Random Dynamics of distance expanding maps
Cincinnati and Indiana (2009)

Volker MAYER

Université de Lille I
U.M.R. CNRS 8524
http://math.univ-lille1.fr/~mayer/

joint work with

Bartłomiej Skorulski and Mariusz Urbański
Deterministic dynamics: studies the iterates f^n of some map f, for example of a rational map $f : \hat{C} \to \hat{C}$ or a smooth map of some Riemannian manifold.

\[
\begin{align*}
Z_0 \xrightarrow{f} Z_1 \xrightarrow{f} \ldots \xrightarrow{f} Z_n \xrightarrow{f} \ldots
\end{align*}
\]
Deterministic dynamics: studies the iterates f^n of some map f, for example of a rational map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ or a smooth map of some Riemannian manifold.

\[
Z_0 \xrightarrow{f} Z_1 \xrightarrow{f} \ldots \xrightarrow{f} Z_n \xrightarrow{f} \ldots
\]

$\mathcal{F}_f = \{ z \in \hat{\mathbb{C}} ; \ (f^n)_n \text{ normal on some neighborhood } U \text{ of } z. \}$

$\mathcal{J}_f = \hat{\mathbb{C}} \setminus \mathcal{F}_f.$

These sets are invariant: $f(\mathcal{J}_f) = f^{-1}(\mathcal{J}_f) = \mathcal{J}_f.$
Deterministic dynamics: studies the iterates f^n of some map f, for example of a rational map $f : \hat{C} \to \hat{C}$ or a smooth map of some Riemannian manifold.

$$f : \hat{C} \to \hat{C} \quad \text{for example of a rational map}$$

$\mathcal{F}_f = \{ z \in \hat{C} ; \ (f^n)_n \text{ normal on some neighborhood } U \text{ of } z. \}$

$\mathcal{J}_f = \hat{C} \setminus \mathcal{F}_f.$

These sets are invariant: $f(\mathcal{J}_f) = f^{-1}(\mathcal{J}_f) = \mathcal{J}_f.$

Random dynamics: Similar but, instead of f^n, consider $f_n \circ f_{n-1} \circ \ldots \circ f_0$ where the f_n are "randomly chosen" functions (for example in $Rat(\hat{C})$).
Deterministic dynamics: studies the iterates f^n of some map f, for example of a rational map $f : \hat{C} \to \hat{C}$ or a smooth map of some Riemannian manifold.

$$
\begin{align*}
Z_0 &\xrightarrow{f} Z_1 & \xrightarrow{f} \ldots & \xrightarrow{f} Z_n & \xrightarrow{f} \ldots
\end{align*}
\]

$\mathcal{F}_f = \{ z \in \hat{C} ; (f^n)_n \text { normal on some neighborhood } U \text { of } z. \}$

$\mathcal{J}_f = \hat{C} \setminus \mathcal{F}_f$.

These sets are invariant: $f(\mathcal{J}_f) = f^{-1}(\mathcal{J}_f) = \mathcal{J}_f$.

Random dynamics: Similar but, instead of f^n, consider $f_n \circ f_{n-1} \circ \ldots \circ f_0$ where the f_n are "randomly chosen" functions (for example in $Rat(\hat{C})$).

Define similarly \mathcal{F}_0 and \mathcal{J}_0. Then

$$
\begin{align*}
\mathcal{J}_0 &\xrightarrow{f_0} \mathcal{J}_1 & \xrightarrow{f_1} \ldots & \xrightarrow{f_{n-1}} \mathcal{J}_n & \xrightarrow{f_n} \ldots
\end{align*}
\]

where $\mathcal{J}_n = f_n \circ f_{n-1} \circ \ldots \circ f_0(\mathcal{J}_0)$ is the "Julia set" of the family $(f_N \circ f_{N-1} \circ \ldots \circ f_n)_{N \geq n}$.
Some comments on quadratic polynomials \(p_c(z) = z^2 + c \)

For the Julia set \(\mathcal{J}_c \) of \(p_c(z) = z^2 + c \) where \(|c| < 1/4 \) we have the following

1. Bowen’s Formula: \(\delta_c = Hdim(\mathcal{J}_c) \) is the only zero of the "pressure function".
2. \(\delta_c > 1 \) excepted when \(c = 0 \).
3. \(0 < HM^{\delta_c}(\mathcal{J}_c) < \infty \).
Some comments on quadratic polynomials $p_c(z) = z^2 + c$

For the Julia set J_c of $p_c(z) = z^2 + c$ where $|c| < 1/4$ we have the following:

1. Bowen’s Formula: $\delta_c = Hdim(J_c)$ is the only zero of the "pressure function".
2. $\delta_c > 1$ excepted when $c = 0$.
3. $0 < HM^{\delta_c}(J_c) < \infty$.

What happens if we choose the parameter c randomly, say iid?
Some comments on quadratic polynomials $p_c(z) = z^2 + c$

For the Julia set J_c of $p_c(z) = z^2 + c$ where $|c| < 1/4$ we have the following:

1. Bowen’s Formula: $\delta_c = Hdim(J_c)$ is the only zero of the "pressure function".
2. $\delta_c > 1$ excepted when $c = 0$.
3. $0 < HM^{\delta_c}(J_c) < \infty$.

What happens if we choose the parameter c randomly, say iid?

- There is a Bowen’s Formula (Kifer, Crauel and Flandoni, Bodenschütz and Ochs, Rugh, our paper,...).
Some comments on quadratic polynomials \(p_c(z) = z^2 + c \)

For the Julia set \(J_c \) of \(p_c(z) = z^2 + c \) where \(|c| < 1/4 \) we have the following

1. Bowen's Formula: \(\delta_c = Hdim(J_c) \) is the only zero of the "pressure function".
2. \(\delta_c > 1 \) excepted when \(c = 0 \).
3. \(0 < HM^{\delta_c}(J_c) < \infty \).

What happens if we choose the parameter \(c \) randomly, say iid?

- There is a Bowen's Formula (Kifer, Crauel and Flandoni, Bodenschütz and Ochs, Rugh, our paper,...).
- Brück and Bürger asked if (2) holds in the random setting "a.e."
- Bodenschütz and Ochs conjectured that (3) holds in the random setting.
Randomness modeled by a \((X, \mathcal{F}, m, \theta)\) measure preserving dynamical system where

- \((X, \mathcal{F}, m)\) a probability space,
- \(\theta : X \to X\) is a invertible and ergodic "base" map s.t. \(m\) is invariant.
Randomness modeled by a \((X, \mathcal{F}, m, \theta)\) measure preserving dynamical system where

- \((X, \mathcal{F}, m)\) a probability space,
- \(\theta : X \rightarrow X\) is a invertible and ergodic "base" map s.t. \(m\) is invariant.

\[
x_0 \xrightarrow{\theta} x_1 \xrightarrow{\theta} \ldots \xrightarrow{\theta} x_n \xrightarrow{\theta} \ldots
\]
Randomness modeled by a $(X, \mathcal{F}, m, \theta)$ measure preserving dynamical system where

- (X, \mathcal{F}, m) a probability space,
- $\theta : X \to X$ is a invertible and ergodic "base" map s.t. m is invariant.

\[x_0 \xrightarrow{\theta} x_1 \xrightarrow{\theta} \ldots \xrightarrow{\theta} x_n \xrightarrow{\theta} \ldots \]

Example: $X = \mathbb{D}(0, 1/4)^\mathbb{Z}$, $m = m_0^\mathbb{Z}$ with m_0 any (e.g. Lebesgue) probability measure on $\mathbb{D}(0, 1/4)$ and θ the shift map.

This model corresponds exactly to iid choices of parameters $c \in \mathbb{D}(0, 1/4)$.
Randomness modeled by a \((X, \mathcal{F}, m, \theta)\) measure preserving dynamical system where

- \((X, \mathcal{F}, m)\) a probability space,
- \(\theta : X \rightarrow X\) is a invertible and ergodic "base" map s.t. \(m\) is invariant.

\[
x_0 \xrightarrow{\theta} x_1 \xrightarrow{\theta} \ldots \xrightarrow{\theta} x_n \xrightarrow{\theta} \ldots
\]

Example: \(X = \mathbb{D}(0, 1/4)^\mathbb{Z}, \ m = m_0^\mathbb{Z}\) with \(m_0\) any (e.g. Lebesgue) probability measure on \(\mathbb{D}(0, 1/4)\) and \(\theta\) the shift map.
This model corresponds exactly to iid choices of parameters \(c \in \mathbb{D}(0, 1/4)\).

Random System: Let \((\mathcal{J}_x, \varrho_x), x \in X\), be compact metric spaces normalized in size by \(\text{diam}_{\varrho_x}(\mathcal{J}_x) \leq 1\). Let

\[
\mathcal{J} = \bigcup_{x \in X} \{x\} \times \mathcal{J}_x
\]

(1)

and let

\[
T_x : \mathcal{J}_x \rightarrow \mathcal{J}_{\theta(x)} , \ x \in X ,
\]

be continuous mappings.
Randomness modeled by a \((X, \mathcal{F}, m, \theta)\) measure preserving dynamical system where

- \((X, \mathcal{F}, m)\) a probability space,
- \(\theta : X \to X\) is a invertible and ergodic "base" map s.t. \(m\) is invariant.

\[
\begin{align*}
x_0 & \xrightarrow{\theta} x_1 \xrightarrow{\theta} \ldots \xrightarrow{\theta} x_n \xrightarrow{\theta} \ldots
\end{align*}
\]

Example: \(X = \mathbb{D}(0, 1/4)^\mathbb{Z}, \ m = m_0^\mathbb{Z}\) with \(m_0\) any (e.g. Lebesgue) probability measure on \(\mathbb{D}(0, 1/4)\) and \(\theta\) the shift map. This model corresponds exactly to iid choices of parameters \(c \in \mathbb{D}(0, 1/4)\).

Random System: Let \((\mathcal{I}_x, \mathcal{F}_x), \ x \in X,\) be compact metric spaces normalized in size by \(\text{diam}_{\mathcal{F}_x}(\mathcal{I}_x) \leq 1\). Let

\[
\mathcal{I} = \bigcup_{x \in X} \{x\} \times \mathcal{I}_x
\]

(1)

and let

\[
T_x : \mathcal{I}_x \to \mathcal{I}_{\theta(x)}, \quad x \in X,
\]

be continuous mappings. We investigate the dynamics of

\[
\mathcal{I}_x \xrightarrow{T_x} \mathcal{I}_{\theta(x)} \xrightarrow{T_{\theta(x)}} \ldots \xrightarrow{T_{\theta^{n-1}(x)}} \mathcal{I}_{\theta^n(x)} \xrightarrow{T_{\theta^n(x)}} \ldots
\]
Random System: Let \((\mathcal{J}_x, \varrho_x), \ x \in X\), be compact metric spaces normalized in size by \(\text{diam}_{\varrho_x}(\mathcal{J}_x) \leq 1\). Let
\[
\mathcal{J} = \bigcup_{x \in X} \{x\} \times \mathcal{J}_x
\]
(2)
and let
\[
T_x : \mathcal{J}_x \rightarrow \mathcal{J}_{\theta(x)}, \ x \in X,
\]
be continuous mappings. We investigate the dynamics of

\[
\begin{array}{c}
\mathcal{J}_x \xrightarrow{T_x} \mathcal{J}_{\theta(x)} \xrightarrow{T_{\theta(x)}} \ldots \xrightarrow{T_{\theta^{n-1}(x)}} \mathcal{J}_{\theta^{n}(x)} \xrightarrow{T_{\theta^{n}(x)}} \ldots
\end{array}
\]

For every \(n \geq 0\) we denote \(T^\ast_x := T_{\theta^{n-1}(x)} \circ \ldots \circ T_x : \mathcal{J}_x \rightarrow \mathcal{J}_{\theta^{n}(x)}\).
Random System: Let \((J_x, \varrho_x), x \in X,\) be compact metric spaces normalized in size by \(\text{diam}_{\varrho_x}(J_x) \leq 1.\) Let
\[
J = \bigcup_{x \in X} \{x\} \times J_x
\]
(2)
an and let
\[
T_x : J_x \rightarrow J_{\theta(x)}, \ x \in X,
\]
be continuous mappings. We investigate the dynamics of
\[
J_x \xrightarrow{T_x} J_{\theta(x)} \xrightarrow{T_{\theta(x)}} \ldots \xrightarrow{T_{\theta^{n-1}(x)}} J_{\theta^n(x)} \xrightarrow{T_{\theta^n(x)}} \ldots
\]

For every \(n \geq 0\) we denote \(T^n_x := T_{\theta^{n-1}(x)} \circ \ldots \circ T_x : J_x \rightarrow J_{\theta^n(x)}.\)

There is an associated skew-product: \(T : J \rightarrow J\) defined by
\[
T(x, z) = (\theta(x), T_x(z)).
\]
(3)
With this notation one has \(T^n(x, y) = (\theta^n(x), T^n_x(y)).\)
Distance expanding random maps.

- Deterministic distance expanding maps have been introduced for the first time in Ruelle’s monograph "Thermodynamical Formalism", 1978.
- A systematic account of the deterministic dynamics of these maps is in [PUbook].
Deterministic distance expanding maps have been introduced for the first time in Ruelle’s monograph "Thermodynamical Formalism", 1978.

A systematic account of the deterministic dynamics of these maps is in [PUbook].

One of the main features of this class is that their definition does not require any differentiability or smoothness condition.

It is a very general class comprising symbol systems and expanding maps of smooth manifolds but goes far beyond.
Deterministic distance expanding maps have been introduced for the first time in Ruelle’s monograph "Thermodynamical Formalism", 1978.

A systematic account of the deterministic dynamics of these maps is in [PUbook].

One of the main features of this class is that their definition does not require any differentiability or smoothness condition.

It is a very general class comprising symbol systems and expanding maps of smooth manifolds but goes far beyond.

We only suppose these maps to be measurable expanding in the sense their expanding constant is measurable and

$$\gamma_x > 1 \quad \text{a.e.}$$

or

$$\int_X \log \gamma_x \, dm(x) > 0.$$
Expanding Random Maps

A map $T : \mathcal{J} \rightarrow \mathcal{J}$ is called expanding random map if

- the mappings $T_x : \mathcal{J}_x \rightarrow \mathcal{J}_{\theta(x)}$ are continuous, open and surjective.

There exist a function $\eta : X \rightarrow \mathbb{R}^+, x \mapsto \eta_x$, and a real number $\xi > 0$ such that following conditions hold.

Uniform Openness. $T_x(B_x(z, \eta_x)) \supset B_{\theta(x)}(T_x(z), \xi)$ for every $(x, z) \in \mathcal{J}$.

Measurably Expanding. There exists a measurable function $\gamma : X \rightarrow (1, +\infty)$, $x \mapsto \gamma_x$ such that $\varrho_{\theta(x)}(T_x(z_1), T_x(z_2)) \geq \gamma_x \varrho_x(z_1, z_2)$ whenever $\varrho(z_1, z_2) < \eta_x$, $z_1, z_2 \in \mathcal{J}_x$ holds m-a.e.

Measurability of the Degree. The map $x \mapsto \text{deg}(T_x) := \sup_{y \in \mathcal{J}_{\theta(x)}} \# T^{-1}_x\{y\}$ is measurable.

Topological Exactness. There exists a measurable function $x \mapsto n_\xi(x)$ such that $T^{n_\xi(x)}_x(B_x(z, \xi)) = \mathcal{J}^{n_\xi(x)}_{\theta(x)}(z)$ for every $z \in \mathcal{J}_x$ and a.e. $x \in X$.

Thermodynamical Formalism

In order to determine the fractal structure of the RDS, we first develop the TF. This theory relies on the behavior of the

Transfer operator \(\mathcal{L}_x = \mathcal{L}_{\varphi,x} : C(\mathcal{I}_x) \rightarrow C(\mathcal{I}_{\theta(x)}) \) defined by

\[
\mathcal{L}_x g_x(w) = \sum_{T_x(z) = w} g_x(z) e^{\varphi_x(z)}, \quad w \in \mathcal{I}_{\theta(x)}.
\]
In order to determine the fractal structure of the RDS, we first develop the TF. This theory relies on the behavior of the

Transfer operator $L_x = L_{\varphi, x} : C(J_x) \rightarrow C(J_{\theta(x)})$ defined by

$$L_x g_x(w) = \sum_{T_x(z) = w} g_x(z)e^{\varphi_x(z)}, \ w \in J_{\theta(x)}.$$

Potential $\varphi \in \mathcal{H}^\alpha(J)$: mainly this means that $\int_X \|\varphi_x\|_\infty dm(x) < \infty$

and $\varphi_x : J_x \rightarrow \mathbb{R}$ α–Hölder function.

Later on (conformal maps) we will use "geometric potentials", i.e. $-t \log |f'_x|$.

Thermodynamical Formalism
Thermodynamical Formalism

In order to determine the fractal structure of the RDS, we first develop the TF. This theory relies on the behavior of the Transfer operator \(\mathcal{L}_x = \mathcal{L}_{\varphi,x} : \mathcal{C}(\mathcal{J}_x) \to \mathcal{C}(\mathcal{J}_{\theta(x)}) \) defined by

\[
\mathcal{L}_x g_x(w) = \sum_{T_x(z)=w} g_x(z)e^{\varphi_x(z)}, \quad w \in \mathcal{J}_{\theta(x)}.
\]

Potential \(\varphi \in \mathcal{H}^\alpha(\mathcal{J}) \): mainly this means that \(\int_X \| \varphi_x \|_\infty dm(x) < \infty \) and \(\varphi_x : \mathcal{J}_x \to \mathbb{R} \) \(\alpha \)-Hölder function.

Later on (conformal maps) we will use "geometric potentials", i.e. \(-t \log |f'_x| \).

Global operator \(\mathcal{L} : \mathcal{C}(\mathcal{J}) \to \mathcal{C}(\mathcal{J}) = \{ g : \mathcal{J} \to \mathbb{R} ; \ g_x = g|_{\mathcal{J}_x} \in \mathcal{C}(\mathcal{J}_x) \ \text{a.e.} \} \)

defined by \((\mathcal{L}g)_x(w) = \mathcal{L}_{\theta^{-1}(x)}g_{\theta^{-1}(x)}(w) \).
In order to determine the fractal structure of the RDS, we first develop the TF. This theory relies on the behavior of the
Transfer operator $L_x = L_{\varphi,x} : C(\mathcal{J}_x) \to C(\mathcal{J}_{\theta(x)})$ defined by

$$L_x g_x(w) = \sum_{T_x(z) = w} g_x(z) e^{\varphi_x(z)}, \quad w \in \mathcal{J}_{\theta(x)}.$$

Potential $\varphi \in H^\alpha(\mathcal{J})$: mainly this means that $\int_{\mathcal{X}} \|\varphi_x\|_{\infty} dm(x) < \infty$ and $\varphi_x : \mathcal{J}_x \to \mathbb{R}$ α–Hölder function.

Later on (conformal maps) we will use "geometric potentials", i.e. $-t \log |f'_x|$.

Global operator $L : C(\mathcal{J}) \to C(\mathcal{J}) = \{g : \mathcal{J} \to \mathbb{R}; \; g_x = g|_{\mathcal{J}_x} \in C(\mathcal{J}_x) \text{ a.e.}\}$ defined by $(Lg)_x(w) = L_{\theta^{-1}(x)}g_{\theta^{-1}(x)}(w)$.

Denote $L^n_x := L_{\theta^{n-1}(x)} \circ \ldots \circ L_x : C(\mathcal{J}_x) \to C(\mathcal{J}_{\theta^n(x)})$. Note that

$$L^n_x g_x(w) = \sum_{z \in T_x^{-n}(w)} g_x(z) e^{S_n \varphi_x(z)}, \quad w \in \mathcal{J}_{\theta^n(x)},$$

where $S_n \varphi_x(z) = \sum_{j=0}^{n-1} \varphi_x \circ T_x^j(z)$.
Ruelle Perron Frobenius Theorem

We first establish a RPF-theorem without any measurable structure on \mathcal{J}.
We first establish a RPF-theorem without any measurable structure on \mathcal{J}.

Theorem

Let $\varphi \in \mathcal{H}^\alpha (\mathcal{J})$ and let $\mathcal{L} = \mathcal{L}_\varphi$ be the associated transfer operator. Then the following holds.

1. There exists a unique family of probability measures $\nu_x \in \mathcal{M}(\mathcal{J}_x)$ s.t.
 \[\mathcal{L}_x^* \nu_{\theta(x)} = \lambda_x \nu_x \quad \text{where} \quad \lambda_x = \nu_{\theta(x)} (\mathcal{L}_x \mathbb{1}) \quad m \text{- a.e.} \]

2. There exists a unique function $q \in C^0(\mathcal{J})$ such that m-a.e.
 \[\mathcal{L}_x q_x = \lambda_x q_{\theta(x)} \quad \text{and} \quad \nu_x (q_x) = 1. \]

Moreover, $q_x \in \mathcal{H}^\alpha (\mathcal{J}_x)$ for a.e. $x \in X$.

3. The family of measures $\{\mu_x := q_x \nu_x\}_{x \in X}$ is T-invariant.

- $\mathcal{M}^1(\mathcal{J}_x)$ is the set of all Borel probability measures on \mathcal{J}_x.
- A family of measures $\{\mu_x\}_{x \in X}$ such that $\mu_x \in \mathcal{M}^1(\mathcal{J}_x)$ is called T-invariant if $\mu_x \circ T_x^{-1} = \mu_{\theta(x)}$ for a.e. $x \in X$.
The Gibbs states ν_x are obtained in a pointwise manner using a fixed point method (Kifer).

- $\mathcal{O}_{x_0} = \{x_n = \theta^n(x_0); \ n \in \mathbb{Z}\}$ orbit of $x_0 \in X$.
- $\mathcal{P}(\mathcal{O}_{x_0}) = \prod_{x \in \mathcal{O}_{x_0}} \mathcal{M}^1(\mathcal{F}_x)$ compact subset of a locally convex topological space.
- Consider

$$\nu_{\theta(x)} \longmapsto \frac{\mathcal{L}_x^* \nu_{\theta(x)}}{\mathcal{L}_x^* \nu_{\theta(x)}(1)}.$$
In order to obtain the invariant densities q_x, we adapt Bowen’s method which uses positive cones of Hölder functions: for $s \geq 1$, set

$$\Lambda^s_x = \left\{ g \in C(J_x) : g \geq 0, \, \nu_x(g) = 1 \text{ and } g(w_1) \leq e^{sQ_x} e^{\alpha(w_1, w_2)} g(w_2) \right\}$$

for all $w_1, w_2 \in J_x$ with $\rho(w_1, w_2) \leq \xi$.

These cones are preserved under \mathcal{L} and we get some contraction.
In order to obtain the invariant densities q_x, we adapt Bowen’s method which uses positive cones of Hölder functions: for $s \geq 1$, set

$$\Lambda_x^s = \left\{ g \in C(\mathcal{J}_x) : g \geq 0, \nu_x(g) = 1 \text{ and } g(w_1) \leq e^{sQ_x \alpha(w_1, w_2)} g(w_2) \right\}$$

for all $w_1, w_2 \in \mathcal{J}_x$ with $\alpha(w_1, w_2) \leq \xi$.

These cones are preserved under \mathcal{L} and we get some contraction. This leads to crucial exponential convergence:

Proposition

Let $s > 1$. There exist $B < 1$ and a measurable function $A : X \to (0, \infty)$ such that for a.e. $x \in X$ for every $N \geq 1$ and $g_{x-N} \in \Lambda_{x-N}^s$ we have

$$\| (\tilde{\mathcal{L}}^N g)_x - q_x \|_{\infty} = \| \tilde{\mathcal{L}}_{x-N}^N g_{x-N} - q_x \|_{\infty} \leq A(x)B^N$$

*where $\tilde{\mathcal{L}} = \lambda_x^{-1} \mathcal{L}_x$.***
Measurability

We need measurability of \(\nu_x, q_x \) and \(\mu_x \). For example, right now we do not know if the "pointwise Gibbs states" \(\nu_x \) are the disintegration of a "global Gibbs" state \(\nu \) with marginal \(m \) on the fibered space \(J \). Or, the expression

\[
\int_X \left(\int_{\mathcal{J}_x} g_x \, d\nu_x \right) \, dm(x)
\]

needs measurability of \(x \mapsto \int_{\mathcal{J}_x} g_x \, d\nu_x \).
Measurability

We need measurability of ν_x, q_x and μ_x. For example, right now we do not know if the "pointwise Gibbs states" ν_x are the disintegration of a "global Gibbs" state ν with marginal m on the fibered space \mathcal{J}. Or, the expression

$$\int_X \left(\int_{\mathcal{J}_x} g_x \, d\nu_x \right) \, dm(x)$$

needs measurability of $x \mapsto \int_{\mathcal{J}_x} g_x \, d\nu_x$.

Definition

Let $T : \mathcal{J} \to \mathcal{J}$ be a expanding random map. Define $\pi_X : \mathcal{J} \to X$ by $\pi_X(x, y) = x$. Let $\mathcal{B} := \mathcal{B}_{\mathcal{J}}$ be a σ-algebra on \mathcal{J} such that

1. π_X, T and the transfer operator \mathcal{L} are measurable,
2. for every $A \in \mathcal{B}$, $\pi_X(A) \in \mathcal{F}$,
3. $\mathcal{B}|_{\mathcal{J}_x}$ is the Borel σ-algebra on \mathcal{J}_x.

If in addition $\log \| \mathcal{L}_x 1_1 \|_\infty \in L^1(m)$ (ok if $\log(\deg T_x) \in L^1(m)$), then T is called measurable expanding random map.
We need measurability of ν_x, q_x and μ_x. For example, right now we do not know if the "pointwise Gibbs states" ν_x are the disintegration of a "global Gibbs" state ν with marginal m on the fibered space \mathcal{J}. Or, the expression

$$\int_X \left(\int_{\mathcal{J}_X} g_x \, d\nu_x \right) \, dm(x)$$

needs measurability of $x \mapsto \int_{\mathcal{J}_X} g_x \, d\nu_x$.

Definition

Let $T : \mathcal{J} \to \mathcal{J}$ be a expanding random map. Define $\pi_X : \mathcal{J} \to X$ by $\pi_X(x, y) = x$. Let $\mathcal{B} := \mathcal{B}_{\mathcal{J}}$ be a σ-algebra on \mathcal{J} such that

1. π_X, T and the transfer operator \mathcal{L} are measurable,
2. for every $A \in \mathcal{B}$, $\pi_X(A) \in \mathcal{F}$,
3. $\mathcal{B}|_{\mathcal{J}_X}$ is the Borel σ-algebra on \mathcal{J}_X.

If in addition $\log \| \mathcal{L}_x 1 \|_\infty \in L^1(m)$ (ok if $\log(\deg T_x) \in L^1(m)$), then T is called measurable expanding random random map.

In this setting we deduce measurability of all the objects λ_x, ν_x, q_x, μ_x from the exponential convergence.
Fractal structure of Conformal RDS

Definition

Let $f : (x, z) \mapsto (\theta(x), f_x(z))$ be a measurable expanding random map s.t.

- the fibers $\mathcal{J}_x \subset Y$, a smooth Riemannian manifold,
- $f_x : \mathcal{J}_x \to \mathcal{J}_{\theta(x)}$ can be extended to a neighborhood of \mathcal{J}_x in Y to a conformal $C^{1+\alpha}$ map and
- $\log \|f_x'\|_\infty \in L^1(m)$.

Then we call f conformal expanding random map. If, in addition, f is uniformly expanding then it is called conformal uniformly expanding.
Fractal structure of Conformal RDS

Definition

Let $f : (x, z) \mapsto (\theta(x), f_x(z))$ be a measurable expanding random map s.t.
- the fibers $J_x \subset Y$, a smooth Riemannian manifold,
- $f_x : J_x \to J_{\theta(x)}$ can be extended to a neighborhood of J_x in Y to a conformal $C^{1+\alpha}$ map and
- $\log ||f'_x||_\infty \in L^1(m)$.

Then we call f conformal expanding random map. If, in addition, f is uniformly expanding then it is called conformal uniformly expanding.

Example 1: quadratic polynomials. $D = (0, \delta)$ for some $0 < \delta < 1/4$.

$x = (\ldots, c_{-1}, c_0, c_1, \ldots, c_n, \ldots) \in X = D^\mathbb{Z} \xrightarrow{\pi} c_0 \in D,$

$f_x(z) = z^2 + \pi(x) = z^2 + c_0.$
Fractal structure of Conformal RDS

Definition

Let $f : (x, z) \mapsto (\theta(x), f_x(z))$ be a measurable expanding random map s.t.

- the fibers $\mathcal{J}_x \subset Y$, a smooth Riemannian manifold,
- $f_x : \mathcal{J}_x \to \mathcal{J}_{\theta(x)}$ can be extended to a neighborhood of \mathcal{J}_x in Y to a conformal $C^{1+\alpha}$ map and
- $\log ||f_x'||_{\infty} \in L^1(m)$.

Then we call f conformal expanding random map. If, in addition, f is uniformly expanding then it is called conformal uniformly expanding.

Example 1: quadratic polynomials. $D = (0, \delta)$ for some $0 < \delta < 1/4$.

$x = (..., c_{-1}, c_0, c_1, ..., c_n, ...) \in X = D^\mathbb{Z} \xrightarrow{\pi} c_0 \in D,$

$f_x(z) = z^2 + \pi(x) = z^2 + c_0.$

Example 2: Repellers. $V \Subset U$ open subsets of \mathbb{C}.

$\mathcal{R}_d(V, U) := \{f : V_f \to U \text{ holo proper s.t. } V_f \subset V \text{ and } \text{deg}(f) \leq d\}.$
Fractal structure of Conformal RDS

Definition

Let \(f : (x, z) \mapsto (\theta(x), f_x(z)) \) be a measurable expanding random map s.t.

- the fibers \(J_x \subset Y \), a smooth Riemannian manifold,
- \(f_x : J_x \to J_{\theta(x)} \) can be extended to a neighborhood of \(J_x \) in \(Y \) to a conformal \(C^{1+\alpha} \) map and
- \(\log \|f'_x\|_\infty \in L^1(m) \).

Then we call \(f \) conformal expanding random map. If, in addition, \(f \) is uniformly expanding then it is called conformal uniformly expanding.

Example 1: quadratic polynomials. \(D = (0, \delta) \) for some \(0 < \delta < 1/4 \).
\[
 x = (\ldots, c_{-1}, c_0, c_1, \ldots, c_n, \ldots) \in X = D^\mathbb{Z} \xrightarrow{\pi} c_0 \in D,
 f_x(z) = z^2 + \pi(x) = z^2 + c_0.
\]

Example 2: Repellers. \(V \subset U \) open subsets of \(\mathbb{C} \).
\[
 \mathcal{R}_d(V, U) := \{ f : V_f \to U \text{ holo proper s.t. } V_f \subset V \text{ and } \text{deg}(f) \leq d \}.
\]
Suppose the repellers \(f_{x_0}, f_{x_1}, \ldots, f_{x_n}, \ldots \) are chosen iid wrt some arbitrary probability space \((I, \mathcal{F}_0, m_0) \hookrightarrow (X, \mathcal{F}, m) \) with \(X = I^\mathbb{Z} \) and \(m = m_0^\mathbb{Z} \).
\(\hookrightarrow \text{ random repeller } f^n_{x_0} = f_{x_{n-1}} \circ \ldots \circ f_{x_0} \) with associated random Julia set
\[
 J(x_0, x_1, \ldots) = \bigcap_{n \geq 1} f_{x_0}^{-n}(U)
\]
Expected pressure and Bowen’s Formula:

Consider potentials \(\varphi_t(x, z) = -t \log |f_x'(z)|, \ t \in \mathbb{R}. \)

The associated **topological pressure** is \(P_x(t) = P(\varphi_t) := \log \lambda_x \) and

\[
\mathcal{E}P(t) = \int_X P_x(t) dm(x) \quad \text{the expected pressure.}
\]
Expected pressure and Bowen’s Formula:

Consider potentials $\varphi_t(x, z) = -t \log |f'_x(z)|$, $t \in \mathbb{R}$. The associated topological pressure is $P_x(t) = P(\varphi_t) := \log \lambda_x$ and

$E_P(t) = \int_X P_x(t) dm(x)$ the expected pressure.

Lemma

The function $t \mapsto E_P(t)$ has a unique zero (say h).
Expected pressure and Bowen’s Formula:

Consider potentials \(\varphi_t(x, z) = -t \log |f'_x(z)|, \quad t \in \mathbb{R} \).
The associated topological pressure is \(P_x(t) = P(\varphi_t) := \log \lambda_x \) and

\[
\mathcal{E}P(t) = \int_X P_x(t) dm(x) \quad \text{the expected pressure.}
\]

Lemma

The function \(t \mapsto \mathcal{E}P(t) \) has a unique zero (say \(h \)).

Theorem (Bowen’s Formula)

Let \(f \) be a conformal expanding random map. Then

\[
Hdim(J_x) = h \quad m - \text{a.e.}
\]
Expected pressure and Bowen’s Formula:

Consider potentials $\varphi_t(x, z) = -t \log |f'_x(z)|$, $t \in \mathbb{R}$.
The associated topological pressure is $P_x(t) = P(\varphi_t) := \log \lambda_x$ and

$$\mathcal{E}P(t) = \int_X P_x(t) dm(x) \quad \text{the expected pressure.}$$

Lemma

The function $t \mapsto \mathcal{E}P(t)$ has a unique zero (say h).

Theorem (Bowen’s Formula)

Let f be a conformal expanding random map. Then

$$Hdim(\mathcal{J}_x) = h \quad m - a.e.$$

Bowen’s formula has been obtained previously in various settings first by Kifer and then by Crauel and Flandoni, Bogenschütz - Ochs and Rugh.
Quasi-deterministic and essential systems.

Finer fractal properties (e.g. behavior of HM^h and PM^h) rely on the asymptotic behavior of

$$P^n_x(h) = P_x(h) + P_{\theta(x)} + \ldots + P_{\theta^{n-1}(x)} , \quad h \text{ Bowen’s parameter,}$$

seen as random variables on the base space X.

Quasi-deterministic and essential systems.

Finer fractal properties (e.g. behavior of H_{M}^{n} and P_{M}^{h}) rely on the asymptotic behavior of

$$P_{x}^{n}(h) = P_{x}(h) + P_{\theta(x)} + \ldots + P_{\theta^{n-1}(x)}, \quad h \text{ Bowen's parameter},$$

seen as random variables on the base space X.

Definition

*The random map f is called *essentially random* if*

$$\limsup_{n \to \infty} P_{x}^{n}(h) = +\infty \quad \text{and} \quad \liminf_{n \to \infty} P_{x}^{n}(h) = -\infty \quad m-a.e.,$$

*and *quasi-deterministic* if for $m-a.e. \ x \in X$ there exists $L_{x} > 0$ s.t.

$$-L_{x} \leq P_{x}^{n}(h) \leq L_{x} \quad \text{for m-almost all } x \in X \text{ and all } n \geq 0.$$
Quasi-deterministic and essential systems.

Finer fractal properties (e.g. behavior of HM^h and PM^h) rely on the asymptotic behavior of

$$P^n_x(h) = P^x(h) + P^\theta(x) + \ldots + P^\theta^{n-1}(x), \quad h \text{ Bowen's parameter},$$

seen as random variables on the base space X.

Definition

The random map f is called essentially random if

$$\limsup_{n \to \infty} P^n_x(h) = +\infty \quad \text{and} \quad \liminf_{n \to \infty} P^n_x(h) = -\infty \quad m-a.e.,$$

and quasi-deterministic if for $m-a.e. \ x \in X$ there exists $L_x > 0$ s.t.

$$-L_x \leq P^n_x(h) \leq L_x \quad \text{for m-almost all $x \in X$ and all $n \geq 0$}.$$

The asymptotic behavior of the Birkhoff sums $P^n_x(h)$ are often governed by stochastic limit theorems.
The asymptotic behavior of the Birkhoff sums $P^n_x(h)$ are often governed by stochastic limit theorems.

The system is essential if the number

$$
\sigma^2(P(h)) = \lim_{n \to \infty} \frac{1}{n} \int \left(S_n(P(h)) \right)^2 dm > 0
$$

and if the Law of Iterated Logarithm (or simply CLT) holds, i.e. if $m - a.e$

$$
-\sqrt{2\sigma^2(P(h))} = \liminf_{n \to \infty} \frac{P^n_x(h)}{\sqrt{n \log \log n}} \leq \limsup_{n \to \infty} \frac{P^n_x(h)}{\sqrt{n \log \log n}} = \sqrt{2\sigma^2(P(h))}.
$$
The asymptotic behavior of the Birkhoff sums $P^n_x(h)$ are often governed by stochastic limit theorems.

The system is essential if the number
\[
s^2(P(h)) = \lim_{n \to \infty} \frac{1}{n} \int \left(S_n(P(h)) \right)^2 dm > 0
\]
and if the Law of Iterated Logarithm (or simply CLT) holds, i.e. if $m - a.e$
\[
- \sqrt{2s^2(P(h))} = \liminf_{n \to \infty} \frac{P^n_x(h)}{\sqrt{n \log \log n}} \leq \limsup_{n \to \infty} \frac{P^n_x(h)}{\sqrt{n \log \log n}} = \sqrt{2s^2(P(h))}.
\]

The system is quasi-deterministic if there exists a bounded measurable function $u : X \to \mathbb{R}$ such that
\[
P_x(h) = u(x) - u \circ \theta(x)
\]
(i.e. if $P(h)$ is a coboundary) for all $x \in X$.
The asymptotic behavior of the Birkhoff sums $P^n_x(h)$ are often governed by stochastic limit theorems.

The system is essential if the number

$$\sigma^2(P(h)) = \lim_{n \to \infty} \frac{1}{n} \int \left(S_n(P(h)) \right)^2 dm > 0$$

and if the Law of Iterated Logarithm (or simply CLT) holds, i.e. if $m - a.e$

$$-\sqrt{2\sigma^2(P(h))} = \liminf_{n \to \infty} \frac{P^n_x(h)}{\sqrt{n \log \log n}} \leq \limsup_{n \to \infty} \frac{P^n_x(h)}{\sqrt{n \log \log n}} = \sqrt{2\sigma^2(P(h))}.$$

The system is quasi-deterministic if there exists a bounded measurable function $u : X \to \mathbb{R}$ such that

$$P_x(h) = u(x) - u \circ \theta(x)$$

(i.e. if $P(h)$ is a coboundary) for all $x \in X$.

With this respect, "quasi-deterministic systems are rather exceptional".
The asymptotic behavior of the Birkhoff sums $P^n_x(h)$ are often governed by stochastic limit theorems.

The system is essential if the number

$$\sigma^2(P(h)) = \lim_{n \to \infty} \frac{1}{n} \int \left(S_n(P(h))\right)^2 dm > 0$$

and if the Law of Iterated Logarithm (or simply CLT) holds, i.e. if $m - a.e$

$$-\sqrt{2\sigma^2(P(h))} = \liminf_{n \to \infty} \frac{P^n_x(h)}{\sqrt{n \log \log n}} \leq \limsup_{n \to \infty} \frac{P^n_x(h)}{\sqrt{n \log \log n}} = \sqrt{2\sigma^2(P(h))}.$$

The system is quasi-deterministic if there exists a bounded measurable function $u : X \to \mathbb{R}$ such that

$$P_x(h) = u(x) - u \circ \theta(x)$$

(i.e. if $P(h)$ is a coboundary) for all $x \in X$.

With this respect, "quasi-deterministic systems are rather exceptional".

These limit theorems do hold for the random repeller examples over the shift space.
Theorem

Suppose $f : J \rightarrow J$ is a conformal uniformly expanding random map.

(a) If the system is essential, then

$$\mathcal{H}^h(J_x) = 0 \quad \text{and} \quad \mathcal{P}^h(J_x) = +\infty$$

for m-a.e. $x \in X$.
Theorem

Suppose $f : \mathcal{J} \to \mathcal{J}$ is a conformal uniformly expanding random map.

(a) If the system is essential, then

$$\mathcal{H}^h(\mathcal{J}_x) = 0 \quad \text{and} \quad \mathcal{P}^h(\mathcal{J}_x) = +\infty$$

for m-a.e. $x \in X$.

(b) On the other hand, if the system is quasi-deterministic then, for every $x \in X$, ν^h_x is a geometric measure with exponent h and therefore we have:

- $0 < \mathcal{H}^h(\mathcal{J}_x), \mathcal{P}^h(\mathcal{J}_x) < +\infty$ and $\text{HD}(\mathcal{J}_x) = h$.
- The measures μ, \mathcal{H}^h, and \mathcal{P}^h are all mutually equivalent with Radon-Nikodym derivatives separated away from zero and infinity.
Theorem

Suppose $f : J \to J$ is a conformal uniformly expanding random map.

(a) If the system is essential, then

$$\mathcal{H}^h(J_x) = 0 \quad \text{and} \quad \mathcal{P}^h(J_x) = +\infty$$

for m-a.e. $x \in X$.

(b) On the other hand, if the system is quasi-deterministic then, for every $x \in X$, ν^h_x is a geometric measure with exponent h and therefore we have:

- $0 < \mathcal{H}^h(J_x), \mathcal{P}^h(J_x) < +\infty$ and $\text{HD}(J_x) = h$.
- The measures μ, \mathcal{H}^h, and \mathcal{P}^h are all mutually equivalent with Radon-Nikodym derivatives separated away from zero and infinity.

From (a) we get that the Bogenschütz-Ochs conjecture does not hold. Moreover, essential conformal random systems are entirely new objects, drastically different from deterministic self-conformal sets since we get:
Corollary

Suppose that $f : J \to J$ is essential. Then, for m-a.e. $x \in X$, the following hold.

1. The fiber J_x is not bi-Lipschitz equivalent to any deterministic nor quasi-deterministic self-conformal set.
2. J_x is not a geometric circle nor even a piecewise smooth curve.
3. If J_x has a non-degenerate connected component (for example if J_x is connected), then $h = \text{HD}(J_x) > 1$.
4. Let d be the dimension of the ambient Riemannian space Y. Then $\text{HD}(J_x) < d$.
Corollary

Suppose that $f : \mathcal{I} \to \mathcal{I}$ is essential. Then, for m-a.e. $x \in X$, the following hold.

1. The fiber \mathcal{I}_x is not bi-Lipschitz equivalent to any deterministic nor quasi-deterministic self-conformal set.
2. \mathcal{I}_x is not a geometric circle nor even a piecewise smooth curve.
3. If \mathcal{I}_x has a non-degenerate connected component (for example if \mathcal{I}_x is connected), then $h = \text{HD}(\mathcal{I}_x) > 1$.
4. Let d be the dimension of the ambient Riemannian space Y. Then $\text{HD}(\mathcal{I}_x) < d$.

Finally we also ...
... get a positive answer to the question by Brück-Bürger concerning polynomial systems:

Theorem

If $d \geq 2$ is an integer, $0 < \delta < \delta(d)$, the skew-product map $f_{d,\delta} : \mathcal{J} \to \mathcal{J}$ is given by the formula

$$f_{d,\delta}(\omega, z) = (\sigma(\omega), f_{d,\omega_0}(z)) = (\sigma(\omega), z^d + \omega_0),$$

and if m_0 is an arbitrary Borel probability measure on $\overline{B}(0, \delta)$, different from δ_0, the Dirac δ measure supported at 0. Then we have

$$1 < \text{HD}(\mathcal{J}_\omega) < 2 \quad \text{for m-a.e. } \omega \in \overline{B}(0, \delta)^\mathbb{Z}.$$
Theorem

If $d \geq 2$ is an integer, $0 < \delta < \delta(d)$, the skew-product map $f_{d, \delta} : \mathcal{J} \to \mathcal{J}$ is given by the formula

$$f_{d, \delta}(\omega, z) = (\sigma(\omega), f_{d, \omega_0}(z)) = (\sigma(\omega), z^d + \omega_0),$$

and if m_0 is an arbitrary Borel probability measure on $\overline{B}(0, \delta)$, different from δ_0, the Dirac δ measure supported at 0. Then we have

$$1 < \text{HD}(\mathcal{J}_\omega) < 2 \quad \text{for } m\text{-a.e. } \omega \in \overline{B}(0, \delta)^\mathbb{Z}.$$