....
Thus sin z/cos z = tanz = D¢’ d,2", gives sin z = cos z 3o d,z", gives

T\ b R Y

l. ao 2 a 3
- _d dZ d—_z d—-— )
3'+ o + 1+(2 >) +( 2) +
sO that
d d
dy=0 dy =1 d2—5'0=0 ds_;l=—%‘
23
tanz=z+3—+~-

6.5.1  Verify MacLaurin’s theorem for the particular elementary functions
f(z) = €%, cos 2, sinh z.

6.5.2  Expand sin z about z = =/2.

6.5.3  Find the first three nonvanishing terms of the MacLaurin series for
sin (sin z).
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6.5.4  Since an analytic function of an analytic function is analytic, then
Sflg(?)] is analytic if fand g are. That is, with

f(2) = ay + ay2 + ay2® + -
f1g(2)] = ¢o + 12 + cp22 + - -
=a, + a,[by + b1z + b2 + + - ]
+ aplby + byz + bp2? + - P +

and we are assured of the validity of collecting the coefficients of like powers
of z. Use this technique to solve Example 6.5.3.

6.5.5  f(2) is analytic in |z2| < R and f(0) =0. Show that a number
R, < Rexists for which f(z) # 0in 0 < 2| < R,.

6.5.6 If f(2) is analytic in |z2| < R,and f(z) = 0atz,,2,,...2,,...where
lim,_,, 2z, = 0, show that f(z) = 0.

6.5.7 Find the MacLaurin series for the principal value branch of
(@ = (1 4+ 2)* [f(0) = 1], and compare it with the binomial expansion of
f (). See also Example 3.24.

6.5.8  Find the domain of convergence of

=1 Z [z ¥ (_z Y
f@@)= +1+z+k1+z)+(1+z}+

What is the value of f(2) in this domain?

6.5.9  Define the coefficients B, by

f(z) — — %( l)ﬂB‘n ﬂ

Show that B, = 1/2, B, ,, = 0, n > 0, and find the radius of convergence of
the series.

6.5.10  Using the function of Example 6.5.9 show that

Lo} _1 nBﬂznzn—l
+2( )

2 n!

1
cothz = -
2

6.5.11  Find the power series expansion of tanz from the results of
Example 6.5.10.
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6.5.12  Find the region of convergence of the following series (the ratio
test, Example 2.2, is often very useful).

® Sn+ 0"

© I @ S
1 1 n

© (1= ® Zna
1 n 1

(@) 14 Tz 4 5%% 4 7%% 4 5% o 75%° 4 5%8 4 - ..

v_ 2" - 2 .
(h) g(log o (i) tanz =z 4 3 +

6.5.13  Establish the validity of I'Hopital’s rule for analytic functions,
that is, if £ (2,) = g(z,) = 0, then

MO PACY

20 8(2)  8'(2)
if this limit exists. If also f’(z,) = g’(z,) = 0, we may continue:

[ ['(2)
m 2

li = lim——
20 g8(2) 20 g7(2)

6.6 LAURENT’S THEOREM

Suppose now that £ (z) is single valued and analytic at all points in a domain
D except possibly for the single point z = z,. We make no assumptions here
about the behavior of f(2) at z,. For simplicity we take z, = 0, and assume
[ () to be analytic for z 3 0, and inside a domain that includes the origin.

Now we construct two circles, |z| = r, and |z| = r,, r, > r;, centered at the
origin, and lying inside the domain in which f(2) is analytic. Then f(2) is
analytic in the annulus, the ring shaped region r, < |2| = r, (Figure 6.7).

We now use a form of Cauchy’s formula to obtain a representation for
f(2) in this annular region (doubly connected region, see Section 5.7). First
we introduce the auxiliary line L connecting the inner and the outer circles,
and consider the simply connected domain so formed from C,, C,, and L
(see Figure 6.8). For this simply connected domain, we may apply Cauchy’s
integral formula, and obtain

1 f) dt 4 = f(t)df+ 1 @ , 1 (@04

2mid ot — 2 2miJet —z  2milo t— 2 27i JLt — 2

fz) =
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Figure 6.7

s—plane

The two integrals on L are in opposite directions, and so cancel; the integral

J@)

alt—=*2 atl—2z2

it= - L9 4
Thus

o f(z)=1 fmat 1 far

2qmi Czt_z 2i Clt—z

= fo(2) + /1(2)

where both line integrals are taken in the positive (counterclockwise) sense.

Figure 6.8

C2

N

~_ | 7
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Let us first consider

f@dt

2i Cgt -—_ 2

fo(z) =

On the path of integration, [t| = r,, and 2, being inside the circle, satisfies
|2| = r < rp. Thus, precisely as in MacLaurin’s theorem, we obtain

1 f(1)
g = dt
J(2) .fﬁc

2mi ”t(l _ g)
t

f(f) Z — df
2m
% l2] < ry
with
L {1,
2 a, = — t
@) * 2111? t"“

The series converges absolutely for |z| < ry, f5(2) is analytic in |z] < r,.
Now let us look at
f() dt

27”. C1t — 2

fH(z)= —

In this integral, |{| = r,, and |z2| = r > r,. Thus

fo=—¢ L0 4
27Ti JC‘Z(]. __t)
4
L f-(,)f1+i+...+t”“+ e
2ri ?01 iz 2* "(z—t)i

=S L6 eyt r,
C

1

using Section 6.5 (4). Our usual estimate of the integral for R, gives

10 1@l
3EC‘I | )

= 2 ( !

n

t

IR,| =

2
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It is clear that R, — 0 as n — oo, giving

b
ﬁm=§j 2| > n

3) m—f— (- (¢) dt

1
Thus f,(z) is analytic for |z| > r,, for all z outside the inner circle. Since
f @) = f1(2) + fo(2), and f,(2) is analytic for |z| > r), f(2) is analytic for
|z| < ry, the sum is clearly analytic in the region common to both f,(z) and
[2(2), or r; < |2| < ry, which verifies our assumptions.
It is convenient to express the formulas we have obtained for the coefficients

in a ausuu_y more auggestlvv form. Fuot, we "“'p'ace k I'\y —k In (3}. We
obtain
1 [ f@t)de 1 [ f(t)dt
—-* =, . k+1 a4 = : k+1
29 Clt 2mi yoz t
-1 @
hH(z) = Z b_,2" Jo(2) = g a,z"

—a
In place of the expression b_,, we use a,,; this is a consistent notation, since
a, for n=0,1, 2,...is a coefficient of f,(z), and now a, for n = —1,

—2, .. .1s acoefficient of f,(z). In this way, we may collect our results in the
form

(4) f(z) = E a," r<lzl <re
1 1) dt
o CB O] k>0
T 2miJg, fetl
(5)
t)dt
kT, f(k?l-l k<0
2 1 t

Finally, from Cauchy’s theorem, we may deform the contours of integration
in (5) as long as we stay in the region in which f(2) is analytic. Thus we
may deform C, into any convenient circle inside r, < [t| < r, and also

deform C, into the same intermediate circle. In this way, we obtain one
formula that is valid for all of the coeflicients:

1 [f(t)dt

27 Jo

(6) a, =

where C is any simple closed curve (circle) in the annulus r, < [t| < ry,
which encloses the inner circle.
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The series (4) is called the Laurent expansion of the function f(z); it is a
representation of f(z) as a power series, with both positive and negative
powers of z, and converges absolutely in the annulus r, < |z| < 7,.

COMMENT 1. The series f,(2) = D 5 a,2" converges for [z| > r,;in fact,
it must converge in a larger region. Our choice of r, was one of convenience ; we
could have chosen any number r, > 0 (and sufficiently small), since f(2)
was assumed to be analytic for all points 2 inside the domain D except for
z = 0. By the same reasoning, the series f5(z) = > ¢ a,z" will be convergent
inside each circle, |z|] =r, which does not include a singularity of f(z)
except forz = 0 (why") Thus f (z) = Y%,4a,2", 0 < |z| < R, and this is the

lneanat?? 1lia nhinh tha cariac AAmuArsan
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The formula for the coefficients a; can be expressed

1 1 f(n

- J A7
a=—«¢ — dt
k 211'1 9)() tk+1

where C is any simple closed curve in the region 0 < |¢| < R which encloses
t=0.

COMMENT 2. The derivation of the Laurent expansion given in this
section suggests an even more general (and equally important) result.
Suppose that all we know about f(z) is that it is single valued and analytic
inside and on the annulus r, < |z|] = r, (we say nothing about f(z) for
|2| < r,orfor|z| > r,). Then our derivation, starting from (1), applies equally
well in this case, too. We find

(7 f(2) =_§ a,z" rn<lzl <ry
and

_ 1 [f@ (f)
®) %= 2mi J o ¥ at

where C is any suitable curve in the annulus (and surrounding ¢t = 0). This is
still called the Laurent expansion for the annulus r, < |z| < r;, and may stilt
converge in a larger annulus. However, we expect singular points of f(z) to
occur on the boundaries of the largest annulus.

1
2%(z — 1)(z — 2)

Example.  f(z) =
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Figure 6.9

D

N | S

Clearly, f(z) is analytic at all points z £ 0, 1, 2 (see Figure 6.9). Thus, we
may consider f (2} in the annulus, 0 < [z| < 1 with

1 1

f(z)_ Tt T T e—

1 3 d l”(z)"
9 ==+ = " —= = 0<|z 1
)] f(z) 2 4+§ 8% 5 <|z| <
Thus

an=0 n<—2 a_2=% a_1=%

and

We may equally well consider f(z)in the annulus 1 < |z| < 2, whereit is also
analytic. This gives us

a0 so=h+ -3 -3 r1<n<z

Finally, f(2) is likewise analytic in the ‘““annular region” 2 < |z| < co. In
this region, we have

1\

) +1 Z() 2 <zl < o0

4z

We have here three distinct Laurent series, all in powers of z, but converging
in three distinct annuli; all three series converge to f(z). We see that it is
always a good idea to keep in mind the specific annulus in which a Laurent
series converges.

an  so=2+5-3(
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COMMENT 3. Precisely as in the relation between the Taylor series and the
MacLaurin series, we may state the following result: if £ (z) is (single valued)
and analytic in the annulus r, < |z — 24| < r,, then

(12) [ =3a6—n" n<l—ul<r
where

o £(t) dt
(13) %= i fﬁ, (t — z,)kH

with C being any (simple, closed) curve enclosing ¢ = 2, and lying in the

nnnnnnnnnnnnnnnnnnnn

6.6.1 If two Laurent expansions
282" 2bye"

converge in the same annulus, r, < z < rg, to the same function f(z), show
that a, = b,, for all n.

6.6.2  Find two Laurent expansions of

1
f@) =
2°(1 — 2)

in powers of z, and specify the annuli in which they converge.

6.6.3  Find the first two nonvanishing terms of the Laurent series expan-
sions of the following functions, valid for the specified regions

(a) tan 7z 0<|z—4 <1

(b) —

0< |z —27i| <27
e —1

0< |z — 7|

6.6.4  The function f(z) = e~(t/2z—(1/a)] jg apalytic in 0 < |z] < co. The
Laurent expansion for this range is

@) =3 a, ()"
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Show that

a,(t) = lf cos (¢ sin 6 + nB) df
m Jo
and

a—n(t) = (_1)"an(t)'

6.6.5  Consider f(z), periodic with period 27, and analytic in a domain
containing a strip of length 2 in the z-direction, between ¥y = @ and ¥y = b,
a < b. Then, from periodicity, f(z) is analytic in the infinite strip —o0 < 2 <
oo, a <y < b. Show that the mapping z = ilog r maps this strip onto an
annulus in which f(ilogt) = F(t) is single valued. Thus show that the
Laurent expansion, expressed in terms of z gives the usual Fourier expansion
of a periodic function.

6.6.6  Find the Laurent expansion for

1 o
fz) = 2+ De—D validin 3 < [z]| < 1

and also for the same function in the annulus

0<|z+13 <3

Where are the two series valid simultaneously?

6.7 SINGULARITIES OF ANALYTIC FUNCTIONS

Laurent’s theorem is very valuable to us: it permits us to evaluate many
definite integrals of analytic functions in a systematic way. This section,
together with the next two sections, will present some of the applications of
Laurent’s theorem, and suggest many more.

Let us first return to the situation of Section 6.6. Suppose that f(z) is
single valued and analytic in a domain D (enclosing the origin) but that f(2)

need not be analytic at z = 0. Then, from Section 6.6 (4).
(1) (O=3a 0<ll<n
= f1(z) + fx(2)
f@=3as  f@)=3as

Thus f(2) is decomposed into two parts: f,(z), analytic inside all of |z| < r,,
and f,(z), analytic for |z| > 0.
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The function f,(z), containing the negative powers of z, is called the principal
part of f(2) at z =0, and describes the singularity of f(z) at z = 0. We
single out three possible cases:

(a) The principal part of f(z) at z = O is absent; thatis, ¢, = 0, k = —1,
—2, —3,...clearly f(2) = fo(2) = 2% a,z" for all |2| < r, exceptz = 0. If
we define f(0) = f5(0), then f(z) is actually analytic inside the full circle
2] < 7s.

In this case, we say that f(z) has a removable singularity at z = 0; the
singularity can be removed by correctly defining £ (0). This situation arises,
for instance, when we consider f(z) = sin z/z, or f (z) = (e* — 1)/2, for which
f(0) is not immediately clearly defined. In each case, f(0) = 1 makes f(2)
analytic at z = 0.

(b) There are a finite number of nonvanishing terms in the principal part;
thusa, =0forn=—(k + 1), —(k + 2),...,buta_, ## 0. In this case, we
say that f(z) has a pole of order k at z = 0. Another (and useful) way of
viewing this case is that z* f(z) is analytic at z = 0. For example, f(2) =
1/[2%(z= — 1)(z — 2)] has a pole of order two at z = 0. (Can you describe the
nature of the singularity atz = 1?2 =27)

(c) The principal part is a full infinite series, it contains an infinite number
of nonvanishing terms. In this case, we say that z = 0 is an essential singu-
larity. For example

o0

&)= e = ? z"n!

|z] > 0

has an essential singularity at z = 0. Let us now consider

@) ff f(2) dz
C

where C is any contour enclosing z = 0. There are several ways of obtaining
the value of this integral from the Laurent series. First, we have

f&) =3

and, as we learned from our derivation of this series, Section 6.5 (4), we may
evaluate § f(z) dz by integrating ¢, > >, a,2" dz term by term. This gives

b1@d= Za, o as
; 2

c
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Now, by explicit computation,

c£ z"dz =0 if n = 0 (also, from Cauchy’s theorem)
J
= 2mi if n = —1
=0 if n < —1
Thus
(3) §f(z) dz = 2mia_,
c
Alternately, from Section 6.6 (6), the coefficients
1
o= § L0,
T 2milg t"“
and for kK = —1, we again obtain (3).

The only term of the Laurent series that gives a nonzero contribution to
$c f(2) dz is the term a_,[z. The coefficient a_, is called the residue of f(z) at
z = 0. We restate our result,

4) fﬁf(z) dz = 2xi (residue of f(z) at z = 0)
c

6.7.1  Find all of the singular points of csc o 2, and classify them as to
poles and essential singularities, for example, finding the residue at each
isolated singularity. (A singular point of an analytic function is called isolated
if it is pGSSiblc to enclose it at the center of a circle so that all other pOuu.a of
the circle are points of analyticity. For example, if f(2) has a finite number of

singular points in a bounded region, they are isolated.)

6.7.2  Classify the singular points, and compute the residue at each, for

f(@)=
sm Jz
2\/2
(b) —

. T
sin —

&

r
©) e — 1

6.7.3  Prove Riemann’s theorem which states that if f(2) is analytic in a
domain D with a point z, removed, and is bounded in D, then there is a
unique extension to f(z,) that makes f(z) analytic at z, as well.
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6.7.4  If f(2) is analytic in D, and f(z,) = 0 for some z, in D, then
3 f‘”’( )

0

= a,(z — 2))° + a,,.,(z — 2" +
where a, is the first nonvanishing coefficient. We say that f(z) has a zero of

order p at z,. Show that if f(2) has azero of order p at z,, 1/[ f ()] has a pole of
order p at z,, and conversely.

f(z) = (2 — 2)"

6.7.5 THE NATURE OF f(z) AT z = o©

We define the behavior of f(z\ at 2 = oo to be nrecnelv the same as the

behavior of f(1ft) at t = 0. This coincides with our concept of analyticity at
infinity. If f(1/7) has a pole or an isolated essential singularity at t = 0, then
[f(2) is said to have the same property at co. Show that the sum of the orders
of the poles minus the sum of the orders of the zeros of a rational function
(including z = oo0) is zero. (See Example 6.7.4.)

6.7.6  The integral —§,,, f(2) dz can be viewed as the integral around the
unit circle in the negative sense (clockwise), or as the integral about the
boundary of the infinite part of the plane (containing z = c0) in the positive
sense.

Then, with z = 1/¢, this becomes

Ry analnov with tha ragidna ¢ — {1 IJ chanld ha 247 . racidnea
aLr CRL1ERAN J FYYALILI Liiw L% olVluiy I.ll\leDlll, lel 1 J \‘l}' W JIAVUAN U LS 1wl Ui
at oo (assuming no other singularities). From this point of view, find the
residue at z = oo for f(2) =

z
(@) =

6.7.7 Find the residue of z" €!/#/(1 + z) at each singular point.

6.7.8  Show that every rational function can be decomposed into partial
fractions (consider the principal parts of the Laurent series at each pole and
show that the remainder is entire and bounded by a power of z; see Example

6.4.3).

6.7.9  f(2) is analytic in |z| < 1, continuous in [2| £ 1, with [f(z)| £ 1
there, and f(0) = 0. Prove that |f(z)| = |z| in |z] £ 1. (Schwarz’ lemma).
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6.8 THE RESIDUE THEOREM

The results of Section 6.7 are applicable in many cases of interest. We

rancidar the fn"nunnn eﬁnahnn |f |c rpnnlrpd to punlnnfp & f(?\ dz the

WU LITOLI WL LELWw AWS1IAWS Y b ALLWRELINSLL \1 ¥ vl vt J \"} hadadt } wAAw

definite integral of a single-valued function f(z), analytic msnde and on the
simple closed curve C, except at a finite number of singular points inside C
(Figure 6.10). Let us call these points z,, . .. z,. Using one of the forms of
Cauchy’s theorem, we obtain

(1) §f(z) dz = i f(z) d=
C k=1 Jep

where C, is a (small) circle, centered at 2., and lying inside C. Since there are

only a finite number of singular points inside C, we may choose the circles C,

Figure 6.10

so that they do not intersect any of the other circles; that is, we may isolaze

each singular point inside a circle C, so that the only singular point of f(2)

inside or on each C, is at the center, z;. (We can clearly so isolate each point

of any finite collection of points but cannot do so for the points 1, 1/2,1/3, . ..

1/n, ..., for example. In this case, the limit point, 0, is said to be nonisolated.)
Each of the integrals on the right-hand side of (1),

f(z) dz

Ck
can be interpreted as a line integral in an annular region, 0 < |z — 2| < ry,

where r, is smalil enough that f(z) is anaiytic in the annulus. Applying
Laurent’s theorem to f(2) in this annulus, we find
N < 5 3 RN o — = -
(2) JE=287(2—2%) O<l—zl<n
where [a!¥'] are the coeffiCients of the Laurent expansion about the point
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z = z,. The residue at z = z, is thus a'%. Thus

(3) § f(2) dz = 2xi (residue of f(2) at z = z,)
Cy

We thus obtain the following prescription for the value of the definite
integral . f(2) dz: the value of the integral is 2mi times the sum of the residues
at the singular points of f (z) inside the contour C,

fﬁf(z) dz = 2i Y residues
¢

This result is called the residue theorem.

We can readily visualize the value of this theorem for evaluating definite
integrals; we do not require the full Laurent series about the singular points;
we require only one single coefficient. Frequently we can find these coefficients

by inspection. However, let us look for a systematic procedure for obtaining
residues.

6.8.1 If C is the unit circle described in the positive sense, evaluate the
integrals

() | 2= (b) | -2

Josin z Jo z

(©) [ e~ dz  (d) r.(z+l)2ndz

Joz(z + 2) Je z
(¢) | cotzdz
JC
632 Evaluate | —%—
J 1+2
|z] =2

6.8.3 Evaluate | = cot 7z dz

o
|z] =e

6.8.4 Evaluate

2:2 45 y
az
Jo(z + 1)@ + 1)

where C is the circle |z + i| = 1.
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6.9 COMPUTATION OF RESIDUES

(a) Ataremovable singularity, since the principal part is absent altogether,

a_, = 0, and the residue is zero,

(b) The simplest case occurs when f(z) has a first order pole at z = z,.
The Laurent series has the form

(1) f(z) = + ap+ a,(z — z) + -
0
As we observed earlier [see Section 6.7 (2)],

(2 - zo)f(z) = a_y + 00(2 - 20) + al(z - 20)2 + -

is analytic at z = z,, and now a_, is the leading coefficient of a power-series
expansion.
(2) a_; = lim (z — 2,)f(2)

z-+z°

If f(2) has a first order pole at z = z,, the residue of f(2) at z = z, is lim,_,
(z —2)f (2.

For example, in integrating f(z) = 1/(1 + 2?) over a large semicircle in the
upper half-plane, we observe that z = i is the only singularity of f(z) inside
the contour.

1

f(z) = (z — i)f(x) = ——
(z — D(z+ i) ) z4 i
is analytic at z = i. Hence, without writing down the Laurent series, we find
, 1
residue of =lim(z — i)f(z) = —
Z -r 1 z—4 2

of course, the value of the integral, 2=i (1/2i) = m, agrees with the result we
obtained earlier (using Cauchy’s integral formula).

(c) Residues at poles of higher order: suppose f(z) has a pole of order
k at z = z,. The Laurent series about z = 2, is

(3) f(z) = -+

(z — zo)k 22— %
and we wish to find a_,. With the same ideas as in the case of first order
poles (but with a little more work), we have

(2 — 2)*f(2)
=a_,+ @E—z)a_gy+ - +a,iz— 2ol + an(z — 2,) +

which is analytic at z = z,, and we wishtofind a_,, thecoefficientof (z — z)* 2.

+a+a,(z—2)+ -

208 Chapter Six



The results of Taylor’s theorem suggest the following manipulation:

k—1

— [(z — zo)kf(z)] = (k — 1) a_, + k! ay(z — z) + -
dzz1

If we now let z = z,, the right-hand side reduces to (kx — 1)! a_,. We have

k—

1
(k — l)'z—*z dz?

(4) a, = [( — 20)f(2)]

Example.  f(z) = 1/[(z2 + 1)*]. Find the residue at z=1i. We have
f(2) = 1/[(z + i)*(z — i)*], and recognize that z = i is a pole of order 3.
Thus (z — i)® f(z) = 1/[(z + i)?]. Formula 4 gives

1. 4 [ 1 :|
a, =—=—1Iim
2! i d22L(z + 0)?

1 12
= —lim

PANPES (Z + 1)5
6 =3

Qi 16

While (4) is a formula that works in every instance, it may be very cumber-
some to apply for other than poles of low order. There are frequently more
convenient ways to proceed. Let us illustrate one possibility. Again consider
f (z) = 1/[(z® + 1)°], near z = i. Since it is easier to manipulate power series

in powers of z than those in powers of z — z,, we translate so that z = §
corresponds to ¢t = 0:lett = z — i. Then
1 1

T a— D+ PRI+ 1P
We now look for the coefficient of 1/(z — i) or, what is the same thing, the
coefficient of 1/t in 1/[t3(2i 4 ¢)?]. We have

L _ ! (1 + i)"3
22 4+ 1) Q2 2i

__"(1 3, 12¢° +)
TS 2 220

expanding (1 + t/2i)~® by the binomial expansion and retaining only enough
terms as to be able to find the coefficient of 1/r. We have

12 3i

82022 16
as previously.

Computation of Residues 209



(d) Residues at essential singularities: there is no simple formula, as in the
previous cases; the full Laurent series is frequently required. For example,

£l — nz+1/z — z,,l/z
J\wy—c - c C
o0 zﬂ [+.¢] 1
=3>—3 0< |z < o0
o n!o 2"m!

The coefficient a_,, of 1/2, comes from each of the terms z*/n! 1/2"m! for
which m = n 4+ 1; 2§ 1/[n! (n + 1)!]. The residue at z = 0 is thus > 1/
[7! (n + 1)!].

6.9.1  Sinceitis generally simpler to expand analytic functions aboutz = 0
than about any other point, we may advantageously use the same ideas in
computing residues in general. Find the residue of f(z) = log 2/(2® + 1)? at
z = i, where log z is the principal branch.

Solution:  Let z = i 4 t. We require the residue of

log (i + t)
2t + 2i)?
at t = 0. This is the coefficient of ¢ in
., 1 mi . ..
log(i+t)_l°g'+,-+ _(Z—JI)(1+tt)+
(t + 2i)° t ¥ iy

o
2031 4 =
G+
and we expand just far enough to collect the terms in ¢. The required coefficient
is }(mf2 + i).
6.9.2  Find the residue of f(2) = 1/(22 + 1)*" atz = i.
6.9.3  g(2) has adouble zero at z = a, and f(a) # 0. Show that the residue
of f(2)[g(z) atz = ais

6f'(a)g"(a) — 2f(a)g"(a)
3[g"(a))

6.10 EVALUATION OF DEFINITE INTEGRALS

In this section we illustrate how the use of Cauchy’s theorem, Cauchy’s
integral formula, and the calculus of residues can be utilized to evaluate
certain types of (real) definite integrals. These examples serve only as a guide;
they may suggest further applications.
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Example 1. If we were to consider

I="°° dx

J-o 1 + x®

then guided by the results of the previous sections, we might argue as follows:
theintegrand, 1/(1 4 #%), is the value, on the real axis, of the analytic function
f(z) = 1/(1 4 22). Also, the path of integration is the full real axis. Can we
set up a finite integral, so that our required integral is its limiting form?
We are led to consider § dz{(1 + 2%) around a contour, part of which coincides
with the real axis, say from — R to R, and the rest of the contour being an arc
either in the upper or the lower half-plane. The simplest such arc isa semicircle.
We are thus led to consider [ dz/(1 + 22), where C is the real axis from —R
to R, and the upper semicircle centered at z = 0. The integral over the
semicircle tends to zero as R — oo. (We can see this result intuitively since
the length of the path is #R, and the integrand is ‘“of the order” 1/R? on the
path. This argument is not precise, of course, but it frequently serves as a
useful guide in choosing contours.)
Let us generalize this result. Consider the definite integral

(1 I=£nf1%dx

where p(x), ¢(x) are polynomials (the integrand is a rational function) of
degrees p and g respectively.

In order that (1) converge, we must require that g(x) # 0 for all rea!/ x
[we assume there are no common factors in p(z), ¢(x)]. Furthermore, the
degree p of p(%) must be at least two less than the degree g of g(2): p < ¢ — 2.

Under these restrictions, (1) is absolutely convergent as an improper integral.

wAAVew AL W w A w weaa

Next, p(2)/g(x) is the specialization to the real axis of the analytic function
S (@) = p(2)/q(2); q(2) is a polynomial, and has ¢ complex zeros (counting
multiplicity, see Example 6.31). Hence f(2) has a finite number of poles in the

full complex plane, z,, 2,,...2. We suppose R > |z, [z, ... [z]. By
analogy with the preceding example, we now consider the integral
zZ

@) fﬁ LIPS

c 4(z)
where C is the upper semicircle of radius R, centered at z = 0. From the
residue theorem,

¢ p(z)

9) — d

c 4(2)

= 27i (sum of residues of p(z)/q(z) at the poles in the upper half plane)
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Specializing the integrand to the contour, we have

R 18
[T 2® gy g [(PRE) p i — 4+ B

J-R q(x) Jo g(Re¥)
Clearly
lim 4 = f IL‘”) d
R w -0 q(x)

and we expect limg_,,, B = 0. We have

rT i0
PR o

B < R :
Jo |q(Re”)|
_ R T |a0 + alReu:r + a2R28216+ + a Rv IWI
Jo |by + byRe® + - -+ + b,R%'|
Il | DP 2 |n Ipr—1 4 ... 1L 1la |
<R [“4p| IN T [4py] IN T T |“g]
= Jo |by| R?* — |byy| R* — — | bl
lapal |a|
la |R”(1 g
el la,| R Jay] R?
|b|R°(] _|bq-1| e e |b0| )
|b,| R |bg| R?
We now choose R so large that
L O . N
|be| R |be| R

|
lp—-ll had ']
4 2= oo 2= <2
la,| R || R?

for example. We thus have

"lay| 446 4w |a,|

0 |bg| R*™  |by| R*™

|B| = R

and since

(under the convergence hypotheses that g(x) # 0, degree p < degree g — 2)
has the value 27/ (sum of the residues of the integrand in the upper half-plane).
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To illustrate the use of this result, consider

®  dx

I = ,
J-——mx4+1

The zeros of z* 4 1 are z = e'7/4, ¢371/8_ g671/4 o77i/d of which e"/4, ¢37i/4 are
in the upper half-plane

in/4
ir /4

. . 2—¢
: atz=¢€""is lim —(/——
22+ 1 2o 2% 4 1

Residue of

-y fA -d f
e Hej

Similarly, the residue at e®

I = % (ean'f/*l + e--lrt'/ll)

_7Li (e--lri/4 _

rif4
5 )

e

f‘” de
—onol‘l"i!,"ll \/E

Example 2. Consider the integral

B_ J"’ Ccos (Re“’)iR:“’ o
o R 4 q
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While cos z is bounded, for real «,

eiz + e—-iz et‘z—-ﬂ + e-—-iz tv
COs 2z = - = -
A P

Thus, as ¥ becomes large and positive, e~ is small, but e~*=*¥ has an
exponentially large magnitude. The integral B above does not tend to zero as
R — oo.

We resort to a trick. Instead of writing I = [, cos z dz/(2® + a?), we
write the equivalent statement

I=Rfme‘“—dx
—a0 x2+a2

Now taking the upper half semicircle as our contour, and e*/(z% + 4% as

integrand, we see that |¢‘?| = |¢**~¥| = e~¥ < 1 on the full contour. Accord-
ingly
(7 et ReUIR dﬁ ' fTdb R
J e < RJ _ K -0
R2e218 + = 0 R2 _ a2 R2 _ a2
Hence
® dx . iz
f e“ﬁ = 21ri(res1due of — ;atz = ai)
-0 X 4 a 2+ a
—..a
= 2mi =
2ia
e——a
= g7 ——
a

The prescription is precisely the same as in Example 1. Hence

@ dzx e e ?
cos & = R =
—o0 x° 4+ a a a

[f% sin z{(2% + a?) dxz = 0, Why?]
Let us consider another illustration.

3) f sin x Z 4

In order to use the ideas introduced above, we would prefer an integral on

i A A fon m e s

T
\_ UU W) 111i§ WE Can UU ITOom Dyl Clly,

J=lf sinz
2‘v—m x

We are also prepared to replace sin « by e’* and take the imaginary part
of the resulting integral. However e*/x is singular at = = 0. Still, %)z
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Figure 6.11

N

is analytic for z ¢ 0, and we can utilize it as follows: we take a contour
consisting of the upper half semicircle of radius R, and remove a small
semicircle of radius ¢ near the origin; then § e’ dz/z = 0, since the integrand is
analytic inside and on the contour (Figure 6.11). Adapting the integrand to

the contour we have
-2 eiz . R t‘x
f —dx + "‘”:d9+f —dx+ ’R"ldB—O
-R X

The first and third integrals combine to give

f — dx=21f SlLvd:z:

We can see our desired result by letting ¢ — 0, R — cc. Then

0 i0 0
llmfe‘“ idd=\id0 = —in
e—0 Jr JI

and we are left with

|B| =

JneiRewi a6 éfwe—Rsino do
0

0

0
and on (0, r/2), sin 6/0 decreases steadily, so that

4 /2
f e~Bsine g0 — 2[ e~Esine 4g
0

L
sinf "2 _ 2
6 — i 2
2
sin6>2—6 on(O,?)
w \ L/
e-—Rsinese-—2R8/ir 0595_7_7
- - T2
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Hence

ro/2
|IB| £ 2| e B0 40
J 0
rr/2
2| e™Frdp
=4,
2
= %{ [l — e R]—0
Finally
2 T g = i
JO x
sSin x dx _ _7_1'
JO x 2

Without attempting to write a formal statement describing these integrals
in the most general terms, we can use the residue calculus to evaluate

f e“Ra(x) dx

—aD

where Ra(x) stands for a rational function, the quotient of two polynomials.
Now we require only that the degree of the denominator be at least 1 greater
than the degree of the numerator.

Example 3. Consider the integral

p_[—_d6b _1(r__d0
" Joa+bcos® 2J.a+bcosh

O<b<on
T, W T,

We have encountered such integrals when the path of integration has been a
circle, or an arc of a circle. Let ¢? =z, 2cos 8 = z + 1/z, df = dz[iz.
Then

_ }_§ dz
)

2
f dz
' fﬁz|=1 bz + 2az + b

L lh_‘

The denominator vanishes at

=—a:|:\/.::12—b2
b
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with

—a +Va* = b
b

lying inside the circle (the other lies outside).

Thus
27i 27
= — IéS =
T

\/az— b®

Evaluate the following integrals by the methods of Section 6.10.

6101 | —dr
Jo P+ 2+ 2
(* oo 2
6102 | xf f“" a>0
o a
(* o0 2m
6.10.3 z < integral
10 ), 1+x"'"dx 0 = m < n, integra
6104 | —94&
JO (a + bx )ﬂ
roo 2
6.10.5 2 dz
Jo 28+ 1
B cos x dzx
6.10.6
J-o (2% + a®)(2® + b®)
f© cos x dx
6.10.7 e 2s
Jo (2° + a)
6.10.8  Deduce the integral of Example 6.10.7 from the result of Example
6.10.6.
6.10.9 f“’xsinxdx
I o x241
6.10.10 f © __sinzde a,b>0
— (x + 0)2 + b2
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6.10.11 f _sinzdz
0

z(x? — 7°)

6.10.12  Show that in indenting the contour around a first order pole, the
contribution to the integral by the indented semicircle tends to } the residue
at the pole in question.

(2 do
Jo a + i(bcos 6 + csin 6)

r2r — — 3
6.10.14 cot (%—'9) do

JO

6.10.13

6.10.15 cos 26 at <1

Jo1 —2acos b + a°

6.10.16
J‘z” cos nf d6
o 5—3cos@

Evaluate in two ways. First with e =z, 2 cos nf = 2" + 1/z*; second,
consider

2 in8
R[ e'"? df
Jo 5—3cosf

6.10.17 Show that [ Ra (sin 8, cos ) df can be evaluated by the
methods of this section, after the elementary change of variable tan /2 = .
(This change of variable produces an integral of the form [, Ra(x)dz.)

6.10.18 Show that

J‘r cos n¢ d¢ i” (\/a2 + b — a)" ab >0
0

a—ibcos¢=,/a2+b2 b
(See Example 6.10.16.)

6.10.19  Integrate z{(a — e~*?) around the rectangle with vertices at +,
47 + in, and hence show that, fora > 1,

v xsin x dx T 14+ a
2='—10g
0ol —2acosx+a a a

218 Chapter Six



Additional Examples and Comments on Chapter Six

6.1

Let f (2) be analytic inside and on the circle |z| = R, and z = a = re®®

be inside the circle. Cauchy’s formula yields
1 [ f(z)d=
f(@a) =—
27 J|z1=R2z2 — a
_L [ @
2mi Jia=r | _ R?
a
Hence
f@=-"L [ —K—ad d
— z
27i lel -r(z — a)(R® — az )f( )
This result is called Poisson’s formula. Show that it yields
(R* — ") f(Re'®) dg

f(a) = f(ré®) = — f e

and if u(r, 6) is harmonic in r < R,

1 (

— 2Rrcos (6 — ¢) + r?

— r)u(R, §) d¢

u(r, ) = —

(r,0) =~

6.2
in the upper ha
integral yields

Imitat

2r R2
Jo 7

2Rrcos (0 — ¢) + r*

in whmh f(7\ i1g analvtic

"" ar “II“IJ LTS

there, so that Cauchy’s

and

© f(x) da

0=1f
27 J-

ol — a

Thus deduce Poisson’s formula for the half plane

=2

a

u(t, 0) dt

m(x—t\2+u

for u(x, ¥) harmonic in ¥ > 0, and vanishing at co.

6.3
conformally onto the upper half-plane
to change variables in the integral.

Additional Examples and Comments on Chapter Six

Deduce the resuits of Example 6.2 by mapping the circle 2] < R

Iw > 0, and use the mapping function
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6.4 If f(2) is analytic in |2| £ 1,|f(?)| = M and f(a) = 0 where [a| < 1,
show that

IIA

ﬂ

IIA

| £{=\1
IJw=h A

z—a | .
2|

[y
Ql

See Example 6.6.9.

6.5 If f (2) is analytic in |z| < 1, and |f(2)| = 1/(1 — |2|) show that

) 1y
la,| = Sm+D(1+-)<en+1)
n! n
6.6  Deduce the maximum modulus theorem from Parseval’s equation:
if f(z) = 28 a,(2 — 2)", |2 — 2| = r, then

1 a - £ a0 - 3 " a A
— J | f (2o + re™)|°adb = 2' |a,|” r"
27 Jo 0

6.7 If f(2) has a pole at z = a, show that lim,_,, | f(z)| = oo.
If f(z) has an isolated essential singularity at z = a, show the following:

(a) That there is a sequence (2,) — a such that f(z,) — co.

(b) That 1/(f () — b) has an essential singularity at z = a.

(c) That for any arbitrary complex b, there exists a sequence (z,) —a
such that f(z,) — b (Weierstrass).

Exercises 6.8 to 6.26 illustrate a few additional applications of the residue
theorem to the evaluation of definite integrals, summation of certain series,
and to certain new representations of analytic functions.

L L |
6.8 Evaluate f 27 dw 0<axl1
o 1 4+ 2
Solution: The integrand is the specialization to the real axis of 2¢-/(1 4 2);

in general, this is infinitely multivalued. Let us choose a specific branch,
for example, the principal branch, which is single valued in the plane cut from
z = 0 to z = o on the positive real axis.

In order to use the method of residues, we require a closed curve, and a
curve that coincides with the real axis for 0 < 2 < R. We can achieve this in
several ways. (Figure 6-12). Consider the curve illustrated: from § to R along
the real axis, around the circle |z] = R to the bottom edge of the cut, back
along the real axis from R to 4, and then on the circle |z| = § to the starting
point. Because of its suggestive shape, this is often called a keyhole contour.
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Figure 6.12

N

V%

~_]|

Specializing the integral to the contour, we have

R a1 27 iha—1; i@ & 7i, \a—1 0 iha—1: 16
J‘ ! da +J‘ (Re®)*'iRe™ db + (#"2)* dux +J‘ (6% de*® db
J 2

142 0 1 + Ré® R 14« + 14 dé
= 27 (residue atz = —1)
—_ zﬂi(eﬂ)a——l

The first and third of these integrals combine to give

2ma)J.R a—-l dx
142

while the second and fourth tend to zero as R — oo, § — 0.

[ f”" (Re®)*iRe" de‘ < F’ R°d6 _, _R* 0]

i6 = = ém
0 1 4+ Re o R—1 R-1
Hence
J“” 2 da 2nie™® m
o 142 €& —1 sinma
0 smtn bha fedcmemnl AL Deanmmele £ 0 L ecrat L. over a laree
0> EVdIUd.LC e lueglal U1 LAallpic 0.0 DYy lIll. plalllly Uvel a lalgc
semicircle in the upper half-plane, indented at the origin. Thus, also evaluate
[©a* ' da ,
= —r cot ma
o 1—=

(The integral is a Cauchy principal value integral.)
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6.10  Evaluate the integral of Example 6.8 by first making the change of
variable # = ¢’, and then integrating around the rectangle with vertices at
t =+R, £ R + 27i.

6.11 Show that [ (sinh ax)/(sinh #x) dx = } tan af2, a® < =%, by in-
tegrating around the rectangle with vertices at £ R, +R + i, indented at
z=20,1i.

6.12 By integrating 1/(z log 2) around the keyhole contour of Example 6.8,
suitably indented, show that

@© dx
rri 2 2y = 1
Jo x[(log =}” 4 7]

" ¢~'* show

-

.13 By integrating around the unit circle, indented at 2 = e

hat for nositive inteoral »
for positive integral »,

[

fﬁ cos nf do sin n¢
= 7
o cos @ — cos ¢ sin ¢
6.14 Integrate log z Ra(z), where Ra(z) is any suitable rational function,

around the keyhole contour of Example 6.8, and thus show how to evaluate
{3 Ra(x) dx.

6.15  f(2)is analytic inside and on an ellipse C with foci at 4+1. Show that

fof (2) log (':‘"i"%) dz = 2"iflf(x) &

6.16  Integrate ¢"* tan=z around a large parallelogram, two sides
passing through z = 0, z = | at an angle of 45° to the positive real axis, the
other two sides being parallel to the real axis. Hence show that

J. e dx = J

i/
2 e’
Solution: cE " tan w2z dz = 2wi
] _

-
f+/f — Ze“’”'"“fa0 et dt

and the other two tend to zero. Thus [, ¢ "*dr= 1. (Note also that
[, e dt = 2, e+ for any complex constant a.)
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6.17 Integrate e~ around a large circular arc [z = R, 0 < 6 < =/4,
closed off by radial lines, and show that

 —

fcosx""dx=J sinxzdx=lJ3
0 0 2A 2

6.18 Show that + cot 7z has residue 41 at each of the poles z =0, +1,
+2, ..., and that it is bounded on the sequence of squares C,, with vertices
at +£(N + 3) £+ i(N + 1), N = integer, the bound being independent of N.

Consider §g, [(w cot #2)/(z%)] dz, show that the integral tends to zero as
N — oo, and hence deduce that

1_a

"6

~V18

6.19 By analogy with Example 6.18, integrate (s csc #wz){2? around Cly,
and show that
( _ 1)n+1 77—2

n® 8

2

1
6.20 If the poles of f(z) are at b,, b,, . . . b,, with residues r,, 7y, ... 1y,
and if |2f ()] — 0 as z — oo, show that

(We assume that no b, is an integer.) (Integrate s cot mz f(z) around C, and
use the residue theorem.)

6.21  Under the hypotheses of Example 6.20, show that
© k
Z(_l)ﬂf(n) = _z (meseab,)r,
—c0 1

6.22  Find the explicit values of the sums

2

o 1 > n
@3, = ©F

o nt+ a* T nt+ at

«© 1 o) —1)"
OP> @ s

o n* 4 a* = n+ 4

(See Examples 6.20 and 6.21.)
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6.23  The ideas contained in Examples 6.18 through 6.22 suggest the
following result, a special case of a more general property of analytic functions
that we mentioned in Section 3.9. Consider

1 f 7 cot mz
dz
2mi Jo, 2(z2 — w)

where w 7 n is considered as a parameter. The value of the integral is

 cot 7w + f, 1 _ _Lz
w wn(n—w) w
and tends to zero as N — oo (see Example 6.28).
Thus
 cot mw = + > (l+ 1 )
W o \n w-—n
1 | & 2w
==+
w ; w? — n?

The resemblance to the partial fraction expansion of a rational function is
clear: the function cot 7w is a (uniform) limit of rational functions (the limit
of the partial sums).

Let us now integrate

1 < 2W
mcotmw — — = 2 > >
w 1w —n
fonsn Nt~ o2 ~ltoitemiea
11U U WV &, UUlalllllls
2 2
sinnwz 2 ( n
log = > log — + logm
z 1 —n®)
or
sin 7z 1‘1’[ (1 f)
m2 1 n®

We observe the entire function sin #zf7z in a new light also: the function
sin 7z{mz is a (uniform) limit of polynomials. All of its zeros are displayed in
“factored” form. In fact, Euler first guessed this formula by analogy with
polynomials.

Show, by similar methods, that
2 2 < 1
m* csC* 2 —zm(z+n)2

. v

6.24 A more general form of the resuit of Example 6.23 is the foliowing.
If f(2) is an analytic function whose only finite singularities are poles at
z=a,a,...,0<|a <lay <..., with residues by, b,, ..., and |f(2)|
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is bounded on a sequence of contours Cy, where Cy contains a,, a,, . . . ay
and no other poles, the length of Cy being of the order Ry, the minimum
distance from 0 to Cy (Ry — c© as N — <0}, then

1 [ fyd b [0 _[O)

N
27i t(t— =2 —
o z) T a.(a, z) 2 2

and passing to the limit,

s =10+ Su( 2 +1)

This gives us a “‘partial fractions’ expansion of suitably bounded mero-
morphic (only poles in the finite plane) functions.

Prove the above theorem, and illustrate with f(z) =  csc nz.
6.25 Find the principal part of the Laurent expansion of f”(z)/f(z) about

(a) A zero of order k of f(2).
(b) A pole of order k of f(2).

6.26  If f(2) is entire, with simple zeros at a,, a,, a3, ..., and f'(2)/f(2)
satisfies the conditions of Example 6.24, show that

f(z) = (0 1o/l Tr 11 — i\
JA\F T U 11 /

In particular, show that

ez

-1 o 22
i
z 1 n1r

6.27  If f(2) is analytic inside and on a simple closed curve C, except for a
finite number of poles inside C, and f(z) # 0 on C, show that

A (1@, N_p
27i Jo f(?)

where N is the number of zeros of f (z) (counting multiplicities) inside C, and
P is the corresponding number of poles inside C; see Example 6.25.

6.28 For the function f(z) of Example 6.27, let a,, a,, . . . be the zeros,
with multiplicities n,, n,, . . . and b,, b,, . . . the poles of orders m,, m,, . . ..
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Let g(z) be analytic inside and on C. Show that

1 t
5 Lg(z)f G )dz = > mg(a) — 2 mg(b,)
See Example 6.27.

6.29  In the notations of Example 6.27, show that
1 [[®
2xi Jo f (2)

where A arg f(2) is the change in arg f(z) when Cis traversed in the positive
sense.

1
dz = —Agarg f(2)
27

. 1 [ )
Sol : dz ——1
olution ot JCf(Z) - ogf(z)c

|
= L llog |£@)| + i arg f(2)]
2ari c

1
= _Acargf(2)
27
This result is known as the argument principle.

6.30 If £(2), g(2) are analytic inside and on a simple closed curve C, and
lg(®)| <|f ()| on C, with f(2) # 0 on C, then prove that f(z} and f (2) + g(2)
have the same number of zeros inside C (Rouché’s theorem). (Use the argu-
ment principle and Example 6.27.)

6.31 Use Rouché’s theorem (Example 6.30) to prove the fundamental
theorem of algebra. (Let C be alargecircle |z| = R, f(2) = a,2",f+ g=a, +

alz + PN anzﬂ.)

6.32 If @ > e, show that e* = az" has n zeros in |z| < 1. See Example
6.30.

6.33  If f(2) is analytic inside and on a simple closed curve C, and f(2)
takes on no value more than once on C, show that f(z) takes on no value more
than once inside C, that is, f(z) is univalent in C. (Use the argument principle
Example 6.29.)

6.34 C is a simple closed curve given by |f(z)] = M, and f(2) is analytic
inside and on C. Show that the number of zeros of f'(z) inside C exceeds the
number of zeros of f'(z) by 1 (Macdonald). In particular, then, f(z) has at
least one zero inside C.
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6.35  Consider the polynomial z® + 2% + 6/ — 8. By considering a large
quarter-circle in each quadrant, and using the argument principle, show that
there is a zero in each of the second, third, and fourth quadrants.

6.36  The coefficients of 42¢ + Bz® + Cz%2 + Dz + E are all real. Show that
a necessary and sufficient condition that all the roots (zeros) have negative
real parts is

1. The coefficients are of one sign (for example, ).
2. BCD — AD* — EB? > 0.

These are Routh’s conditions.

lU} c.&pxcaaca the fact that a real factor is z + a, a>0 and a cor‘piex
factor is (z 4+ b)% + ¢%, b > 0. In (2), consider f(z) = 2% + 4b2® + 6c2% +
4dz +e, w1th b, c, d, e > 0, and apply the argument prmCIple to a large

Ala 31y tha t half_m T ha A o Fin N it Ananan that
DDI.II.I\JII. UI.D ll.l. I.l.l\- l.lslll. llall‘l.llal \.f p A U uavc HC alsJ \b} = U’ ll. ID IIDWDDGL)‘ l.l.lal.

arg f (iy) must increase by 4= as y increases from —oo to co. This gives
6bcd — b%e — d? > 0.]

6.37 INVERSION OF SERIES

The next three exercises lead up to Lagrange’s formula for inverting power
series, that is, in essence solving an equation w = f(z) explicitly for z = g(w).

If f(2) is analytic in |2|] < R, f(0) # 0, show that ¢(z) =z — w f(z) has
precisely one zero inside |z] =r < R, provided |w| = p. [Use Rouché’s
theorem, Example 6.30, with f(z) replaced by z, g(z) by —w f(2); |g(?)| =
W If@I <ol if [wl < p, where p = ymaxi,,|f()].]

6.38 Show that

dy
1 2 iz dz = 1 z 1___P_"f_.£f.) dz = a
2mi Jjg)=r @ 2mi Jizl=r 2 — wf(2)
where z = ais the zero of z — w f(2) in |2| < r. Hence, if F(2) is analytic in
2| = r,
F(a) = — J " G,
27i Jyz|=r z — wf(z)

and F(a) is analytic in w for jw| =< p.
Solution:  Examples 6.37 and 6.28.
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6.39 From Examples 6.37 and 6.38, we see that a = w f(a) defines a(w)
as an analytic function of w, with the restriction that a(0) = 0. Let us now
replace a by z; then we have

. [ F() 1___i-ﬂt_) dt
2mi Jyt)=r t — wf(?)

1 o
=— F()[1 — wf'(9)]
m J|t|=r
xF+WmLHMMF+~+h and |20
t 2 8 ’ t
_ 1 F % .1 MO f*%)
- 2mi J]t|=r H at + ; u 2mi J;tl =t (t)[ ntl f (t) :I

{ l"l‘ -1 1\

o =ik, Sl
dﬂ—l
d n—1

F@&) = FO) + 32 { memﬂ

This is Lagrange’s formula.
In particular, if F(z) = 2, we have the inversion formula: w = z[f (2),

2= 32 ()
4 ntldrmt It=0
Show that if
22 23 24
W=2_ﬁ+ﬁ—§+ = z€ %
then
2w? 3% 43!
T TE TR TR
. — 1 3wt 4w
A TR TR
6.40 Let z be the root of 22 — 22 — y = 0 which — 1 as w — 0. Show that
— < n—1 (3" - 2')l n
e=1+ Z(—l) o (O — 131
i L \hll J._Il
4
for |w| < — 77 (see Example 6.39)
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6.41 Let w = P(z) be a polynomial. Show that the zeros of P’(z) lie in the
smallest convex polygon containing the zeros of P(z) (Gauss). (See Example
2.14.18.)

6.42 (a) f(z) i1s analytic, and with no zeros, in |z| < R. Show that
log /() ,,

zl-_-.r z

1
logf(0)=—.f l2|< R
2mi J
(b) Suppose now, that f(z) has a simple zero at 2 = a = r, €'*. Apply the
result of (a) to f(2)/(1 — z/a), and show that

rei&

do

1 2r 1 “2:r |
log [f(O)|=— 1 log|f(re")|dé —— | log|1 —

27 Jo 2 Jo | r |

and transform the latter integral into

i ' > 1 " ' \dz
— log —logi——Rf log(l—r—lz)—
2m rl ry 2w Jpiz=1 r /z

= log L
r

(c) Hence deduce Jensen’s theorem: f(z) is analytic for [z| < R, f(0) = 0,
and ry, ry,...r,,...are the absolute values of the zeros of f(z) in the
circle 2| < R, arranged in nondecreasing order. Then, for r, S r < rpy,,

IO _ 1 [
log —— = — J log | f(re®)| dé
nre'* r,  2mJo
6.43 Extend the results of Example 6.42 to the case for which f(z) has
zeros at a,, ... a,, and poles at b,, ... b,, not exceeding r in modulus, so
that
bbo++ b 1 reor _
log [ 2o 2e )| rmoe] = 5 [ Tlog strey as
a102 coe am 271' 0

6.44 Combine the results of Examples 6.1, 6.42, and 6.43 and prove the
Poisson-Jensen formula: let f(z) have zeros at a,, a,, ... a,, and poles at
by, by, ... b, inside the circle |z2| = R, and be analytic at all other points

inside and on the circle. Then

A aAw waa waw

27 R2 —_ r2
lo ré¥)| = — f , 10 Re®yd
g1/ (re")| R® — 2Rrcos (6 — ¢) + r* Blf(REDI 49
m Rz—dre < Rz_Brew
_ 1 - s lo ‘ *
.ugl °% R(re* — a,) +v§1 & R(re* — b,)
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Note that this formula contains Poisson’s formula and Jensen’s theorem as
special cases.

6.45 If |f(2)] = M on asimple closed curve C, f(z) is analytic inside and on
C, and if |f (z,)] = M for some (any) 2, inside C, show that f(z) = constant.
That is |[f(2)| = M.

SOLUTIONS FOR CHAPTER SIX

6.2106) T~  (¢) —Z—
®) a © ab(a + b)
3 5
6.5.3 L
=3t T

6.7.9  f(?)/z is analytic in |z| < 1, continuous in [z| = 1, and |f(2)fz] = |
on |z| = 1. Hence [f(2)fz] <1 for |2] <1 as well (maximum principle).
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Chapter CONFORMAL MAPPING AND
SEVEN ANALYTIC CONTINUATION

The main object of this chapter is to derive the Schwarz-Christoffel
formula for the conformal mapping of polygonal regions onto the upper
half-plane.

7.1 ANALYTIC CONTINUATION

As we observed in Section 6.5, any function of the complex variable z,
analytic at 2 = a (and so, in some region containing z = a), can be expanded
in a convergent power series about z = a,

{(n)
(1) f@&=2 s @)

n=0 n

(z — a)" |z — a| < R

and every such convergent power series represents an analytic function near
z = a. This fact is very important: analytic functions and (convergent)
power series are synonymous. If we wish to study any arbitrary analytic
function near z = a, we can do so by studying its power series (1).

For example,

(2) f(z) =

=S <t
1 —2z o
furnishes the complete description of f(z) = 1/(1 — 2) at the points |z| < 1.
It is not so evident from this power series, however, that f(z) has a pole of
order 1 at z = 1, nor that this f(2) is indeed analytic at points outside the
unit circle. Of course, there is no need to use the power series in this example,
HEPS — 111 2% #alla tha 1211 ct e Fan 11 yhila $#lan seusraa gasian i 1
DIIIWJ \‘) 1"\_1 — &) Wlld UL 1uUi1 DI.UI.J 101 4l 6’ Wiliic I.llC PUWCI DCIICD yill

only converge up to the singular point nearest to z = 0.
On the other hand, suppose that the only information we have about an

.
Txr fnnnf AN 1 1te ranracantatinmn ae o nAwar cariag

J lull\/l.lUl.l 19 II.O l.\.ul_’l.\.r\)\ylll-al.lull av 4 PUWUL G L 1w
(3) f(z) = Zf-‘n(z —a) |z—al <R
n=0
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How can we compute the values of f(z) outside this circle when f(2) is
actually analytic in a larger region?
Let us return to the example

fE =3 <!

From this definition, we can compute the value of f(z) at any point z,,
|z| < 1. In fact, we can further compute the value of ' (2) at z,, by means of
the series

f@=§m+m" 2] < 1

and so, for f1™ (z) at z,, for each n. That is, we can compute the Taylor’s

let us choose z, = —1/2.

%o L2
S =3 ("= =]
—p = 3 o1 _4
FEY =30+ DD = s =
@ F=p) = n! (D™

(The fact that we used f(z) = 1/(1 — 2) to evaluate these sums does not
actually mean that we must know the answer in advance in order to sum the

th t nd t ogard the
series: the series in qucsuion converge, anG w& must régara their sums as

being computable, even though a limiting operation is involved.)
We now obtain

© fO=3C+Y® R+ <i

It is clear that both the series (2) and (5) represent the same function,
f(z) = 1/(1 — 2). In fact, by the sum of a geometric series,

. n n+l __ 1 2= 2 — 1
E(Z'H)G) T 1—3z+3 3 3—22—1 1—2

However, the series (5) converges at points at which (2) does not converge.
We say that the function

f@=§f 2] < 1,

has been continued analytically to points outside the original circle of
convergence (Figure 7.1).
We may now repeat the whole process, and select a new point z,, computing
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Figure 7.1

\ 7

N _

z—plane

f™ (z,), and obtain yet another power series. Let us visualize this process
being carried on in all possible ways (Figure 7.2).

Clearly we can, by this process, reach every point z contained in any given
circle passing through z = 1, and since there must be a singularity on each
circle of convergence (why?), we find that f(z), defined only by the series
3 2", for |2| < 1, can be continued analytically to the full complex plane,
except for z = 1.

It is not clear at this moment that f(z), so obtained, is single valued near
z = 1. However, the procedure of continuation by power series, illustrated
here, provides us with the answer to this problem as well. Consider a path
that encircles z = 1, and avoids z = 1, as illustrated in Figure 7.3.

We compute the power series about 2, on this path, continue to z, on the
path, and inside the circle at z,, and so on, until we return to a neighborhood
of z, by a circle centered at z,, on the path. That is, we continue f (z) around the
path, and return to the starting point. Our function f(2) is single valued if, and

Figure 7.2

N | S
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only if, the continued values of f(z) are identical with the given values of f(z).

It is convenient to consider that each analytic function, however defined
(by formula, by series, or by some other representation), has been continued
analytically to as large a region as possible, and that all of the possible

Figure 7.3

%) %2
T
N/

7

continuations are attached to the definition of f(z). Thus, for example, the

function
zﬂ+1

[ o]

2} = _1\n

f(z) néo( b 1

represents, for |2| < 1, the single-valued analytic function log (1 + 2) having

the value O at z = 0, that is, the principal value branch of the logarithm.

However, there are infinitely many distinct continuations (around z = —1),

each differing from the given one by an integral multiple of 2.i. We consider

this totality of functional values as representing the actual analytic function
f(2).

With these ideas in mind, we have the following useful theorem.

l2] <1

Theorem 7.1 If f (), g(z) are two analytic functions, and if f(z) = g(z) ina
region D where both are analytic, then f'(z) = g(z) wherever they are defined.
(This theorem includes the uniqueness of power series as a special case.)

COROLLARY. If 2, 2,..., 2z,,...is an infinite sequence of points,
f(z,) = g(z,) for each n, and f(2), g(z) are analytic at z = lim,,_,, z,, then
f(z) = g(2) everywhere.

COMMENT. It may well happen that a function defined by a power series
cannot be continued across the circle of convergence of the series. For
example, consider

(6) f@=z42"+2'4 - =32 |7 <1
0
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Since f(2) — o0 as z— 1, the point z =1 is a singularity of f(z). Next,
f(2) = 2z 4 f(2%), so that f(2) is singular at 22 = 1, orat z = —1 as well as at
z = 1. In the same manner, f(2) = 2 + 2% 4+ f(2%, and the points 2* = 1 are
likewise singular points of f(z). Thus, by similar reasoning, for each n, the
points for which 22" = 1 are singular points of f(z); that is, the 2"th roots of
unity. Since each point of the unit circle is either one of these singular points,
or is a limit point of such points, it is clear that no circle centered inside
|z2] =1 can be drawn to include points outside |z|] = 1 without enclosing
singular points of f(z). Thus, this f(z) cannot be continued beyond [z| = 1.
In this case, the circle of convergence constitutes a barrier beyond which f(z)
cannot be defined analytically, and is called a natural boundary.

7.1.  The real exponential function e = 3* #"/n! satisfies the identity
et® = ¢* - ¢*, Using analytic continuation, show that for the complex
exponential e# = >~ 2"/n!

(1) e* is the analytic continuation of e= to the full z-plane,
(2) e**s = e - e® for real, fixed a.

2 dt
ol 422

7.1.2 arctan x =

for real . Show that the analytic continuation of arctan x to complex values
of z is

rz  dt lr‘z/ 1 1 \
arctan z = - == ( - — )dt
ol 4+ ¢ iJo\t —i t+ i
1, i—z
= — 10g
2i i+ z

7.1.3  Show that the two Laurent expansions

1
_(l+1+2+22+...) —2+;+%+
z z Z Z
0 <7l <1 1 <z

7.2 THE GAMMA FUNCTION

In this section we introduce one of the most important of the special
functions of mathematical physics. It was introduced by L. Euler, who
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wanted a continuous function that assumed the value n! at the integer points.
Euler’s gamma function is

roo
(1) I'(x) =J = temt dt

0
that exists, as an improper integral, for « > 0. Euler also gave the result,

obtained by integrating (1) by parts,

T'(z + 1) =f fe~t dt
0

T'(2) = 1I(1) = 1
I'(3) = 2I'(2) = 2!

3) I'n + 1) = nl'(n) = n!

Thus it is actually I'(z + 1) which takes on the value n! for x = n.
For our purposes, we consider the complex integral

4) ') = fo " et dy

Then |[I'(z)| = §; [#* Y etdrt = |, t*2e " dt exists for x >0, or Rz > 0.
Integration by parts is still valid, so that (2) becomes

(5) I'G+ 1) ==2I'(2) Rz>0

The question now is whether or not I'(z) is analytic. We note that 7> is
analytic for each 1,0 < t < oo, dfdz(1*~?) = t*~1log ¢t. If I'(z) were analytic,
and if we could compute I''(z) by differentiating under the integral sign, we
would have

These are large “ifs.” However, they do suggest to us precisely what we
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must establish. Since
‘ ( log t Fle™ dr| ;( |log t| #Ye b dt
I Jo I Jo

and since the integral on the right converges for 0 < x, we find that we can
reverse the above steps by integrating * #*~*log te~* drtoget I'(z); '(z) has a
continuous derivative in Rz > 0. Hence I'(z) is a single-valued analytic
function in Rz > 0.

Now we return to (5), I'(z + 1) = zI'(z), the “functional equation”
satisfied by the gamma function. Rewriting this equation, we have

6) T(z) = Rz > 0

The integral definition of I'(z), (4), converges only for Rz > 0 (in much the
same manner that power series converge only inside circles); we see however,
from (6), that I'(z) can be expressed as I'(z + 1)/z, and this latter quantity
exists and is analytic for Rz > —1,2 # 0.

Thus, by analytic continuation, since I'(z) and I'(z 4 1)/z are both analytic
for Rz > 0, and equal to each other there, then they are equal wherever both
are defined, which is certainly the case for Rz > —1,2 # 0.

We have thus continued I'(z) analytically to the larger region Rz > —1,
avoiding z = 0. Since I'(1) = 1, we see further, that I'(z) has a simple pole at
z = 0, with residue 1.

We may now repeat the whole procedure, writing (5) in the form

I'c+1) TI'(z+2)
z 24 1)

(7) I'(?) =

from which we can continue I'(2) toRz > —2,2 # 0, —1, whilez = —1lisa
pole of order 1, residue —1. Repeated application of these methods yields

I'(z+n+1)
22+ 1)z 4+2)---(z+n)

(8) I'(z) =

for each integer n. Thus I'(z) is analytic in each half plane Rz > —(n + 1),

with simple poles at z =0, —1, —2,..., —n. The residue at z = —n is
clearly
. 1
lim (z 4+ n)I'(z) =
z—'——n( ) ( ) —n(l - n)(2 - n) v (—1)
_ (=1
o
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In other words, I'(z) is meromorphic, with first-order poles at z =0, —1,

—2,...and residue (—1)"*/n! at z = —n.
In Example 6.16, we evaluated the particular integral

j e dy = Jm

This result is related to the gamma function in the following way. We write
[ e du=2 i e~ du and take u®* =, a new variable of integration,

obtaining

V= [ retdr =)
) T(}) = /=
7.2.1 Evaluate I'(3), I'(—%).

7.2.2 Show that the binomial coefficient (a) , [the coefficient of z” in the
expansion (1 + 2)*], can be written "

I 1
(“)= (et D . aE—1,-2,....
n I'n 4+ DI'(e —n+ 1)

7.2.3 Show that

(_%)= J _ (=1@n)!
n nTG3 —n)  2*(n)?

\bcc D)kd.ull)le s

724  Evaluate I'(3) = |° 17"/2 ¢~ dt by the following device.

o= (o) [

Set t = %, u = y* obtaining

f* a0 oD

[TAE =4 dxf eV dy

JO Jo

=4 pe—(aa’+v’) dz dy

=4|{e™rdrdd
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7.2,5  Following the lines of Example 7.2.4, obtain

T'()I'(P) = ( fmu“"le'"“ du)( fwv”'"le""’ du)

\Jo / \Jo
[ 2 ®© 2
=4 i 22 te™% da J; y*# eV dy

o

™
=4 f pRat28-lo—r ono2a-1 g oin28-109 4. 46
o/

w/2
= 2I(a + B) f cos®1 @ sin®#' 0 46
0

1
=T(a+ f) J[; Y1 — 1) dt

COMMENT. These last integrals are of frequent occurrence in applications,
and are well worth noting:

! ~1 -1 F(“)F(ﬁ)
0)* =l — A = ——
(10) J; r( 1) t (o + §)
/2
(11) f cos® ! 9sin® 10 do = L@
0 2« + ﬂ)

In particular, with 8§ =1 — « in (11) we find

n/2
I'oI'd — o) = 2] (cot 6)**' d6

{0 y""‘l p
_Jo 14+y y
where ¥ = cot2 0
mw
~ sin ma
from Example 6.8.
(12) P@l'(1 — o) = -
sin o

7.2.6 From I'(z) I'(1 — 2) = =/sin w2z, established above for restricted
z, Rz > 0, R(1 — z) > 0, show by analytic continuation that this identity is
valid for all complex z # 0, £1, £+2,.... Let 2 — —n and equate residues
on each side, and verify that the residue of I'(z) at z = —n is (—1)*/nl.

* This integral is called the beta function.
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7.2.7 Use (12) to transform
—a) I'aq — ) (=T (x + n)
\n/ nllTd—a—n) NI
(see Example 7.2.2).

7.3 SCHWARZ’ REFLECTION PRINCIPLE

In our earlier treatment of the elementary analytic functions such as
e*, cos z, ..., we started from a formula, valid for real z, and for which the
extension to complex z was immediate. Thus the extension of &= = >¢° 2"/n!
to complex arguments, e* = > ¢ z"/n! was natural, even if somewhatarbitrary.
We see now, in the light of analytic continuation, that there can be only one
way to extend e* to an analytic function whose real values are e*.

The real functions that we extended in this fashion possess certain simple
properties due to the fact that they are real for real values of z. Their power
series expansions, about a point on the real axis, have real coefficients. (All the
derivatives of the function, real on the real axis, are real.) Now if

f@O =Saz—2)  a,rel

n=0
then
fG) =3 a,(: — m)" = X a,(z — )"
= f(3)
That is, the value of f(z) at the reflected point z is the reflected value of f(2),

vaflantinm haing in tha ranl o Tha nann Al thhio sam ot

I.hC fenection UCII.IE ifl |.uc i1val CI.AID 1€ COonverse o1 tnis l}l U})Cl l.y lb 4130 i uc,
and we shall make use of this result in Section 7.5. In order to investigate the
converse statement, suppose that f(z) is known to be analytic in D, a domain
in the upper half-plane, bounded below by a portion L of the real axis, and
that f(z) is real and continuous on the open interval consisting of L, end-
points excluded (that is, we say nothing about the behavior of f(2) at the
endpoints of L). See Figure 7.4. Now, if f(z) were further known to be
analytic in the larger region, consisting of D plus its reflection D', then it
would follow that f(z) = f(z) in this larger region. We consider the possibility

. i : S
of analytically continuing f(2) into D'; if such continuation is possible, then,

clearly, the property f(z) = f(2) must hold for the continued function. In
other words, we define the proposed continuation by the property

(1) fi&) = [
for zin D'. (If zis in D', Z is in D, where f is given, so that (1) defines a
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Figure 7.4
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function in D'.) We wish to show that the extended function, f(z), as given
in D, and f,(z), defined in D’ is indeed analytic in the combined regions
D 4+ D' (Figure 7.5).

Now (f(z + Az) — f(2))/Az tends to a limit as Az — 0 provided z, z + Az
are points of D [f(z) is analytic there]. From (1), we now have

Hz+Az) = fi(e)  f(z+ A2) — f(2)
Az B Az

where 2z, z + Az are in D', so that Z, z 4+ Az are in D; the right side (2) thus
tends to a limit, and so f;(z) is indeed analytic in D’. We also have from (1)

3) LG = f(2)

o ENF

)

for z real, for z on L.

We now have the following situation: f(z) is analytic in D, f,(z) is analytic
in D', and f;(2) = f(z) on L. Thus, if f(z) can be continued, we wiil have our
result; f,(z) will be the continuation to D’.

Figure 7.5
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In order to demonstrate that f (z) can, indeed, be continued, we construct an
auxiliary function, analytic in D 4 D’, and equal to f(z) for z in D, and to
fi(z) for z in D',

Define
$() = [f © o
fi(z2) zinD
and consider
_ (1) dt
) F) = 2wiJot — z

where C is a simple closed curve in D + D’ (Figure 7.6). Since ¢(2) is

continuous inside and on C, then F(z) is analvhc for z inside C (see Section

6.1). For z in D, decomposing C into C, and C2, we find -
1 [ dydr 1 [ $)dt

» T »
2ridJornt — 2 217:.’0:!—2

TR
4<)

_L [ f@dr
2riJort — 2
= 16

while for z in D, F(z) = f(2), by similar reasoning (Figure 7.7). That is,
F(z) is analytic inside C, F(z) = ¢(z) there, and so ¢(z) is analytic inside C,
and f(z), f1(2) are indeed analytic continuations of each other. We have
verified Schwarz’ ?‘éj:éé‘ﬂﬁii pﬁiiﬁpw y_; \4) is dﬁmyuc in a domain u,par:‘ GJ
whose boundary consists of a portion L of the real axis, and if f(z) is real and
continuous on the open segment L then f(z) can be continued analytically into

tho woflortoad Adomainm n’ Af N r whoro it tal-oc Am mnﬂnﬁfnr’ {ronssiornta)
EFIC 'CJI-CQFC“ UUITIEN: L7 UJ F g ll" dig FVIECTIC F FUENCID U ’CJicblcu \DUIU“6“‘CI

values at reflected (conjugate) points.

Figure 7.6
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Figure 7.7

COMMENT. No assumptions are made as to the nature of f(z) at the
endpoints of L, where it can well have singularities.

7.31  Show that the Schwarz reflection principle is equally valid if f(z)
maps a straight line segment L' onto a straight line segment L, then f(z) can be
continued from a domain D bounded by L’ to the domain D’, the reflection
of Din L', and f(z) takes on the values which are the reflections of the values

of f(z) in L.

7.32  If f(2) is analytic in the unit circle, and real and continuous for z
on an arc of the unit circle, show thathz) = f(1/Z) holds for the continuation

nf £l antaida tha nmit mrela Nhearva that Qrhwaoary? nrincinla halde thic
UIJ \9’ Uul-ol“\-r Liiv ullll- Wwilvivwv., WUOWL Yv LLlAL U\fllwall‘ lJl. lll\fll.’l\v IIUIU\’, lll l.l.uD

case, if we replace the “reflected” point by the “inverse” point.

7.3.3 If f(v\ 1S nnalvhr in |z| < and |f{z)l = 1 on an arc of

= ha 1
G G i fiz) 1s anal < 1, and S N he

the u
circle, show that f(2) can be contmued beyond the unit circle by the rule
f(@ f(1/2) = 1 (consider i log f(z) and Example 7.3.2).

“
IAI.!-

7.4 THE GENERAL MAPPING PROBLEM: RIEMANN’S
MAPPING THEOREM

We have investigated a number of conformal mappings by analytic functions
and have learned how to map certain geometrically simple domains onto a
half plane, or the unit circle as special cases. The method we adopted was an
example of an inverse method; that is, we started with a specific, elementary
function, and we investigated the images of level lines and other simple lines.
Thus we found that the bilinear mapping always maps circles and straight
lines onto image circles and straight lines; the bilinear mapping preserves the
family of circles with straight lines as limiting cases. These particular mappings
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have another useful and important property: the inverse of a bilinear mapping
is also bilinear, so that if w = (az + b)/(cz + d), there is a one-to-one
correspondence between points of the z-plane, and points of the w-plane.
Such is not the case for the other elementary mapping functions we have
examined. Thus w = 22 maps the unit circle |z] < 1 onto the unit circle
|w| < 1, but each point of the w-plane is the image of two points of the z-plane:
the mapping is not one to one: the inverse function is not single valued,
z= :]:\/ w.

In most of the applications of conformal mapping we wish to make to
problems of mathematical physics, we wish to have a one-to-one corre-
spondence of points, and hence wish to restrict our attention to conformal
maps that possess this property: if w = f(z) maps a region D of the z-plane
to a region D’ of the w-plane, we require the inverse function z = f~(w)
to be single valued for w in D', (For example w = 22 will have this required
property if we suitably restrict the domains D so that 0 < arg z < = holds for
the points of D.) Conformal maps that are one to one (both directions) are
called univalent, or simple maps, and our attention will be directed towards the
construction of such univalent maps in the following sections.

As previously indicated, one of the applications of complex variable
methods in engineering problems is the construction of univalent conformal
mappings of a given domain D onto a particularly simple domain, such as the
unit circle, or the upper half-plane. That is, we must now find an analytic
function w = f(z), which maps a given domain D onto the interior, for
example of the unit circle in the w-plane, so that each point of the w-plane has

a unique image point in the z-plane This direct problem is, of course, much

more difficult than the indirect or inverse methods we have used up to now.

Thus, it is of considerable importance to us to know in advance that a
mnplr_,nno function agtuallv exists that will nprfnrm the desired result. and that

wislw e LAALSE VY AMA A AW AW W WA WL A wWwweivy

indeed we can single out a unique such analytlc mapping function. These
statements are precisely stated in the Riemann mapping theorem: given an
arbitrary simply connected domain D in the z-plane, whose boundary 0D
consists of at least two points (and so a whole arc), there exists a unique
univalent mapping function w = f(2) which maps D onto the interior of the
unit circle, |w| < 1, so that (any) prescribed point of D maps onto the origin,
w = 0, and (any) prescribed direction at this point maps into the direction of
the positive real axis.

COMMENT 1. We can conveniently regard this theorem as stating that
there is a three-parameter family of mapping functions that will map D onto
the unit circle: two degrees of freedom coming from the coordinates of the
point of D that we select to map onto w = 0, and the third degree of freedom
coming from the direction we wish to correspond to the real positive w-axis.
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Alternately, we might expect some other set of three restrictions, equivalent

to the three described above, that will provide us with a unique mapping
(see Section 7.6).

COMMENT 2. The proof of this important theorem involves ideas that
would take us too far afield, and so we state the result and will use it as
necessary in the following sections, without proof. The interested reader may
find a proof of this result in Complex Analysis by L. Ahlfors.

7.4.1 Recall Poisson’s formula

pzlf

f1
\1L — 7 )u

o=t i) de
2w Jo 1 — 2rcos(60 — o) + r*

o thhn s31uze Ala with tmoacaed ihad
fun Lh\. ouluuvu Uf Laplavc > C\.iua.uuu lu tne unit bll\dC, wu.u PlcaCl i0€Q

values u(1, 6) on the boundary of this circle; map the unit circle onto the
upper half-plane by a bilinear mapping, and use this mapping function to
transform Poisson’s formula to a form valid for the upper half-plane:

¥y [ _u(s,0)dé
u(z, y) = fw(x_g)H

for the solution of Laplace’s equation Au = 0 in terms of the boundary
values u(x, 0).

7.4.2  Establish the uniqueness part of Riemann’s mapping theorem.
If w = f(z) maps the unit circle univalently onto itself, with £(0) = 0, then
f(z) = ¢z, |c| = 1. (See Schwarz’ lemma.)

7.5 THE SCHWARZ-CHRISTOFFEL MAPPING

The Riemann mapping theorem guarantees the existence of a conformal
mapping function that will map any required domain onto the unit circle
(the unit circle, here, is a useful, simple reference domain). Since we know how
to map the circle to a half plane and conversely, we may, if convenient, use the
upper half-plane as a reference domain. In this section we investigate the
univalent conformal mapping function that maps a domain bounded by
straight lines, a polygon, onto the upper half-plane. The half plane is more
immediately useful here because of the direct applicability of the Schwarz
refiection principle.

We consider a simple polygon of n sides (non-self-intersecting), with
vertices at wy, w, . .. W, in the w-plane, and its image region, the upper
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half z-plane, with (unknown) mapping function w = f(z), or z = F(w), in
its inverse form (Figure 7.8).

Let 2;, 2, . . . 2, be the image points corresponding to the vertices wy, . ..
w,. (We consider 2, . . . z, to be finite points on the real axis.)

Now, since each side of the polygon, for example the side w,, w,, maps onto
a segment of the real axis, in this case to z,, #,, we have w = f(z) mapping onto
a straight line segment for z real. If arg (w, — wy) = 8, then (w — wy)e=" is
real and continuous for z real and on the segment z,, x,.

From Schwarz’ reflection principle, we observe that w = f(z) can be
continued analytically to the full lower half-plane (the reflection of the upper

Figure 7.8
wy,
b
o
/ \\\
wy
1
!
w2
— i -
Ny X Xn
w3
w—plane z—plane

half-plane in the segment x;, x, of the real axis) the values of this continua-

tion are also known in terms of the values of f(z) in the upper half-plane:
(w— wi)e—‘ﬂ takes on coniugate values at cnningate pgints_

nls QD LRAGEpeTY Yalltls ot A Voey piiiis.

If we repeat this construction for the side w,, ws, and the segment of the
real axis x,, x5, we have (w — wy)e~* 38 (ws—w2) takes on conjugate values at
conjugate points (Figure 7.9).

Starting from a given point z, of the upper half-plane, and reflecting across
%, ¥y, and also across x,, x3, we find that the continued value of w = f(2) will
be (in general) different in each case, since it is not w that takes on conjugate

values, but

(W _ wk)e—ial's(wkﬂ—wk)
for kK = 1 or k = 2 in this instance. We must thus anticipate that the points
z,, . . . x, will in general be branch points of the mapping function.

In order to see more clearly how these branch points affect our mapping
function, let us rearrange our point of view concerning the two different
reflections across the real axis that we have just discussed. Let us now consider
the continuation of w = f(z) to the lower half-plane, along the path C,; of
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Figure 7.9, and return to the starting point 2, along the path C,. That is, we
first reflect across «;, @,, and then reflect back along x,, 5. In the w-plane,
these reflections correspond to reflecting the given polygon across side w,, w,,
and then reflecting the new polygon across its side w,, w, (or, more properly,
across the side that corresponds to the original side wg, w;). The first reflection,
across wy, w,, moves the whole polygon as a rigid body, but turns the plane of
the figure upside down (Figure 7.10). The second reflection returns the plane
of the polygon to its original position, although the polygon will now be at a
new location; however, the new position of the polygon is very simply related

Figure 7.9 Figure 7.10

wy

E2

to the old position: it is merely a translation and a rotation of the figure we
started from. Thus, if w is any point in the interior of the original polygon,
and w* its location after the two reflections, then

(N w* =aw + b

where a, b are complex constants, |a| = 1. It is also clear that the constants
a, b will depend on which of the two sides across which we perform the
reflections. These constants (as yet unknown) again describe the multivalued
nature of w = f(z) that arises by continuing the function around one of the
branch points.

Next, the particularly simple form of (1) provides us with a method of
obtaining a single-valued function, related to w = f(2).

dw* dw

2 =L _
2 dz adz

P |
aliu

dzw*/dw* _ d*w [dw
d2 | dz  d2*] dz
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Thus, even though w = f(z) possesses branch points, the expression w”[w’ is
single valued in the complete z-plane.

Let us set w”/w’ = [f"(2))/[f’(?)] = g(2). In the next paragraphs we locate
the singular points of g(z), which turn out to be simple poles, and then we
are able to write down g(z) explicitly.

(a) g(z) is single-valued for all z.

(b) g(z) = (f"(2))/(f' (2)) is analytic for all points z for which f”(z), and f(2)
are analytic, except for such points that f’(2) = 0. Since f(z) is analytic in
the upper half-plane, so are f'(z), f"(z); furthermore, f(z) can be continued
analytically to the lower half-plane, so that we have

3) g()is analyticinl: >0, I2<0

except for the points at which f'(z) = 0.

(¢) Since we require of our mapping that it be conformal in Iz > 0, then
['(z) # OforIz > 0, and hencein Iz < 0 as well, from the reflection principle.
Thus the only possible location of the singular points of g(z) is the real axis.

(d) g(z) is analytic at all points of the real axis with the possible exception
of the points x,, . . . z,. In order to see this result clearly, let 2, be an interior
point of one of the finite segments (x, x;,;), and w, its image point
on the side of the polygon (wy, w, ). Let B, = arg (w, ;; — w;), so that
(w — wy) e Px is real for z real and in the interval (z,, 2, ,,).

@) W — wo)e e = 3 a,(z — )"

n=p

for jz — «,| sufficiently small, and the coefficients a,, a,,,,...are real.
Since the mapping function near z, maps a straight line (angle =) onto a
straight line (angle =), then p = 1, and 4, # 0. That is to say, f'(z) # 0 at
z = x,. (For a discussion of the special case x, = o0, see Example 7.5.2.)

(e) Collecting our results so far: g(z) is single valued and analytic at all
points z # x;, Xy, . . . Z,,.

Let «, be the interior angle of the polygon at the vertex w,, and arg (w;, ,,
— wy) = B, (Figure 7.11).

Then (w; ,; — w) e *#* has argument zero for z on the segment (z;, ; 1),
and argument-«,.,, for z on the segment (z,,, 7, ). Hence

(5) (W1 — whe B4 /o

is real and continuous for z on the line segment (z;, x;,,), and analytic for
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Figure 7.11

1) Yk Yke2

Iz > 0. An appeal to the reflection principle yields

©) [(Wps1 — WEB] o501 = 3 ez — Zpp0)"

n=1
with (c,) real, and ¢; # 0.
Solving for w(z),

0

R a, .. /%
(N w(z) = Wiy + e‘ﬁ*(z — xk_l_l)akﬂ/:r( z ez — xk_;,l)"—l) k+1
1
which is of the form

w(z) = Wy1 + €z — 2,,,)™+/*(analytic and # 0 at z = =)
Thus
wi(z) = (z — =, +1)°‘k+1/ “‘l(analytic and # 0 atz = x,,,)

aln [, |
s

w"(z)_ s —1

— = + (analytic at z; )
wi(z) z— 4,

The function g(z) has a first-order pole at each vertex image point x;, ...z
the residue at z = z, being «, /7 — 1.
We may now write

ne

Oy
——1
Vis

—~
>0
N’
M =

glz) =

+ E(2)
k

3

12 — &,
and E(z) is single valued and analytic everywhere (including z = oo, see
Exampie 7.5.1); that is, E(z) is entire.

It certainly seems plausible that E(z) = 0. Indeed, we can prove that this is
the case (see Example 7.5.3). Let us, however, pursue this simplest possibility,
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and consider the resulting formula for w = f(2), assuming E(z) = 0.

w(z) = C T @@ — z)"
k=1

) w(z) = C f ) 1?[ (t — 2)%D1dt + D

This formula is the Schwarz-Christoffel formula for the conformal map of a
polygon onto the upper half-plane.

7.5.1 Take x, = oo, on the *“‘segment” of the real axis (z,,, z;), with w, the
corresponding point on the side of the polygon (w,,, w;). Let f = arg (w; — w,)
and show that (w — wy)e * = 37 b,[z", (b,) real and b, 0, and hence that
i 2
Wi _ _2,...
w'(z) z

so that g(z) is analytic at the point at infinity.

7.5.2 Let the vertex points w,,...w, ; map onto z;,...%, ,, finite
points of the real axis, and w,, map to z = co. By using the reflection principle,
show that )

w(z)

w'(2)

= g(2) is analytic at o

so that

ﬂ@’ffk ) —— + £

1\ k

with the same assumption as previously, take E;(z) = 0.
7.5.3 Deduce that in Section 7.5 (8), E(z) = 0;

(a) Show that g(2), analytic at oo, has a power series expansion g(2) =
—2/z + -+ - in powers of 1/z,

(b) DT (axfm — 1){(z — ;) is also analytic at oo, and has the power
series expansion-2/z + +++ . Thus E(z) is analytic at oo, its power series
starting with the 1/2% term.

(¢) E(z) is thus bounded, tends to zero at co; now use Liouville’s theorem.

7.5.4  Show that D7 «;, = (n — 2)m.
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7.6 A DISCUSSION OF THE SCHWARZ-CHRISTOFFEL FORMULA
z
w(z) = CJ( (t — xl)(all”)‘l(_t — xz)(“a/”)‘l coe(t — xﬂ)(“n/”)—l dt + D

(a) The constants z,,...x,, C, and D must satisfy certain consistency
relations for the mapping to send the given polygon onto the upper half-plane.
We must also decide on appropriate branches of the multivalued functions
(t — )*/M71, The simplest branch, of course, is the principal-value

Figure 7.12

(1

Xx

branch, obtained by taking (¢ — ;)!**/")~1 real and positive for ¢ real and
t > ;. Then, with

=z, + re“’ (t —_ .’L‘k)(ak””)_l — r(dk/v)—lei[(ak/:r)—ﬂa,

we find the appropriate values for ¢ real and ¢ < x, for example, by setting
0 =m:

(t — xk)(ak/w)—l — r(ak/:r)—le.'(ak_,,)

— _r("n/”)“lei“k
= (2 — 2" 7H(—e)

with the principal value branch again for (z;, — ¢)**/"-1 (Figure 7.12).
A convenient way of proceeding is thus as follows: first choose a particular
vertex point, w,, for example, and evaluate D by integrating from x;.

w(z) = w; + C| T (¢t — )% dt
2 1

Next, choose principal value branches for each factor, (r — ,)(*/™)1 or
(%, — 1)"/M1 accordingly as ¢ > x; or t < x, as we integrate along the
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real axis. Starting, as here, with the left most point ;, we take (r — a;)"/")1
near x;, t > 2y, and (z, — W1 k=2 .. .n

rez

(1) w(z)=w, + CJ (t — :“,4.1)((:5/»)—-1(3:2 —- t)(’!/”)-l coe (@, — t)(“n/")‘l dt
21

All branches are principal-value branches; any branch differs from the
principal value branch by a multiplicative constant; our choice normalizes C.

Now we follow the real axis as closely as possible (not integrating through
a singular point, but indenting appropriately in the upper half-plane).
As z runs from z, toward z,, w runs along the line (w;, w,), with argument

wy

arg (w, — w,). Hence arg C = arg (w, — w;). To reach the segment (s, x,),
we indent our path of integration at x,, and decrease arg (r — x,) by =; we
obtain

xre
w(z) = W, + C[ (t _ xl)(all”)-l(xz _ t)(az/:r)—l .« (xn _ t)(an/:r)—l dt

o1
z
+ e—:(aa—ﬂ')c (I _ xl)(allw)—l(t - xz)(azllr)—l
xg
x (xs _— t)(aalﬂ')—l . (xn —_— t)(aﬂ/’#)_l dt

z
= wp + e H*IC| (8 — )t — 2p)
g

% (xa - t)(as/:r)—l e (xn _ t)(a,./,)_l dt

Hence, as z passes from the segment (z,, x,) to the segment (x,, 2;), arg (w —
wy) = const on (x;, x,), arg (w — w,) = const on (x,, ¥3), and arg (w — wy)
increases by w — a,; that is, the polygon angle at w, is «, as required
(Figure 7.13). Thus, regardiess of the (finite) values of #;,...x, and C,
the mapping function maps a polygon of interior angles «; onto the upper
half-plane.
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Figure 7.14

w—— 4 7/
— " -
| Lz

Suppose now that n = 3 and our polygon is a triangle. For arbitrary choice
of x;, x,, x3, Equation 1 maps the upper half z-plane onto a triangle with the
prescribed angles, and such that x; maps onto w,. Since the triangle is similar
to our required triangle, we can choose C, involving a rotation (arg C) and a
uniform stretching (| C|), to bring the triangle to the correct location and size.

Thue in the cage nf trianola we mav chnnca arhitrarily and
F 8 ll“a’ 114 Liiw WwWiiWw “ Lll“lle‘ L] Y W IIUJ VI.I.UUU\' WI’ w2’ w3 ul. Ultl L ll] ) RLANE

perform our required mapping uniquely once we have chosen these points,

The situation is somewhat different for polygons with four, or more sides:
the interior angles do not determine the shape,

Tiaw L2ALLINL Glapma

Yet, if we conS1der the quadrilaterals in Figure 7.14, and draw in the corre-
sponding diagonals, we see that the single extra requirement that the triangle
ABC be similar to triangle A’B’C’ (as well as the equality of the interior
angles of the quadrilaterals) guarantees similarity of the polygons,

Thus, considering a polygon with interior angles «, ... a,, we consider
all diagonals drawn from any fixed vertex P, obtaining n — 2 triangles
(Figure 7.15). This polygon will be similar to our given polygon if, and only if,
each of the triangles so formed is similar to the corresponding triangles
formed from our given polygon. That is, the n — 2 diagonals at P, P’ must
form corresponding equal angles. Since the full angles at P, P’ are already
assumed equal, we see that » — 3 restrictions are necessary to guarantee
similarity of the two polygons.

It now appears that we may arbitrarily (conveniently) choose any three of
the points x;,...,. After this is done, the remainder of z,, ...z, are
determined by the requirement of similarity of the polygons. Finally, a
rotation and a scale change determine C, and our mapping problem is solved.

Figure 7.15
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COROLLARY. From Example 7.5.2, we may decide to choose one of the
points x;, . . . z,, at infinity, for example, x, = co. Then we have

'z _ _
(2) w=w; + CJ (t — xl)“l/ﬂ—l e (@ — t)(“n-n/:r)—l dt
)

having one less factor in the integrand (so it is somewhat simpler).
However, in this form, we have used one of our three degrees of freedom, and
in using (2) we may only choose two of the remaining points z;, . .. %, _;
arbitrarily.

7.6.1  Derive Section 7.6(2) from Section 7.6(1) by mapping the upper
half z-plane onto an upper half-plane, so that z = 2, maps to infinity
[T = ii(z - xn)]

Figure 7.16
c
a3
4 B¢
A a a B ,;1 Xq ";3
w—plane z—plane
Example 1. Let us map an equilateral triangle onto the upper half-plane.

Suppnse the triangle has side 24, and is situated as indicated in Figure 7.16.

W aiW L afllil v 2LR0 QAR ol 22 o SILLRALLR Ao AR NRAILRE 2236

We may choose z;, x,, ; arbitrarily, provided that we are careful to preserve
the correct order, so that interior maps to interior. Let us take z; = —1,
x, = 0, z, = 1, as a first case. We may write our mapping function

(3) wz)= —a+ C f_ zl(t + 12—ty Y1 — 1) dt

with principal value branches for each of the radicals and where we visualize z
on the segment (—1, 0). Then, withz =0, w = a, and

0
a=—a-+ Cf (t + D3(—=0231 — 1y 2P dt t= —s
-1

rl ~ S o W) .
(4) 2a=C J s — sBER s
0

evaluates C. The integral (4) is not particularly simple, but we may express its
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value in terms of the gamma function [see Section 7.2(10)], by taking s? = u
as a new variable of integration in (4).

1
~ Cr —5/8r1 \—2/2 3
4a=—Ju (1 — u)y*?du
2 Jo

_ CT@Ir@)

(5) C = 4a\/'l_r

Ir@I@)
Somewhat surprisingly, the mapping function for so simple a polygon as a
triangle is remarkably messy and cannot be expressed in terms of elementary
functions.

7.7 DEGENERATE POLYGONS

Our construction of the Schwarz-Christoffel formula shows us that the
real z-axis between consecutive points (x;, ;,;) maps onto a straight line
(Wi, Wi11), and that across a point z = x,, the line in the w-plane forms an
interior angle «,. It appears, thus, that our formula, [7.6(1)], is equally
applicable to polygons that are limiting forms of finite polygons, such as the
limiting “triangle” that we may visualize as being formed from the triangle
ABC on the right in Figure 7.17, keeping B and C fixed, and “pulling” the
vertex 4 upwards to infinity. Such limiting forms of polygons are called
degenerate polygons, and the semi-infinite strip in Figure 7.17 is a degenerate
triangle.

Let us examine the Schwarz-Christoffel formula in this case. Let us map
Ato oo, Bto —1 and C to +1 on the real z-axis. We obtain

i

F
=—a+CJ dt

11— ¢

Figure 7.17

|
A
| £
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where, as previously, the square root is to be computed as a principal-value
branch. Let z — 1,

w=a=—a+CJ- & = —a+Cn
N
Thus
C=2—,
m
and
w——a+2—a : dt
™Iy — 2
= —a + 2—a(arc sin z -+ 7—7)
T 2
2a )
= — arc sin z
-
and
z = sin ;—w (cf. Section 4.25)
a

7.7.1 Regarding the infinite strip of width 4 as a degenerate triangle
(Figure 7.18), obtain the explicit mapping function that leaves 4 at oo, and
maps B onto z = 0.

Figure 7.18
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7.7.2  Regarding the upper half w-plane, with the segment w = iv,
0 = v = b removed (part of the boundary of the region), find the mapping
function that maps this region onto the upper half z-plane (Figure 7.19).

Figure 7.19

ib

w—plane

7.7.3  Interpret the portion of the upper half w-plane above the line
ABCA' as a degenerate polygon (Figure 7.20), and map the region to the
upper half z-plane (on CA’, w = ib + real).

Figure 7.20

A‘U

CWWWWWW/‘?/
A 7

AT

Another example.  As a final example, and to illustrate some of the
complications that frequently arise when the Schwarz-Christoffel formula is
applied, we consider the problem of mapping the channel of Figure 7.21 onto
the upper half-plane. We may interpret this channel as being the degenerate
case of a quadrilateral keeping B, D fixed, and letting K — oo along the real
axis, A — oo along the imaginary axis (Figure 7.23). There are four vertex
image points in this example, so that if we choose three of them, the fourth
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Figure 7.21

e T ——3

will be determined by the rest of the problem. Let us map 4 to oo, Bto —1
and X to 0, the origin in the z-plane. Call the image of D the point z = «

(Figure 7.22).
Then we have

w(z) = C f A+ 07"

-1

(x — )% dt

with principal-value square roots.

The evaluation of C, « must come from matching the vertex points, so
that we choose z on the real axis (when possible) and take the real axis as our
path of integration (Figure 7.23).

We have started our integration from z = —1, corresponding to B:
w = 0. Proceeding along the segment (—1, 0), corresponding to BC,
argw =0, or arg C = 0: Cis real.

To reach the segment (0, «), we must avoid z =0, and we do so by
indenting the contour of integration at z = 0:

Figure 7.22
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Figure 7.23

Thus,

18
w= f, / o do + Cf ) f
1 +t t
Now we have z on the segment (0, o), and may let z — . This gives w=a-++
ib. If, at the same time, we let 8 — 0, we have

— tdt
2 a-<ib= :F —im/a
&) T+t V)
where the integral is a Cauchy principal-value integral. Since C is real, we

have b = —rrC\/o_c

ﬂa, . W
; o f i
®) “ -1\/1+tt

We now perceive one of the complications that restricts the usefulness of
the Schwarz-Christoffel mapping formula. If there are more than three vertices,
the equations (determining C and the rest of the points z;, ... 2, that we
cannot choose in advance) are in general not solvable by formula, and
numerical methods must be used.

The equation (3) does, however, turn out to be solvable. The integral can be
transformed into a special case of a more general integral. We set t = —1 +
(1 4+ «) cos? 62, obtaining

—9 I—C(TSG — = —1

Jo 1 i
cosﬂ—( ——)
l4+a 2

WL

(see Example 6.13).
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Thus,
a = —‘Tl'C, b= —ﬂc\/;

so that
2
o= b—2 C=— E and
b%la® —
4 w(z) = — f J
4 (2) NTr 1
Additional Examples and Comments on Chapter Seven
7.1 Show that > * 2™ has |z| = 1 as a natural boundary.
7.2 Show that

o (_1)"rl * z—1 _—t
P(z)=§m+£t e ‘dt

and use this result to establish the properties of I'(z) obtained in Section
7.2(8).

7.3 Show that for r > 0, s > 0,

0<a<l1 0<b<l1 a+b>1

Ta+b—1)
T(a)['(b)

® dx
—_ 2 1—a—b
f—oo (r + in)%(s — iz}’ m(r+9)

74  f(® =23 a,z", gz) = 23 b, 2" are analytic in a neighborhood of

z=0.
Show that
< 1 z\dt
b= [ sos{2)2
ga 27i Cf( ) t/t
for a suitable contour C.
7.5 (a) Take b, = 1 in 7.4 and comment.
2
(b) Take f(z) = g(z) = (1 + 2)" in 7.4 and so evaluate > , (’:)
(¢) If f(z) is analytic for |z|] < R;, g(2) for |¢] < R;, show that

h(z) = 35 a,b,2" convergesin |z| < R; R,.

7.6 In 7.4, if f(z) is singular only at «;, a5, ..., g(z) singular only at
B1s B, . . . then h(z) = D¢ a, b, z" can be singular only at the points («, 8,,).
(Assume that f(z) and g(z) are meromorphic functions.)
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1.7 Let f(x) be any continuous function of the real variable z, a any
fixed constant, and

F{Oi) = . J (;’«'b" — f) J’{f) dt
a

(a) Show that F(«) is analytic in « for Ra > 0 (for fixed ).

(b) Show that F(«) can be continued to Ra > —1 if f’(x) is continuous,
and to Ra > —n if f*™)(x) is continuous. In this case F(—k) = f*)(z) for
k<n.

© F) = [ [y drydty- - a,
is the k-fold iterated integral of f(z).

7.8  If zis a point on the ellipse 2%/a? 4 y%/b? = 1, show that
(a% — b2t — 2(a® 4 b2z + (a® — b?)z2 + 4a%h2 =0

(see Example 4.4.13). Furthermore, define z,, z, as reflected points in the
ellipse if

(@® — b¥z® — 2(a® + b¥2Z, + (a® — b?Z,% + 44?2 =0

Which points outside the ellipse are reflected points of the interior of the
ellipse?

7.9  Referring to 7.8, the ellipse is parametrically represented by
x=acost y=>bsint 0=t<2n
z=acost + ibsin¢

Inthe s = ¢t 4 i7 plane, cos ¢, sin ¢ are real on the real axis and clearly extend

by reflection for complex values of s. Show that for two reflected values of s,
s; and §,, the corresponding values of z are reflected points in the ellipse.

7.10  If f(z) is analytic in a region part of whose boundary consists of an
arc C of the ellipse of 7.8, and f(z) is real and continuous on this (open) arc,
show that f(z) can be continued analytically to the reflected region (across C)
and takes on conjugate (reflected) values at the corresponding reflected
points. (From 7.8, the domain may have to be restricted close to C.)

7.11 Generalize the results of 7.10 in the following manner. Let x = ¢(r),
y = yp(t) describe a curve C for t, = t = t;, (¢t + i7), p(¢r + i7) be analytic
for |+| sufficiently small, real for + = 0. Then s; = t; 4+ i, and §; yield,
from z = x(s) + iy(s), a pair of “reflected”’ points in C. Hence show that an
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analytic function, real on C, can be continued across C by reflection. Show
further that the reflected points are independent of the parametrization of C.

7.12  Consider the differential equation for w(z),

w” + p@w + qlz)w =0
for

p(z) =D p,z"  analyticin |z] < R
0

q(z) = g 4.2 |2l <R

In |z| < R, <R, p,R/*—+0 as n-» oo, so that |p,| = M/R,» for all .
Thus, p(2) is “majorized” by X5 M z"[R," = M|(1 — z/R,). (The coefficients
for p(z) are, in magnitude, not greater than those of the majorant.) Show that
g(z) is majorized by M, /(1 — z/R;)? and hence, that w(z) is majorized by W(z),
where W7 (z) — MW’'(z)/(1 — z/|R,) — M W(@)/(1 — z/R,))> = 0.

W(z) = My (1 — z/R,)™? for suitable — A, positive M,, deduce the result
that the original differential equation possesses a solution (existence), having
w(0), w'(0) arbitrary, and is uniquely determined if w(0), w’(0) are prescribed.
Furthermore, w(2) is analytic in the same circle that p(z), g(z) are.

7.13 From 7.12, show that each solution of
W+ pEw + q@w =0
with p(z), ¢(z) analytic in [z — z,| < R, can be expressed uniquely as

w = a;w;(2) + aws(2), a,, a, constant where w,, w, are solutions of the

.
1nmatin
LIV

-
-

wy(z,) = 1 wi'(z,) = 0
Walr) =0 wy'(z,) = 1

We call the pair w,(2), wy(z) a fundamental set of solutions. (Every solution
is a linear combination of a fundamental set of solutions and z = z, is called
an ordinary point for the equation.)

7.14 Let p(2), 4(2) be single valued and analytic in the annulus 0 < |z| < R,
and consider the differential equation

W'@) + p@) W (@) + 9() wz) = 0
For any z, in the annulus, form w,(z, z,) and wy(z, z,), a fundamental set
of solutions at z,. Next, continue wy(z, 2,) around z = 0 by the usual proc-
ess: that is, take z; in the circle of convergence of w,(z;z,), form
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20w ™M(zy, 20)(z — z,)"[n! a continuation of w,(z, z,) and repeat the process
along a path C, returning to a neighborhood of z,. Let w;*(z, z,) denote
such a continuation,

Show that

(a) at each stage of the continuation the series

Z e G z")"

is a solution of the differential equation.

(b) w,*(z, 2,) = awy(z, z,) + bwe(z, 2,)
we*(2, 2,) = cw,(z, 2,) + dwy(z, 2,)

(c) there is a combination W = Aw; 4+ Bw, so that W* = AW, where
a— A c

b d— 4

7.15 In 7.14, show that

(a) The roots 4;, 4, are independent of the choice of w,, w, as fundamental
solutions.
(b) °)* = ¥ 2’ = A2’ for p= (1/2111') logl

Fah 9 074 TXTrS

(e) (W()[2")* = W(z)[z" is thus single valued in 0 < |z] < R, and so
possesses a Laurent expansion

W) =2">az"
716  In7.14,if 4,, 4, are distinct, then >*, a, 2"+, 3 b 2"+ form a

fundamental set of solutions.
If A, = 4, then choose

wi* = 4w, wo* = ew; + dw,
and show that d = A,; that is,

we* = cwy + 4w,
We * We c
—=|l==4

Wi Wi /11

w 2 c

log z is single valued
Wy /1 27
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and so
C

wa(z) = wl(z)( —

17Ti

g
logz 4+ c"z")

7.17 If, in 7.13, p(z) has (at worst) a pole of order one, and ¢(z) a pole of
order not exceeding two, show that the principal parts of the Laurent ex-
pansions in 7.15 and 7.16 have only a finite number of terms. Hence the
solutions can be found readily by taking w(z) = >¢° a, 2", a, # 0, and
using undetermined coefficients. Such a point (z = 0 here) is called a regular
singular point for the differential equation.

7.18 Consider

2Zw +zw 4+ (22 —a)w=0 o = const

This is Bessel’s equation of order «. Show that z = 0 is a regular singular
aint (71N and ind » fuiindamantal cat af cnlntinne far v =N ~ — 1/9
lJUll..ll- \f 1 '} CRLING 111d%W O Lliviqlilwlilall vl Vi OULULIVILIY 1V LS U’ W 1) &

719 z(l —2)w" +[c—(@+ b+ 1z]w —abw =0 is called the
hypergeometric differential equation. Show that z =0, 1, co are regular
singular points, all others being ordinary points.

7.20  Show that one solution of 7.19, appropriately normalized, is
I'(c) =T(a+ m['(b+ n) -
I'(a)I'(b) o n!T(c 4+ n)

This specific series is termed the hypergeometric function, and written
oFi(a, b; c; 2).
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Chapter
EIGHT HYDRODYNAMICS

In this chapter we look briefly at some applications of the theory of analytic
functions to a certain class of fluid motions. We shall see one way (there are
also others) to give intuitive, concrete, and practically usable contents to the

theory.

8.1 THE EQUATIONS OF HYDRODYNAMICS

We merely state the equations. A detailed derivation may be found, for
example, in Hydrodynamics by H. Lamb.

%+u%‘:+vg—:+wg—:=x_ig—i’
(1) %+ug—:+vg—;+w$=y—ig—f;

%+I‘%+U%Z+w%:=z_ig
@ 2 (o) + 3 () + L (o) = O
(3) p = f(p)

These equations govern the motion of a fluid, with velocity (u, v, w),
pressure p, and density p, in the presence of external forces X, Y, Z (such as

gravity).

Equations (1) express the conservation of momentum.
(2) is the conservation of mass.
£\ o tlan nm o nnallad Amssntbine ~f abnéa
L2} Id LG SV Ldllcu Cl.iua.l.lUll Ul stdadle,

(Already we have assumed a fluid model that is simpler than a more general

case—we have neglected viscosity.)
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We proceed to a progressively more specialized situation (flow model),
finally obtaining a case for which the use of analytic functions is indicated.
First, we restrict our attention to incompressible fluids (a good approximation
is water): we consider only those cases for which p = const.

Next, we ignore the external forces andset X = Y =2 = 0.

We consider only steady motions: u, v, w, p are independent of ¢.

We further restrict our attention to two dimensional flows—flows parallel
to the x, y plane. Then w = 0, all partial derivatives with respect to z (a space
coordinate) vanish, and we have

uz_u+vg_u+_lg_p=0
x y pox
* 0 J 10
v v p

= —4+-ZX_9
“ox T oy T pay

du ov

5) u 0 _

dx dy

Equations 4 and 5, although a very special case of the general one, are
still very difficult to treat. We recognize in (5) one of the Cauchy-Riemann
conditions for ¥ — iv to be an analytic function of z = = + iy, and might well
wonder if (4) is consistent with the second C — R equation. Consider, as well
as (4) and (5),

(6) v, —u, =0

There is a physical justification that we merely allude to: for the two-
dimensional model, v, — u, is the curl of the velocity vector, and it can be
shown that a hydrodynamical flow [solution of (1), (2), and (3)] that starts out
irrotationally (curl =0 at ¢ = 0) remains irrotational for all time
(curl = 0). Hence it is reasonable to expect that there are nontrivial
flows satisfying (4), (5), and (6).

One last observation here: if u, v satisfy (5), (6), that is, ¥ — iv is an
analytic function of z = x + iy, then the left sides of (4) yield

1 1
uu, + v, 4+ - p, uu, + vo, + ~ p,
P P

respectively, and so (4) yields

(7 Hu? + oY) + 1 p = const
P

called Bernoulli’s equation.
Let us summarize these results. The two dimensional, steady, irrotational
Sflow of an incompressible nonviscous fluid in the absence of external forces obeys
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(4), (5), and (6). That is, if « — iv is any analytic function (of z), and p is
determined from (7), we have a solution of the stated flow problem. There
remains to adapt this general solution to particular cases, such as the flow ina
channel, or around a given obstacle. We devote the following sections to such
adaptation, and we shall refer to a flow, or fluid motion, without further
qualification. *

8.2 THE COMPLEX POTENTIAL

It is now convenient to introduce the function y(z) for which

) ) 1
w=u—iv= 2=+ ip. ="+ i),
i
or,
¢x=u ‘ﬁv_v
Y= —0 Yy = U

We call the function y the complex potential; indeed, ¢ is the potential
function for the flow, with grad ¢ being the velocity vector (u, v):

W=u+iv=ge’

The function ¢ is called the stream function for the flow, and the level
lines, y = const, are the paths traced out by the fluid particles. These results
follow immediately from our interpretation of the complex line integral for an
arbitrary sourceless and irrotational vector-field:

b b
( wdz = (_x’dz=_x(b)—_x(a)
Ja Ja

= ¢, — b + i(yp, — V)
= work + iflux

Thus, if we take a portion of a level curve 9 = const for our path of inte-
gration, ¢, = ¥,, and the flux of fluid (per unit height) is zero. That is to say,
the flow is everywhere tangent to the level lines y = const.

These observations are very useful in the construction of flows in specific
channels, or past given bodies: the boundaries of the flow region are stream
lines, and hence y = const at such lines.

A sort of converse statement is also true: given any flow, we may visualize
any stream line as the trace of a solid boundary and regard the flow on one
side of this stream line as the flow past this boundary.

* Henceforth z = = + iy.
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Figure 8.1

%J’

A v = Uh
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—_—
v —» Ih
—_—
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A 0 l’l =u B
z—plane

As an example, consider the flow given by

(1) ¥(@)=az+ b

w=2x{@ =a

Thus the velocity of the fluid is everywhere constant, w = 4. For convenience,
let us consider a to be real, a = U > 0.
Then
$ + iy = Uz+iy) + b

¢ = Uzr 4+ const
p = Uy <+ const

and the stream lines are ¥ = const. Thus y(z) = Uz + const is the complex
potential for uniform flow from left to right. If we restrict our attention to the
upper half plane, ¥ > 0, we may regard y = 0 as a boundary, and y = Uz +
const represents uniform flow in the upper half-plane. Or, further, we may
restrict the vector field even further, to the channel bounded by y = 0,y = A.
The same complex potential y = Uz + const represents uniform flow in this
channel.

Since x(z) involves an arbitrary constant of integration, we may choose this
constant at our convenience. Thus it is customary to choose y = 0 on the
lower stream line, so that ¢ = Uh on the upper stream line of the channel of
Figure 8.1; in this way (starting from y = 0 on one boundary), the value of
y = Uh on the upper boundary represents the flux of fluid through the
channel.

For a general value of a, the complex potential y = az yields identically
the same type of flow except that the flow direction is given by w = 4, making
an angle arg a with the real axis.
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As a second example, we consider
(2) x(z) = klogz k>0

w=-=u—iv=gqge"

N X

Thus

| &=

oc=10

-~
I
~

and, the flow is directed radially outwards from the origin, ¢ = |w| being
constant on circles concentric with the origin. Let us compute the flux for
this flow (Figure 8.2).

work + i flux = k dz = 27ik
cz

where C is any simple closed curve containing the origin. Thus, the flux is
constant, flux = 2xk, so that fluid is emanating from the origin at a constant
rate. The field is not sourceless at z = 0 since z = 0 is a singular point; in fact,
we may regard z = 0, here, as a source of *‘strength 2x#k; that is, a source
providing a flux of 2=k units (per unit height). Clearly, a unit source at z = a
is provided by the complex potential

2(2) = = log (z — a)
L

If we take £ < 0 in the above example, the flow direction is reversed, the
flux across any curve C containing z = 0 is negative, and we regard z =0
as a sink.

Figure 8.2

. A
ﬁ
.
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Finally, let us consider
x(z) = ik log z k>0
so that

q= 0‘=B—

N

The stream lines are r = const, the flux across a closed curve surrounding
z = 0 is zero, and the flow turns around the origin in a vorrex motion.

8.2.1 Examine the flow in the vicinity of a source and sink of equal
strengths, located at z = —h and z = h, respectively (h > 0): x(2) =
klog[(z — h)/(z + h)]. Identify the stream lines and the equipotential lines.

8.2.2  For the complex potential of Example 8.2.1, take k = k'[2h, k'
independent of A, let # — 0, thus obtaining the complex potential for a dipole.
Describe the flow in the vicinity of a dipole, and identify the stream lines.
What is the flux produced by a dipole?

8.2.3  As an example of the superposition of two flows, consider the
complex velocity potential for a uniform flow past a dipole

x(z) = U(z + 1;)

Find the stream lines, and interpret the flow as a flow uniform at infinity,
around a cylinder.

8.3 FLOW IN CHANNELS: SOURCES, SINKS, AND DIPOLES

Let us take another look at the channel flow depicted in Figure 8.1 for which
the complex velocity potential may be taken to be

2(2) = Uz

The leftmost portion of the channel, 44’, extends to infinity, which we
describe suggestively as “upstream infinity,” while the exit end of the channel,
BB’, is at “‘downstream infinity.” Fluid is supplied at 44’, with constant
flux Uh, and is removed at BB’. Thus, in some sense, there must be a source
at AA4’, upstream infinity, and a sink at BB’, downstream infinity. Actually,
both 44" and BB’ are at infinity, the point at infinity for the z-plane.

In order to see more clearly this source-sink (dipole?) combination, we may
use the Schwarz-Christoffel mapping to advantage, and map the polygonal
region consisting of the channel onto the upper half of an auxiliary complex
plane, the r-plane (Figure 8.3).
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Figure 8.3

T—plane

Let us arrange to leave A4’ at infinity, and bring BB’ to a finite point of the
r-plane. Since we may choose three points arbitrarily, let us map 44’ to
infinity, 0 to —1 and B to the origin of the r-plane. Then we have (see
Section 7.5)

dz C
dr

z=Clogr+ D = —b(log'r — im)
w
while

x(z)= Uz = _Uk (logr — in)
7w

Thus, in the upper half of the r-plane, we have
= —y—h (logr — in)
T

which represents the flow to a sink at + = 0. Observe that the strength of
this sink must be Uk from the nature of the channel flow. On the other hand,
we obtained previously that y = —klog r represents a sink of strength
2nk, giving 2Uh instead of Uk for this example. However, we are concerned
only with the fluid entering the channel or, in the 7-plane, with the contri-
bution from the sink in the upper half-plane. Thus, the constant must be
double (2U#4 instead of Uh) in order that half the contribution be Uh, as
required.

In a similar way, we can convince ourselves that there is a source at A4’ for
the channel, while the source-sink combination is actually a dipole at infinity.

8.3.1 Map the channei of Figure 8.1 onto the upper haif r-plane so that
BB’ mapstor = —1, the origin maps to r = 00, and 44" mapstor = 1, and
verify that y = hf= log (v — 1){(7 + 1).
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8.4 FLOW IN CHANNELS: CONFORMAL MAPPING

So far, in Section 8.2 and 8.3, we have proceeded in an inverse manner in

- . . .
rnnctenctinog Anwes that ie wa hava etartad fram a givan analutie functinn
Wl lioLl u\fl-llls llU"o, LiighlL ll’, Ww 1iCAVY'w JLLLlLWwAWN 11 VML O 6. ¥Ywii ullulJ Liw LWliwilLiWwVii

and considered the flow that results from the equation u — iv = w(2).
This approach can at best provide us with a dictionary of cases that we can
search through in an attempt to solve a specific problem. What we need is a
direct method for constructing a specific flow. Let us return once more to the
channel flow of Figure 8.1. We require the analytic complex velocity potential,

Figure 8.4

1/

nr

x—plane

x() = ¢ + ip. From the given data of the channel, we know certain prop-
erties that y(z) must possess. Thus v = const on AB, and also y = const
on A'B’. In fact, normalizing y appropriately, we may take y = 0 on 4B,
= Uhon A'B’.

Furthermore, dy/dz = w, so that

x —Uasz—>AA

dz
(z approaches upstream infinity) and also as z approaches downstream
infinity. These statements become more suggestive if we consider the y-plane,
and the image of the channel of the z-plane that the flow induces in the x-
plane (Figure 8.4).

The boundary y = 0 of the z-plane maps into y = 0 of the y-plane. Can we
locate the images of the points 4, 0, and B? We have normalized y by taking
p = 0 on the lower stream line. We can equally well normalize ¢ so that
$ = 0 at x = y = 0, in this way, the origin of the z-plane maps onto the
origin of the y-plane.

Next, dy/dz = ¢, + iy, — U as z tends to infinity in the channel. That is,
¢.— U as # — L o0, so that it is reasonable to expect ¢ to behave like Uz
for large y: ¢ — —o0 as * — — o0, and ¢ — o0 as £ — 0.
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Thus we expect 4 and B to map onto similarly situated points of the
x-plane.

A comparison of Figures 8.1 and 8.4 suggests that y = Uz. This equation
certainly works here (it also agrees with the results of Section 8.2); since three
points of one plane map to three specific points of the other plane, corre-
sponding to the three parameters of the Riemann mapping theorem, we have
an indication that the above solution is uniquely determined.

This point is worth dwelling on a little further, since the method of
verification suggests a direct technique for the construction of various channel
flows.

Consider now the z-plane channel of Figure 8.1, and its image under the
flow, the channel of Figure 8.4 in the y-plane. We introduce an auxiliary
third complex plane, the 7-plane, and map both channels to the upper half of
the r-plane by the Schwarz-Christoffel mapping. We arrange to map 4 to
infinity, the origin 0 to = = —1 and B to » = 0 (any three convenient

s s
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. Py | 4xr alhhAanld kn PaS Rl
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guiding principle). Then

(see 7.5)

@C=ﬁ€ £=C—‘2=const
dz drl dr C,

Thus y = (const) -z = Uz, and the uniqueness of the Schwarz-Christoffel
transformation indicates that our previous reasoning on uniqueness was valid.

Example 1.  Flow in a corner. We consider fluid occupying the first
quadrant, moving vertically down at 4 and horizontally to the right at
B (Figure 8.5). The image of the flow region in the y-plane we may take to be

Figure 8.5

S~

B

s —plane
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the upper half-plane, y = 0 on the boundary stream line (and normalizing

¢ so that the origins correspond).
The mapping function y = kz% sends the z-plane onto the upper half
x-plane for arbitrary real positive k. Thus,
d
We="%= 2%z =u—iv
dz

u = 2kx v = —2ky

The velocity is infinite at z = infinity, and is zero at the corner, z = 0. A
point in the flow at which w = 0 is called a stagnation point.

8.4.1 Find the stream lines and the pressure (from Bernoulli’s equation)

far the flow Qf Example 1

A WSR Aw i llulllrrlv e

8.4.2  Find the complex velocity potentials for the corner flows indicated
(Figure 8.6). Locate any stagnation points, and the stream lines.

Figure 8.6

—> —
[ ' U ——
/o 3
T L v ,WWM> h

8.4.3  The uniform flow w = U is disturbed by the presence of a “spike”,
=0, 0 =<y =1, sticking into the flow region. Find the complex velocity
- potential x(z), and the velocity vector w, as well as the pressure, p (Figure 8.7).

-
Figure 8.7

y
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—

X
...................................................
z—plane
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| (a, b)
B
—
—_—
—_—
0 > B

z—plane

Example 2. Consider now the flow problem for the right-angled channel
of Figure 8.8. The velocity vector is to tend to —iU as z approaches the
entrance A4'. Clearly, the flux of fluid entering the channel is Ua since the
channel width at 44’ is a. Thus, y = 0 on A0B, and v = Ua on A'CB’,
and the image of the flow region in the y-plane is the channel indicated in
Figure 8.9.

In order to construct the specific x(z) that maps the z-plane channel onto
the x-plane channel, we construct the auxiliary r plane, and map each of the
two polygonal channels onto the upper half of the r-plane. Looking ahead,
this procedure will yield

z=2(1), =207

expressing x = x(z) in parametric form. We choose the allowable boundary
points of the r-plane in such a way as to make the computations as simple as
possible. By choosing the point 4 to map to infinity of the r-plane, the
Schwarz-Christoffel formula is considerably simplified. Thus, we do so;
let us map the origins onto the origin of the r-plane, and points B onto

Figure 8.9
AY
C
A |
X B
I
Ua
A S
x—plane
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Figure 8.10

7—plane

7 = 1 (Figure 8.10). The location of the image of C will be determined by the
mapping. We have thus

)

(2)

3)

dz Cl\/a -_T

— = (see 7.5)
dr \/;(l -7

dx Cz

—_ = — C,, C, = constant

dr 11—

dy _dyldr _ G, \/ T

dz dzjdr C\Na—r

For concreteness, let us take the principal-value branches of the square roots
in Section 8.4 (1). Then both \/:, Joa — = are real and positive for = real
and positive (1 < a).

Integrating from = = 0 along the positive real axis, we obtain

(4)

(3)
We see immediately

(6)

2= C, o—1 dt
JO t l—t
rr dt
=Co
x “Jol —t

that

C,; and C, are real and positive.

Consider next Section 8.4(3), and rewrite it so that we may let = — oo,
corresponding to z = A4, where dy/de = w = u — iv = Ui.

(M
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the radical being real and positive for r real and negative. Let 7 — — co;
we obtain dy/dz = +i (C,/C,) = iU

(8) P

Next, if we let = 1 in Section 8.4 (3), corresponding to the exit point of the
channel, we have

9) £ = —=——— = constant

C, 1
— b=Ua
Cl Ot—l
or
L
x—1=-
\/ a
b2
(10) oc=1+;;

We now have evaluated the constants in Sections 8.4 (4) and 8.4 (5) except
for the determination of C, or C, itself. It is a simple matter to rewrite
Section 8.4(5) as

x=—Clog(l —7)

and obtain the appropriate form valid for = > 1 and real. This corresponds to
x = real + iUa
= —C, log (r — 1) + inC,
Thus

C2=-LE C1=
mw

3 s

and collecting our formulas

i z__fJ1+b/a—t dt

x=—"2log(l — )

Flow in Channels: Conformal Mapping 277



COMMENTS

1. The evaluation of the constants in the Schwarz-Christoffel mapping of
the channel in the z-plane onto the upper half r-plane has been obtained
previously [see Section 7.7 (4)]; at that time, considerable labor was involved
that has been circumvented here. We have not actually obtained *“something
for nothing” however; one difficult computation has been replaced by several
simpler ones.

2. If we recall the earlier discussion of sources and sinks, we can frequently
reduce the amount of labor in determining the mapping functions from simple
channels to half planes. Thus in order to solve for y = x(r) as in Section
8.4(2) we might argue as follows. The channel of Figure 8.9 is to be mapped
onto the upper half 'r-l.uauc of F |5u1c 8. 10 with the buuudany Puuua Ccor-
responding. Ignoring the fact that the y-plane has any flow significance,
imagine a uniform flow in the channel, with a source at 44’, and a sink at

' u
BB’; in the r-plane we have thus

x=—klog(r—1)

with k = Uafn as previously.

8.5 FLOWS PAST FIXED BODIES

Let us start with an example. Consider the superposition of a source of
strength k at the origin, and a uniform flow parallel to the real axis. The
compiex veiocity potential for the superimposed fiow is then the sum of the
complex potentials for the individual flows (Figure 8.11).

. _ k . .
(1) 2z)=Uz4+ —logz k>0
27
k
—_ U —_—
W + 2z
and

k
p,y)=Uy+—0
27

From symmetry, we expect part of the z-axis to be a stream line. In fact,
onf =m y =0,y =k/2, so that

k0
(2) w—Uy+——

o Ia"

is a stream line, consisting of a portion of the x-axis and a pair of curves as
indicated in Figure 8.11; we may regard Section 8.5 (1) as the complex
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Figare 8.11

1
- \\

s—plane

potential for a flow past a blunt body, similar in shape to the cross-section
of an airplane wing near the leading edge. We note that there is a stagnation
point at z = —k[27U, that is, w = dy/[dz vanishes at this point. The mapping
from the z-plane to the y-plane thus ceases to be conformal at z = —k/27U
and, indeed, angles are doubled at this point.

Example 1.  Consider the flow whose complex potential is

x(z) =Uz + —k—-logz — —k-log(z —1)
2w 27

that is, the superposition of a uniform flow with a source flow and a sink
flow. Show that there is a stream line consisting of portions of the z-axis and a
blunt shaped closed finite curve, similar to the shape of a ship. (First locate
the stagnation points.)

Example 2. Superposing a uniform flow with the flow from a dipole,
for example,

9
-

(3) x(z) = U(z + a:) a>0

a2)
w= U(l —_—
, 22,

zp=U(r—£-)sin6

r

we have = 0 on the lines sin @ = 0, r = a, so that the flow can be inter-
preted as flow past an infinite cylinder of radius a (Figure 8.12). There are
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Figure 8.12

TN

PEY

stagnation points at z = +a and the velocity on the circular boundary is

W:=U(1—‘%2
\ z°/

= U(l — &%) = ge**s

g =2|sinf| U, = —(7/2) + 0 on the upper semicircle, (=/2) + 6 on the
lower.

These examples illustrate the inverse procedure described in Section 8.2;
we start with a known complex potential, locate the stream lines, and carve
out a flow between specific stream lines, or on one side of a certain stream
line. If we are sufficiently ingenious, we can obtain reasonably close approx-
imations to some regularly shaped profiles, and then have solved the precise
flow problem past these profiles.

A more satisfactory procedure would be to start with a given body and
construct the complex potential for the required flow past the body. Let us
reconsider the flow of Example 2, and investigate a direct method for solving
the problem.

Figure 8.13
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Figure 8.14

x—plane

Example 3. Flow past a circular cylinder. We suppose that the cylinder,
whose cross-section in the z-plane is |z| = a, has fluid flowing past it, with
w =dyfdz — U as z— oo (Figure 8.13). By symmetry, the line ABCDA’
must be a stream line, which we take to be = 0. Then, fixing our attention
on the portion of the flow above this stream line, the image of the flow region
in the y-plane will be the full upper half-plane (Figure 8.14).

This mapping problem we have already solved (see Example 4.5.2) yielding
again

x() = U(z + af)

Another approach to this mapping problem is useful, and is exploited in the
next section. Instead of proceeding directly from the z-plane to the y-plane,
we introduce an auxiliary complex plane, = = log z/a (Figure 8.15).

The mapping function from the r-plane to the y-plane can be written down
by means of the Schwarz-Christoffel mapping, giving

x(r) = Ua(e" + €7)

r = cosh™’ A
Ua
Figure 8.15
B i A
C |-
D A
T—plane
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8.5.1 Consider the flow past a circular cylinder, with complex potential
x(z) = U(z 4+ a*[z), and superimpose the vortex flow, with complex potential
x = —iklogz, k > 0. Locate the stagnation points, and sketch in a few of
the stream lines near the cylinder. Show that r = a is a stream line.

8.52  For the flow in Example 8.5.1 let C be any simple closed curve
encircling |z| = a, and compute

fwdz=work+iﬂux
c

The real part of this integral is called the circulation of the flow, and represents
the work requlred to produce the crrculatory component of the flow. We speak,

| N [ —— PSS PRy

8.5.3  Find the flow past a plate of finite width, 2d, makirg an angle «
with the real axis, symmetrically placed with respect to the origin (Figure 8.16).
d
W= 2 .U as z— oo
dz

(Map the exterior of the plate onto the exterior of a circle and use Example 3.)
Compute the pressure, p, from Bernoulli’s equation,

Figure 8.16

—
/
o

¢

z—plane

8.6 FLOWS WITH FREE BOUNDARIES

We have examined a number of flows by both inverse and direct methods
and, until now, have been concerned mainly with the geometry of the flow
region, as this geometry is of greatest consequence in identifying the stream
lines, and so, the complex velocity potential. The actual values of the velocity
vector, w, have been aimost incidental.

A survey of the examples discussed in the previous sections shows that
g = |w| = 0 at points of the boundary at which the flow encounters an abrupt
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change of direction through an angle less than = (into a corner), but around a
sharp bend, at an angle greater than s, ¢ — co. Our senses, perhaps, tell us
that some slow down into a corner, and some speed up around a bend, are
natural. However, let us recall Bernoulli’s equation, 4p |w|* + p = const =
Po» Where p, is the pressure at points for which |w| = 0 (the rest pressure).
Solving for p, we obtain
P =po— tp|w?
and as
|w| — o0 p—>—00

Figure 8.17

z—plane

Since p is the pressure in our fluid model, long before p reaches —co we
realisticaily wouid have the filuid changing state to a vapor. We have not
included this possibility in our original equations, and if we wish to consider
flow problems around sharp external corners for which ¢ remains finite, we
must accordingly alter our model of the flow.

Such modifications have been studied by various authors, and the interested
reader should consult a text on hydrodynamics for such discussions.

We shall content ourselves by considering a specific example. Consider the
flow past a plate of finite width, perpendicular to, and superimposed upon, a
uniform flow (Figure 8.17). The plate is specified by x =0, —b =y = b,
and w = dy/dz — U as z — co. From symmetry, ABCDA’ will be a stream
line, for example » = 0, and since the fluid must turn through 180° at C, we
expect |w| = oo there.

-
H

The flow recion above this central stream line mans onto the unner half
- LAAIY WwiiALl WSl VLA WiLSLEL Lliaw lll“ru WAALW wa w i AWBAL

A Lliw LAV YY l.\'slull LUV Y

x-plane (Figure 8.18), and from the Schwarz-Christoffel ma ppmg, we

-'3" .

ave

x(z) = UV2® + b°
Uz
/z2+ b2
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Figure 8.18
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x—plane

In order to modify our physical model appropriately, we suppose that,
because of greatly reduced pressure near the point C, the fluid changes state
to a vapor, and that the region occupied by the vapor extends downstream
to infinity. Thus, we add the additional postulate that the fluid flow in the
upper half-plane follow a path ABCA" as indicated in Figure 8.19, and in the
vapor region, p = const. The stream line CA’, which bounds the flow region
and the vapor region, or wake, is called a free stream line, or free boundary,
and the postulated change of state of the fluid to a vapor is called cavitation.

We no longer can locate the stream line ABCA’ by geometrical consider-
ations alone, and the portion CA’, the free boundary is to be found, along
with the associated flow as part of the problem. From Bernoulli’s equation

(2) $p(® + v®) 4+ p = const
= }pU + po,

where p, is the pressure at 2 = oo, whereu = U, v = 0. Since our postulated

-

. S

cavity (vapor region) extends to infinity, continuity considerations give us
the condition

(3) P = Px

Figure 8.19

fFlud

_—

z—plane
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for the constant pressure in the vapor region. Further, on the free stream line,
continuity of the pressure in the fluid with the pressure in the cavity yield

ip(u® + v*) + p, = 1pU + p,
on CA’', the free boundary. This equation yields the “free boundary” condition
4 u: 4 v = U? g=U

To restate our problem, we seek a flow, or a complex velocity potential y(z),
such that w = dy/dz = U at infinity, with the lines ABC, AED being stream

Figure 8.20
AJ
q° U
+ U
a B
I3 p = po
%.
— D
q = U A"

lines, CA" and DA”" being free stream lines (on which ¢ = U). Takingp = 0
on the central stream line ABCA', AEDA", we observe that the image of the
required flow region is the full y-plane (Figure 8.20), except that it is cut
along the real axis from the image of B to + oo; the two “‘banks” of
this cut correspond to two different stream lines.

Now, the central stream line is partially determined, by symmetry, to
coincide with the negative real axis, and the plate DC, while the free bounda-
ries are restricted by a velocity condition, g = U. This suggests that we consider
the image of the flow region, not only in the y-plane, but also in the w-
plane, the “velocity plane,” or the hodograph plane. For convenience, we
consider the complex w/U-plane, w/U = q/U ¢*°,

The free boundaries map onto arcs of |7| = 1, the unit circle; the point at
infinity, at which ¢ = U, maps onto = = 1. On the real axis 4B, = is real,
the corner at B is a stagnation point, + = 0, so that the line 48 maps onto the
segment (0, 1) of the real r-axis. Following the path BC, we have + = —i(real)
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Figure 8.21
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while at C, + = —i. Proceeding along the free boundary, CA', [+| =1, and
arg = increases from —/2 towards 0.

In a similar manner, we find that the image of the line AEDA” in the
r-plane is the first quadrant of the unit circle, bounded by the coordinate axes.

What we have found is very important : the image of the required (unknown)
flow region of the z-plane is completely determined in the hodograph plane,
and this fact enables us to construct the complex velocity potential x(z) for the
flow.

Comparing Figures 8.21 and 8.20, we see that the image of the boundary
of the cavity, A'CDA", in the r-plane is precisely the right half of the unit

1o W dad huv th
circle, bounded by the imaginary axis, the flow region corresponding to the

interior of the semicircle (why?).
Let us map the quarter circle ABCA' of the r-plane (Figure 8.21) onto its

imaoe in the v.nlane normalizing X SO that vy =0 at B (F‘uonrp R 72\ The

llll“&‘ 144 Liiw A rl“llv AdAWSR lllull“lllb WA wiagLL A WY A

interior of the quarter circle maps onto the upper half of the x-plane. The
mapping is readily accomplished by observing that the quarter circle maps,

Figure 8.22
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o 9
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C
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by log 7, to a polygonal region so that the Schwarz-Christoffe] mapping gives
us the solution directly. We obtain

(5) 1= x=m—iJI§
X X

where o is the location of C in the y-plane (to be determined).
Next,

_r_ld
U Uds

this result gives us

(6) Ua'z=l,\/x_m+ii-°-t\dx
\ X X /

that is, the connection bztween the flow region and the complex velocity
potential. Integrating Section 8.6 (6) along the central stream line,

R B =

Integrating to y = 0, at B, gives z = 0, or,

%_ﬁ)wa——+w)

2
mo
= —i[Z 42

(2+“)
Thus,

U
8 ==
(8) * = T4

and the parametric equations of the free stream line CA’, from Section 8.6 (7),
are

' 4 t
—
®) Uz = ,/ dt
Ja t
,Tr \ oy Ia
o(Z ) = [
2 Ja Ut
o L1 ThAa £Al1 tvy AvVar~aion illitcéendéa PERTS PN S M P « [,
O.U. 1 LIic I.UI.I.UWII.IB CACILILIOG llluDl.lal. a LIIC1l 110 UUU lualy 1HOU WY,

Follow the indicated steps, and verify the mapp ng functions given (Figure
8.23). Fluid occupies the infinite reservoir above the real axis of the z-plane,
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Ay
A B D A
-—a a
q=U q=U
' C

and emerges from the slit —a < # < a, forming two free stream lines BC,
DC’ extending to infinity, and on which ¢ = U. Our aim is to find the ratio k
PR ol PO |- R S IVl PO Py MUY o S, et [N, St R PSS PRI g PR
OI HC 1nmiung wiatll OCIweCll IiC 1ICC Dounaarics 4na wne ciirarce widiin,
2a. This is the problem of the vena contracta. See Figure 8.24.

(a) The image of the flow region is the strip in the y-plane,
w = 0 corresponding to the stream line z = 0

(b) The image of the flow region in the hodograph plane + = (g/U) e,
and in the » = log 7 plane is shown in Figure 8.24.

(c) Introduce an auxiliary complex plane, the z-plane, and map both the
v-plane polygon, and the x-plane channel, onto the upper half z-plane.

i

y=iarcsinf -4+ —

X = —2k-U—a logt 4 ikUa
mw

dz dt dz mt dz

dy _dydt_ _2kUadt _ . uscin:

dz = 2_ka i@ — ) —it)dt

Integrate from B, along BC,

x+a+1y—& (1+:
-1

aT

\/l—t) it

t
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Figure 8.24
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8.62 THE BORDA MOUTHPIECE

Fluid occupies an infinjte reservoir which fills most of the z-plane. Two

I
| plates 4'D and 4B are walls of the reservoir (from infinity to the

Figure 8.25

Q A
\ )
7-0U ¢
= U
9 C
SA—
C A
B
z—plane

y-axis), and fluid exits from the reservoir between the plates, with free stream
lines DC’, CB attaching to the plates as shown (Figure 8.25). Takingg = U
on the free stream lines (also equal to the exit velocity), find the equations for
the free stream lines, and show that the contraction coefficient is k = }.

COMMENT. The vector fields studied in this chapter may be interpreted
also in other domains of physics.

Thus, that part of the vector field characterized by the complex potential
Section 8.2(2) that is contained between two equipotential lines (an annulus
between two concentric circles) can be considered as the electrostatic field
between two condenser plates of a Leyden jar, or as the field of heat flow in
a high chimney. The related field of vortex motion mentioned at the end of
Section 8.2 can be considered as the magnetic field generated by a stationary
electric current flowing in an infinitely long straight wire.

There are other physical applications of the theory of analytic functions,
e.g., to certain problems of elasticity, which differ more from those studied
in this chapter.
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Chapter ASYMPTOTIC
NINE EXPANSIONS

In this chapter we study certain functions for large values of the variable.
We shall develop the essential concept in the second section, starting from an
example in the first section.

9.1 ASYMPTOTIC SERIES

Consider the function

(1) f(a) = f " l‘f'f ;

defined, as shown, by an improper integral, convergent for all > 0. We wish

to study f(x) for large values of x, or, more sharply expressed, as * — co.
Thus, f(x) = 0, and since 1/(1 +¢) = 1for0 = < oo, we have

IO 1
J(x) éJ e rdr=-—
0 x

It is clear that f(x) — 0 as 2 — oo.
Suppose we ask for some finer detail: for example, does lim,_,,, = f(x)
exist? The answer becomes clear when we integrate (1) by parts, obtaining

__1__1 m—xt dl
(2 f(w)—x x.[)e 1+

As shown above, we have

0= c‘oe"” d wae‘“‘ dt = 1
—Jo (149" Jo x

2

f(x) = 1_ (a quantity smaller than —1-)
x X
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Thus
limzf(x) = 1

X a0

We may repeat this procedure, and after » integrations by parts, we obtain

1 21 3 o (n— 1)
(3) f@=-—=+5—7+ "+ 1§ ")+Rn
x X x x x
n! [©_e*dt
R, = —1"—]
( ) " Jo (1+t)"+1
with
1 [ !
Ru@l <2 "t ar = 2

YAl

One of the first things we might investigate is the full infinite series suggested

by (3), )
4) S (-2

n=0 gl

However, this series diverges for every #, no matter how large. For a long
time, mathematicians, obsessed by a need for complete rigor, regarded such
divergent series (4) as nonsense. However, in the sense that will be described
in this section, this and similar series are completely meaningful, and of great
importance in many parts of applied analysis.

Let us return to the finite series (3), and consider the result for some
specific value of , for example, * = 10. The series alternates in sign, and
however many terms we take, the magnitude of the “remainder, R,” is less
than that of the first omitted term. Thus

1 1

10) =— — R R <—
f£(10) 10 1 |1I_102
1 1 2
=—_——4+R R,| <=
10 102 '“—w

1 1 21 31
=—— —4-=_R Ry <-—
10 102 100 ° '“—W

and so on. The remainders decrease in size till # = 10, after which the !
in the numerator grows faster than the powers of 10 in the denominator. If we
stop at 10 terms, we have

with |R;| = 10!/10%, Thus if we neglect R;o, we have f(10) correct to four
significant figures (|R;o| < 2.8 x 107%)
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For a larger value of z, for example x = 100, three terms of the series
leave an error term |R;| < 6/10%. We see that for large z, a few terms (but
not too many) of the series (4) serve to approximate f(x) with remarkable
accuracy, even though the series diverges for all . The series (4) is an

example of an asymptotic series, and we write

) f(@) ~ 3 (—1)"

n!
xn+1

This notation is suggestive, and carries the following precise meaning.

We define f(z) ~ g(x) as x — oo to stand for the statement

im 1@ _
1m =

- o g(x)

If no confusion can arise, and it is clear that # — co is implied, we may

abbreviate even further, and write merely

f(®) ~ g(@)

with this notation, we have, for our example

1
J(@2) ~—
x
since
limf—@=l
z
It is also true that
1 1
f@~= ==
x x
since
1 1 2
J@==-—==+4+R, [|R|=—
x X x
and so
R
—f—(-a-c-)—-=1+—2—-+1asx—>oo
1_ 1 1_1
x at x

k-1

Si(2) = % (=n"

n!
xﬂ+1

Asymptotic Series
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it is true that f(x) ~ S;(x). However, there is even more to be added to the
strict concept of asymptotic series. We give a precise definition in the next
section.

9.2 NOTATION AND DEFINITIONS

We digress, for the moment, from our study of asymptotic series in order to
introduce some additional notation. We shall be faced with certain functions
about which we shall repeatedly have to say “‘a function that grows, as * — oo,
no faster than x ,” or, ‘““a function that, when divided by « , tends to zero, as
2 — 00,” A very useful contraction of these unwieldy statements follows:
in the first instance we write f(x) = O(x), where “0” is a “capital O0,” or
“big 0,” and read “f(x) is big O of «”; in the second instance we write
f(@) = o(x); now “0” is a “lower case o,” or “small 0,” and we read “f () is
little o of x” (as x — o).

DEFINITION. If |f(x)/g(x)| is bounded as x— oo, we write f(2) =
O(g(x)), “big 07; if f(x)/g(x) -0 as x— 0, we write f(2) = o(g(x)),
“little 0.”

For example, from Section 9.1 (3), we can write a variety of statements:

1 1
j@=0(l) j@~1 s@=ow
x x
The first result merely states that

82 _ o

o
w

is bounded; the second says that lim,_,, 2 f(z) = 1, and implies the first
statement. The third result says f(x)/l — 0 as * — oo, that is, lim,,_, , f(x) =
0. The symbols O(1), o(1), are “‘generic symbols” representing, respectively,
any absolutely bounded function, and any function that tends to zero
(as * — o). We can, when desired, use the same notation to describe
behavior as * — a rather than x — co.

We can now present a precise definition of asymptotic series. From
Section 9.1 (1),

1 1 2! _(n -
f@=2-L 8 oy =D R
x x x x
= S5,(s) + R,(2)
n!
IRnl é x”+1
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Then,

n!
xn+1

| f(x) — S.(2)| = R, (z)| =
so that

f(@) = S (2) + o( L )

xn+1

2" [ f(2) — S ()| = o(1)

are both correct statements. We adopt Poincaré’s definition of asymptotic

series: the series D¢ a,/znt! is called an asympotic expansion of f(x), as

(1) f(#) >0as z— oo

(2) lim2*[f(z) — S (2)] =0

I ap v

for each integer n, and partial sum

n

a a a,_
S(@="+ 4+

x
and write
a
aﬂ.
f(x) ~ % xﬂ_l_l
9.2.1 Show that e = o(2—") for each integer n, as * — oo,

9.2.2 Letay, a,, ... a,
by, by, . .. b,

denote constants,

a, # 0, by > by >by> > by

Then, for x — oo

alebl.r + a2ebz.’c + “ e + akebka: ~ alebm
9223
1 o0 (_])n
/(@) 14+ 2 % 2+l =1
Show that
<=0
f(x) ~ % xn+1
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9.24 If

a0 aﬂ

f@) =24

0 X
converges for [x| > R, show that also

a0

f(@®)~2

o

a,
xn+1

as ¥ — O

9.2.5 Show that sin = O(1) as  — oo, but that 1 = O(sin 2) is false.

9.2.6  Showthat |5 e~**/(1 4+ r)dt = o(z~")for all n (as # — o0), provided
6 > 0.

9.2.7 If =~ 3¢ a,ft™t as  — oo, show that

928 If f(2) ~ D¢ a,[z"*! show that with

a, a,
S@ ==+ 4+
X x
1@ = 5, + of )
f(x) = S, (2) + O(;ﬂl—ﬂ) foreachn=1,2,...

9.3 MANIPULATING ASYMPTOTIC SERIES
The asymptotic series we are concerned with are of the form
< a

n < b,
Z n+1 or ; ik

o X

they are “formal” power series, in powers of 1/x. The term *“formal” refers

to the fact that we are not concerned with the convergence of these series;

indeed, they may well diverge for all 2. However, in using these series, we

deal with a finite number of terms only, so that convergence is not required.
(1) If f(x), g(x) both tend to zero as * — oo, and if

[+ 5]

<b
f@~32 g@~3

® b
(@) + glay ~ 3 22T 2n

n=1 x
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and
v a) cﬂ n
f@g@~3I =2 ¢, =3 ab
2 X r=1

These rules are easy to remember: they are the same rules that apply to
convergent power series (which are also asymptotic series). The proof is
immediate. Let S, (%), >, (%) be the partial sums of the asymptotic series for

f(@), g(x) respectively. Then

2" f(2) — S.(2)] = o(1)
z"[g(2) — Z, ()] = o(l) foreachn =1, 2,...,
Adding,

2" {f(2) + g(2) — [S.(2) + Z.(H)]} = o(1)

which is to say,
< aﬂ + bﬂ
f(2) + g(z) ~ ; T

The product rule can be easily visualized if we write

1@ = 5, + 0( =)

g(x) =Z(2) + O(x,%l)

Then,

J@) 80 = 5, Ea) + 0(55) 1 =min(.0)

Art1
X

multiplying the two polynomials S, Z, together, and ignoring terms 1/2"+!
and higher, we find

k
Cp = Z arb k—r
r=1

Thus if p, ¢ > n, we have

1@ g@ =3 %+ o(;%)

2| @) o) = S 2] = ot1)
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(2) Iff(x) ~ 232 a,/x" (with the additional assumption that f(x) behaves
like ~2 as x — o), then ¥ f(r) dr exists, and

(HDdt~> ———
J f ) ; (n—l) n-1
That is, we can integrate term by term, obtaining the asymptotic series for the
integrated function.
The proof is uncomplicated: we note that the expression

@ 1 ® M
J; 0(t +1) dt stands forf h(nydr  |h(n| £ e
(P arl < p (790 < M 1)
Jm (t) ! l J I-n+1 - (xn)

Thus,

We now write

=32 o[.5)

[roar=3 s+ [To(5) @

which implies

“([rou-Saim) -0

(3) When they exist, asymptotic series are unique. That is, given f(2) — 0
as * — oo, and

=]

°b
f&~3%

1

@~

% 14

thena,=b,n=1,2,3,....
The proof foliows directly from the definition of asymptotic series. Thus

1 b,
1) =8| =at) | 1) = 2] = o1)
L o+« L L |
or,
lim zf (%) = a, lim zf(x) = b, a, = b,

|- Jaadhv 3] T a0
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In precisely the same way,

a a b
2lr@ -2 -2 oy 1@ -2 -2 =0

x 22 L x 2]

yields
a
a, = b, =lim xz[f(x) —1-:|
=

and so on.

(4) The converse statement to (3) is not correct. If > {° a,,/z" ~ f(), then
f(x) is not uniquely determined. There are many functions, such as e=*, which
have asymptotic series, each of whose coefficients is zero. In fact,

8

e ~>-2 if,andonlyif a,=0,n=12,..
1

3

(see Example 9.2.7).

Clearly, given D7 a,fx" ~ f(%), then X7 a,[z" ~ f(x) + ¢ is equally
valid. Given an asymptotic expansion, there are many functions having this
expansion.

(5) Very frequently, in specific problems, we content ourselves with just
one term of an asymptotic expansion: with the first nonvanishing term that we
call the dominant term of the expansion. This one term is often all that we need
in a given problem; if ever we need more terms, the same ideas may lead us to
their expressions.

Also, it may well occur that the function f(x) we are studying does not have
an asymptotic expansion of the form we are considering. For example f(x) =
ef(x —1).

However, ¢=* f(x) = 1/(x — 1) does have an asymptotic expansion of our

type,

0
Ng n+1

e (2) ~ IH

T —

and the dominant term is 1 /x In this case, we say that the dominant term,

e o

as ¥ — oo, IOI'] \x) is e‘/x \l" or other types of dsympwuc series see nxample

9.3ff))
(6) Let us return to the example we studied in Section 9.1.

1 f(x) = wt
) /) f 1 + ¢
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and reexamine the construction of its asymptotic series, which we now look
for in the form

2 a,

J@~3-5
w0 & —:ct

J et ——— ar _ dt +f
o 1 ¢ ol + ¢

f me‘”‘ dt l < f we‘“‘ dt
P 1 41| Js
—2d

Writing

and noting that

x
= o(x™") for every n.

we recognize that the full asymptotic series for {3° e=**/(1 +- ) dt is identically
zero, for each 8 > 0. Thus

(* 0 e—a:t
x) = dt
/(@) Jo 1 4+ ¢
rs —at
~| E—adr
JO 1 + H
& o
={| dY(—=D""e*dt whend <1
JO 0
—_— %(!1\" l‘afﬂn—m A
L\ l} J ¢ C “ut
0 o
0 @ 0
-S| [reman - [T a]
0 o é
0 w0
~ 2(_1)11[ T — 2t dt
0 0
d !
= g( 1) ntl

We have used §3° ¢ 1" dt = o(z—™) for all m. We might see this result in the
following way: ¢t = 8 + 7 gives

fo L 1\
J e e 0+ )V dr=¢e ( polynomial in i)
0

by expanding (6 + 7)" in the binomial series.
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(7) The example we have been studying,

% !
f(@)~ 3 (—1)r =
JNT S A S x.n+1

suggests one further essential distinction between asymptotic series and
convergent series. Thus, for a specific value of z, say x = 10, we get f(10)
to the best possible accuracy by taking 10 terms of the asymptotic series
(here, the remainder has its least value). While this accuracy is good enough
for most practical purposes, it is also the best we can do. On the other hand,
in a convergent series we can come as close to the correct value as we desire
merely by taking enough terms.

9.3.1 Let
@=L
Jo 1 4+ 72
show that
= (—1)"(2n)!

f(x) ~ % g0t

9.3.2 If f(x) is bounded, | f(x)| = M, show that

f mo-fctrm At = %% A0
J - J \l’ ve ¥ V\U ) v A
5
9.3.3 Given
o0
!
f (x) =J e %t d
o 1 4¢
show that
& -a:t
f{x) ~ f as & — oo
and that

e
f(x) ~ ; 2xn/2+112

a4 s - 1 * * ol BN 4 I— ' g - * 1 11 b |
(In this exampie, we have series in powers of 1/ x; this series is also calied an
asymptotic series; the substitution x = y? transforms it into the more usual
form.)
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9.34 Find the dominant term, as € — co, of

1
f@) = e ar
Jo

9.3.5 If f(2) is analytic for |2 < R, f(2) = 3¢ a,x", and f(%) is con-
tinuous on the z-axis, show that

n!

xn+1

f If(t)e—“" dt ~ % a,

9.3.6  If f(z) is continuous, [3 f(f) e dt ~ f(0)/x and

J:f(t)e““" ar~12 Jg

for the dominant terms.

9.4 LAPLACE’S ASYMPTOTIC FORMULA

In this section, we examine some definite integrals of the form

(1) I, = f S @]" dz

in their dependence on the parameter n, for n very large. Integrals of this form
were studied extensively by Laplace, who came across them in his investigation
of the probabilities in a very large number » of trials. In the cases he studied,
the functions ¢(z) and f(x) are connected with probabilities and are nonnega-
tive. For our purposes we shall retain the assumption f(x) > 0, and otherwise
require only such continuity conditions on ¢(x) and f(«) as are useful for
our purposes.

We are concerned with finding the dominant term, as n — oo, for the
integral I, of (1). Since f(x) > 0, we may write h(x) = log f(2), and take
as our normalized form

@ .= f ' $(2)e™ da

If we compare this integral (2) with the example in Section 9.1 (1) it
should be clear that the largest contribution to the integral should be governed
mostly by those values x at which A(2) is largest. In order to perceive these
ideas more clearly, let us first examine a special case. Let 4(2) have its
maximum value at z = a, the left end point, and steadily decrease as =
increases. For convenience (and by setting # = a + ), we may assume
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the interval to be 0 <t = ¢, and
I, = f P(rye™ " dt
Jo

¢
— eﬂh(O)J ¢(t)en[h(t)—h(°)] dt
0

h(?) < h(0) for0<t=c
Thus

¢
e—-ﬂh(o)lﬂ =J ¢(I)en[h(t)—h(0)] dt
¢

weles alalon fodomanl oo - A
uit. LI 111 CB dal 1lads a4 UOIIIIATIL

e |

We may anticipate a more general

S
(3) 6,-—71!&(0)1ﬂ —_ d,(t)en[h(t)—h(o)] dt + O(e—mh)
0

o/

(*d
e"""m’l,, ~ ¢(t)e"["“)""‘°)] dt
JO

and this result holds for every fixed 4 > 0, no matter how small. It is now
clearer that the dominant term will depend only on the values of ¢(x) and
h(x) near x = 0.

In order to proceed further with the asymptotic nature of (3), we require
more information about ¢(z) and A(x) near x = 0. We shall not attempt to
treat ““the most general case”; instead, we consider two cases of most common
occurrence. In fact, we consider only those 4(x) for which A”(#) is continuous
on 0 < z = ¢, and ¢(2) continuous on 0 = = = ¢ [a more involved analysis
is possible in which only 4’(z) need be continuous, instead of 4"(x)].

(a) A(2) has a maximum at x =0

HO)= —k, k>0
h(z) — h(0) = —k zyp(x)

@, y0)=1
with 9’(2) continuous.
In this case, “h(z) behaves linearly for small «.”
The above assumptions permit us to take ¢ () = x, and regard 7 as a
(single-valued) function of « for all ¢ sufficiently small. (For this purpose, it is
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enough that dfdt (¢t (t)) = (r) + 1 9(¢) be nonzero for all ¢ small. This is
guaranteed since »(0) = 1 and y(¢) is continuous.) Equation 3 transforms into

row(d) / A¢\

@ emor,~[" geie( 2 ar

JO

a1 _ dl'
=| g(x)e ™ dx where g(x) = ¢[1(x)] =

JO

1

[g(x) — g(0))e ™  dx + g(())f —nkz ..

3

= lg(x) — g(0)]e™* dz + 8(0)f T dx + O(e™)

w

O +[1e@ — @1 dz
nk 0

If g(0) 0, the dominant term of (4) is g(0)/nk. This fact can readily be

seen as follows.
Since 4, is any positive number, no matter how small, and since g() is
continuous, |g(z) — g(0)| < e, € arbitrary, by taking z small. Thus

é
< f 18(z) — g(0)] &= dz

&
fo [e(x) — g(O)le™ da

s
< ef e " dx for all § small
1]

£
< —
nk

Hence

I:e“""w’l - g(_())] n~0 and I, ~e™® g0
" nk " nk

dt
g(0) = [1(0)]——| = (0)
dx li=
= —H(0)
Collecting these results, we have
e I — r AL D onh(t) Ty
) in —J AU ai
/]

]
~ f qb(t)en[h(t)—h(ﬂ)] dt e™®
Jo

MO $(0)
—nh'(0)
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valid for ¢(x) continuous, ¢(0) # O,
h(x) < h(0) for x>0, H0)=—-k <0

and 4”(z) continuous.

(b) In the previous case, h(x) behaved like #(0) — kx near # = 0; that is,
h(x) was essentially linear near x = 0. We now consider A(x) — A(0) =
—ka*p(2), ¥’ (2) continuous, y(0) = 1, so that h(x) — h(0) behaves quad-
ratically near x = 0. Then

(6) e""”“”[,, — r‘c(ﬁ(t)en[h(t)-—h(o)] dr
0

o
= gb(t)e"["“""“”] dt + O(e—né)
0

]

~ qb(l) e—nkt’w(t) dt
0

”6\/w ()

= [t(z))e (th) dx

J 0
with
2y(t) = a? 0=t=<$

With reasoning analogous to the one in (a), we obtain the dominant term

(7) e—nh(O)In~ ¢(O)Jme—nkm3 dx
_30 [
2 " nk
_ #(0) 27
2 —nh"(0)

(c) A particular case involving (7) is worth noting:

b
£on r = r 11 a0 nh(T) dz
(o) J PLL)e

where A(x) has a unique maximum at x = §, a < § < b; ¢(z) is continuous,
#(& # 0, and A”(x) is continuous near x = £. The numbers a, b may be
finite or infinite (if they are infinite, we assume the absolute convergence
of the integral).
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This special case can be treated by two applications of (7), translating
x=£&+4t, 2= £ — tto obtain two versions of (7). These yield

9) L= $@ee o
27
~ nh(E)

Example.  Consider the problem of finding the dominant behavior of
nl = 3 t* et dr. As it stands, this integral is not of the form we have been
studying. Here, A(t) = log ¢, which increases from — co to + co as ¢ runs from
0 to oo.

Not every such integral we encounter will be in our standard form. We
must be prepared to try, by various transformations, to bring them into the
form we have been discussing. In this instance, the transformation ¢t = nz in
the integral above yields

ad
(10) n! = n"+1f (xe~)" dx
0
or
n! ® -
n Jo

Now A(t) = logt — t, as H' () = (1/t) — 1, has a unique (finite) maximum at
t =1, k(1) = —1. Equation 9 applies, and we find

(11) n! ~ 2Zmn (Qe)ﬂ

This formula, called Stirling’s formula, expresses the asymptotic value of
n! in terms of readily computed quantities.

7/2
I, =f sin® 6 df ~ L /27
) 2

n

9.4.1 Show that

9.4.2 Establish that

Y P
I'A + 2) ~ /272 (3) as & — oo
e
9.4.3 Take x=n+a in 94.2, and show that I'n +a+ 1) ~n®
I'(n + 1) or, what is the same thing,
I'(n + a) ~ n® I'(n), as n-—> oo
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944  Consider

L'(e)n!
I'(n+a+1)
Find the dominant term of I, and establish the result of 9.4.3.

1
I, = #(1 — 2 dz =
Jo )

9.5 PERRON’S EXTENSION OF LAPLACE’S FORMULA

In this section we consider the problem of determining the dominant term
(or the first few terms) of the asymptotic expansion of integrals of the form

(1) I, = f " (2)e™ de

Jo
where f(z), h(z) are single-valued analytic functions in a neighborhood of
z = 0, a is a fixed complex number, Ra > 0, and z4a fixed limit of integration.
We visualize that many problems of interest can be transformed into this
form. (See, for example, Section 9.4 (3).) Finally, we assume that 4(0) = 0.
Thus

(2) h(zy =b,22+ b, , ;2?1 4 - b, #0

In light of the results of the strictly real case of Section 9.4, we anticipate
that the dominant term in (1) will be largely determined by those values z for
which |en?(*)| = enRM2) ig greatest, that is, for z such that RA(z) = max.

In order to describe these concepts more clearly, we consider first a
neighborhood of z = 0, and the curves RA(z) = 0. These curves are easily
visualized when we examine the first term of A(z),

b,2? = |b,| & (re®®)»

* LUl

with real part |b,| r* cos (pf + f). The curves |b,| r* cos (pf + §) = 0 are
straight lines,

p0+ﬂ=§+mr n=20,1,---2p—1

forming 2p rays from the origin, or p lines through the origin. Clearly, these p
straight lines through the origin are tangents to p curves at the origin, the
curves Ra(z) = 0 (Figure 9.1).

These curves separate regions in which RA(z) < 0, Ra(z) > 0 aiternately.
We make one further assumption: the point z,, of Section 9.5 (1), lies in a
region for which RA(z) < 0, and we take the path of integration, from z = 0
to z = z, to lie compietely inside the same region (for which RA(z) < 0).
In this manner, the maximum of |e”*(*)| on the path of integration occurs at
z2=0.
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Figure 9.1

// Rkilzl=0

We now deform the path of integration in a definite way (Figure 9.2).
First, we proceed on the straight line segment, from z = 0 to z = pe'”, which
bisects the angle formed by the tangent lines bounding the region, and from
pe™ to z, in any convenient way (provided, of course, that we remain inside
our region for which RA(z) < 0). We assume this latter path of integration to
remain completely inside the region, so that RA(z) < —é; < 0 on this path,

and we have

(3) | [‘20 Zahlf {Z)é dz| < Me ™
| Jeso =
or = O(e ")

Figure 9.2
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Accordingly,

rpet®

(4) Iﬂ — za—lf(z)enh(z) dz + O(e—nél)
0

d,.pefw

~ za—lf(z)enh(z) dz

and (4) remains valid for all 0 < p sufficiently small.

On the ray from z = 0 to z = pe'”, the bisector of the rays on which
cos (pf + ) =0, we have cos (pf + f) = —1, sin (pf + ) = 0. Thus
(5) h(z) - bpzp + bp+lzp+1 4

— _lbrl r? + bp_l_lr:p+lei(p+1)8 + e
with leading coefficient real and negative. Rewriting 4(z), we have
h(z) = 22(b, + 2byys + -+ )

so that 4(z) behaves like b,2? for all z close to the origin, and in particular on
the ray from 0 to pe’. What we shall show is easy to remember and to
manipulate: The dominant term of

9.5.1
*Zo
In — za-—lf(z)enh(z) dz
JO
o pe'®
~ za-—lf(z)enh(z) dz
JU

~ e‘“”fpr“'lf(re‘”)e‘" Ibnlrp dr
0

that is, the dominant term of I, comes from the first nonzero term of 4(z),
and a path of integration can be chosen so that this first term is real.
The evaluation of this dominant term is straightforward.

(6) I,~ e‘“‘”f(O)J.pr"—le—" losle” g
o

—_ eiuw[_@fplt(a:/p)—le—nlbplt dt
p Jo

el © ')
p (n1b
1

(We can, with no loss of generality, take f(0) # 0, as the term 2*7 can
absorb any zeros of f(z) at 2 = 0.)
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The detailed proof of the result given in (6) does not involve any new ideas.
Starting with

nElople -1 g
[ “ur

we define a new variable of integration:

P bp+1 p+1 i(p+1)6

r —— s e =t
|5,
or, more precisely,
boi1 _stpsme D Ve
+2 2 i 2)0
(7) I=r|_1___&re:(p+)__p_re(p+)+_,,~|
1L | [ |
L 1 Ypl | Ypl -

=rp(r)  r=u0) 0 =1

where the p*" root is the principal-value branch; that is, the p'* rootapproaches
1 asr —0.
Then

ri(p) dr

8 [~ & a—1pr o —nlbplt’(_)
(8) n . r*=f(ere 1 dt

rt(p)

= o . ta—llx(t)]a—f[eiwtx(t)](%'_;) . e—nlbnltn it

rtip) o
—_ etma ta—IF(I)e-—n loplt dt
JO

with F(f) = [x()]** fI€' t x(1)] dr/dt, analytic near ¢t =0 (even if quite
messy looking). The upper limit of integration, #(p) is no longer necessarily
real, and the real r-axis is mapped, by 1 = r v (r), onto a curve near the real
t-axis. We now deform the path of integration in (8) in the customary way,
to the real point t = §,, and thence to #(p), obtaining

(.} 9
(9) €& f rIF(ne 1 dr 4 0(e )
¢

&
~ eiwa f ta—lF(t)e-—n lbel I dI
Jo

F(O)I‘(i)

p(n |b,)*'”

, e'9%
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We evaluate

F@hﬂﬁ%ﬁMOf

= f(0)
Hence
(10) 1, =fz°z“—lf (2)e™ ) dz
o
{1 f(O)F( p)
p(n [b,|)*

o mhadadd
dads staliu,

COMMENT. The method used here suggests much more. Since F(¢) is
analytic near t = 0, F(t) = >3 F* (0) */k!, we obtain from (9) and (10) the
full expansion

(¢ + k
@ F(k)(O) p
(1) R =
k=0 . -
(nlb,]) *

an asymptotic expansion in powers of (1/n)!/?. The relation between F*)(0)
and the coefficients of f(z) is somewhat messy, and involves the inversion of a

nower series (see Section 6. 10\ among other thines. The first few terms are
l-rvv Wl LW\ \va W wWbLIVW LA e S J ALAAW LA b WiLiidwl Lisliii 6 A liw 11AVL 1w Lwillilivw A W

readily accessible by expansions about 1 = 0 (z = 0) and equating coeffi-
cients.

Example 1. We take another look at the example of Section 10.4.

(12) = m(re“)" dt
JO

* oo 1
—_ en[ og¢t—t] dt
JO

On the path of integration, the real r-axis, log ¢+ — ¢ has a maximum at ¢ = 1.
Setting t = | + z, we have

a
on ML |7 paltog )21 g,
nn+1 1

where now
h(z) =log (1l +2) — 2z = —23[2 4+ 23[3 - -

We have p =2, b, = —1.
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The curves Ra(z) = 0 have as their tangents

_22 2 .
R{— ) =0 RQE —y" +2izy) =0
4/
or

22—yt =0

These tangents bound four regions, in which (near z = 0) RA(z) is alternately
positive and negative, being negative on the real axis (Figure 9.3). The real

Figure 9.3

~ 7/
~ + ’
AY 7
\\ 7
\\ //

N 7/

\ ’

N /

N Ve
~ 7
~ /7
N rd

N7 -

/

— P \\
7 N\
// N
Ve \\
’ N\
// N
~
// \\
// N

/ + N
/7 ~

axis already bisects the appropriate angle. To obtain the dominant term,
we have
[

en[108(1+z)—z] d=
n J—6
]
~ e—nzzlz dz
J-s

[retaining the first term only in A(z)]

o ) Y 2.
Nf e ™ /2 dz +f e /2 dz
—&

0

8 2
~ 2 ( e /2 dz
Jo

~ 2J e 4y
(why?) ’

n
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and again
nt~ 2 (2
v e

Example 2. We consider the integral

fl eimt 1
dr=2J~ cos x¢
V- g \/l—t

for real z, and look for the dominant term as x — co. This integral occurs
frequently in certain applied problems and represents a Bessel function:

( % ( 1)"{2\2" l‘l im o

T (2 \2/ _wJ_IJI_, -

On the path of integration, the real r-axis, A(r) = it, and RA(t) = 0.
Now, A(t) = i(t; + ity), Rh = —t,. We see that the region in which Rh < 0
is characterized by t, = I(¢) > 0. If, near 1 = —1, r = 1, we deform the
contour in order to bisect the angle formed by the curves RA(f) = 0, and at
the same time enter the region R(h) < 0, we are led to the vertical segments
(—1, B), (1, A) (Figure 9.4). Since § et dt/(1 — 1?12 = 0, from Cauchy’s
theorem, we may write

1 1 eimt
Jo(%) = f dt
V-

{11} I
\iJ7 v O

—1+id8 1+id
_1 f gt 4L g1 it
mJ-1 \/ mJl \[
+ 11 D) dt
™1 V1 = (1 + i0)?

1 é ei:c(—1+ir)i d 1 ] eix(1+:r)l d 3
B

mJod ST =iy wloe ST F inr

~ —m: 1#/4J. —:cr dT 1 :c —ilrMJ. -—mr dT
022 — in) 11-) " \/7(2 + i7)

—im+(iw/4)l +_ fa—(ri/4) 1 m

J2 2N =

(== )
cosf{zx——
4
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Figure 9.4

Al

t—plane

COMMENT. The process of selecting the path of integration to bisect the
angle formed by successive curves RA(z) = 0, into a region RA(2) < 0 can be
visualized picturesquely in the following manner: we regard Rha(z) =
hy(z, y) as the altitude of a mountain and are located at the point x =y =0
(with 4,(0, 0) normalized to be zero). The paths h,(x, y) = O are constant
altitude paths. We wish to proceed down hill from our locationz =y = 0.
Among all possible directions pointing down (between two level paths) the
one bisecting the directions of the level paths is the steepest. The method we
have described is accordingly called the “method of steepest descent.”

9.5.1 Find the dominant term, as * — oo, for

e—mt

Ve —1

[Ky(%) is another Bessel function: y = Ky(x) satisfies 2y” + y" — 2y = 0.]

dt

Ko(a) = fl -

9.5.2 Find the dominant term, as x — co, for
dt

—_ li:ct
R R

9.5.3 Find the dominant term, as n — oo, for

“Jr/2

| S— ,nCco88 1A

I, _J € av
0

9.6 THE SADDLE-POINT METHOD

In this section, we give several examples to illustrate further possibilities
using asymptotic methods.
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Figure 9.5

AY
+ - + -
- I
2 2
-&- - B X
X==T x=0 X=1
Evrmanls T
LXAmipie 1.
/2 .
(1) In =J &ncost dp
—n/2

Here, h(2) = i cos z, RA(z) = sin x sinh y and the full path of integration lies
on one of the curves RA(z) = 0. Let us plot the curves RA(z) = 0 in the
vicinity of the real axis, near the interval (—=/2, 7/2), and label the regions
that they bound plus or minus accordingly as R4 > 0 or Rh < 0 in these
regions. By using Cauchy’s theorem, we may deform the path of integration
for (1) from the real axis to any desired curve whose end points are at
—u[2, 7[2 (Figure 9.5).

/2

/2 )
( ein cos8 2 dz —_— ezn co8z dz
J—r/2 J—g/2
C

Nearz = —u/2, the directions for which R# = 0 are the real directions, with
RA(z) < 0 above the point (y > 0). The steepest descent path is along z =
—mf2 4+ iy, 0 < y (bisecting the angle at —=(2). At z = 72, the steepest
descent path is along z = #/2 — iy, y > 0. We discard the prospect of using
curves C such as in Figure 9.6, since near z = /2, RA(z) > 0 on the curves;
instead, we try to choose a new path of integration that permits us to enter

Figure 9.6

Nla ‘\
N2 rJq
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Figure 9.7

regions in which RA(z) < 0, and on steepest descent paths if possible. In
order to achieve this result, we are forced to select a curve that passes through
the origin (Figure 9.7). In fact, the steepest descent paths at the origin similarly
bisect the curves RA = 0 there, and so make an angle of =4 with the axes.
We have

raf2
(2) In —_ ei'n C08 2 dz

J—r/2

0 r/2 .
— etﬂGOSz dZ +f em.cosz dZ
o

J—x/2

=Jn+Kn

& o2
Jﬂ —_ f &noosz; dy _ “ eincoszessrilfl dp + O(e—né)

v o

with
2= —mf2+iy 2=¢€""
respectively.
rd1 * 42 .
Jn ~ e—nsin th dy — ein[l-—(z 12)+. . -]eswi/tl dp
JO Jo
(*&1 '} 'y
~ e ™ dy S e P /2eaart/4 dP
JO v O
. i /
—~ b — ef!lri/& f: _2__11’
n 2 n
Similarly,
é y . L)
Kﬂ =f e n[1—(z /2)+---]e—£:rl4dp + [ e‘ncosz i dy + O(e-né)
0 JO
with
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respectively.
é é
Kn"""-’ e—i:rltleinf e—np3/2 dp +J. e~ ™i dy
0 0

in :
~ e—ilr/‘lg._ 27._1: + 1_
2 N n n

(3) [ ~E g |2 gmgmtara
" oon n

/2_7_’: ei[n—(:rM)]
n

which comes, not from the vicinity of the end points +#/2 (as in previous
examples), but from the vicinity of the origin, an interior point on the original
path of integration.

The dominant term is clearly

COMMENT. This example, of Section 9.6, and Example 2 of Section 9.5,
both involved integrals of the form

b
(4) I, = f 2% (2)e™* dz
Cﬂ

for which RA(2) = 0 along all of C. In the example of Section 9.5, RA(z) > 0
on one side of C, RA(z) < 0 on the other side of C. In such cases, the steepest
descent lines, aP and bQ are normals to C, entering the region in which
RA(z) < 0 (Figure 9.8). On the segment PQ, RA(z) = —4 < 0, and

Q
f za—lf(z)enh(z) dz
P

The second example is quite different. On the path of integration there is a
point at which 4’'(z) = 0, a point at which angles are not preserved. The

—_ O( e—né)

Figure 9.8
04@
Vo
Pl | Q
/—la b Rh(z)=0
&
4,
“0
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level lines RA(z) = const, and in particular, the path of integration, RA(z) = 0,
of the A-plane have z-plane images that intersect at angles less than = (at
{2 for this example). This situation is typified by 4(z) = 2% at z = 0;

Rh(z) = 22 — y2 = 0: r4+y=0 z2—y=0

The regions formed by these curves have RA < 0 and Rz > 0 alternately
(Figure 9.9). Viewing R#A(z) as the altitude of a mountain, the pointz =0isa

Figure 9.9

z—plane

col or pass. Alternately the shape of the surface, whose height is given by
Rh(z), looks like a saddle, and the point z = 0, where #'(z) = 0, is called a
saddle-point. (The surface looks like an ordinary saddle for 4(z) = z2, while for
h = 23, or generally h = 2 for p > 2, there are p plus regions, and p minus
regions. The case p = 3 is sometimes referred to as a “‘monkey saddle,” but
the term saddle-point is used in all instances.)

Example 2. These ideas are further illuminated by the following integral

(5) In =f ein(a:-—sin x) dx

In this instance, A(z) = i(z — sin z), RA(z) = —y + cos zsinhy = 0 on the
path of integration. Saddle-points are located at the points

h’(2)=i(1—COSZ)=O 2=0 427
Near z = 0, h(z) = i(z%/6 — 25/120 + - - ); the regions RA(z) > 0, 0 are

marked nlus and minus rncmr‘h\lplv ﬂ:‘ onre O 1M tha tanaoantc tha ~irvag
LALLNA AR WL l.v T isLd AWELF Avurlvv‘.l b l\.r o LU], Liiw l.ul.ls\v ll.\) Liiv LUL YLD
RA(2) = 0 at the origin are given by

R(iz%) = 0 = R(ir*e®%) = R(r*e"0+7/2)
318 Chapter Nine



Thus

. 297

36 ’—')=o sin3d =0 6=0,7,"

co8 ( + 2 3°3
In order to deform the contour to a steepest descent path, with Ri(z) = 0
everywhere on the path, westartatz = —,alongz = —7 + iy, 0 S y = d,.

Next, we arrange to enter the saddle-point at z = 0 along arg z = 57/6 (the

Figure 9.10

AN,

S ==

¢

steepest descent path, bisecting the rays arg z = 273, arg z = #). To reach
z =, we must leave z = 0 along the ray arg z = #/6 and return to z = =
alongz=n+ iy, 0 Sy < 6,.

9.6.1  Complete the details of the above example, and find the dominant

terms () from the vicinity of the end points z = —=, 2z = = and (b) from the
saddle-point z = 0.
Example 3.  As our final example, we consider the following specific

problem: given the formula

©) J(2) = — Ly — 1 gy

for the appropriately normalized Bessel function of order n, J,(x), we in-
vestigate the asymptotic behavior, as n — oo, of J,(n sin «), for a fixed «,
0<a<nf2

nsinay" 1 F‘ _n[itsin a+ log(1—¢)] _dr

2 ) /7T +mta [ —p
h(z) = i(sin o)z + log (1 — z?)

£ ¥ £ ofem N /
(/) Jnsina) = \
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On the path of integration, RA(z) = log (1 — 2% =< 0, while RA(z) =
—ysin a + log |1 — 22| < 0 near the path of integration, for y > 0. Thus,
concentrating on the integral of (7) all by itself,

I =flenh(z) ._.i._
"oJa (1 — 232

we note that for any curve such as C in Figure 9.11, we have RA(z) £ —9,
I, = O(e™). Thus it is clear that I, decreases exponentially, and we must
determine this behavior precisely before we can proceed. In order to achieve

Figure 9.11

TN
[ AN

-1 1

this result, we require the nature of RA(z) at all points of the z-plane through
which we might conceivably deform our path of integration. In fact, we wish to
find a new path of integration on which the maximum of Rh(z) is as small as

naccihlo
Possioie.

Let us examine the saddle-points of 4(z):

2z

h{z)=isina — ;=0
1 —2
i
(8) z=—"(1 4 cos a)
sin a
. o . L&
=jtan—, icot—
2 2

The geometry of the level curves RA(z) = const is quite specific at these points
and aids us considerably in forming our picture of RA(z).
At z = | tan /2,

Rh(z) = —2 sin2°-2E + 2log (sec 9—;)

= —ZSinzg—log (1 —sin2§) =—-p<0
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the level curve Ri(z) = —p consists of two branches intersecting orthogonally
at z = itan «f2, and can be traced back to the real axis at points P, Q
(Figure 9.12). Below the level curve PSQ, RA(z) > —p, as is also the case
immediately above the portion T7SW. The other two regions formed at S
have RA(z) < —p.

In order to reach z = +1 from z = —1, our path must cross the positive
y-axis (if we require RA(z) =< 0 on the path). If we cross at .S on the steepest
descent (ascent) path, then, clearly, max RA(z) occurs at S. Crossings at

Figure 9.12

-
( Q 1
Rhizl > —p
mainte At In tha C gt .nunlun RLi-A™S —n an tha cantane Thnec
Ciliv WULILUML ., A4 llu\,,

PUIIILD ULl LiiQh o} 111oL LYUILI VY Ww l.\l’l\k} - -}I vii
max Rh(z ) east on the steepest descent path through the lower saddle-
point, z = j tan «/2. We find, near z = i tan «/2,

h(z) = h(t + itan%)

a S M
= h|itan— +—h”('tan—)+~-
(' 2) 2 T\

= —2sin*> — 2logcos > — £ cos a cos® = + -
in*, 0g cos o 0s . cos”

Hence

%)
. sin aY"
J ~ —
(7 8In &) (n 5 ) -\/‘” TG+ exp [n(

« f" [ ] ( sin ae""““)" 1
cos—= | exp | —nffcosacos®=| dt ~ —
2J-s 2 1 4 cosa \/27”" COos «

—25in*% — 2 log cos g)‘I
2 2
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Additional Examples and Comments on Chapter Nine

9.1 The complementary error function

erfcz:i_f e dt
\/77 :

Show that

erfc xwie‘““’z(—l———l—.’_l; _)
x

N

9.2 Show that

h
W
N
=

=2

0 1
f e—"”logxdx=—ogn-
0 n n

where

=4
—y =T'() = =-T()

z=1
(Start with I'(«)/n* = [§ "1 " dz.)

0 A Qh o~y +h
T [ L

" 1
fe—ﬂsinxlogxdxw_z_ ogn
o n n

(see 9.3).

9.5 Find the dominant term in the asymptotic expansion of

o[ et
(Let t = x=z first.)

9.6  Find the dominant term of the asymptotic expansion of

@ ‘4
f(x) =f e—t +ia:tdt
(see 9.5.) -
(Show that there are two saddle-points in the upper half-plane, and that the
steepest descent path contributions at these two points are of the same order.)
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9.7 (A problem of A. Wintner.)

f@=[" ety n=234,...

J —

We require the dominant term of the asymptotic expansion of /() as  — co.
Establish the following results, and so find the dominant term.

(a) Let r = 21/271 z, Then h(z) = iz — 22"

(b) Of the 2n — 1 saddle-points, ¢, A'({) = 0, » lie in the upper half-plane
and n — 1 in the lower half—plane.

(c) RA({) = max at the two saddle-points in the upper half-plane nearest
the real axis, for example,

Co Cﬂ-l and h(cn_l) — }—I-(To)
(d) WIth P = xznjzn_l’
F(@) ~ 2V/2n1(ePrGo) ehE)P)

(J‘m —|h"(Ly)| Pu® ) w2n — 2
exp du) exp —— i
2 4 2n — 1

-—a0

9.8  Obtain the following generalization of Laplace’s formula 9.4 (10):

J‘b (z)enh(z) dz ~ z g(g )enh(Cv)J -2
5 ' nh'(L,)

where / —2/nh"({) is in the direction of passing from valley to valley in the
direction of integration, and the points {, are saddle-points. (See also 9.6
and 9.7.)
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INDEX

Absolute convergence, 63
Absolute value, 4
Analytic continuation, 231
along a curve, 233
reflection principle, 240
Analytic functions, 75, 97
derivative of, 75
at infinity, 138, 205
singularities of, 202
Arcs, 134
Argument (phase), 4
Argument principle, 226
Asymptotic series, 291

Bemoulli’s equation, 266
Bessel function, 68
Beta function, 239
Bilinear transformation, 120
Binomial series, 107
Branch cut, 165
principal, 220
Branch point, 48
integration around, 220

Cauchy inequalities, 186

Cauchy integral formula, 177
theorem, 146

Cauchy principal value, 182, 222

Cauchy-Riemann conditions, 80
in polar coordinates, 84

Circle of convergence, 63

Circulation of a fluid, 282

325

Closed curve, 146
Complex number(s), 5
conjugate, 15
imaginary part, 4
polar form, 42
real part, 4
roots of, 50
plane, 3
Complex potential, 267
Conformal mapping, 87
Conjugate, 15
Connected domain, 169
Continuity, 100
Contour integral, 146
Convergence, 63
Critical point, 129
Cross ratio, 125
Curl, 91
Curve(s), closed, 169
orientation, 134, 168
simple, 161

Degenerate polygons, 255
De Moivre’s formula, 11

Derivative, of Cauchy integral, 185

Dipole 270

__________ n1 1£&
lJlVClgCIlW, Z1, 100

Domains, 54
multiply connected, 158

auupl_y \auuucw.cu, 1LJO

Entire functions, 187



Essential singularity, 203
}\Dl‘lf.\‘ﬂf\f ‘I“l.ﬂﬂl‘ ’)’)n

residue at, 210
Euler’s formula, 39
Exponential function, 36
inverse of, 46
mapping by, 129

Fixed point, 126
Fluid flow, in channels, 275
about cylinder, 280
Flux, 143
Fourier series, 202
Free boundaries, 282
Functions, analytic, 75
beta, 239
entire, 187
gamma, 235
inverse, 46
limits of, 20
multiple valued, 54, 140
Fundamental theorem of algebra, 188

Gamma function, 235

Gauss’ theorem on zeros of polyno-
mials, 70

Geometric series, 21

Green’s identity, 175

Harmonic functions, 96
Hodograph plane, 285
Hydrodynamics, 265
Hyperbolic functions, 69

Identities, 43

Image, 85
Imaginary axis, 4
part, 4

Tndafinita intaoral 1.‘2

AlIVAW A L1 LW ul.l.us.l(.u’ Y
Independence of path, 159
Integrals, contour, 146
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line, 147

nrmmnal value. 182

R izatwsprdan v—--' S

Inverse point, 127
Inversion of series, 227
Irrotational flow, 90
vector field, 93
Isolated point, 206
singular point, 206

Jensen’s theorem, 229
Joukowski airfoil, 139

Lagrange’s formula, 228
Laplace’s equation, 95
asymptotic formula, 302
Laurent series, 195
Level curves, 57
Limits, 20
Line integral, 147
Linear fractional transformation,
120
Liouville’s theorem, 187
Logarithm, 46
inverse of, 46
mapping by, 131
principal branch of, 47

Machin’s formula, 24
Maclaurin’s series, 188
Magnification, 105
Majorant, 262
Mapping, conformal, 87
Mercator, 131
Ptolemy (stereographic), 113
Schwarz-Christoffel, 250

ronl e &

UlllVd.lClll., 1 1 U
Maximum modulus theorem, 187
Meromorphic function, 99

nth roots of a complex number, 50
Natural boundary, 235



One to one function, 110
Order, of poles, 203
of zeros, 205

Phase (argument), 4
Point at infinity, 114
Poisson’s integral formula, 219, 24:
Poles, 203
order, 205
Polynomial, 36
Powers, 49
Power series, 63
algebra of, 192
convergence of, 63
differentiation of, 78, 101
integration of, 192
Principal part of Laurent expansion,

203
Punctured plane, 55
Quaternions, 29—33

Real axis, 4

part, 4
Reflection principle, 240
Removable singularity, 203
Residue theorem, 206
Residues, 204

computation of, 208
Riemann mapping theorem, 243
Rouche’s theorem, 227

Saddlepoint method, 314

Schwarz-Christoffel formula, 250

Series inversion, 227

Singular points, 202

Sink, 270

Source, 91, 270

Stagnation point, 274

Stereographic mapping, 113

Stream function, 267
streamlines, 267

Taylor’s series, 188
Triangle inequality, 7, 25

’
Triconometric functione 18
a a -ovl.\llll' wAdWw A ullv“vllﬂ, wf T
inverse, 52
identities, 40, 43

Univalent, 110, 244
Vector(s), 2, 6

fields, 88
Vectorial operations, 17
Velocity potential, 267
Vena contracta, 288

Weierstrass, 220
Work, 143

Zeros, order, 205
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