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CHAPTER 1

Curves

1. Examples, Arclength Parametrization

We say a vector functionfW .a; b/! R
3 is Ck (k D 0; 1; 2; : : :) if f and its firstk derivatives,f0, f00, . . . ,

f.k/, exist and are all continuous. We sayf is smoothif f is C
k for every positive integerk. A parametrized

curveis aC3 (or smooth) map̨ W I ! R
3 for some intervalI D .a; b/ or Œa; b� in R (possibly infinite). We

say˛ is regular if ˛0.t/ ¤ 0 for all t 2 I .

We can imagine a particle moving along the path˛, with its position at timet given by˛.t/. As we

learned in vector calculus,

˛0.t/ D d˛

dt
D lim

h!0

˛.t C h/ � ˛.t/

h

is thevelocityof the particle at timet . The velocity vector̨ 0.t/ is tangent to the curve at̨.t/ and its length,

k˛0.t/k, is the speed of the particle.

Example 1. We begin with some standard examples.

(a) Familiar from linear algebra and vector calculus is a parametrized line: Given pointsP andQ in

R
3, we letv D ��!PQ D Q � P and set̨ .t/ D P C tv, t 2 R. Note that̨ .0/ D P , ˛.1/ D Q,

and for0 � t � 1, ˛.t/ is on the line segmentPQ. We ask the reader to check in Exercise 8 that of

all paths fromP toQ, the “straight line path”̨ gives the shortest. This is typical of problems we

shall consider in the future.

(b) Essentially by the very definition of the trigonometric functions cos and sin, we obtain a very natural

parametrization of a circle of radiusa, as pictured in Figure 1.1(a):

˛.t/ D a
�

cost; sint
�

D
�

a cost; a sint
�

; 0 � t � 2�:

(a cos t, a sin t)
(a cos t, b sin t)

t
a a

b

(a) (b)

FIGURE 1.1

1
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(c) Now, if a; b > 0 and we apply the linear map

T WR2 ! R
2; T .x; y/ D .ax; by/;

we see that the unit circlex2Cy2 D 1maps to the ellipsex2=a2Cy2=b2 D 1. SinceT .cost; sint/ D
.a cost; b sint/, the latter gives a natural parametrization of the ellipse, as shown in Figure 1.1(b).

(d) Consider the two cubic curves inR2 illustrated in Figure 1.2. On the left is thecuspidal cubic

y=tx

y2=x3

y2=x3+x2

(a) (b)

FIGURE 1.2

y2 D x3, and on the right is thenodal cubicy2 D x3Cx2. These can be parametrized, respectively,

by the functions

˛.t/ D .t2; t3/ and ˛.t/ D .t2 � 1; t.t2 � 1//:

(In the latter case, as the figure suggests, we see that the liney D tx intersects the curve when

.tx/2 D x2.x C 1/, sox D 0 or x D t2 � 1.)

z=x3

y=x2

z2=y3

FIGURE 1.3
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(e) Now consider thetwisted cubicin R
3, illustrated in Figure 1.3, given by

˛.t/ D .t; t2; t3/; t 2 R:

Its projections in thexy-, xz-, andyz-coordinate planes are, respectively,y D x2, z D x3, and

z2 D y3 (the cuspidal cubic).

(f) Our next example is a classic called thecycloid: It is the trajectory of a dot on a rolling wheel

(circle). Consider the illustration in Figure 1.4. Assuming the wheel rolls without slipping, the

t

O

P
a

FIGURE 1.4

distance it travels along the ground is equal to the length of the circular arc subtended by the angle

through which it has turned. That is, if the radius of the circle isa and it has turned through angle

t , then the point of contact with thex-axis,Q, is at units to the right. The vector from the origin to

t a cos t

a sin t

a

P

C

O

P

Q

C

FIGURE 1.5

the pointP can be expressed as the sum of the three vectors
��!
OQ,

��!
QC , and

��!
CP (see Figure 1.5):

��!
OP D ��!OQC��!QC C��!CP
D .at; 0/C .0; a/C .�a sint;�a cost/;

and hence the function

˛.t/ D .at � a sint; a � a cost/ D a.t � sint; 1 � cost/; t 2 R

gives a parametrization of the cycloid.

(g) A (circular) helix is the screw-like path of a bug as it walks uphill on a right circular cylinder at a

constant slope or pitch. If the cylinder has radiusa and the slope isb=a, we can imagine drawing a

line of that slope on a piece of paper2�a units long, and then rolling the paper up into a cylinder.

The line gives one revolution of the helix, as we can see in Figure 1.6. If we take the axis of the

cylinder to be vertical, the projection of the helix in the horizontal plane is a circle of radiusa, and

so we obtain the parametrization̨.t/ D .a cost; a sint; bt/.
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FIGURE 1.6

Brief review of hyperbolic trigonometric functions. Just as the circlex2Cy2 D 1 is parametrized

by .cos�; sin�/, the portion of the hyperbolax2�y2 D 1 lying to the right of they-axis, as shown

in Figure 1.7, is parametrized by.cosht; sinht/, where

cosht D et C e�t

2
and sinht D et � e�t

2
:

By analogy with circular trigonometry, we set tanht D sinht

cosht
and secht D 1

cosht
. The following

(cosh t, sinh t)

FIGURE 1.7

formulas are easy to check:

cosh2 t � sinh2 t D 1; tanh2 t C sech2 t D 1
sinh0.t/ D cosht ; cosh0.t/ D sinht ; tanh0.t/ D sech2 t ; sech0.t/ D � tanht secht :
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(h) When a uniform and flexible chain hangs from two pegs, its weight is uniformly distributed along

its length. The shape it takes is called acatenary.1 As we ask the reader to check in Exercise 9,

the catenary is the graph off .x/ D C cosh.x=C/, for any constantC > 0. This curve will appear

FIGURE 1.8

numerous times in this course. O

Example 2. One of the more interesting curves that arise “in nature” is thetractrix.2 The traditional

story is this: A dog is at the end of a1-unit leash and buries a bone at.0; 1/ as his owner begins to walk

down thex-axis, starting at the origin. The dog tries to get back to the bone, so he always pulls the leash

taut as he is dragged along the tractrix by his owner. His pulling the leash taut means that the leash will be

tangent to the curve. When the master is at.t; 0/, let the dog’s position be.x.t/; y.t//, and let the leash

FIGURE 1.9

make angle�.t/ with the positivex-axis. Then we havex.t/ D t C cos�.t/, y.t/ D sin�.t/, so

tan�.t/ D dy

dx
D y0.t/

x0.t/
D cos�.t/� 0.t/

1 � sin �.t/� 0.t/
:

Therefore,� 0.t/ D sin�.t/. Separating variables and integrating, we have
R

d�= sin� D
R

dt , and so

t D � ln.csc� C cot�/ C c for some constantc. Since� D �=2 whent D 0, we see thatc D 0. Now,

since csc�Ccot� D 1C cos�

sin�
D 2 cos2.�=2/

2 sin.�=2/ cos.�=2/
D cot.�=2/, we can rewrite this ast D ln tan.�=2/.

Thus, we can parametrize the tractrix by

˛.�/ D
�

cos� C ln tan.�=2/; sin�
�

; �=2 � � < �:

1From the Latincat ēna, chain.
2From the Latintrahere, tractus, to pull.
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Alternatively, since tan.�=2/ D et , we have

sin� D 2 sin.�=2/ cos.�=2/ D 2et

1C e2t
D 2

et C e�t
D secht

cos� D cos2.�=2/ � sin2.�=2/ D 1 � e2t

1C e2t
D e�t � et

et C e�t
D � tanht ;

and so we can parametrize the tractrix instead by

ˇ.t/ D
�

t � tanht; secht/; t � 0: O

The fundamental concept underlying the geometry of curves is the arclength of a parametrized curve.

Definition. If ˛W Œa; b� ! R
3 is a parametrized curve, then for anya � t � b, we define itsarclength

from a to t to be s.t/ D
Z t

a

k˛0.u/kdu. That is, the distance a particle travels—the arclength of its

trajectory—is the integral of its speed.

An alternative approach is to start with the following

Definition. Let ˛W Œa; b�! R
3 be a (continuous) parametrized curve. Given a partitionP D fa D t0 <

t1 < � � � < tk D bg of the intervalŒa; b�, let

`.˛;P/ D
k
X

iD1

k˛.ti / � ˛.ti�1/k:

That is,`.˛;P/ is the length of the inscribed polygon with vertices at˛.ti /, i D 0; : : : ; k, as indicated in

a b

FIGURE 1.10

Figure 1.10. We define thearclengthof ˛ to be

length.˛/ D supf`.˛;P/ W P a partition ofŒa; b�g;

provided the set of polygonal lengths is bounded above.

Now, using this definition, we canprove that the distance a particle travels is the integral of its speed.

We will need to use the result of Exercise A.2.4.
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Proposition 1.1. Let ˛W Œa; b�! R
3 be a piecewise-C1 parametrized curve. Then

length.˛/ D
Z b

a

k˛0.t/kdt :

Proof. For any partitionP of Œa; b�, we have

`.˛;P/ D
k
X

iD1

k˛.ti / � ˛.ti�1/k D
k
X

iD1






Z ti

ti�1

˛0.t/dt





�

k
X

iD1

Z ti

ti�1

k˛0.t/kdt D
Z b

a

k˛0.t/kdt ;

so length.˛/ �
Z b

a

k˛0.t/kdt . The same holds on any interval.

Now, for a � t � b, defines.t/ to be the length of the curvęon the intervalŒa; t �. Then forh > 0 we

have

k˛.t C h/ � ˛.t/k
h

� s.t C h/ � s.t/
h

� 1

h

Z tCh

t

k˛0.u/kdu;

sinces.t C h/ � s.t/ is the length of the curvę on the intervalŒt; t C h�. (See Exercise 8 for the first

inequality and the first paragraph for the second.) Now

lim
h!0C

k˛.t C h/ � ˛.t/k
h

D k˛0.t/k D lim
h!0C

1

h

Z tCh

t

k˛0.u/kdu:

Therefore, by the squeeze principle,

lim
h!0C

s.t C h/ � s.t/
h

D k˛0.t/k:

A similar argument works forh < 0, and we conclude thats0.t/ D k˛0.t/k. Therefore,

s.t/ D
Z t

a

k˛0.u/kdu; a � t � b;

and, in particular,s.b/ D length.˛/ D
Z b

a

k˛0.t/kdt , as desired. �

If k˛0.t/k D 1 for all t 2 Œa; b�, i.e.,˛ always has speed1, thens.t/ D t � a. We say the curvę is

parametrized by arclengthif s.t/ D t for all t . In this event, we usually use the parameters 2 Œ0; L� and

write ˛.s/.

Example 3. (a) Let˛.t/ D
�

1
3
.1C t/3=2; 1

3
.1 � t/3=2; 1p

2
t
�

, t 2 .�1; 1/. Then we havę 0.t/ D
�

1
2
.1C t/1=2;�1

2
.1� t/1=2; 1p

2

�

, andk˛0.t/k D 1 for all t . Thus,˛ always has speed1.

(b) The standard parametrization of the circle of radiusa is ˛.t/ D .a cost; a sint/, t 2 Œ0; 2��,

so ˛0.t/ D .�a sint; a cost/ and k˛0.t/k D a. It is easy to see from the chain rule that if

we reparametrize the curve by̌.s/ D .a cos.s=a/; a sin.s=a//, s 2 Œ0; 2�a�, then ˇ0.s/ D
.� sin.s=a/; cos.s=a// and kˇ0.s/k D 1 for all s. Thus, the curvě is parametrized by arc-

length. O
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An important observation from a theoretical standpoint is that any regular parametrized curve can be

reparametrized by arclength. For if̨is regular, the arclength functions.t/ D
Z t

a

k˛0.u/kdu is an increas-

ing differentiable function (sinces0.t/ D k˛0.t/k > 0 for all t), and therefore has a differentiable inverse

function t D t.s/. Then we can consider the parametrization

ˇ.s/ D ˛.t.s//:

Note that the chain rule tells us that

ˇ0.s/ D ˛0.t.s//t 0.s/ D ˛0.t.s//=s0.t.s// D ˛0.t.s//=k˛0.t.s//k

is everywhere a unit vector; in other words,ˇ moves with speed1.

EXERCISES 1.1

*1. Parametrize the unit circle (less the point.�1; 0/) by the lengtht indicated in Figure 1.11.

t

(−1,0)

(x,y)

FIGURE 1.11

]2. Consider the helix̨ .t/ D .a cost; a sint; bt/. Calculate˛0.t/, k˛0.t/k, and reparametrizę by arc-

length.

3. Let˛.t/ D
�

1p
3

cost C 1p
2

sin t; 1p
3

cost; 1p
3

cost � 1p
2

sin t
�

. Calculatę 0.t/, k˛0.t/k, and reparam-

etrize˛ by arclength.

*4. Parametrize the graphy D f .x/, a � x � b, and show that its arclength is given by the traditional

formula

lengthD
Z b

a

q

1C
�

f 0.x/
�2
dx:

5. a. Show that the arclength of the catenary˛.t/ D .t; cosht/ for 0 � t � b is sinhb.

b. Reparametrize the catenary by arclength. (Hint: Find the inverse of sinh by using the quadratic

formula.)

*6. Consider the curvę .t/ D .et ; e�t ;
p
2t/. Calculatę 0.t/, k˛0.t/k, and reparametrizę by arclength,

starting att D 0.
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7. Find the arclength of the tractrix, given in Example 2, starting at.0; 1/ and proceeding to an arbitrary

point.

]8. LetP;Q 2 R
3 and let˛W Œa; b� ! R

3 be any parametrized curve with̨.a/ D P , ˛.b/ D Q. Let

v D Q � P . Prove that length.˛/ � kvk, so that the line segment fromP to Q gives the shortest

possible path. (Hint: Consider
Z b

a

˛0.t/ � vdt and use the Cauchy-Schwarz inequalityu � v � kukkvk.
Of course, with the alternative definition on p. 6, it’s even easier.)

9. Consider a uniform cable with densityı hanging in equilibrium. As shown in Figure 1.12, the tension

forcesT.x C �x/, �T.x/, and the weight of the piece of cable lying overŒx; x C �x� all balance.

If the bottom of the cable is atx D 0, T0 is the magnitude of the tension there, and the cable is

FIGURE 1.12

the graphy D f .x/, show thatf 00.x/ D gı

T0

p

1C f 0.x/2. (Remember that tan� D f 0.x/.) Letting

C D T0=gı, show thatf .x/ D C cosh.x=C/Cc for some constantc. (Hint: To integrate
Z

dup
1C u2

,

make the substitutionu D sinhv.)

10. As shown in Figure 1.13, Freddy Flintstone wishes to drive his car with square wheels along a strange

road. How should you design the road so that his ride is perfectly smooth, i.e., so that the center of his

wheel travels in a horizontal line? (Hints: Start with a square with vertices at.˙1;˙1/, with center

C

P

Q

O

FIGURE 1.13

C at the origin. If˛.s/ D .x.s/; y.s// is an arclength parametrization of the road, starting at.0;�1/,
consider the vector

��!
OC D ��!OP C ��!PQ C ��!QC , whereP D ˛.s/ is the point of contact andQ is the

midpoint of the edge of the square. Use
��!
QP D s˛0.s/ and the fact that

��!
QC is a unit vector orthogonal to
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��!
QP . Express the fact thatC moves horizontally to show thats D �y

0.s/

x0.s/
; you will need to differentiate

unexpectedly. Now use the result of Exercise 4 to findy D f .x/. Also see the hint for Exercise 9.)

11. Show that the curvę.t/ D

8

<

:

�

t; t sin.�=t/
�

; t ¤ 0
.0; 0/; t D 0

has infinite length onŒ0; 1�. (Hint: Consider

`.˛;PN / with PN D f0; 1=N; 2=.2N � 1/; 1=.N � 1/; : : : ; 1=2; 2=3; 1g.)

12. Prove that no four distinct points on the twisted cubic (see Example 1(e)) lie on a plane.

13. Consider the “spiral”̨ .t/ D r.t/.cost; sint/, wherer is C1 and0 � r.t/ � 1 for all t � 0.
a. Show that if̨ has finite length onŒ0;1/ andr is decreasing, thenr.t/! 0 ast !1.

b. Show that ifr.t/ D 1=.t C 1/, then˛ has infinite length onŒ0;1/.
c. If r.t/ D 1=.t C 1/2, does̨ have finite length onŒ0;1/?
d. Characterize (in terms of the existence of improper integral(s)) the functionsr for which ˛ has

finite length onŒ0;1/.
e. Use the result of part d to show that the result of part a holds even without the hypothesis thatr be

decreasing.

14. (a special case of a recentAmerican Mathematical Monthlyproblem) Supposę W Œa; b� ! R
2 is a

smooth parametrized plane curve (perhaps not arclength-parametrized). Prove that if the chord length

k˛.s/ � ˛.t/k depends only onjs � t j, then˛ must be a (subset of) a line or a circle. (How many

derivatives of̨ do you need to use?)

2. Local Theory: Frenet Frame

What distinguishes a circle or a helix from a line is theircurvature, i.e., the tendency of the curve to

change direction. We shall now see that we can associate to each smooth (C
3) arclength-parametrized curve

˛ a natural “moving frame” (an orthonormal basis forR
3 chosen at each point on the curve, adapted to the

geometry of the curve as much as possible).

We begin with a fact from vector calculus that will appear throughout this course.

Lemma 2.1. Supposef;gW .a; b/! R
3 are differentiable and satisfyf.t/ � g.t/ D constfor all t . Then

f0.t/ � g.t/ D �f.t/ � g0.t/. In particular,

kf.t/k D const if and only if f.t/ � f0.t/ D 0 for all t :

Proof. Since a function is constant on an interval if and only if its derivative is zero everywhere on that

interval, we deduce from the product rule,

.f � g/0.t/ D f0.t/ � g.t/C f.t/ � g0.t/;

that if f � g is constant, thenf � g0 D �f0 � g. In particular,kfk is constant if and only ifkfk2 D f � f is constant,

and this occurs if and only iff � f0 D 0. �

Remark. This result is intuitively clear. If a particle moves on a sphere centered at the origin, then

its velocity vector must be orthogonal to its position vector; any component in the direction of the position
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vector would move the particle off the sphere. Similarly, supposef andg have constant length and a constant

angle between them. Then in order to maintain the constant angle, asf turns towardsg, we see thatg must

turn awayfrom f at the same rate.

Using Lemma 2.1 repeatedly, we now construct theFrenet frameof suitable regular curves. We assume

throughout that the curvę is parametrized by arclength. Then, for starters,˛0.s/ is theunit tangent vector

to the curve, which we denote byT.s/. SinceT has constant length,T0.s/ will be orthogonal toT.s/.
AssumingT0.s/ ¤ 0, define theprincipal normal vectorN.s/ D T0.s/=kT0.s/k and thecurvature�.s/ D
kT0.s/k. So far, we have

T0.s/ D �.s/N.s/:

If �.s/ D 0, the principal normal vector is not defined. Assuming� ¤ 0, we continue. Define thebinormal

vectorB.s/ D T.s/ � N.s/. ThenfT.s/;N.s/;B.s/g form a right-handed orthonormal basis forR
3.

Now, N0.s/ must be a linear combination ofT.s/, N.s/, andB.s/. But we know from Lemma 2.1 that

N0.s/ �N.s/ D 0 andN0.s/ �T.s/ D �T0.s/ �N.s/ D ��.s/. We define thetorsion�.s/ D N0.s/ �B.s/. This

gives us

N0.s/ D ��.s/T.s/C �.s/B.s/:

Finally, B0.s/must be a linear combination ofT.s/, N.s/, andB.s/. Lemma 2.1 tells us thatB0.s/�B.s/ D 0,
B0.s/ � T.s/ D �T0.s/ � B.s/ D 0, andB0.s/ �N.s/ D �N0.s/ � B.s/ D ��.s/. Thus,

B0.s/ D ��.s/N.s/:

In summary, we have:

Frenet formulas

T0.s/ D �.s/N.s/
N0.s/ D ��.s/T.s/ C �.s/B.s/
B0.s/ D ��.s/N.s/

The skew-symmetry of these equations is made clearest when westate the Frenet formulas in matrix

form:
2

6
4

j j j
T0.s/ N0.s/ B0.s/

j j j

3

7
5 D

2

6
4

j j j
T.s/ N.s/ B.s/
j j j

3

7
5

2

6
4

0 ��.s/ 0

�.s/ 0 ��.s/
0 �.s/ 0

3

7
5 :

Indeed, note that the coefficient matrix appearing on the right is skew-symmetric. This is the case whenever

we differentiate an orthogonal matrix depending on a parameter (s in this case). (See Exercise A.1.4.)

Note that, by definition, the curvature,�, is always nonnegative; the torsion,� , however, has a sign, as

we shall now see.

Example 1. Consider the helix, given by its arclength parametrization (see Exercise 1.1.2)˛.s/ D
�

a cos.s=c/; a sin.s=c/; bs=c
�

, wherec D
p
a2 C b2. Then we have

T.s/ D 1

c

�

�a sin.s=c/; a cos.s=c/; b
�
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T0.s/ D 1

c2

�

�a cos.s=c/;�a sin.s=c/; 0
�

D a

c2
„ƒ‚…

�.s/

�

� cos.s=c/;� sin.s=c/; 0
�

„ ƒ‚ …

N.s/

:

Summarizing,

�.s/ D a

c2
D a

a2 C b2
and N.s/ D

�

� cos.s=c/;� sin.s=c/; 0
�

:

Now we deal withB and the torsion:

B.s/ D T.s/ � N.s/ D 1

c

�

b sin.s=c/;�b cos.s=c/; a
�

B0.s/ D 1

c2

�

b cos.s=c/; b sin.s=c/; 0
�

D � b
c2

N.s/;

so we infer that�.s/ D b

c2
D b

a2 C b2
.

Note that both the curvature and the torsion are constants. The torsion is positive when the helix is

“right-handed” (b > 0) and negative when the helix is “left-handed” (b < 0). It is interesting to observe

that, fixinga > 0, asb ! 0, the helix becomes very tightly wound and almost planar, and� ! 0; as

b !1, the helix twists extremely slowly and looks more and more like a straight line on the cylinder and,

once again,� ! 0. As the reader can check, the helix has the greatest torsion whenb D a; why does this

seem plausible?

In Figure 2.1 we show the Frenet frames of the helix at some sample points. (In the latter two pictures,

T

N

B

T

N

B

T N

B

T

N
B

FIGURE 2.1

the perspective is misleading.T;N;B still form a right-handed frame: In the third,T is in front ofN, and in

the last,B is pointing upwards and out of the page.)O

We stop for a moment to contemplate what happens with the Frenet formulas when we are dealing with

anon-arclength-parametrized, regular curve˛. As we did in Section 1, we can (theoretically) reparametrize

by arclength, obtaininǧ .s/. Then we havę .t/ D ˇ.s.t//, so, by the chain rule,

(�) ˛0.t/ D ˇ0.s.t//s0.t/ D �.t/T.s.t//;
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where�.t/ D s0.t/ is the speed.3 Similarly, by the chain rule, once we have the unit tangent vector as a

function of t , differentiating with respect tot , we have

.Tıs/0.t/ D T0.s.t//s0.t/ D �.t/�.s.t//N.s.t//:

Using the more casual—but convenient—Leibniz notation for derivatives,

dT
dt
D dT
ds

ds

dt
D ��N or �N D dT

ds
D

dT
dt

ds
dt

D 1

�

dT
dt
:

Example 2. Let’s calculate the curvature of the tractrix (see Example 2 in Section 1). Using the first

parametrization, we havę0.�/ D .� sin� C csc�; cos�/, and so

�.�/ D k˛0.�/k D
q

.� sin � C csc�/2 C cos2 � D
p

csc2 � � 1 D � cot� :

(Note the negative sign because
�

2
� � < � .) Therefore,

T.�/ D � 1

cot�
.� sin � C csc�; cos�/ D � tan�.cot� cos�; cos�/ D .� cos�;� sin�/:

Of course, looking at Figure 1.9, we should expect the formula forT. Then, to find the curvature, we

calculate

�N D dT
ds
D

dT
d�

ds
d�

D .sin �;� cos�/

� cot�
D .� tan�/.sin�;� cos�/:

Since� tan� > 0 and.sin�;� cos�/ is a unit vector we conclude that

�.�/ D � tan� and N.�/ D .sin�;� cos�/:

Later on we will see an interesting geometric consequence of the equality of the curvature and the (absolute

value of) the slope. O

Example 3. Let’s calculate the “Frenet apparatus” for the parametrized curve

˛.t/ D .3t � t3; 3t2; 3t C t3/:

We begin by calculating̨ 0 and determining the unit tangent vectorT and speed�:

˛0.t/ D 3.1 � t2; 2t; 1C t2/; so

�.t/ D k˛0.t/k D 3
q

.1 � t2/2 C .2t/2 C .1C t2/2 D 3
q

2.1C t2/2 D 3
p
2.1C t2/ and

T.t/ D 1p
2

1

1C t2 .1 � t
2; 2t; 1C t2/ D 1p

2

�
1� t2
1C t2 ;

2t

1C t2 ; 1
�

:

Now

�N D dT
ds
D

dT
dt

ds
dt

D 1

�.t/

dT
dt

D 1

3
p
2.1C t2/

1p
2

� �4t
.1C t2/2 ;

2.1 � t2/
.1C t2/2 ; 0

�

3� is the Greek letterupsilon, not to be confused with�, the Greek letternu.
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D 1

3
p
2.1C t2/

1p
2
� 2

1C t2
„ ƒ‚ …

�

�

� 2t

1C t2 ;
1� t2
1C t2 ; 0

�

„ ƒ‚ …

N

:

Here we have factored out the length of the derivative vector and left ourselves with a unit vector in its

direction, which must be the principal normalN; the magnitude that is left must be the curvature�. In

summary, so far we have

�.t/ D 1

3.1C t2/2 and N.t/ D
�

� 2t

1C t2 ;
1 � t2
1C t2 ; 0

�

:

Next we find the binormalB by calculating the cross product

B.t/ D T.t/ �N.t/ D 1p
2

�

� 1 � t
2

1C t2 ;�
2t

1C t2 ; 1
�

:

And now, at long last, we calculate the torsion by differentiatingB:

��N D dB
ds
D

dB
dt

ds
dt

D 1

�.t/

dB
dt

D 1

3
p
2.1C t2/

1p
2

�
4t

.1C t2/2 ;
2.t2 � 1/
.1C t2/2 ; 0

�

D � 1

3.1C t2/2
„ ƒ‚ …

�

�

� 2t

1C t2 ;
1 � t2
1C t2 ; 0

�

„ ƒ‚ …

N

;

so �.t/ D �.t/ D 1

3.1C t2/2 . O

Now we see that curvature enters naturally when we compute the acceleration of a moving particle.

Differentiating the formula (�) on p. 12, we obtain

˛00.t/ D � 0.t/T.s.t//C �.t/T0.s.t//s0.t/

D � 0.t/T.s.t//C �.t/2
�

�.s.t//N.s.t//
�

:

Suppressing the variables for a moment, we can rewrite this equation as

(��) ˛00 D � 0T C ��2N:

The tangential component of acceleration is the derivative of speed; the normal component (the “centripetal

acceleration” in the case of circular motion) is the product of the curvature of the pathand the square of the

speed. Thus, from the physics of the motion we can recover the curvature of the path:

Proposition 2.2. For any regular parametrized curve˛, we have� D k˛
0 � ˛00k
k˛0k3 .

Proof. Since˛0�˛00 D .�T/� .� 0TC��2N/ D ��3T�N and��3 > 0, we obtain��3 D k˛0�˛00k,
and so� D k˛0 � ˛00k=�3, as desired. �

We next proceed to study various theoretical consequences of the Frenet formulas.

Proposition 2.3. A space curve is a line if and only if its curvature is everywhere0.
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Proof. The general line is given by̨.s/ D svC c for some unit vectorv and constant vectorc. Then

˛0.s/ D T.s/ D v is constant, so� D 0. Conversely, if� D 0, thenT.s/ D T0 is a constant vector,

and, integrating, we obtain̨.s/ D
Z s

0

T.u/duC ˛.0/ D sT0 C ˛.0/. This is, once again, the parametric

equation of a line. �

Example 4. Suppose all the tangent lines of a space curve pass through a fixed point. What can we

say about the curve? Without loss of generality, we take the fixed point to be the origin and the curve to be

arclength-parametrized by̨. Then there is a scalar function� so that for everys we havę .s/ D �.s/T.s/.
Differentiating, we have

T.s/ D ˛0.s/ D �0.s/T.s/C �.s/T0.s/ D �0.s/T.s/C �.s/�.s/N.s/:

Then.�0.s/ � 1/T.s/C �.s/�.s/N.s/ D 0, so, sinceT.s/ andN.s/ are linearly independent, we infer that

�.s/ D sC c for some constantc and�.s/ D 0. Therefore, the curve must be a line through the fixed point.

O

Somewhat more challenging is the following

Proposition 2.4. A space curve is planar if and only if its torsion is everywhere0. The only planar

curves with nonzero constant curvature are (portions of) circles.

Proof. If a curve lies in a planeP, thenT.s/ andN.s/ span the planeP0 parallel toP and passing

through the origin. Therefore,B D T � N is a constant vector (the normal toP0), and soB0 D ��N D 0,

from which we conclude that� D 0. Conversely, if� D 0, the binormal vectorB is a constant vectorB0.

Now, consider the functionf .s/ D ˛.s/ � B0; we havef 0.s/ D ˛0.s/ � B0 D T.s/ � B.s/ D 0, and so

f .s/ D c for some constantc. This means that̨ lies in the planex � B0 D c.
We leave it to the reader to check in Exercise 2a. that a circle of radiusa has constant curvature1=a.

(This can also be deduced as a special case of the calculation in Example 1.) Now suppose a planar curve˛

has constant curvature�0. Consider the auxiliary functioň.s/ D ˛.s/C 1

�0
N.s/. Then we havě 0.s/ D

˛0.s/C 1

�0
.��0.s/T.s// D T.s/ � T.s/ D 0. Thereforě is a constant function, say̌.s/ D P for all s.

Now we claim that̨ is a (subset of a) circle centered atP , for k˛.s/ � P k D k˛.s/ � ˇ.s/k D 1=�0. �

We have already seen that a circular helix has constant curvature and torsion. We leave it to the reader

to check in Exercise 10 that these are the only curves with constant curvature and torsion. Somewhat more

interesting are the curves for which�=� is a constant.

A generalized helixis a space curve with� ¤ 0 all of whose tangent vectors make a constant angle with

a fixed direction. As shown in Figure 2.2, this curve lies on a generalized cylinder, formed by taking the

union of the lines (rulings) in that fixed direction through each point of the curve. We can now characterize

generalized helices by the following

Proposition 2.5. A curve is a generalized helix if and only if�=� is constant.

Proof. Supposę is an arclength-parametrized generalized helix. Then there is a (constant) unit vector

A with the property thatT � A D cos� for some constant� . Differentiating, we obtain�N � A D 0, whence

N � A D 0. Differentiating yet again, we have

(�) .��T C �B/ � A D 0:
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FIGURE 2.2

Now, note thatA lies in the plane spanned byT andB, and thusB � A D ˙ sin� . Thus, we infer from

equation (�) that�=� D ˙ cot� , which is indeed constant.

Conversely, if�=� is constant, set�=� D cot� for some angle� 2 .0; �/. SetA.s/ D cos�T.s/ C
sin�B.s/. ThenA0.s/ D .� cos� � � sin�/N.s/ D 0, soA.s/ is a constant unit vectorA, andT.s/ � A D
cos� is constant, as desired.�

Example 5. In Example 3 we saw a curvę with � D � , so from the proof of Proposition 2.5 we see

that the curve should make a constant angle� D �=4 with the vectorA D 1p
2
.T C B/ D .0; 0; 1/ (as

should have been obvious from the formula forT alone). We verify this in Figure 2.3 by drawing̨along

with the vertical cylinder built on the projection of̨onto thexy-plane. O

FIGURE 2.3
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The Frenet formulas actually characterize the local picture of a space curve.

Proposition 2.6(Local canonical form). Let ˛ be a smooth (C3 or better) arclength-parametrized curve.

If ˛.0/ D 0, then fors near0, we have

˛.s/ D
 

s � �
2
0

6
s3 C : : :

!

T.0/C
�
�0

2
s2 C �0

0

6
s3 C : : :

�

N.0/C
��0�0

6
s3 C : : :

�

B.0/:

(Here�0, �0, and�0
0 denote, respectively, the values of�, � , and�0 at0, and lim

s!0
: : : =s3 D 0.)

Proof. Using Taylor’s Theorem, we write

˛.s/ D ˛.0/C s˛0.0/C 1

2
s2˛00.0/C 1

6
s3˛000.0/C : : : ;

where lim
s!0

: : : =s3 D 0. Now, ˛.0/ D 0, ˛0.0/ D T.0/, and˛00.0/ D T0.0/ D �0N.0/. Differentiating

again, we havę 000.0/ D .�N/0.0/ D �0
0N.0/C �0.��0T.0/C �0B.0//. Substituting, we obtain

˛.s/ D sT.0/C 1

2
s2�0N.0/C 1

6
s3
�

��2
0T.0/C �0

0N.0/C �0�0B.0/
�

C : : :

D
 

s � �
2
0

6
s3 C : : :

!

T.0/C
�
�0

2
s2 C �0

0

6
s3 C : : :

�

N.0/C
��0�0

6
s3 C : : :

�

B.0/;

as required. �

We now introduce three fundamental planes atP D ˛.0/:

(i) the osculating plane, spanned byT.0/ andN.0/,
(ii) the rectifying plane, spanned byT.0/ andB.0/, and

(iii) the normal plane, spanned byN.0/ andB.0/.

We see that, locally, the projections of˛ into these respective planes look like

(i) .u; .�0=2/u
2 C .�0

0=6/u
3 C : : :/

(ii) .u; .�0�0=6/u
3 C : : :/, and

(iii) .u2;
�p

2�0

3
p

�0

�

u3 C : : :/,

where lim
u!0

: : : =u3 D 0. Thus, the projections of̨ into these planes look locally as shown in Figure 2.4.

The osculating (“kissing”) plane is the plane that comes closest to containing˛ nearP (see also Exercise

osculating plane rectifying plane normal plane

T T

N

N

B B

FIGURE 2.4
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25); the rectifying (“straightening”) plane is the one that comes closest to flattening the curve nearP ; the

normal plane is normal (perpendicular) to the curve atP . (Cf. Figure 1.3.)

EXERCISES 1.2

1. Compute the curvature of the following arclength-parametrized curves:

a. ˛.s/ D
�

1p
2

coss; 1p
2

coss; sins
�

b. ˛.s/ D
�p
1C s2; ln.s C

p
1C s2/

�

*c. ˛.s/ D
�

1
3
.1C s/3=2; 1

3
.1� s/3=2; 1p

2
s
�

, s 2 .�1; 1/

2. Calculate the unit tangent vector, principal normal, and curvature of the following curves:

a. a circle of radiusa: ˛.t/ D .a cost; a sint/

b. ˛.t/ D .t; cosht/

c. ˛.t/ D .cos3 t; sin3 t/, t 2 .0; �=2/

3. Calculate the Frenet apparatus (T, �, N, B, and�) of the following curves:

*a. ˛.s/ D
�

1
3
.1C s/3=2; 1

3
.1� s/3=2; 1p

2
s
�

, s 2 .�1; 1/
b. ˛.t/ D

�
1
2
et .sin t C cost/; 1

2
et .sin t � cost/; et

�

*c. ˛.t/ D
�p
1C t2; t; ln.t C

p
1C t2/

�

d. ˛.t/ D .et cost; et sint; et /

e. ˛.t/ D .cosht; sinht; t/

f. ˛.t/ D
�

t; t2=2; t
p
1C t2 C ln.t C

p
1C t2/

�

g. ˛.t/ D .t � sint cost; sin2 t; cost/, t 2 .0; �/

]4. Prove that the curvature of the plane curvey D f .x/ is given by� D jf 00j
.1C f 02/3=2

.

]*5. Use Proposition 2.2 and the second parametrization of the tractrix given in Example 2 of Section 1 to

recompute the curvature.

*6. By differentiating the equationB D T � N, derive the equationB0 D ��N.

]7. Supposę is an arclength-parametrized space curve with the property thatk˛.s/k � k˛.s0/k D R for

all s sufficiently close tos0. Prove that�.s0/ � 1=R. (Hint: Consider the functionf .s/ D k˛.s/k2.

What do you know aboutf 00.s0/?)

8. Let˛ be a regular (arclength-parametrized) curve with nonzero curvature. The normal line to˛ at˛.s/

is the line through̨ .s/ with direction vectorN.s/. Suppose all the normal lines tǫpass through a

fixed point. What can you say about the curve?

9. a. Prove that if all the normal planes of a curve pass through a particular point, then the curve lies on

a sphere. (Hint: Apply Lemma 2.1.)

*b. Prove that if all the osculating planes of a curve pass through a particular point, then the curve is

planar.

10. Prove that if� D �0 and � D �0 are nonzero constants, then the curve is a (right) circular helix.
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(Hint: Start by solving forN. The only solutions of the differential equationy00 C k2y D 0 are

y D c1 cos.kt/C c2 sin.kt/. )

Remark. It is an amusing exercise to givea andb (in our formula for the circular helix) in terms

of �0 and�0.

*11. Proceed as in the derivation of Proposition 2.2 to show that

� D ˛0 � .˛00 � ˛000/

k˛0 � ˛00k2 :

12. Let˛ be aC4 arclength-parametrized curve with� ¤ 0. Prove that̨ is a generalized helix if and only

if ˛00 � .˛000 � ˛.iv// D 0. (Here˛.iv/ denotes the fourth derivative of̨.)

13. Suppose�� ¤ 0 atP . Of all the planes containing the tangent line to˛ atP , show that̨ lies locally

on both sides only of the osculating plane.

14. Let˛ be a regular curve with� ¤ 0 atP . Prove that the planar curve obtained by projecting˛ into its

osculating plane atP has the same curvature atP as˛.

15. A closed, planar curveC is said to haveconstant breadth� if the distance between parallel tangent

lines toC is always�. (No,C needn’t be a circle. See Figure 2.5.) Assume for the rest of this problem

that the curve is arclength parametrized by aC
2 function˛W Œ0; L�! R

2 with � ¤ 0. To sayC is closed

means̨ .0/ D ˛.L/ and the derivatives match as well.

(the Wankel engine design)

FIGURE 2.5

a. Let’s call two points with parallel tangent lines opposite. Prove that ifC has constant breadth

�, then the chord joining opposite points is normal to the curve at both points. (Hint: Ifˇ.s/ is

oppositę .s/, thenˇ.s/ D ˛.s/C �.s/T.s/C�N.s/. First explain why the coefficient ofN is�;

then show that� D 0.)
b. Prove that the sum of the reciprocals of the curvature at opposite points is equal to�. (Warning: If

˛ is arclength-parametrized,̌ is quite unlikely to be. It might be helpful to introduce the notation

Tˇ andNˇ for the unit tangent vector and principal normal ofˇ. How are they related toT and

N?)

16. Let˛ andˇ be two regular curves defined onŒa; b�. We say̌ is aninvoluteof ˛ if, for eacht 2 Œa; b�,
(i) ˇ.t/ lies on the tangent line tǫ at˛.t/, and
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(ii) the tangent vectors tǫ andˇ at˛.t/ andˇ.t/, respectively, are perpendicular.

Reciprocally, we also refer tǫ as anevoluteof ˇ.

a. Supposę is arclength-parametrized. Show thatˇ is an involute of˛ if and only if ˇ.s/ D
˛.s/C .c � s/T.s/ for some constantc (hereT.s/ D ˛0.s/). We will normally refer to the curvě

obtained withc D 0 asthe involute of˛. If you were to wrap a string around the curve˛, starting

at s D 0, the involute is the path the end of the string follows as you unwrap it, always pulling the

string taut, as illustrated in the case of a circle in Figure 2.6.

P

FIGURE 2.6

b. Show that the involute of a helix is a plane curve.

c. Show that the involute of a catenary is a tractrix. (Hint: You do notneedan arclength parametriza-

tion!)

d. If ˛ is an arclength-parametrized plane curve, prove that the curveˇ given by

ˇ.s/ D ˛.s/C 1

�.s/
N.s/

is the unique evolute of̨ lying in the plane of̨ . Prove, moreover, that this curve is regular if

�0 ¤ 0. (Hint: Go back to the original definition.)

17. Find the involute of the cycloid̨.t/ D .t C sint; 1 � cost/, t 2 Œ��;��, usingt D 0 as your starting

point. Give a geometric description of your answer.

18. Supposę is a generalized helix with axis in directionA. Let ˇ be the curve obtained by projecting̨

onto a plane orthogonal toA. Prove that the principal normals of˛ andˇ are parallel at corresponding

points and calculate the curvature ofˇ in terms of the curvature of̨.

19. Let˛ be a curve parametrized by arclength with�; � ¤ 0.
a. Supposę lies on the surface of a sphere centered at the origin (i.e.,k˛.s/k D const for alls).

Prove that

(?)
�

�
C
�
1

�

�
1

�

�0�0
D 0:
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(Hint: Write ˛ D �T C �N C �B for some functions�, �, and�, differentiate, and use the fact

thatfT;N;Bg is a basis forR3.)

b. Prove the converse: If̨ satisfies the differential equation (?), then˛ lies on the surface of some

sphere. (Hint: Using the values of�,�, and� you obtained in part a, show that˛�.�TC�NC�B/
is a constant vector, the candidate for the center of the sphere. If the nature of this argument puzzles

you, review the latter part of the proof of Proposition 2.4.)

20. Two distinct parametrized curves̨andˇ are calledBertrand matesif for eacht , the normal line tǫ

at ˛.t/ equals the normal line tǒ at ˇ.t/. An example is pictured in Figure 2.7. Suppose˛ andˇ are

FIGURE 2.7

Bertrand mates.

a. If ˛ is arclength-parametrized, show thatˇ.s/ D ˛.s/ C r.s/N.s/ and r.s/ D const. Thus,

corresponding points of̨ andˇ are a constant distance apart.

b. Show that, moreover, the angle between the tangent vectors to˛ andˇ at corresponding points

is constant. (Hint: IfT˛ andTˇ are the unit tangent vectors tǫandˇ respectively, consider

T˛ � Tˇ.)

c. Supposę is arclength-parametrized and�� ¤ 0. Show that̨ has a Bertrand matě if and only if

there are constantsr andc so thatr� C c� D 1. (Hint forH): Interpret the result of part b using

your formula forˇ0 from part a.)

d. Given˛, prove that if there is more than one curveˇ so that̨ andˇ are Bertrand mates, then there

are infinitely many such curvešand this occurs if and only if̨ is a circular helix.

21. (See Exercise 20.) Suppose˛ andˇ are Bertrand mates. Prove that the torsion of˛ and the torsion of

ˇ at corresponding points have constant product.

22. SupposeY is a C
2 vector function onŒa; b� with kYk D 1 and Y, Y0, andY00 everywhere linearly

independent. For any nonzero constantc, define˛.t/ D c
Z t

a

�

Y.u/ � Y0.u/
�

du, t 2 Œa; b�. Prove that

the curvę has constant torsion1=c. (Hint: Show thatB D ˙Y.)

23. (See Exercise 20.) SupposeY is aC2 arclength-parametrized curve on the unit sphere. For any nonzero

constanta and0 < � � �=2, define

˛.t/ D a
�Z t

0

Y.s/ds C cot�
Z t

0

�

Y.s/ � Y0.s/
�

ds

�

:

Show that the curvę has a Bertrand mate. (Hint: Show thatN D ˙Y0.)
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24. a. Let˛ be an arclength-parametrizedplanecurve. We create a “parallel” curvě by takingˇ D
˛C "N (for a fixed small positive value of"). Explain the terminology and express the curvature

of ˇ in terms of" and the curvature of̨ .

b. Now let˛ be an arclength-parametrizedspacecurve. Show that we can obtain a “parallel” curveˇ

by takingˇ D ˛C "
�

.cos�/NC .sin�/B
�

for an appropriate function� . How many such parallel

curves are there?

c. Sketch such a parallel curve for a circular helix˛.

25. Supposę is an arclength-parametrized curve,P D ˛.0/, and�.0/ ¤ 0. Use Proposition 2.6 to

establish the following:

*a. Let Q D ˛.s/ andR D ˛.t/. Show that the plane spanned byP , Q, andR approaches the

osculating plane of̨ atP ass; t ! 0.

b. Theosculating circleat P is the limiting position of the circle passing throughP , Q, andR as

s; t ! 0. Prove that the osculating circle has centerZ D P C
�

1=�.0/
�

N.0/ and radius1=�.0/.

c. Theosculating sphereatP is the limiting position of the sphere throughP and three neighboring

points on the curve, as the latter points tend toP independently. Prove that the osculating sphere

has center

Z D P C
�

1=�.0/
�

N.0/C
�

1=�.0/.1=�/0.0/
�

B.0/

and radius q

.1=�.0//2 C .1=�.0/.1=�/0.0//2:
d. How is the result of part c related to Exercise 19?

26. a. Supposě is a plane curve andCs is the circle centered ať.s/ with radiusr.s/. Assuminǧ and

r are differentiable functions, show that the circleCs is contained inside the circleCt whenever

t > s if and only if kˇ0.s/k � r 0.s/ for all s.

b. Let˛ be arclength-parametrized plane curve and suppose� is a decreasing function. Prove that the

osculating circle at̨ .s/ lies inside the osculating circle at̨.t/ whenevert > s. (See Exercise 25

for the definition of the osculating circle.)

27. Suppose the front wheel of a bicycle follows the arclength-parametrized plane curve˛. Determine the

pathˇ of the rear wheel,1 unit away, as shown in Figure 2.8. (Hint: If the front wheel is turned an

FIGURE 2.8

angle� from the axle of the bike, start by writing̨� ˇ in terms of� , T, andN. Your goal should be
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a differential equation that� must satisfy, involving only�. Note that the path of the rear wheel will

obviously depend on the initial condition�.0/. In all but the simplest of cases, it may be impossible to

solve the differential equation explicitly.)

3. Some Global Results

3.1. Space Curves.The fundamental notion in geometry (see Section 1 of the Appendix) is that of

congruence: When do two figures differ merely by a rigid motion? If the curve˛� is obtained from the

curve˛ by performing a rigid motion (composition of a translation and a rotation), then the Frenet frames

at corresponding points differ by that same rigid motion, and the twisting of the frames (which is what gives

curvature and torsion) should be the same. (Note that a reflection will not affect the curvature, but will

change the sign of the torsion.)

Theorem 3.1(Fundamental Theorem of Curve Theory). Two space curvesC andC � are congruent

(i.e., differ by a rigid motion) if and only if the corresponding arclength parametrizations˛;˛�W Œ0; L�! R
3

have the property that�.s/ D ��.s/ and�.s/ D ��.s/ for all s 2 Œ0; L�.

Proof. Supposę � D ‰ı˛ for some rigid motion‰WR3 ! R
3, so‰.x/ D Ax C b for someb 2

R
3 and some3 � 3 orthogonal matrixA with detA > 0. Then˛�.s/ D A˛.s/ C b, so k˛�0.s/k D
kA˛0.s/k D 1, sinceA is orthogonal. Therefore,̨ � is likewise arclength-parametrized, andT�.s/ D
AT.s/. Differentiating again,��.s/N�.s/ D �.s/AN.s/. SinceA is orthogonal,AN.s/ is a unit vector,

and soN�.s/ D AN.s/ and ��.s/ D �.s/. But thenB�.s/ D T�.s/ � N�.s/ D AT.s/ � AN.s/ D
A.T.s/�N.s// D AB.s/, inasmuch as orthogonal matrices map orthonormal bases to orthonormal bases and

detA > 0 insures that orientation is preserved as well (i.e., right-handed bases map to right-handed bases).

Last,B�0.s/ D ���.s/N�.s/ andB�0.s/ D AB0.s/ D ��.s/AN.s/ D ��.s/N�.s/, so��.s/ D �.s/, as

required.

Conversely, suppose� D �� and � D ��. We now define a rigid motion‰ as follows. LetA be

the unique orthogonal matrix so thatAT.0/ D T�.0/, AN.0/ D N�.0/, andAB.0/ D B�.0/, and let

b D ˛�.0/ � A˛.0/. A also has positive determinant, since both orthonormal bases are right-handed. Set

Q̨ D ‰ı˛. We now claim that̨ �.s/ D Q̨ .s/ for all s 2 Œ0; L�. Note, by our argument in the first part of the

proof, thatQ� D � D �� and Q� D � D ��. Consider

f .s/ D QT.s/ � T�.s/C QN.s/ �N�.s/C QB.s/ � B�.s/:

We now differentiatef , using the Frenet formulas.

f 0.s/ D
� QT0.s/ � T�.s/C QT.s/ � T�0.s/

�

C
� QN0.s/ � N�.s/C QN.s/ � N�0.s/

�

C
� QB0.s/ � B�.s/C QB.s/ � B�0.s/

�

D �.s/
� QN.s/ � T�.s/C QT.s/ � N�.s/

�

� �.s/
� QT.s/ �N�.s/C QN.s/ � T�.s/

�

C �.s/
� QB.s/ � N�.s/C QN.s/ � B�.s/

�

� �.s/
� QN.s/ � B�.s/C QB.s/ � N�.s/

�

D 0;

since the first two terms cancel and the last two terms cancel. By construction,f .0/ D 3, sof .s/ D 3 for

all s 2 Œ0; L�. Since each of the individual dot products can be at most1, the only way the sum can be3 for
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all s is for each to be1 for all s, and this in turn can happen only whenQT.s/ D T�.s/, QN.s/ D N�.s/, and
QB.s/ D B�.s/ for all s 2 Œ0; L�. In particular, sinceQ̨ 0.s/ D QT.s/ D T�.s/ D ˛�0.s/ and Q̨ .0/ D ˛�.0/, it

follows that Q̨ .s/ D ˛�.s/ for all s 2 Œ0; L�, as we wished to show.�

Remark. The latter half of this proof can be replaced by asserting the uniqueness of solutions of a sys-

tem of differential equations, as we will see in a moment. Also see Exercise A.3.1 for a matrix-computational

version of the proof we just did.

Example 1. We now see that the only curves with constant� and� are circular helices. O

Perhaps more interesting is the existence question: Given continuous functions�; � W Œ0; L�! R (with �

everywhere positive), is there a space curve with those as its curvature and torsion? The answer is yes, and

this is an immediate consequence of the fundamental existence theorem for differential equations, Theorem

3.1 of the Appendix. That is, we let

F.s/ D

2

6
4

j j j
T.s/ N.s/ B.s/
j j j

3

7
5 and K.s/ D

2

6
4

0 ��.s/ 0

�.s/ 0 ��.s/
0 �.s/ 0

3

7
5 :

Then integrating the linear system of ordinary differential equationsF 0.s/ D F.s/K.s/, F.0/ D F0, gives

us the Frenet frame everywhere along the curve, and we recover˛ by integratingT.s/.
We turn now to the concept oftotal curvatureof a closedspace curve, which is the integral of its

curvature. That is, if̨ W Œ0; L� ! R
3 is an arclength-parametrized curve with̨.0/ D ˛.L/, its total

curvature is
Z L

0

�.s/ds. This quantity can be interpreted geometrically as follows: TheGauss mapof ˛ is

the map to the unit sphere,†, given by the unit tangent vectorTW Œ0; L� ! †; its image,�, is classically

T

FIGURE 3.1

called thetangent indicatrixof ˛. Observe that—provided the Gauss map is one-to-one—the length of� is

the total curvature of̨ , since length.�/ D
Z L

0

kT0.s/kds D
Z L

0

�.s/ds. More generally, this integral is

the length of� “counting multiplicities.”

A preliminary question to ask is this: What curves� in the unit sphere can be the Gauss map of some

closedspace curvę ? Sincę .s/ D ˛.0/C
Z s

0

T.u/du, we see that a necessary and sufficient condition

is that
Z L

0

T.s/ds D 0. (Note, however, that this depends on the arclength parametrization of the original



÷3. SOME GLOBAL RESULTS 25

curve and is not a parametrization-independent condition on the image curve� � †.) We do, nevertheless,

have the following geometric consequence of this condition. For any (unit) vectorA, we have

0 D A �
Z L

0

T.s/ds D
Z L

0

.T.s/ � A/ds;

and so the average value ofT � A must be0. In particular, the tangent indicatrix must cross the great circle

with normal vectorA. That is, if the curve� is to be a tangent indicatrix, it must be “balanced” with respect

to every directionA. It is natural to ask for the shortest curve(s) with this property.

If � 2 †, let �? denote the oriented great circle with normal vector�. (By this we mean that we go

around the circle�? so that atx, the tangent vectorT points so thatx;T; � form a right-handed basis for

R
3.)

Proposition 3.2(Crofton’s formula). Let � be a piecewise-C1 curve on the sphere. Then

length.�/ D 1

4

Z

†

#.� \ �?/d�

D � � .the average number of intersections of� with all great circles/:

(Hered� represents the usual element of surface area on†.)

Proof. We leave this to the reader in Exercise 11.�

Remark. Although we don’t stop to justify it here, the set of� for which #.� \ �?/ is infinite is a set

of measure zero, and so the integral makes sense.

Applying this to the case of the tangent indicatrix of a closed space curve, we deduce the following

classical result.

Theorem 3.3(Fenchel). The total curvature of any closed space curve is at least2� , and equality holds

if and only if the curve is a (convex) planar curve.

Proof. Let � be the tangent indicatrix of our space curve. IfC is a closed plane curve, then� is a

great circle on the sphere. As we shall see in the next section, convexity of the curve can be interpreted as

saying� > 0 everywhere, so the tangent indicatrix traverses the great circle exactly once and
Z

C

�ds D 2�
(cf. Theorem 3.5 in the next section).

To prove the converse, note that, by our earlier remarks,� must cross�? for almost every� 2 † and

hence must intersect it at least twice, and so it follows from Proposition 3.2 that
Z

C

�ds D length.�/ �
1

4
.2/.4�/ D 2� . Now, we claim that if� is a connected, closed curve in† of length� 2� , then� lies in a

closed hemisphere. It will follow, then, that if� is a tangent indicatrix of length2� , it must be a great circle.

(For if � lies in the hemisphereA � x � 0,
Z L

0

T.s/ � Ads D 0 forcesT � A D 0, so� is the great circle

A � x D 0.) It follows that the curve is planar and the tangent indicatrix traverses the great circle precisely

one time, which means that� > 0 and the curve is convex. (See the next section for more details on this.)

To prove the claim, we proceed as follows. Suppose length.�/ � 2� . ChooseP andQ in � so that the

arcs�1 D
_

PQ and�2 D
_

QP have the same length. ChooseN bisecting the shorter great circle arc fromP

toQ, as shown in Figure 3.2. For convenience, we rotate the picture so thatN is the north pole of the sphere.

Suppose now that the curve�1 were to enter the southern hemisphere; let�1 denote the reflection of�1
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FIGURE 3.2

across the north pole (following arcs of great circle throughN ). Now,�1 [ �1 is a closed curve containing

a pair of antipodal points and therefore is longer than a great circle. (See Exercise 1.) Since�1 [ �1 has

the same length as�, we see that length.�/ > 2� , which is a contradiction. Therefore� indeed lies in the

northern hemisphere.�

We now sketch the proof of a result that has led to many interesting questions in higher dimensions. We

say a simple (non-self-intersecting) closed4 space curve isknottedif we cannot fill it in with a disk.

Theorem 3.4(Fáry-Milnor). If a simple closed space curve is knotted, then its total curvature is at least

4� .

Sketch of proof. Suppose the total curvature ofC is less than4� . Then the average number

#.� \ �?/ < 4. Since this is generically an even number� 2 (whenever the great circle isn’t tangent

to�), there must be an open set of�’s for which we have #.� \�?/ D 2. Choose one such,�0. This means

that the tangent vector toC is only perpendicular to�0 twice, so the functionf .x/ D x � �0 has only two

critical points. That is, the planes perpendicular to�0 will (by Rolle’s Theorem) intersectC either in a line

segment or in a single point (at the top and bottom); that is, by moving these planes from the bottom ofC

to the top, we fill in a disk, soC is unknotted. �

3.2. Plane Curves.We conclude this chapter with some results on plane curves.Now we assign a

sign to the curvature: Given an arclength-parametrized curve˛, (re)defineN.s/ so thatfT.s/;N.s/g is

a right-handed basis forR2 (i.e., one turns counterclockwise fromT.s/ to N.s/), and then set�.s/ D
T0.s/ � N.s/, from which it follows thatT0.s/ D �.s/N.s/ (why?), as before. So� > 0 whenT is twisting

counterclockwise and� < 0 whenT is twisting clockwise. Although the total curvature
Z

C

j�.s/jds of a

simple closed plane curve may be quite a bit larger than2� , it is intuitively plausible that the tangent vector

must make precisely one full rotation, either counterclockwise or clockwise, and thus we have

Theorem 3.5(Hopf Umlaufsatz). If C is a simple closed plane curve, then
Z

C

�ds D ˙2� , theC
occurring whenC is oriented counterclockwise and� when it’s oriented clockwise.

The crucial ingredient is to keep track of acontinuoustotal angle through which the tangent vector has

turned. That is, we need the following

4To be more careful here, if̨W Œa; b� ! R3 is a parametrization with̨ .a/ D ˛.b/, then˛.t/ D ˛.u/ occursonly when
ft; ug D fa; bg.
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FIGURE 3.3

Lemma 3.6. Let ˛W Œa; b�! R
2 be aC1, regular parametrized plane curve. Then there is aC

1 function

� W Œa; b�! R so thatT.t/ D
�

cos�.t/; sin�.t/
�

for all t 2 Œa; b�. Moreover, for any two such functions,�

and��, we have�.b/ � �.a/ D ��.b/ � ��.a/. The number.�.b/ � �.a//=2� is called therotation index

of ˛.

Proof. Consider the four open semicirclesU1 D f.x; y/ 2 S1 W x > 0g, U2 D f.x; y/ 2 S1 W
x < 0g, U3 D f.x; y/ 2 S1 W y > 0g, andU4 D f.x; y/ 2 S1 W y < 0g. Then the functions

 1;n.x; y/ D arctan.y=x/C 2n�
 2;n.x; y/ D arctan.y=x/C .2nC 1/�
 3;n.x; y/ D � arctan.x=y/C .2nC 1

2
/�

 4;n.x; y/ D � arctan.x=y/C .2n � 1
2
/�

are smooth maps i;nWUi ! R with the property that
�

cos. i;n.x; y//; sin. i;n.x; y//
�

D .x; y/ for every

i D 1; 2; 3; 4 andn 2 Z.

Define�.a/ so thatT.a/ D
�

cos�.a/; sin�.a/
�

. Let S D ft 2 Œa; b� W � is defined andC1 on Œa; t �g,
and lett0 D supS . Suppose first thatt0 < b. Choosei so thatT.t0/ 2 Ui , and choosen 2 Z so that

 i;n.T.t0// D lim t!t�
0
�.t/. BecauseT is continuous att0, there isı > 0 so thatT.t/ 2 Ui for all t with

jt � t0j < ı. Then setting�.t/ D  i;n.T.t// for all t0 � t < t0 C ı gives us aC1 function � defined on

Œ0; t0 C ı=2�, so we cannot havet0 < b. (Note that�.t/ D  i;n.T.t// for all t0 � ı < t < t0. Why?) But

the same argument shows that whent0 D b, the function� is C
1 on all of Œa; b�.

Now, sinceT.b/ D T.a/, we know that�.b/ � �.a/ must be an integral multiple of2� . Moreover,

for any other function�� with the same properties, we have��.t/ D �.t/C 2�n.t/ for some integern.t/.

Since� and�� are both continuous,n must be a continuous function as well; since it takes on only integer

values, it must be a constant function. Therefore,��.b/ � ��.a/ D �.b/ � �.a/, as required. �

Sketch of proof of Theorem 3.5.Note first that if T.s/ D
�

cos�.s/; sin�.s/
�

, then T0.s/ D

� 0.s/
�

� sin�.s/; cos�.s/
�

, so�.s/ D � 0.s/ and
Z L

0

�.s/ds D
Z L

0

� 0.s/ds D �.L/ � �.0/ is 2� times the

rotation index of the closed curvę.
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Let� D f.s; t/ W 0 � s � t � Lg. Consider the secant maphW�! S1 defined by

h.s; t/ D

8

ˆ̂

<̂

ˆ̂

:̂

T.s/; s D t
�T.0/; .s; t/ D .0;L/

˛.t/ � ˛.s/

k˛.t/ � ˛.s/k ; otherwise

:

Then it follows from Proposition 2.6 (using Taylor’s Theorem to calculate˛.t/ D ˛.s/C .t � s/˛0.s/C : : :)
thath is continuous. A more sophisticated version of the proof of Lemma 3.6 will establish (see Exercise

13) that there is a continuous functionQ� W�! R so thath.s; t/ D
�

cos Q�.s; t/; sin Q�.s; t/
�

for all .s; t/ 2 �.

It then follows from Lemma 3.6 that
Z

C

�ds D �.L/ � �.0/ D Q�.L;L/ � Q�.0; 0/ D Q�.0;L/ � Q�.0; 0/
„ ƒ‚ …

N1

C Q�.L;L/ � Q�.0;L/
„ ƒ‚ …

N2

:

Rotating the curve as required, we assume that˛.0/ is the lowest point on the curve (i.e., the one whose

y-coordinate is smallest) and, then, that˛.0/ is the origin andT.0/ D e1, as shown in Figure 3.4. (The

FIGURE 3.4

last may require reversing the orientation of the curve.) Now,N1 is the angle through which the position

vector of the curve turns, starting at0 and ending at� ; since the curve lies in the upper half-plane, we must

haveN1 D � . But N2 is likewise the angle through which the negative of the position vector turns, so

N2 D N1 D � . With these assumptions, we see that the rotation index of the curve is1. Allowing for the

possible change in orientation, the rotation index must therefore be˙1, as required. �

Corollary 3.7. If C is a closed curve, for any pointP 2 C there is a pointQ 2 C where the unit

tangent vector is opposite that atP .

Proof. Let T.s/ D
�

cos�.s/; sin�.s/
�

for a C
1 function � W Œ0; L� ! R, as in Lemma 3.6. SayP D

˛.s0/, and let�.s0/ D �0. Since�.L/ � �.0/ is an integer multiple of2� , there must bes1 2 Œ0; L� with

either�.s1/ D �0 C � or �.s1/ D �0 � � . TakeQ D ˛.s1/. �

Recall that one of the ways of characterizing a convex functionf WR ! R is that its graph lie on one

side of each of its tangent lines. So we make the following

Definition. The regular closed plane curvęis convexif it lies on one side of its tangent line at each

point.
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Proposition 3.8. A simple closed regular plane curveC is convex if and only if we can choose the

orientation of the curve so that� � 0 everywhere.

Remark. We leave it to the reader in Exercise 2 to give a non-simple closed curve for which this result

is false.

Proof. Assume, without loss of generality, thatT.0/ D .1; 0/ and the curve is oriented counterclock-

wise. Using the function� constructed in Lemma 3.6, the condition that� � 0 is equivalent to the condition

that� is a nondecreasing function with�.L/ D 2� .

Suppose first that� is nondecreasing andC is not convex. Then we can find a pointP D ˛.s0/ on the

curve and valuess0
1, s0

2 so that˛.s0
1/ and˛.s0

2/ lie on opposite sides of the tangent line toC atP . Then,

by the maximum value theorem, there are valuess1 ands2 so that˛.s1/ is the greatest distance “above”

the tangent line and̨.s2/ is the greatest distance “below.” Consider the unit tangent vectorsT.s0/, T.s1/,
andT.s2/. Since these vectors are either parallel or anti-parallel, some pair must be identical. Letting the

respective values ofs bes� ands�� with s� < s��, we have�.s�/ D �.s��/ (since� is nondecreasing and

�.L/ D 2� , the values cannot differ by a multiple of2�), and therefore�.s/ D �.s�/ for all s 2 Œs�; s���.

This means that that portion ofC between̨ .s�/ and˛.s��/ is a line segment parallel to the tangent line of

C atP ; this is a contradiction.

Conversely, supposeC is convex and�.s1/ D �.s2/ for somes1 < s2. By Corollary 3.7 there must be

s3 with T.s3/ D �T.s1/ D �T.s2/. SinceC is convex, the tangent line at two of˛.s1/, ˛.s2/, and˛.s3/

must be the same, say at˛.s�/ D P and˛.s��/ D Q. If PQ does not lie entirely inC , chooseR 2 PQ,

R … C . SinceC is convex, the line throughR perpendicular to
 !
PQ must intersectC in at least two points,

sayM andN , with N farther from
 !
PQ thanM . SinceM lies in the interior of4NPQ, all three vertices

of the triangle can never lie on the same side of any line throughM . In particular,N , P , andQ cannot lie

on the same side of the tangent line toC atM . Thus, it must be thatPQ � C , so�.s/ D �.s1/ D �.s2/

for all s 2 Œs1; s2�. Therefore,� is nondecreasing, and we are done.�

Definition. A critical point of� is called avertexof the curveC .

A closed curve must have at least two vertices: the maximum and minimum points of�. Every point of

a circle is a vertex. We conclude with the following

Proposition 3.9(Four Vertex Theorem). A closed convex plane curve has at least four vertices.

Proof. Suppose thatC has fewer than four vertices. As we see from Figure 3.5, either� must have

two critical points (maximum and minimum) or� must have three critical points (maximum, minimum,

and inflection point). More precisely, suppose that� increases fromP to Q and decreases fromQ to P .

Without loss of generality, we may takeP to be at the origin. The equation of
 !
PQ is A � x D 0, where we

chooseA so that�0.s/ � 0 precisely whenA � ˛.s/ � 0. Then
Z

C

�0.s/.A � ˛.s//ds > 0. Integrating by

parts, we have
Z

C

�0.s/.A � ˛.s//ds D �
Z

C

�.s/.A � T.s//ds D
Z

C

A � N0.s/ds D A �
Z

C

N0.s/ds D 0:

From this contradiction, we infer thatC must have at least four vertices.�
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0 L 0 L

FIGURE 3.5

3.3. The Isoperimetric Inequality. One of the classic questions in mathematics is the following:

Given a closed curve of lengthL, what shape will enclose the most area? A little experimentation will

most likely lead the reader to the

Theorem 3.10(Isoperimetric Inequality). If a simple closed plane curveC has lengthL and encloses

areaA, then

L2 � 4�A;
and equality holds if and only ifC is a circle.

Proof. There are a number of different proofs, but we give one (due to E. Schmidt, 1939) based on

Green’s Theorem, Theorem 2.6 of the Appendix, and—not surprisingly—relying heavily on the geometric-

arithmetic mean inequality and the Cauchy-Schwarz inequality (see Exercise A.1.2). We choose parallel

FIGURE 3.6

lines`1 and`2 tangent to, and enclosing,C , as pictured in Figure 3.6. We draw a circleC of radiusR with

those same tangent lines and put the origin at its center, with they-axis parallel tò i . We now parametrize

C by arclength by̨ .s/ D .x.s/; y.s//, s 2 Œ0; L�, taking˛.0/ 2 `1 and˛.s0/ 2 `2. We then consider

˛W Œ0; L�! R
2 given by

˛.s/ D
�

x.s/; y.s/
�

D

8

<

:

�

x.s/;�
p

R2 � x.s/2
�

; 0 � s � s0
�

x.s/;
p

R2 � x.s/2
�

; s0 � s � L
:
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(˛ needn’t be a parametrization of the circleC , since it may cover certain portions multiple times, but that’s

no problem.) LettingA denote the area enclosed byC andA D �R2 that enclosed byC , we have (by

Exercise A.2.5)

A D
Z L

0

x.s/y0.s/ds

A D �R2 D �
Z L

0

y.s/x0.s/ds D �
Z L

0

y.s/x0.s/ds:

Adding these equations and applying the Cauchy-Schwarz inequality, we have

AC �R2 D
Z L

0

�

x.s/y0.s/ � y.s/x0.s/
�

ds D
Z L

0

�

x.s/; y.s/
�

�
�

y0.s/;�x0.s/
�

ds

�
Z L

0

k
�

x.s/; y.s/
�

kk
�

y0.s/;�x0.s/
�

kds D RL;(�)

inasmuch ask.y0.s/;�x0.s//k D k.x0.s/; y0.s//k D 1 since˛ is arclength-parametrized. We now recall

the arithmetic-geometric mean inequality:
p
ab � aC b

2
for positive numbersa andb;

with equality holding if and only ifa D b. We therefore have

p
A
p
�R2 � AC �R

2

2
� RL

2
;

so 4�A � L2.

Now suppose equality holds here. Then we must haveA D �R2 andL D 2�R. It follows that the

curveC has the same breadth in all directions (sinceL now determinesR). But equality must also hold

in (�), so the vectors̨ .s/ D
�

x.s/; y.s/
�

and
�

y0.s/;�x0.s/
�

must be everywhere parallel. Since the first

vector has lengthR and the second has length1, we infer that
�

x.s/; y.s/
�

D R
�

y0.s/;�x0.s/
�

;

and sox.s/ D Ry0.s/. By our remark at the beginning of this paragraph, the same result will hold if

we rotate the axes�=2; let y D y0 be the line halfway between the enclosinghorizontal lines `i . Now,

substitutingy � y0 for x and�x for y, so we havey.s/ � y0 D �Rx0.s/, as well. Therefore,x.s/2 C
�

y.s/ � y0

�2 D R2.x0.s/2 C y0.s/2/ D R2, andC is indeed a circle of radiusR. �

EXERCISES 1.3

1. a. Prove that the shortest path between two points on the unit sphere is an arc of a great circle con-

necting them. (Hint: Without loss of generality, take one point to be.0; 0; 1/ and the other to be

.sinu0; 0; cosu0/. Let ˛.t/ D .sinu.t/ cosv.t/; sinu.t/ sinv.t/; cosu.t//, a � t � b, be an arbi-

trary curve withu.a/ D 0, v.a/ D 0, u.b/ D u0, v.b/ D 0, calculate the arclength of̨, and show

that it is smallest whenv.t/ D 0 for all t .)

b. Prove that ifP andQ are points on the unit sphere, then the shortest path between them has length

arccos.P �Q/.
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2. Give a closed plane curveC with � > 0 that is not convex.

3. Draw closed plane curves with rotation indices0, 2, �2, and3, respectively.

*4. SupposeC is a simple closed plane curve with0 < � � c. Prove that length.C / � 2�=c.

5. Give an alternative proof of the latter part of Theorem 3.1 by considering instead the function

f .s/ D k QT.s/ � T�.s/k2 C k QN.s/ � N�.s/k2 C k QB.s/ � B�.s/k2 :

6. (See Exercise 1.2.15.) Prove that ifC is a simple closed (convex) plane curve of constant breadth�,

then length.C / D ��.

7. A convex plane curve with the origin in its interior can be determined by its tangent lines.cos�/x C
.sin�/y D p.�/, called itssupport lines, as shown in Figure 3.7. The functionp.�/ is called the

support function. (Here� is the polar coordinate, and we assumep.�/ > 0 for all � 2 Œ0; 2��.)

FIGURE 3.7

a. Prove that the line given above is tangent to the curve at the point

˛.�/ D .p.�/ cos� � p0.�/ sin�; p.�/ sin� C p0.�/ cos�/.

b. Prove that the curvature of the curve at˛.�/ is 1
ı�

p.�/C p00.�/
�

.

c. Prove that the length of̨ is given byL D
Z 2�

0

p.�/d� .

d. Prove that the area enclosed by˛ is given byA D 1

2

Z 2�

0

�

p.�/2 � p0.�/2
�

d� .

e. Use the answer to part c to reprove the result of Exercise 6.

8. LetC be aC2 closed space curve, say parametrized by arclength by˛W Œ0; L� ! R
3. A unit normal

fieldX onC is aC1 vector-valued function withX.0/ D X.L/ andX.s/ �T.s/ D 0 andkX.s/k D 1 for

all s. We define thetwist of X to be

tw.C;X/ D 1

2�

Z L

0

X0.s/ � .T.s/ � X.s//ds:

a. Show that ifX andX� are two unit normal fields onC , then tw.C;X/ and tw.C;X�/ differ by an

integer. The fractional part of tw.C;X/ (i.e., the twist mod1) is called thetotal twistof C . (Hint:

Write X.s/ D cos�.s/N.s/C sin�.s/B.s/.)

b. Prove that the total twist ofC equals the fractional part of
1

2�

Z L

0

�ds.

c. Prove that if a closed curve lies on a sphere, then its total twist is0. (Hint: Choose an obvious

candidate forX.)
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Remark. W. Scherrer proved in 1940 that if the total twist of every closed curve on a surface is0,

then that surface must be a (subset of a) plane or sphere.

9. (See Exercise 1.2.24.) Under what circumstances does a closed space curve have a parallel curve that is

also closed? (Hint: Exercise 8 should be relevant.)

10. (The Bishop Frame) Supposę is an arclength-parametrizedC2 curve. Suppose we haveC1 unit vector

fieldsN1 andN2 D T � N1 along˛ so that

T � N1 D T �N2 D N1 � N2 D 0I

i.e.,T;N1;N2 will be a smoothly varying right-handed orthonormal frame as we move along the curve.

(To this point, the Frenet frame would work just fine if the curve wereC
3 with � ¤ 0.) But now we

want to impose the extra condition thatN0
1 � N2 D 0. We say the unit normal vector fieldN1 is parallel

along˛; this means that the only change ofN1 is in the direction ofT. In this event,T;N1;N2 is called

aBishop framefor ˛. A Bishop frame can be defined even when a Frenet frame cannot (e.g., when there

are points with� D 0).
a. Show that there are functionsk1 andk2 so that

T0 D k1N1 C k2N2

N0
1 D �k1T

N0
2 D �k2T

b. Show that�2 D k2
1 C k2

2 .

c. Show that if̨ is C
3 with � ¤ 0, then we can takeN1 D .cos�/N C .sin�/B, where� 0 D �� .

Check thatk1 D � cos� andk2 D �� sin� .

d. Show that̨ lies on the surface of a sphere if and only if there are constants�, � so that�k1 C
�k2 C 1 D 0; moreover, if˛ lies on a sphere of radiusR, then�2 C �2 D R2. (Cf. Exercise

1.2.19.)

e. What condition is required to define a Bishop frame globally on a closed curve? (See Exercise 8.)

How is this question related to Exercise 1.2.24?

11. Prove Proposition 3.2 as follows. Let˛W Œ0; L� ! † be the arclength parametrization of�, and define

FW Œ0; L� � Œ0; 2�/ ! † by F.s; �/ D �, where�? is the great circle making angle� with � at ˛.s/.

Check thatF takes on the value� precisely #.� \ �?/ times, so thatF is a “multi-parametrization” of

† that gives us
Z

†

#.� \ �?/d� D
Z L

0

Z 2�

0






@F
@s
� @F
@�





d�ds:

Compute that






@F
@s
� @F
@�





D j sin�j (this is the hard part) and finish the proof. (Hints: As pictured in

Figure 3.8, showv.s; �/ D cos�T.s/C sin�.˛.s/ � T.s// is the tangent vector to the great circle�?

and deduce thatF.s; �/ D ˛.s/ � v.s; �/. Show that
@F
@�

and ˛ � @v
@s

are both multiples ofv.)

12. Generalize Theorem 3.5 to prove that ifC is apiecewise-smoothplane curve with exterior angles�j ,

j D 1; : : : ; `, then
Z

C

�ds C
X̀

j D1

�j D ˙2� . (As shown in Figure 3.9, the exterior angle�j at˛.sj / is



34 CHAPTER 1. CURVES

Γ

FIGURE 3.8

C

FIGURE 3.9

defined to be the angle between˛0
�.sj / D lim

s!s�
j

˛0.s/ and˛0
C.sj / D lim

s!s
C

j

˛0.s/, with the convention

that j�j j � � .)

13. Complete the details of the proof of the indicated step in the proof of Theorem 3.5, as follows (following

H. Hopf’s original proof). Pick an interior points0 2 �.

a. ChooseQ�.s0/ so thath.s0/ D
�

cos Q�.s0/; sin Q�.s0/
�

. Use Lemma 3.6, slightly modified, to deter-

mine Q� uniquely as a function that is continuous on each ray�!s0s for everys2 �.

b. Since a continuous function on a compact (closed and bounded) set� � R
2 is uniformly continu-

ous, given any"0 > 0, there is a numberı0 > 0 so that whenevers; s0 2 � andks� s0k < ı0, we

will have kh.s/ � h.s0/k < "0. In particular, show that there isı0 so that whenevers; s0 2 � and

ks� s0k < ı0, the angle between the vectorsh.s/ andh.s0/ is less than� .

c. Consider the triangle formed by two radii of the unit circle making angle� . Give an upper bound

on� in terms of the chord length̀. Using this, deduce that given" > 0, there is0 < ı < ı0 so that

wheneverks� s0k < ı, we havej Q�.s/ � Q�.s0/C 2�n.s/j < " for some integern.s/.
d. Now chooses0 D s1 2 � arbitrary. Consider the functionf .u/ D Q�.s0 C u.s� s0// � Q�.s0 C

u.s1 � s0//. Show thatf is continuous andf .0/ D 0, and deduce thatjf .1/j < � . Conclude that

n D 0 in part c and, thus, thatQ� is continuous.



CHAPTER 2

Surfaces: Local Theory

1. Parametrized Surfaces and the First Fundamental Form

LetU be an open set inR2. A function fWU ! R
m (for us,m D 1 and3will be most common) is called

C
1 if f and its partial derivatives

@f
@u

and
@f
@v

are all continuous. We will ordinarily use.u; v/ as coordinates

in our parameter space, and.x; y; z/ as coordinates inR3. Similarly, for anyk � 2, we sayf is C
k if all its

partial derivatives of order up tok exist and are continuous. We sayf is smoothif f is C
k for every positive

integerk. We will henceforth assume all our functions areC
k for k � 3. One of the crucial results for

differential geometry is that iff is C2, then
@2f
@u@v

D @2f
@v@u

(and similarly for higher-order derivatives).

Notation: We will often also use subscripts to indicate partial derivatives, as follows:

fu $ @f
@u

fv $ @f
@v

fuu $ @2f
@u2

fuv D .fu/v $ @2f
@v@u

Definition. A regular parametrizationof a subsetM � R
3 is a (C3) one-to-one function

xWU !M � R
3 so that xu � xv ¤ 0

for some open setU � R
2.1 A connected subsetM � R

3 is called asurfaceif each point has a neighbor-

hood that is regularly parametrized.

We might consider the curves onM obtained by fixingv D v0 and varyingu, called au-curve, and

obtained by fixingu D u0 and varyingv, called av-curve; these are depicted in Figure 1.1. At the point

P D x.u0; v0/, we see thatxu.u0; v0/ is tangent to theu-curve andxv.u0; v0/ is tangent to thev-curve.

We are requiring that these vectors span a plane, whose normal vector is given byxu � xv.

Example 1. We give some basic examples of parametrized surfaces. Note that our parameters do not

necessarily range over an open set of values.

(a) The graph of a functionf WU ! R, z D f .x; y/, is parametrized byx.u; v/ D .u; v; f .u; v//.

Note thatxu � xv D .�fu;�fv; 1/ ¤ 0, so this is always a regular parametrization.

(b) Thehelicoid, as shown in Figure 1.2, is the surface formed by drawing horizontal rays from the axis

1For technical reasons with which we shall not concern ourselves in this course, we should also require that the inverse function
x�1W x.U /! U be continuous.

35
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FIGURE 1.1

FIGURE 1.2

of the helix˛.t/ D .cost; sint; bt/ to points on the helix:

x.u; v/ D .u cosv; u sinv; bv/; u � 0; v 2 R:

Note thatxu � xv D .b sinv;�b cosv; u/ ¤ 0. Theu-curves are rays and thev-curves are helices.

(c) Thetorus (surface of a doughnut) is formed by rotating a circle of radiusb about a circle of radius

a > b lying in an orthogonal plane, as pictured in Figure 1.3. The regular parametrization is given

b
a

FIGURE 1.3
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by

x.u; v/ D ..aC b cosu/ cosv; .aC b cosu/ sinv; b sinu/; 0 � u; v < 2�:

Thenxu � xv D �b.aC b cosu/
�

cosu cosv; cosu sinv; sinu
�

, which is never0.

(d) The standard parametrization of the unit sphere† is given by spherical coordinates.�; �/$ .u; v/:

x.u; v/ D .sinu cosv; sinu sinv; cosu/; 0 < u < �; 0 � v < 2�:

Sincexu� xv D sinu.sinu cosv; sinu sinv; cosu/ D .sinu/x.u; v/, the parametrization is regular

away fromu D 0; � , which we’ve excluded anyhow becausex fails to be one-to-one at such points.

Theu-curves are the so-called lines of longitude and thev-curves are the lines of latitude on the

sphere.

(e) Another interesting parametrization of the sphere is given bystereographic projection. (Cf. Exercise

1.1.1.) We parametrize the unit sphere less the north pole.0; 0; 1/ by thexy-plane, assigning to each

FIGURE 1.4

.u; v/ the point (¤ .0; 0; 1/) where the line through.0; 0; 1/ and.u; v; 0/ intersects the unit sphere,

as pictured in Figure 1.4. We leave it to the reader to derive the following formula in Exercise 1:

x.u; v/ D
�

2u

u2 C v2 C 1;
2v

u2 C v2 C 1;
u2 C v2 � 1
u2 C v2 C 1

�

: O

For our last examples, we give two general classes of surfaces that will appear throughout our work.

Example 2. Let I � R be an interval, and let̨.u/ D .0; f .u/; g.u//, u 2 I , be a regular parametrized

plane curve2 with f > 0. Then thesurface of revolutionobtained by rotating̨ about thez-axis is

parametrized by

x.u; v/ D
�

f .u/ cosv; f .u/ sinv; g.u/
�

; u 2 I; 0 � v < 2�:
2Throughout, we assume regular parametrized curves to be one-to-one.
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Note thatxu � xv D f .u/
�

�g0.u/ cosv;�g0.u/ sinv; f 0.u/
�

, so this is a regular parametrization. The

u-curves are often calledprofile curvesor meridians; these are copies of̨ rotated an anglev around the

z-axis. Thev-curves are circles, calledparallels. O

Example 3. LetI � R be an interval, let̨ W I ! R
3 be a regular parametrized curve, and letˇW I ! R

3

be an arbitrary smooth function witȟ.u/ ¤ 0 for all u 2 I . We define a parametrized surface by

x.u; v/ D ˛.u/C vˇ.u/; u 2 I; v 2 R:

This is called aruled surfacewith rulings ˇ.u/ anddirectrix ˛. It is easy to check thatxu � xv D .˛0.u/C
vˇ0.u// � ˇ.u/, which may or may not be everywhere nonzero.

As particular examples, we have the helicoid (see Figure 1.2) and the following (see Figure 1.5):

(1) Cylinder: Herě is a constant vector, and the surface is regular as long as˛ is one-to-one with

˛0 ¤ ˇ.

(2) Cone: Here we fix a point (say the origin) as the vertex, let˛ be a curve with̨ � ˛0 ¤ 0, and let

ˇ D �˛. Obviously, this fails to be a regular surface at the vertex (whenv D 1), but xu � xv D
.v� 1/˛.u/�˛0.u/ is nonzero otherwise. (Note that another way to parametrize this surface would

be to takę � D 0 andˇ� D ˛.)

(3) Tangent developable: Let̨be a regular parametrized curve with nonzero curvature, and letˇ D ˛0;

that is, the rulings are the tangent lines of the curve˛. Thenxu � xv D �v˛0.u/ � ˛00.u/, so (at

least locally) this is a regular parametrized surface away from the directrix. O

FIGURE 1.5

In calculus, we learn that, given a differentiable functionf , the best linear approximation to the graph

y D f .x/ “near” x D a is given by the tangent liney D f 0.a/.x � a/ C f .a/, and similarly in higher

dimensions. In the case of a regular parametrized surface, it seems reasonable that the tangent plane at

P D x.u0; v0/ should contain the tangent vector to theu-curve˛1.u/ D x.u; v0/ atu D u0 and the tangent

vector to thev-curve˛2.v/ D x.u0; v/ at v D v0. That is, the tangent plane should contain the vectorsxu

andxv, each evaluated at.u0; v0/. Now, sincexu�xv ¤ 0 by hypothesis, the vectorsxu andxv are linearly

independent and must therefore span a plane. We now make this an official

Definition. LetM be a regular parametrized surface, and letP 2 M . Then choose a regular parametriza-

tion xWU ! M � R
3 with P D x.u0; v0/. We define thetangent planeof M at P to be the subspace

TPM spanned byxu andxv (evaluated at.u0; v0/).

Remark . The alert reader may wonder what happens if two people pick two different such local

parametrizations ofM nearP . Do they both provide the same planeTPM? This sort of question is very
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common in differential geometry, and is not one we intend to belabor in this introductory course. However,

to get a feel for how such arguments go, the reader may work Exercise 14.

There are two unit vectors orthogonal to the tangent planeTPM . Given a regular parametrizationx,

we know thatxu � xv is a nonzero vector orthogonal to the plane spanned byxu andxv; we obtain the

corresponding unit vector by taking

n D xu � xv

kxu � xvk
:

This is called theunit normalof the parametrized surface.

Example 4. We know from basic geometry and vector calculus that the unit normal of the unit sphere

centered at the origin should be the position vector itself. This is in fact what we discovered in Example

1(d). O

Example 5. Consider the helicoid given in Example 1(b). Then, as we saw,xu � xv D
.b sinv;�b cosv; u/, andn D 1p

u2 C b2
.b sinv;�b cosv; u/. As we move along a rulingv D v0, the

normal starts horizontal atu D 0 (where the surface becomes vertical) and rotates in the plane orthogonal

to the ruling, becoming more and more vertical as we move out the ruling.O

We saw in Chapter 1 that the geometry of a space curve is best understood by calculating (at least in

principle) with an arclength parametrization. It would be nice, analogously, if we could find a parametriza-

tion x.u; v/ of a surface so thatxu andxv form an orthonormal basis at each point. We’ll see later that this

can happen only very rarely. But it makes it natural to introduce what is classically called thefirst funda-

mental form, IP .U;V/ D U � V, for U;V 2 TPM . Working in a parametrization, we have the natural basis

fxu; xvg, and so we define

E D IP .xu; xu/ D xu � xu

F D IP .xu; xv/ D xu � xv D xv � xu D IP .xv; xu/

G D IP .xv; xv/ D xv � xv ;

and it is often convenient to put these in as entries of a (symmetric) matrix:

IP D
"

E F

F G

#

:

Then, given tangent vectorsU D axu C bxv andV D cxu C dxv 2 TPM , we have

U � V D IP .U;V/ D .axu C bxv/ � .cxu C dxv/ D E.ac/C F.ad C bc/CG.bd/:

In particular,kUk2 D IP .U;U/ D Ea2 C 2Fab CGb2.

SupposeM andM � are surfaces. We say they arelocally isometricif for eachP 2 M there are a

regular parametrizationxWU ! M with x.u0; v0/ D P and a regular parametrizationx�WU ! M � (using

the same domainU � R
2) with the property that IP D I�

P � wheneverP D x.u; v/ andP � D x�.u; v/ for

some.u; v/ 2 U . That is, the functionf D x�ıx�1W x.U / ! x�.U / is a one-to-one correspondence that

preserves the first fundamental form and is therefore distance-preserving (see Exercise 2).
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fold seal

FIGURE 1.6

Example 6. Parametrize a portion of the plane (say, a piece of paper) byx.u; v/ D .u; v; 0/ and a

portion of a cylinder byx�.u; v/ D .cosu; sinu; v/. Then it is easy to calculate thatE D E� D 1,

F D F � D 0, andG D G� D 1, so these surfaces, pictured in Figure 1.6, are locally isometric. On the

other hand, if we letu vary from0 to 2� , the rectangle and the cylinder are notglobally isometric because

points far away in the rectangle can become very close (or identical) in the cylinder.O

If ˛.t/ D x.u.t/; v.t// is a curve on the parametrized surfaceM with ˛.t0/ D x.u0; v0/ D P , then it

is an immediate consequence of the chain rule, Theorem 2.2 of the Appendix, that

˛0.t0/ D u0.t0/xu.u0; v0/C v0.t0/xv.u0; v0/:

(Customarily we will write simplyxu, the point.u0; v0/ at which it is evaluated being assumed.) That is,

if the tangent vector.u0.t0/; v0.t0// back in the “parameter space” is.a; b/, then the tangent vector tǫ

atP is the corresponding linear combinationaxu C bxv. In fancy terms, this is merely a consequence of

the linearity of the derivative ofx. We say a parametrizationx.u; v/ is conformalif angles measured in the

x P

FIGURE 1.7

uv-plane agree with corresponding angles inTPM for all P . We leave it to the reader to check in Exercise

6 that this is equivalent to the conditionsE D G, F D 0.
Since

"

E F

F G

#

D
"

xu � xu xu � xv

xv � xu xv � xv

#

D

2

6
4

j j
xu xv

j j

3

7
5

T2

6
4

j j
xu xv

j j

3

7
5 ;
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we have

EG � F 2 D det

 "

xu � xu xu � xv

xv � xu xv � xv

#!

D det

0

B
@

2

6
4

xu � xu xu � xv 0

xv � xu xv � xv 0

0 0 1

3

7
5

1

C
A

D det

0

B
@

2

6
4

j j j
xu xv n
j j j

3

7
5

T2

6
4

j j j
xu xv n
j j j

3

7
5

1

C
A D

0

B
@det

2

6
4

j j j
xu xv n
j j j

3

7
5

1

C
A

2

;

which is the square of the volume of the parallelepiped spanned byxu, xv, andn. Sincen is a unit vector

orthogonal to the plane spanned byxu andxv, this is, in turn, the square of the area of the parallelogram

spanned byxu andxv. That is,

EG � F 2 D kxu � xvk2 > 0:
We remind the reader that we obtain thesurface areaof the parametrized surfacexWU !M by calculating

the double integral
Z

U

kxu � xvkdudv D
Z

U

p
EG � F 2dudv:

EXERCISES 2.1

1. Derive the formula given in Example 1(e) for the parametrization of the unit sphere.

]2. Supposę .t/ D x.u.t/; v.t//, a � t � b, is a parametrized curve on a surfaceM . Show that

length.˛/ D
Z b

a

q

I˛.t/

�

˛0.t/;˛0.t/
�

dt

D
Z b

a

q

E.u.t/; v.t//.u0.t//2 C 2F.u.t/; v.t//u0.t/v0.t/CG.u.t/; v.t//.v0.t//2dt :

Conclude that if̨ � M and˛� � M � are corresponding paths in locally isometric surfaces, then

length.˛/ D length.˛�/.

3. Compute I (i.e.,E, F , andG) for the following parametrized surfaces.

*a. the sphere of radiusa: x.u; v/ D a.sinu cosv; sinu sinv; cosu/

b. the torus:x.u; v/ D ..aC b cosu/ cosv; .aC b cosu/ sinv; b sinu/ (0 < b < a)

c. the helicoid:x.u; v/ D .u cosv; u sinv; bv/

*d. the catenoid:x.u; v/ D a.coshu cosv; coshu sinv; u/

4. Find the surface area of the following parametrized surfaces.

*a. the torus:x.u; v/ D ..aC b cosu/ cosv; .aC b cosu/ sinv; b sinu/ (0 < b < a), 0 � u; v � 2�
b. a portion of the helicoid:x.u; v/ D .u cosv; u sinv; bv/, 1 < u < 3, 0 � v � 2�
c. a zone of a sphere3: x.u; v/ D a.sinu cosv; sinu sinv; cosu/, 0 � u0 � u � u1 � � ,

0 � v � 2�
3You should obtain the remarkable result that the surface area of the portion of a sphere between two parallel planes depends

only on the distance between the planes, not on where you locate them.
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*5. Show that if all the normal lines to a surface pass through a fixed point, then the surface is (a portion of)

a sphere. (By the normal line toM atP we mean the line passing throughP with direction vector the

unit normal atP .)

6. Check that the parametrizationx.u; v/ is conformal if and only ifE D G andF D 0. (Hint: ForH),

choosetwoconvenient pairs of orthogonal directions.)

*7. Check that a parametrization preserves area and is conformal if and only if it is a local isometry.

*8. Check that the parametrization of the unit sphere by stereographic projection (see Example 1(e)) is

conformal.

9. (Lambert’s cylindrical projection)Project the unit sphere (except for the north and south poles) radially

outward to the cylinder of radius1 by sending.x; y; z/ to .x=
p

x2 C y2; y=
p

x2 C y2; z/. Check that

this map preserves area locally, but is neither a local isometry nor conformal. (Hint: Letx.u; v/ be the

spherical coordinates parametrization of the sphere, and considerx�.u; v/ D .cosv; sinv; cosu/.)

10. Consider the hyperboloid of one sheet,M , given by the equationx2 C y2 � z2 D 1.
a. Show thatx.u; v/ D .coshu cosv; coshu sinv; sinhu/, u 2 R, 0 � v < 2� , gives a parametriza-

tion ofM as a surface of revolution.

*b. Find two parametrizations ofM as a ruled surfacę.u/C vˇ.u/.

c. Show thatx.u; v/ D
�
uv C 1
uv � 1 ;

u � v
uv � 1;

uC v
uv � 1

�

gives a parametrization ofM wherebothsets of

parameter curves are rulings.

]11. Given a ruled surfacex.u; v/ D ˛.u/ C vˇ.u/ with ˛0 ¤ 0 andkˇk D 1; suppose that̨ 0.u/, ˇ.u/,

andˇ0.u/ are linearly dependent for everyu. Prove thatlocally one of the following must hold:

(i) ˇ D const;

(ii) there is a function� so that̨ .u/C �.u/ˇ.u/ D const;

(iii) there is a function� so that.˛C �ˇ/0.u/ is a nonzero multiple of̌ .u/ for everyu.

Describe the surface in each of these cases. (Hint: There arec1, c2, c3 (functions ofu), never simulta-

neously0, so thatc1.u/˛
0.u/C c2.u/ˇ.u/C c3.u/ˇ

0.u/ D 0 for all u. Consider separately the cases

c1.u/ D 0 andc1.u/ ¤ 0. In the latter case, divide through.)

12. (The Mercator projection)Mercator developed his system for mapping the earth, as pictured in Figure

1.8, in 1569, about a century before the advent of calculus. We want a parametrizationx.u; v/ of the

sphere,u 2 R, v 2 .��;�/, so that theu-curves are the longitudes and so that the parametrization is

conformal. Letting.�; �/ be the usual spherical coordinates, write� D f .u/ and� D v. Show that

conformality and symmetry about the equator will dictatef .u/ D 2arctan.e�u/. Deduce that

x.u; v/ D .sechu cosv; sechu sinv; tanhu/:

(Cf. Example 2 in Section 1 of Chapter 1.)

13. A parametrizationx.u; v/ is called aTschebyschev netif the opposite sides of any quadrilateral formed

by the coordinate curves have equal length.
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u

v

FIGURE 1.8

a. Prove that this occurs if and only if
@E

@v
D @G

@u
D 0. (Hint: Express the length of theu-curves,

u0 � u � u1, as an integral and use the fact that this length is independent ofv.)

b. Prove that we can locally reparametrize byQx. Qu; Qv/ so as to obtainQE D QG D 1, QF D cos�. Qu; Qv/
(so that theQu- and Qv-curves are parametrized by arclength and meet at angle� ). (Hint: ChooseQu
as a function ofu so thatQx Qu D xu

ı

.d Qu=du/ has unit length.)

14. Supposex andy are two parametrizations of a surfaceM nearP . Sayx.u0; v0/ D P D y.s0; t0/.
Prove that Span.xu; xv/ D Span.ys; yt / (where the partial derivatives are all evaluated at the obvious

points). (Hint: f D x�1ıy gives aC1 map from an open set around.s0; t0/ to an open set around

.u0; v0/. Apply the chain rule to showys; yt 2 Span.xu; xv/.)

15. (A programmable calculator, Maple, or Mathematica may be useful for parts of this problem.) A

catenoid, as pictured in Figure 1.9, is parametrized by

x.u; v/ D .a coshu cosv; a coshu sinv; au/; u 2 R; 0 � v < 2� .a > 0 fixed/:

FIGURE 1.9

*a. Compute the surface area of that portion of the catenoid given byjuj � 1=a. (Hint: cosh2 u D
1
2
.1C cosh2u/.)

b. Given the pair of parallel circlesx2 C y2 D R2, jzj D 1, for what values ofR is there at least one

catenoid with the circles as boundary? (Hint: Graphf .t/ D t cosh.1=t/.)
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c. For the values ofR in part b, compare the area of the catenoid(s) with2�R2, the area of the pair

of disks filling in the circles. For what values ofR does the pair of disks have the least area?

d. (For extra credit) Show that asR ! 1, the area of the inner catenoid is asymptotic to2�R2 and

the area of the outer catenoid is asymptotic to4�R.

16. There are two obvious families of circles on a torus. Find a third family. (Hint: Look for a plane that

is tangent to the torus attwo points. Using the parametrization of the torus, you should be able to find

equations (either parametric or cartesian) for the curve in which the bitangent plane intersects the torus.)

2. The Gauss Map and the Second Fundamental Form

Given a regular parametrized surfaceM , the functionnWM ! † that assigns to each pointP 2M the

unit normaln.P /, as pictured in Figure 2.1, is called theGauss mapof M . As we shall see in this chapter,

n
n(P)

P

FIGURE 2.1

most of the geometric information about our surfaceM is encapsulated in the mappingn.

Example 1. A few basic examples are these.

(a) On a plane, the tangent plane never changes, so the Gauss map is a constant.

(b) On a cylinder, the tangent plane is constant along the rulings, so the Gauss map sends the entire

surface to an equator of the sphere.

(c) On a sphere centered at the origin, the Gauss map is merely the (normalized) position vector.

(d) On a saddle surface (as pictured in Figure 2.1), the Gauss map appears to “reverse orientation”: As

we move counterclockwise in a small circle aroundP , we see that the unit vectorn turns clockwise

aroundn.P /. O

Recall from the Appendix that for any functionf on M (scalar- or vector-valued) and any tangent

vectorV 2 TPM , we can compute the directional derivativeDVf .P / by choosing a curvęW .�"; "/!M

with ˛.0/ D P and˛0.0/ D V and computing.f ı˛/0.0/.

To understand the shape ofM at the pointP , we might try to understand the curvature atP of various

curves inM . Perhaps the most obvious thing to try is variousnormal slices ofM . That is, we sliceM

with the plane throughP spanned byn.P / and aunit vectorV 2 TPM . Various such normal slices are

shown for a saddle surface in Figure 2.2. Let˛ be the arclength-parametrized curve obtained by taking such
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FIGURE 2.2

a normal slice. We havę.0/ D P and˛0.0/ D V. Then since the curve lies in the plane spanned byn.P /
andV, the principal normal of the curve atP must bė n.P / (C if the curve is curving towardsn, � if it’s

curving away). Since.nı˛.s// � T.s/ D 0 for all s near0, applying Lemma 2.1 of Chapter 1 yet again, we

have:

(�) ˙�.P / D �N � n.P / D T0.0/ � n.P / D �T.0/ � .nı˛/0.0/ D �DVn.P / � V :

This leads us to study the directional derivativeDVn.P /more carefully.

Proposition 2.1. For anyV 2 TPM , the directional derivativeDVn.P / 2 TPM . Moreover, the linear

mapSP WTPM ! TPM defined by

SP .V/ D �DVn.P /

is asymmetriclinear map; i.e., for anyU;V 2 TPM , we have

(�) SP .U/ � V D U � SP .V/

SP is called theshape operatoratP .

Proof. For any curvę W .�"; "/!M with ˛.0/ D P and˛0.0/ D V, we observe thatnı˛ has constant

length1. Thus, by Lemma 2.1 of Chapter 1,DVn.P / � n.P / D .nı˛/0.0/ � .nı˛/.0/ D 0, soDVn.P / is in

the tangent plane toM atP . ThatSP is a linear map is an immediate consequence of Proposition 2.3 of the

Appendix.

Symmetry is our first important application of the equality of mixed partial derivatives. First we verify

(�) whenU D xu, V D xv. Note thatn � xv D 0, so0 D
�

n � xv

�

u D nu � xv C n � xvu. (Remember that

we’re writing nu for Dxu
n.) Thus,

SP .xu/ � xv D �Dxu
n.P / � xv D �nu � xv D n � xvu

D n � xuv D �nv � xu D �Dxv
n.P / � xu D SP .xv/ � xu :
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Next, knowing this, we just write out general vectorsU and V as linear combinations ofxu and xv: If

U D axu C bxv andV D cxu C dxv , then

SP .U/ � V D SP .axu C bxv/ � .cxu C dxv/

D
�

aSP .xu/C bSP .xv/
�

� .cxu C dxv/

D acSP .xu/ � xu C adSP .xu/ � xv C bcSP .xv/ � xu C bdSP .xv/ � xv

D acSP .xu/ � xu C adSP .xv/ � xu C bcSP .xu/ � xv C bdSP .xv/ � xv

D .axu C bxv/ �
�

cSP .xu/C dSP .xv/
�

D U � SP .V/;

as required. �

Proposition 2.2. If the shape operatorSP isO for all P 2 M , thenM is a subset of a plane.

Proof. Since the directional derivative of the unit normaln is 0 in every direction at every pointP , we

havenu D nv D 0 for any (local) parametrizationx.u; v/ of M . By Proposition 2.4 of the Appendix, it

follows thatn is constant. (This is why we assume our surfaces are connected.)�

Example 2. LetM be a sphere of radiusa centered at the origin. Thenn D 1

a
x.u; v/, so for anyP ,

we haveSP .xu/ D �nu D �
1

a
xu andSP .xv/ D �nv D �

1

a
xv, soSP is�1=a times the identity map on

the tangent planeTPM . O

It does not seem an easy task to give the matrix of the shape operator with respect to the basisfxu; xvg.
But, in general, the proof of Proposition 2.1 suggests that we define the second fundamental form, as follows.

If U;V 2 TPM , we set

IIP .U;V/ D SP .U/ � V :
Note that the formula (�) on p. 45 shows that the curvature of the normal slice in directionV (with kVk D 1)
is, in our new notation, given by

˙� D �DVn.P / � V D SP .V/ � V D IIP .V;V/:

As we did at the end of the previous section, we wish to give a matrix representation when we’re working

with a parametrized surface. As we saw in the proof of Proposition 2.1, we have

` D IIP .xu; xu/D �Dxu
n � xu D xuu � n

m D IIP .xu; xv/D �Dxu
n � xv D xvu � n D xuv � n D IIP .xv; xu/

n D IIP .xv; xv/D �Dxv
n � xv D xvv � n:

(By the way, this explains the presence of the minus sign in the original definition of the shape operator.)

We then write

IIP D
"

` m

m n

#

D
"

xuu � n xuv � n
xuv � n xvv � n

#

:

If, as before,U D axu C bxv andV D cxu C dxv, then

IIP .U;V/ D IIP .axu C bxv; cxu C dxv/

D ac IIP .xu; xu/C ad IIP .xu; xv/C bc IIP .xv; xu/C bd IIP .xv; xv/
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D `.ac/Cm.bc C ad/C n.bd/:

In the event thatfxu; xvg is an orthonormal basis forTPM , we see that the matrix IIP represents the

shape operatorSP . But it is not difficult to check (see Exercise 2) that, in general, the matrix of the linear

mapSP with respect to the basisfxu; xvg is given by

I�1
P IIP D

"

E F

F G

#�1 "

` m

m n

#

:

Remark. We proved in Proposition 2.1 thatSP is a symmetric linear map. This means that its matrix

representation with respect to an orthonormal basis (or, more generally, orthogonal basis with vectors of

equal length)will be symmetric: In this case the matrix IP is a scalar multiple of the identity matrix and the

matrix product remains symmetric.

By the Spectral Theorem, Theorem 1.3 of the Appendix,SP has two real eigenvalues, traditionally

denotedk1.P /, k2.P /.

Definition. The eigenvalues ofSP are called theprincipal curvaturesof M at P . Corresponding

eigenvectors are calledprincipal directions. A curve inM is called aline of curvatureif its tangent vector

at each point is a principal direction.

Recall that it also follows from the Spectral Theorem that the principal directions are orthogonal, so we can

always choose an orthonormal basis forTPM consisting of principal directions. Having done so, we can

then easily determine the curvatures of normal slices in arbitrary directions, as follows.

Proposition 2.3 (Euler’s Formula). Let e1;e2 be unit vectors in the principal directions atP with

corresponding principal curvaturesk1 andk2. SupposeV D cos�e1 C sin�e2 for some� 2 Œ0; 2�/, as

pictured in Figure 2.3. ThenIIP .V;V/ D k1 cos2 � C k2 sin2 � .

e1

e2

V

FIGURE 2.3

Proof. This is a straightforward computation: SinceSP .ei / D kiei for i D 1; 2, we have

IIP .V;V/ D SP .V/ � V D SP .cos�e1 C sin�e2/ � .cos�e1 C sin�e2/

D .cos�k1e1 C sin�k2e2/ � .cos�e1 C sin�e2/ D k1 cos2 � C k2 sin2 � ;

as required. �

On a sphere, all normal slices have the same (nonzero) curvature. On the other hand, if we look carefully

at Figure 2.2, we see that certain normal slices of a saddle surface are true lines. This leads us to make the

following
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Definition. If the normal slice in directionV has zero curvature, i.e., if IIP .V;V/ D 0, then we callV
anasymptotic direction.4 A curve inM is called anasymptotic curveif its tangent vector at each point is an

asymptotic direction.

Example 3. If a surfaceM contains a line, that line is an asymptotic curve. For the normal slice in

the direction of the line contains the line (and perhaps other things far away), which, of course, has zero

curvature. O

Corollary 2.4. There is an asymptotic direction atP if and only if k1k2 � 0.

Proof. k2 D 0 if and only if e2 is an asymptotic direction. Now supposek2 ¤ 0. If V is a unit

asymptotic vector making angle� with e1, then we havek1 cos2 �Ck2 sin2 � D 0, and so tan2 � D �k1=k2,

so k1k2 � 0. Conversely, ifk1k2 < 0, take� with tan� D ˙
p

�k1=k2, and thenV is an asymptotic

direction. �

Example 4. We consider the helicoid, as pictured in Figure 1.2. It is a ruled surface and so the rulings

are asymptotic curves. What is quite less obvious is that the family of helices on the surface are also

asymptotic curves. But, as we see in Figure 2.4, the normal slice tangent to the helix atP has an inflection

P

FIGURE 2.4

point atP , and therefore the helix is an asymptotic curve. We ask the reader to check this by calculation in

Exercise 5. O

It is also an immediate consequence of Proposition 2.3 that the principal curvatures are the maximum

and minimum (signed) curvatures of the various normal slices. Assumek2 � k1. Then

k1 cos2 � C k2 sin2 � D k1.1� sin2 �/C k2 sin2 � D k1 C .k2 � k1/ sin2 � � k1

(and, similarly,� k2). Moreover, as the Spectral Theorem tells us, the maximum and minimum occur at

right angles to one another. Looking back at Figure 2.2, where the slices are taken at angles in increments

of �=8, we see that the normal slices that are “most curved” appear in the third and seventh frames; the

asymptotic directions appear in the second and fourth frames. (Cf. Exercise 8.)

4Of course,V ¤ 0 here. See Exercise 23 for an explanation of this terminology.
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Next we come to one of the most important concepts in the geometry of surfaces:

Definition. The product of the principal curvatures is called theGaussian curvature: K D detSP D
k1k2. The average of the principal curvatures is called themean curvature: H D 1

2
trSP D 1

2
.k1 C k2/.

We sayM is aminimal surfaceif H D 0 andflat if K D 0.

Note that whereas the signs of the principal curvatures change if we reverse the direction of the unit normal

n, the Gaussian curvatureK, being the product of both, is independent of the choice of unit normal. (And

the sign of the mean curvature depends on the choice.)

Example 5. It follows from our comments in Example 1 that both a plane and a cylinder are flat surfaces:

In the former case,SP D O for all P , and, in the latter, detSP D 0 for all P since the shape operator is

singular. O

Example 6. Consider the saddle surfacex.u; v/ D .u; v; uv/. We compute:

xu D .1; 0; v/ xuu D .0; 0; 0/
xv D .0; 1; u/ xuv D .0; 0; 1/

n D 1p
1C u2 C v2

.�v;�u; 1/ xvv D .0; 0; 0/;

and so

E D 1C v2; F D uv; G D 1C u2 ; and ` D n D 0;m D 1p
1C u2 C v2

:

Thus, withP D x.u; v/, we have

IP D
"

1C v2 uv

uv 1C u2

#

and IIP D
1p

1C u2 C v2

"

0 1

1 0

#

;

so the matrix of the shape operator with respect to the basisfxu; xvg is given by

SP D I�1
P IIP D

1

.1C u2 C v2/3=2

"

�uv 1C u2

1C v2 �uv

#

:

(Note that this matrix is, in general, not symmetric.)

With a bit of calculation, we determine that the principal curvatures (eigenvalues) are

k1 D
�uv C

p

.1C u2/.1C v2/

.1C u2 C v2/3=2
and k2 D

�uv �
p

.1C u2/.1C v2/

.1C u2 C v2/3=2
;

andK D detSP D �1=.1C u2 C v2/2. Note from the form of IIP that theu- andv-curves are asymptotic

curves, as should be evident from the fact that these are lines. With a bit more work, we determine that the

principal directions, i.e., the eigenvectors ofSP , are the vectors
p

1C u2xu ˙
p

1C v2xv :

(It is worth checking that these vectors are, in fact, orthogonal.) The corresponding curves in theuv-plane

have tangent vectors
�p
1C u2;˙

p
1C v2

�

and must therefore be solutions of the differential equation

dv

du
D ˙
p
1C v2

p
1C u2

:
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If we substitutev D sinhq,
R

dv=
p
1C v2 D

R

dq D q D arcsinhv, so, separating variables, we obtain
Z

dvp
1C v2

D ˙
Z

dup
1C u2

I i.e., arcsinhv D ˙arcsinhuC c:

Since sinh.x C y/ D sinhx coshy C coshx sinhy, we obtain

v D sinh.˙arcsinhuC c/ D ˙.coshc/uC .sinhc/
p

1C u2:

Whenc D 0, we getv D ˙u (as should be expected on geometric grounds). Asc varies through nonzero

values, we obtain a family of hyperbolas. Some typical lines of curvature on the saddle surface are indicated

in Figure 2.5. O

FIGURE 2.5

Definition. Fix P 2 M . We sayP is anumbilic5 if k1 D k2. If k1 D k2 D 0, we sayP is aplanar

point. If K D 0 butP is not a planar point, we sayP is aparabolic point. If K > 0, we sayP is anelliptic

point, and ifK < 0, we sayP is ahyperbolic point.

Example 7. On the “outside” of a torus (see Figure 1.3), all the normal slices curve in the same direction,

so these are elliptic points. Now imagine laying a plane on top of a torus; it is tangent to the torus along

the “top circle,” and so the unit normal to the surface stays constant as we move around this curve. For

any pointP on this circle andV tangent to the circle, we haveSP .V/ D �DVn D 0, soV is a principal

direction with corresponding principal curvature0. Thus, these are parabolic points. On the other hand,

consider a pointP on the innermost band of the torus. At such a point the surface looks saddle-like; that is,

with the unit normal as pictured in Figure 2.6, the horizontal circle (going around the inside of the torus) is a

n

FIGURE 2.6

line of curvature with positive principal curvature, and the vertical circle is a line of curvature with negative

principal curvature. Thus, the points on the inside of the torus are hyperbolic points.O

5From the Latinumbil ı̄cus, navel.
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Remark. Gauss’s original interpretation of Gaussian curvature was the following: Imagine a small

curvilinear rectangleP atP 2M with sidesh1 andh2 along principal directions. Then, since the principal

directions are eigenvectors of the shape operator, the image ofP under the Gauss map is nearly a small

curvilinear rectangle atn.P / 2 † with sidesk1h1 andk2h2. Thus,K D k1k2 is the factor by whichn
distorts signed area as it mapsM to†. (Note that for a cylinder, the rectangle collapses to a line segment;

for a saddle surface, orientation is reversed byn and so the Gaussian curvature is negative.)

Let’s close this section by revisiting our discussion of the curvature of normal slices. Suppose˛ is an

arclength-parametrized curve lying onM with ˛.0/ D P and˛0.0/ D V. Then the calculation in formula

(�) on p. 45 shows that

IIP .V;V/ D �N � nI
i.e., IIP .V;V/ gives the component of the curvature vector�N of ˛ normal to the surfaceM atP , which

we denote by�n and call thenormal curvatureof ˛ atP . What is remarkable about this formula is that it

shows that the normal curvature depends only on the direction of˛ at P and otherwise not on the curve.

(For the case of the normal slice, the normal curvature is, up to a sign, all the curvature.) We immediately

deduce the following

Proposition 2.5 (Meusnier’s Formula). Let ˛ be a curve onM passing throughP with unit tangent

vectorV. Then

IIP .V;V/ D �n D � cos�;

where� is the angle between the principal normal,N, of ˛ and the surface normal,n, atP .

In particular, if˛ is an asymptotic curve, then its normal curvature is0 at each point. This means that,

so long as� ¤ 0, its principal normal is always orthogonal to the surface normal, i.e., always tangent to the

surface.

Example 8. Let’s now investigate a very interesting surface, called thepseudosphere, as shown in

Figure 2.7. It is the surface of revolution obtained by rotating the tractrix (see Example 2 of Chapter 1,

n Nx

y

z

FIGURE 2.7

Section 1) about thex-axis, and so it is parametrized by

x.u; v/ D .u � tanhu; sechu cosv; sechu sinv/; u > 0; v 2 Œ0; 2�/:

Note that the circles (of revolution) are lines of curvature: Either apply Exercise 15 or observe, directly, that

the only component of the surface normal that changes as we move around the circle is normal to the circle
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in the plane of the circle. Similarly, the various tractrices are lines of curvature: In the plane of one tractrix,

the surface normal and the curve normal agree.

Now, by Exercise 1.2.5, the curvature of the tractrix is� D 1= sinhu; sinceN D �n along this curve,

we havek1 D �n D �1= sinhu. Now what about the circles? Here we have� D 1= sechu D coshu,

but this is not the normal curvature. The angle� betweenN andn is the supplement of the angle� we

see in Figure 1.9 of Chapter 1 (to see why, see Figure 2.8). Thus, by Meusnier’s Formula, Proposition 2.5,

n N
tanh u

1

FIGURE 2.8

we havek2 D �n D � cos� D .coshu/.tanhu/ D sinhu. Amazingly, then, we haveK D k1k2 D
.�1= sinhu/.sinhu/ D �1. O

Example 9. Let’s now consider the case of a general surface of revolution, parametrized as in Example

2 of Section 1, by

x.u; v/ D
�

f .u/ cosv; f .u/ sinv; g.u/
�

;

wheref 0.u/2 C g0.u/2 D 1. Recall that theu-curves are calledmeridiansand thev-curves are called

parallels. Then

xu D
�

f 0.u/ cosv; f 0.u/ sinv; g0.u/
�

xv D
�

�f .u/ sinv; f .u/ cosv; 0
�

n D
�

�g0.u/ cosv;�g0.u/ sinv; f 0.u/
�

xuu D
�

f 00.u/ cosv; f 00.u/ sinv; g00.u/
�

xuv D
�

�f 0.u/ sinv; f 0.u/ cosv; 0
�

xvv D
�

�f .u/ cosv;�f .u/ sinv; 0
�

;

and so we have

E D 1; F D 0; G D f .u/2; and ` D f 0.u/g00.u/ � f 00.u/g0.u/; m D 0; n D f .u/g0.u/:

By Exercise 2.2.1, thenk1 D f 0.u/g00.u/ � f 00.u/g0.u/ andk2 D g0.u/=f .u/. Thus,

K D k1k2 D
�

f 0.u/g00.u/ � f 00.u/g0.u/
�g0.u/

f .u/
D �f

00.u/

f .u/
;

since fromf 0.u/2 C g0.u/2 D 1 we deduce thatf 0.u/f 00.u/C g0.u/g00.u/ D 0, and so

f 0.u/g0.u/g00.u/ � f 00.u/g0.u/2 D �.f 0.u/2 C g0.u/2/f 00.u/ D �f 00.u/:
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Note, as we observed in the special case of Example 8, that on every surface of revolution, the meridians

and the parallels are lines of curvature.O

EXERCISES 2.2

*1. Check that if there are no umbilic points and the parameter curves are lines of curvature, thenF D
m D 0 and we have the principal curvaturesk1 D `=E andk2 D n=G. Conversely, prove that if

F D m D 0, then the parameter curves are lines of curvature.

]2. a. Show that the matrix representing the linear mapSP WTPM ! TPM with respect to the basis

fxu; xvg is

I�1
P IIP D

"

E F

F G

#�1 "

` m

m n

#

:

(Hint: Write SP .xu/ D axu C bxv andSP .xv/ D cxu C dxv, and use the definition of̀,m, and

n to get a system of linear equations fora, b, c, andd .)

b. Deduce thatK D `n �m2

EG � F 2
.

3. Compute the second fundamental form IIP of the following parametrized surfaces. Then calculate the

matrix of the shape operator, and determineH andK.

a. the cylinder:x.u; v/ D .a cosu; a sinu; v/

*b. the torus:x.u; v/ D ..aC b cosu/ cosv; .aC b cosu/ sinv; b sinu/ (0 < b < a)

c. the helicoid:x.u; v/ D .u cosv; u sinv; bv/

*d. the catenoid:x.u; v/ D a.coshu cosv; coshu sinv; u/

e. the Mercator parametrization of the sphere:x.u; v/ D .sechu cosv; sechu sinv; tanhu/

f. Enneper’s surface:x.u; v/ D .u � u3=3C uv2; v � v3=3C u2v; u2 � v2/

4. Find the principal curvatures, the principal directions, and asymptotic directions (when they exist) for

each of the surfaces in Exercise 3. Identify the lines of curvature and asymptotic curves when possible.

*5. Prove by calculation that any one of the helices˛.t/ D .a cost; a sint; bt/ is an asymptotic curve on

the helicoid given in Example 1(b) of Section 1. Also, calculate how the surface normaln changes as

one moves along a ruling, and use this to explain why the rulings are asymptotic curves as well.

*6. Calculate the first and second fundamental forms of the pseudosphere (see Example 8) and check our

computations of the principal curvatures and Gaussian curvature.

7. Show that a ruled surface has Gaussian curvatureK � 0.

8. a. Prove that the principal directions bisect the asymptotic directions at a hyperbolic point. (Hint:

Euler’s Formula.)

b. Prove that if the asymptotic directions ofM are orthogonal, thenM is minimal. Prove the converse

assumingM has no planar points.

9. Let�n.�/ denote the normal curvature in the direction making angle� with the first principal direction.
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a. Show thatH D 1

2�

Z 2�

0

�n.�/d� .

b. Show thatH D 1

2

�

�n.�/C �n

�

� C �

2

��

for any� .

c. (More challenging) Show that, more generally, for any� and m � 3, we have

H D 1

m

�

�n.�/C �n

�

� C 2�

m

�

C � � � C �n

�

� C 2�.m � 1/
m

�
�

.

10. Consider the ruled surfaceM given byx.u; v/ D .v cosu; v sinu; uv/, v > 0.

a. Describe this surface geometrically.

b. Find the first and second fundamental forms and the Gaussian curvature ofM .

c. Check that thev-curves are lines of curvature.

d. Proceeding somewhat as in Example 6, show that the other lines of curvature are given by the

equationv
p
1C u2 D c for various constantsc. Show that these curves are the intersection ofM

with the spheresx2 C y2 C z2 D c2. (It might be fun to use Mathematica to see this explicitly.)

11. The curvę .t/ D x.u.t/; v.t// may arise by writing
dv

du
D v0.t/

u0.t/
and solving a differential equation to

relateu andv either explicitly or implicitly.

a. Show that̨ is an asymptotic curve if and only if̀.u0/2 C 2mu0v0 C n.v0/2 D 0. Thus, if

`C 2mdv
du
C n

�
dv
du

�2 D 0, then˛ is an asymptotic curve.

b. Show that̨ is a line of curvature if and only if

ˇ
ˇ
ˇ
ˇ
ˇ

Eu0 C Fv0 Fu0 CGv0

`u0 Cmv0 mu0 C nv0

ˇ
ˇ
ˇ
ˇ
ˇ
D 0. Give the appropri-

ate condition in terms ofdv=du.

c. Deduce that an alternative condition for˛ to be a line of curvature is that
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

.v0/2 �u0v0 .u0/2

E F G

` m n

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D 0:

12. a. Apply Meusnier’s Formula to a latitude circle on a sphere of radiusa to calculate the normal

curvature.

b. Prove that the curvature of any curve lying on the sphere of radiusa satisfies� � 1=a.

13. Prove or give a counterexample: IfM is a surface with Gaussian curvatureK > 0, then the curvature

of any curveC �M is everywhere positive. (Remember that, by definition,� � 0.)
]14. Suppose that for everyP 2 M , the shape operatorSP is some scalar multiple of the identity, i.e.,

SP .V/ D k.P /V for all V 2 TPM . (Here the scalark.P /may well depend on the pointP .)

a. Differentiate the equations

Dxu
n D nu D � kxu

Dxv
n D nv D � kxv

appropriately to determineku andkv and deduce thatk must be constant.

b. We showed in Proposition 2.2 thatM is planar whenk D 0. Show that whenk ¤ 0, M is (a

portion of) a sphere.
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15. a. Prove that̨ is a line of curvature inM if and only if .nı˛/0.t/ D �k.t/˛0.t/, wherek.t/ is the

principal curvature at̨ .t/ in the direction̨ 0.t/. (More colloquially, differentiating along the curve

˛, we just writen0 D �k˛0.)

b. Suppose two surfacesM andM � intersect along a curveC . SupposeC is a line of curvature inM .

Prove thatC is a line of curvature inM � if and only if the angle betweenM andM � is constant

alongC . (In the proof of(H, be sure to include the case thatM andM � intersect tangentially

alongC .)

16. Prove or give a counterexample:

a. If a curve is both an asymptotic curve and a line of curvature, then it must be planar. (Hint: Along

an asymptotic curve that is not a line, how is the Frenet frame related to the surface normal?)

b. If a curve is planar and an asymptotic curve, then it must be a line.

17. a. How is the Frenet frame along an asymptotic curve related to the geometry of the surface?

b. SupposeK.P / < 0. If C is an asymptotic curve with�.P / ¤ 0, prove that its torsion satisfies

j�.P /j D
p

�K.P /. (Hint: If we choose an orthonormal basisfU;Vg for TP .M/ with U tangent

toC , what is the matrix forSP ? See the Remark on p. 47.)

18. Continuing Exercise 17, show that ifK.P / < 0, then the two asymptotic curves have torsion of opposite

signs atP .

19. Prove that the only minimal ruled surface with no planar points is the helicoid. (Hint: Consider the

curves orthogonal to the rulings. Use Exercises 8b and 1.2.20.)

20. SupposeU � R
3 is open andxWU ! R

3 is a smooth map (of rank3) so thatxu, xv, andxw are always

orthogonal. Then the level surfacesu D const,v D const,w D const form atriply orthogonal system

of surfaces.

a. Show that the spherical coordinate mappingx.u; v;w/ D .u sinv cosw;u sinv sinw;u cosv/

(u > 0, 0 < v < � , 0 < w < 2�) furnishes an example.

b. Prove that the curves of intersection of any pair of surfaces from different systems (e.g.,v D const

andw D const) are lines of curvature in each of the respective surfaces. (Hint: Differentiate the

various equationsxu � xv D 0, xv � xw D 0, xu � xw D 0 with respect to the missing variable. What

are the shape operators of the various surfaces?)

21. In this exercise we analyze the surfaces of revolution that are minimal. It will be convenient to work

with a meridian as a graph (y D h.u/, z D u) when using the parametrization of surfaces of revolution

given in Example 9.

a. Use Exercise 1.2.4 and Proposition 2.5 to show that the principal curvatures are

k1 D �
h00

.1C h02/3=2
and k2 D

1

h
� 1p

1C h02
:

b. Deduce thatH D 0 if and only if h.u/h00.u/ D 1C h0.u/2.

c. Solve the differential equation. (Hint: Either substitutez.u/ D ln h.u/ or introducew.u/ D h0.u/,

find dw=dh, and integrate by separating variables.) You should find thath.u/ D 1
c

cosh.cuC b/
for some constantsb andc.
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22. By choosing coordinates inR3 appropriately, we may arrange thatP is the origin, the tangent plane

TPM is thexy-plane, and thex- andy-axes are in the principal directions atP .

a. Show that in these coordinatesM is locally the graphz D f .x; y/ D 1
2
.k1x

2 C k2y
2/C �.x; y/,

where lim
x;y!0

�.x; y/

x2 C y2
D 0. (You may start with Taylor’s Theorem: Iff is C2, we have

f .x; y/ D f .0; 0/C fx.0; 0/x C fy.0; 0/y C
1
2

�

fxx.0; 0/x
2 C 2fxy.0; 0/xy C fyy.0; 0/y

2
�

C �.x; y/;

where lim
x;y!0

�.x; y/

x2 C y2
D 0.)

b. Show that ifP is an elliptic point, then a neighborhood ofP in M \ TPM is just the origin itself.

What happens in the case of a parabolic point?

c. (More challenging) Show that ifP is a hyperbolic point, a neighborhood ofP in M \ TPM is

a curve that crosses itself atP and whose tangent directions atP are the asymptotic directions.

(Hints: Work in coordinates.x; u/ with y D ux. Show that in thexu-plane the curve has the

equation0 D g.x; u/ D 1
2
.k1 C k2u

2/ C h.x; u/, whereh.0; u/ D 0 for all u, so it consists

of two (C1) curves, one passing through.0;
p

�k1=k2/ and the other through.0;�
p

�k1=k2/.

Show, moreover, that if two curves pass through the same point.0; u0/ in thexu-plane, then the

corresponding curves in thexy-plane are tangent at.0; 0/.6)

23. LetP 2 M be a non-planar point, and ifK � 0, choose the unit normal so that`; n � 0.
a. We define theDupin indicatrix to be the conic inTPM defined by the equation IIP .V;V/ D 1.

Show that ifP is an elliptic point, the Dupin indicatrix is an ellipse; ifP is a hyperbolic point,

the Dupin indicatrix is a hyperbola; and ifP is a parabolic point, the Dupin indicatrix is a pair of

parallel lines.

b. Show that ifP is a hyperbolic point, the asymptotes of the Dupin indicatrix are given by IIP .V;V/ D
0, i.e., the set of asymptotic directions.

c. SupposeM is represented locally nearP as in Exercise 22. Show that for small positive values

of c, the intersection ofM with the planez D c “looks like” the Dupin indicatrix. How can you

make this statement more precise?

24. Suppose the surfaceM is given nearP as a level surface of a smooth functionf WR3 ! R with

rf .P / ¤ 0. A line L � R
3 is said to have (at least)k-point contactwith M at P if, given any

linear parametrization̨ of L with ˛.0/ D P , the functionf D f ı˛ vanishes to orderk � 1, i.e.,

f.0/ D f
0.0/ D � � � D f

.k�1/.0/ D 0. (Such a line is to be visualized as the limit of lines that intersect

M atP and atk � 1 other points that approachP .)

a. Show thatL has2-point contact withM atP if and only ifL is tangent toM atP , i.e.,L � TPM .

b. Show thatL has3-point contact withM at P if and only if L is an asymptotic direction atP .

(Hint: It may be helpful to follow the setup of Exercise 22.)

c. (Challenge) AssumeP is a hyperbolic point. What does it mean forL to have4-point contact with

M atP ?

6Here we have “blown up” the origin in order to keep track of the different tangent directions. Theblowing-upconstruction is
widely used in topology and algebraic geometry.
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3. The Codazzi and Gauss Equations and the Fundamental Theorem of Surface Theory

We now wish to proceed towards a deeper understanding of Gaussian curvature. We have to this point

considered only the normal components of the second derivativesxuu, xuv , andxvv. Now let’s consider

themin toto. Sincefxu; xv ;ng gives a basis forR3, there are functions� u
uu, � v

uu, � u
uv D � u

vu, � v
uv D � v

vu,

� u
vv, and� v

vv so that

xuu D � u
uuxu C � v

uuxv C `n
xuv D � u

uvxu C � v
uvxv Cmn(�)

xvv D � u
vvxu C � v

vvxv C nn:

(Note thatxuv D xvu dictates the symmetries� �
uv D � �

vu.) The functions� �
�� are calledChristoffel

symbols.

Example 1. Let’s compute the Christoffel symbols for the usual parametrization of the sphere (see

Example 1(d) on p. 37). By straightforward calculation we obtain

xu D .cosu cosv; cosu sinv;� sinu/

xv D .� sinu sinv; sinu cosv; 0/

xuu D .� sinu cosv;� sinu sinv;� cosu/ D �x.u; v/

xuv D .� cosu sinv; cosu cosv; 0/

xvv D .� sinu cosv;� sinu sinv; 0/ D � sinu.cosv; sinv; 0/:

(Note that theu-curves are great circles, parametrized by arclength, so it is no surprise that the acceleration

vectorxuu is inward-pointing of length1. Thev-curves are latitude circles of radius sinu, so, similarly, the

acceleration vectorxvv points inwards towards the center of the respective circle.)

xu

xvv

n

sin u

sin u cos u

u

u

FIGURE 3.1

Sincexuu lies entirely in the direction ofn, we have� u
uu D � v

uu D 0. Now, by inspection,xuv D
cotuxv, so� u

uv D 0 and� v
uv D cotu. Last, as we can see in Figure 3.1, we havexvv D � sinu cosuxu �

sin2 un, so� u
vv D � sinu cosu and� v

vv D 0. O

Now, dotting the equations in (�) with xu andxv gives

xuu � xu D � u
uuE C � v

uuF

xuu � xv D � u
uuF C � v

uuG

xuv � xu D � u
uvE C � v

uvF
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xuv � xv D � u
uvF C � v

uvG

xvv � xu D � u
vvE C � v

vvF

xvv � xv D � u
vvF C � v

vvG:

Now observe that

xuu � xu D 1
2
.xu � xu/u D 1

2
Eu

xuv � xu D 1
2
.xu � xu/v D 1

2
Ev

xuv � xv D 1
2
.xv � xv/u D 1

2
Gu

xuu � xv D .xu � xv/u � xu � xuv D Fu � 1
2
Ev

xvv � xu D .xu � xv/v � xuv � xv D Fv � 1
2
Gu

xvv � xv D 1
2
.xv � xv/v D 1

2
Gv

Thus, we can rewrite our equations as follows:
"

E F

F G

#"

� u
uu

� v
uu

#

D
"

1
2
Eu

Fu � 1
2
Ev

#

H)
"

� u
uu

� v
uu

#

D
"

E F

F G

#�1 "
1
2
Eu

Fu � 1
2
Ev

#

"

E F

F G

#"

� u
uv

� v
uv

#

D
"

1
2
Ev

1
2
Gu

#

H)
"

� u
uv

� v
uv

#

D
"

E F

F G

#�1 "
1
2
Ev

1
2
Gu

#

(�)

"

E F

F G

#"

� u
vv

� v
vv

#

D
"

Fv � 1
2
Gu

1
2
Gv

#

H)
"

� u
vv

� v
vv

#

D
"

E F

F G

#�1 "

Fv � 1
2
Gu

1
2
Gv

#

:

What is quite remarkable about these formulas is that the Christoffel symbols, which tell us about the

tangential component of the second derivativesx��, can be computedjust from knowingE, F , andG, i.e.,

the first fundamental form.

Example 2. Let’s now recompute the Christoffel symbols of the unit sphere and compare our answers

with Example 1. SinceE D 1, F D 0, andG D sin2 u, we have
"

� u
uu

� v
uu

#

D
"

1 0

0 csc2 u

#"

0

0

#

D
"

0

0

#

"

� u
uv

� v
uv

#

D
"

1 0

0 csc2 u

#"

0

sinu cosu

#

D
"

0

cotu

#

"

� u
vv

� v
vv

#

D
"

1 0

0 csc2 u

#"

� sinu cosu

0

#

D
"

� sinu cosu

0

#

:

Thus, the only nonzero Christoffel symbols are� v
uv D � v

vu D cotu and� u
vv D � sinu cosu, as before.

O

By Exercise 2.2.2, the matrix of the shape operatorSP with respect to the basisfxu; xvg is
"

a c

b d

#

D
"

E F

F G

#�1 "

` m

m n

#

D 1

EG � F 2

"

`G �mF mG � nF
�`F CmE �mF C nE

#

:
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Note that these coefficients tell us the derivatives ofn with respect tou andv:

nu D Dxu
n D �SP .xu/ D �.axu C bxv/

(��)
nv D Dxv

n D �SP .xv/ D �.cxu C dxv/:

We now differentiate the equations (�) again and use equality of mixed partial derivatives. To start, we

have

xuuv D .� u
uu/vxu C � u

uuxuv C .� v
uu/vxv C � v

uuxvv C `vnC `nv

D .� u
uu/vxu C � u

uu

�

� u
uvxu C � v

uvxv Cmn
�

C .� v
uu/vxv C � v

uu

�

� u
vvxu C � v

vvxv C nn/

C `vn � `.cxu C dxv/

D
�

.� u
uu/v C � u

uu�
u

uv C � v
uu�

u
vv � `c

�

xu C
�

.� v
uu/v C � u

uu�
v

uv C � v
uu�

v
vv � `d

�

xv

C
�

� u
uumC � v

uunC `v

�

n;

and, similarly,

xuvu D
�

.� u
uv/u C � u

uv�
u

uu C � v
uv�

u
uv �ma

�

xu C
�

.� v
uv/u C � u

uv�
v

uu C � v
uv�

v
uv �mb

�

xv

C
�

`� u
uv Cm� v

uv Cmu

�

n:

Sincexuuv D xuvu, we compare the indicated components and obtain:

.xu/W .� u
uu/v C � v

uu�
u

vv � `c D .� u
uv/u C � v

uv�
u

uv �ma
.}/ .xv/W .� v

uu/v C � u
uu�

v
uv C � v

uu�
v

vv � `d D .� v
uv/u C � u

uv�
v

uu C � v
uv�

v
uv �mb

.n/ W `v Cm� u
uu C n� v

uu D mu C `� u
uv Cm� v

uv :

Analogously, comparing the indicated components ofxuvv D xvvu, we find:

.xu/W .� u
uv/v C � u

uv�
u

uv C � v
uv�

u
vv �mc D .� u

vv/u C � u
vv�

u
uu C � v

vv�
u

uv � na
.xv/W .� v

uv/v C � u
uv�

v
uv �md D .� v

vv/u C � u
vv�

v
uu � nb

.n/ W mv Cm� u
uv C n� v

uv D nu C `� u
vv Cm� v

vv :

The two equations coming from the normal component give us the

Codazzi equations

`v �mu D `� u
uv Cm

�

� v
uv � � u

uu

�

� n� v
uu

mv � nu D `� u
vv Cm

�

� v
vv � � u

uv

�

� n� v
uv :

UsingK D `n �m2

EG � F 2
and the formulas above fora, b, c, andd , the four equations involving thexu and

xv components yield the
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Gauss equations

EK D
�

� v
uu

�

v
�
�

� v
uv

�

u
C � u

uu�
v

uv C � v
uu�

v
vv � � u

uv�
v

uu �
�

� v
uv

�2

FK D
�

� u
uv

�

u
�
�

� u
uu

�

v
C � v

uv�
u

uv � � v
uu�

u
vv

FK D
�

� v
uv

�

v
�
�

� v
vv

�

u
C � u

uv�
v

uv � � u
vv�

v
uu

GK D
�

� u
vv

�

u
�
�

� u
uv

�

v
C � u

vv�
u

uu C � v
vv�

u
uv �

�

� u
uv

�2 � � v
uv�

u
vv :

For example, to derive the first, we use the equation (}) above:

�

� v
uu

�

v
�
�

� v
uv

�

u
C � u

uu�
v

uv C � v
uu�

v
vv � � u

uv�
v

uu �
�

� v
uv

�2 D `d �mb

D 1

EG � F 2

�

`.�mF C nE/Cm.`F �mE/
�

D E.`n�m2/

EG � F 2
D EK:

In an orthogonal parametrization (F D 0), we leave it to the reader to check in Exercise 3 that

(�) K D � 1

2
p
EG

�� Evp
EG

�

v
C
� Gup

EG

�

u

�

:

One of the crowning results of local differential geometry is the following

Theorem 3.1(Gauss’s Theorema Egregium). The Gaussian curvature is determined by only the first

fundamental formI. That is,K can be computed from justE, F , G, and their first and second partial

derivatives.

Proof. From any of the Gauss equations, we see thatK can be computed by knowing any one ofE,

F , andG, together with the Christoffel symbols and their derivatives. But the equations (�) show that the

Christoffel symbols (and hence any of their derivatives) can be calculated in terms ofE, F , andG and their

partial derivatives. �

Corollary 3.2. If two surfaces are locally isometric, their Gaussian curvatures at corresponding points

are equal.

For example, the plane and cylinder are locally isometric, and hence the cylinder (as we well know)

is flat. We now conclude that since the Gaussian curvature of a sphere is nonzero, a sphere cannot be

locally isometric to a plane. Thus, there is no way to map the earth “faithfully” (preserving distance)—even

locally—on a piece of paper. In some sense, the Mercator projection (see Exercise 2.1.12) is the best we can

do, for, although it distorts distances, it does preserve angles.

The Codazzi and Gauss equations are rather opaque, to say the least. We obtained the convenient

equation (�) for the Gaussian curvature from the Gauss equations. To give a bit more insight into the

meaning of the Codazzi equations, we have the following

Lemma 3.3. Supposex is a parametrization for which theu- andv-curves are lines of curvature, with

respective principal curvaturesk1 andk2. Then we have

(?) .k1/v D
Ev

2E
.k2 � k1/ and .k2/u D

Gu

2G
.k1 � k2/:
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Proof. By Exercise 2.2.1,̀ D k1E, n D k2G, andF D m D 0. By the first Codazzi equation and the

equations (�) on p. 58, we have

.k1/vE C k1Ev D `v D k1E�
u

uv � k2G�
v

uu D 1
2
Ev.k1 C k2/;

and so

.k1/v D
Ev

2E
.k2 � k1/:

The other formula follows similarly from the second Codazzi equation.�

Let’s now apply the Codazzi equations to prove a rather striking result about the general surface with

K D 0 everywhere.

Proposition 3.4. SupposeM is a flat surface with no planar points. ThenM is a ruled surface whose

tangent plane is constant along the rulings.

Proof. SinceM has no planar points, we can choosek1 D 0 andk2 ¤ 0 everywhere. Then by Theorem

3.3 of the Appendix, there is a local parametrization ofM so that theu-curves are the first lines of curvature

and thev-curves are the second lines of curvature. This means first of all thatF D m D 0. (See Exercise

2.2.1.) Now, sincek1 D 0, for anyP 2 M we haveSP .xu/ D 0, and sonu D 0 everywhere andn is

constant along theu-curves. We also observe that` D II .xu; xu/ D �SP .xu/ � xu D 0.
We now want to show that theu-curves are in factlines. Sincek1 D 0 everywhere,.k1/v D 0 and,

sincek2 ¤ k1, we infer from Lemma 3.3 thatEv D 0. From the equations (�) it now follows that� v
uu D 0.

Thus,

xuu D � u
uuxu C � v

uuxv C `n D � u
uuxu

is just a multiple ofxu. Thus, the tangent vectorxu never changes direction as we move along theu-curves,

and this means that theu-curves must be lines. In conclusion, we have a ruled surface whose tangent plane

is constant along rulings.�

Remark. Flat ruled surfaces are often calleddevelopable. (See Exercise 10 and Exercise 2.1.11.) The

terminology comes from the fact that they can be rolled out—or “developed”—onto a plane.

Next we prove a strikingglobal result about compact surfaces. (Recall that a subset ofR
3 is compact

if it is closed and bounded. The salient feature of compact sets is the maximum value theorem: A contin-

uous real-valued function on a compact set achieves its maximum and minimum values.) We begin with a

straightforward

Proposition 3.5. SupposeM � R
3 is a compact surface. Then there is a pointP 2M withK.P / > 0.

Proof. BecauseM is compact, the continuous functionf .x/ D kxk achieves its maximum at some

point ofM , and so there is a pointP 2 M farthest from the origin (which may or may not be insideM ),

as indicated in Figure 3.2. Letf .P / D R. As Exercise 1.2.7 shows, the curvature of any curve˛ � M

atP is at least1=R, so—if we choose the unit normaln to be inward-pointing—every normal curvature of

M atP is at least1=R. It follows thatK.P / � 1=R2 > 0. (That is,M is at least as curved atP as the

circumscribed sphere of radiusR tangent toM atP .) �
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0
P

M

FIGURE 3.2

The reader is asked in Exercise 18 to find surfaces of revolution of constant curvature. There are,

interestingly, many nonobvious examples. However, if we restrict ourselves to smooth surfaces, we have the

following beautiful

Theorem 3.6(Liebmann). If M is a smooth, compact surface of constant Gaussian curvatureK, then

K > 0 andM must be a sphere of radius1=
p
K.

We will need the following

Lemma 3.7(Hilbert). SupposeP is not an umbilic point andk1.P / > k2.P /. Supposek1 has a local

maximum atP andk2 has a local minimum atP . ThenK.P / � 0.

Proof. We work in a “principal” coordinate parametrization7 nearP , so that theu-curves are lines of

curvature with principal curvaturek1 and thev-curves are lines of curvature with principal curvaturek2.

Sincek1 ¤ k2 and.k1/v D .k2/u D 0 atP , it follows from Lemma 3.3 thatEv D Gu D 0 atP .

Differentiating the equations (?), and remembering that.k1/u D .k2/v D 0 atP as well, we haveatP :

.k1/vv D
Evv

2E
.k2 � k1/ � 0 (becausek1 has a local maximum atP )

.k2/uu D
Guu

2G
.k1 � k2/ � 0 (becausek2 has a local minimum atP ),

and soEvv � 0 andGuu � 0 atP . Using the equation (�) for the Gaussian curvature on p. 60, we see that

�2KEG D Evv C Guu C a.u; v/Ev C b.u; v/Gu

for some functionsa.u; v/ andb.u; v/. So we conclude thatK.P / � 0, as desired. �

Proof of Theorem 3.6. By Proposition 3.5, there is a point whereM is positively curved, and since the

Gaussian curvature is constant, we must haveK > 0. If every point is umbilic, then by Exercise 2.2.14, we

know thatM is a sphere. If there is some non-umbilic point, the larger principal curvature,k1, achieves its

maximum value at some pointP becauseM is compact. Then, sinceK D k1k2 is constant, the function

k2 D K=k1 must achieve its minimum atP . SinceP is necessarily a non-umbilic point (why?), it follows

from Lemma 3.7 thatK.P / � 0, which is a contradiction. �

7Since locally there are no umbilic points, the existence of such a parametrization is an immediate consequence of Theorem
3.3 of the Appendix.
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Remark. H. Hopf proved a stronger result, which requires techniques from complex analysis: IfM is a

compact surface topologically equivalent to a sphere and having constantmeancurvature, thenM must be

a sphere.

We conclude this section with the analogue of Theorem 3.1 of Chapter 1.

Theorem 3.8 (Fundamental Theorem of Surface Theory). Uniqueness:Two parametrized surfaces

x; x�WU ! R
3 are congruent (i.e., differ by a rigid motion) if and only ifI D I� and II D ˙II�. Ex-

istence:Moreover, given differentiable functionsE, F ,G, `,m, andn with E > 0 andEG � F 2 > 0 and

satisfying the Codazzi and Gauss equations, there exists (locally) a parametrized surfacex.u; v/ with the

respectiveI andII .

Proof. The existence statement requires some theorems from partial differential equations beyond our

reach at this stage. The uniqueness statement, however, is much like the proof of Theorem 3.1 of Chapter

1. (The main technical difference is that we no longer are lucky enough to be working with anorthonormal

basis at each point, as we were with the Frenet frame.)

First, supposex� D ‰ıx for some rigid motion‰WR3 ! R
3 (i.e.,‰.x/ D AxC b for someb 2 R

3

and some3�3 orthogonal matrixA). Since a translation doesn’t change partial derivatives, we may assume

that b D 0. Now, since orthogonal matrices preserve length and dot product, we haveE� D kx�
uk2 D

kAxuk2 D kxuk2 D E, etc., so ID I�. If detA > 0, thenn� D An, whereas if detA < 0, thenn� D �An.

Thus,`� D x�
uu � n� D Axuu � .˙An/ D ˙`, the positive sign holding when detA > 0 and the negative

when detA < 0. Thus, II� D II if det A > 0 and II� D �II if det A < 0.

Conversely, suppose ID I� and IID ˙II�. By composingx� with a reflection, if necessary, we may

assume that IID II�. Now we need the following

Lemma 3.9. Supposę and˛� are smooth functions onŒ0; b�, v1v2v3 andv�
1v�

2v�
3 are smoothly varying

bases forR3, also defined onŒ0; b�, so that

vi .t/ � vj .t/ D v�
i .t/ � v�

j .t/ D gij .t/; i; j D 1; 2; 3;

˛0.t/ D
3
X

iD1

pi .t/vi .t/ and ˛�0.t/ D
3
X

iD1

pi .t/v�
i .t/;

v0
j .t/ D

3
X

iD1

qij vi .t/ and v�
j

0.t/ D
3
X

iD1

qij v�
i .t/; j D 1; 2; 3:

(Note that the coefficient functionspi andqij are the same for both the starred and unstarred equations.)

If ˛.0/ D ˛�.0/ andvi .0/ D v�
i .0/, i D 1; 2; 3, then˛.t/ D ˛�.t/ andvi .t/ D v�

i .t/ for all t 2 Œ0; b�,
i D 1; 2; 3.

Fix a pointu0 2 U . By composingx� with a rigid motion, we may assume thatat u0 we havex D x�,

xu D x�
u, xv D x�

v , andn D n� (why?). Choose an arbitraryu1 2 U , and joinu0 to u1 by a pathu.t/,
t 2 Œ0; b�, and apply the lemma with̨ D xıu, v1 D xuıu, v2 D xvıu, v3 D nıu, pi D u0

i , and theqij

prescribed by the equations (�) and (��). Since ID I� and IID II�, the same equations hold for˛� D x�ıu,

and sox.u1/ D x�.u1/ as desired. That is, the two parametrized surfaces are identical.�
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Proof of Lemma 3.9. Introduce the matrix function oft

M.t/ D

2

6
4

j j j
v1.t/ v2.t/ v3.t/

j j j

3

7
5 ;

and analogously forM �.t/. Then the displayed equations in the statement of the Lemma can be written as

M 0.t/ D M.t/Q.t/ and M �0.t/ DM �.t/Q.t/:

On the other hand, we haveM.t/TM.t/ D G.t/. Since thevi .t/ form a basis forR3 for eacht , we

know the matrixG is invertible. Now, differentiating the equationG.t/G�1.t/ D I yields .G�1/0.t/ D
�G�1.t/G0.t/G�1.t/, and differentiating the equationG.t/ DM.t/TM.t/ yieldsG0.t/ D M 0.t/TM.t/C
M.t/TM 0.t/ D Q.t/TG.t/CG.t/Q.t/. Now consider

.M �G�1M T/0.t/ DM �0.t/G.t/�1M.t/T CM �.t/.G�1/0.t/M.t/T CM �.t/G.t/�1M 0.t/T

DM �.t/Q.t/G.t/�1M.t/T CM �.t/
�

�G.t/�1G0.t/G.t/�1
�

M.t/T

CM �.t/G.t/�1Q.t/TM.t/T

DM �.t/Q.t/G.t/�1M.t/T �M �.t/G.t/�1Q.t/TM.t/T �M �.t/Q.t/G.t/�1M.t/T

CM �.t/G.t/�1Q.t/TM.t/T D O:

SinceM.0/ D M �.0/, we haveM �.0/G.0/�1M.0/T D M.0/M.0/�1M.0/T�1M.0/T D I , and so

M �.t/G.t/�1M.t/T D I for all t 2 Œ0; b�. It follows thatM �.t/ D M.t/ for all t 2 Œ0; b�, and so

˛�0.t/ � ˛0.t/ D 0 for all t as well. Sincę �.0/ D ˛.0/, it follows that˛�.t/ D ˛.t/ for all t 2 Œ0; b�, as

we wished to establish.�

EXERCISES 2.3

1. Calculate the Christoffel symbols for a cone,x.u; v/ D .u cosv; u sinv; u/, both directly and by using

the formulas (�).

2. Calculate the Christoffel symbols for the following parametrized surfaces. Then check in each case that

the Codazzi equations and the first Gauss equation hold.

a. the plane, parametrized by polar coordinates:x.u; v/ D .u cosv; u sinv; 0/

b. a helicoid:x.u; v/ D .u cosv; u sinv; v/
]c. a cone:x.u; v/ D .u cosv; u sinv; cu/, c ¤ 0

]*d. a surface of revolution:x.u; v/ D
�

f .u/ cosv; f .u/ sinv; g.u/
�

, with f 0.u/2 C g0.u/2 D 1

3. Use the first Gauss equation to derive the formula (�) given on p. 60 for Gaussian curvature.

4. Check the Gaussian curvature of the sphere using the formula (�) on p. 60.

5. Check that for a parametrized surface withE D G D �.u; v/ andF D 0, the Gaussian curvature is

given byK D � 1
2�
r2.ln�/. (Herer2f D @2f

@u2
C @2f

@v2
is the Laplacian off .)

6. Prove there is nocompactminimal surfaceM � R
3.
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7. Decide whether there is a parametrized surfacex.u; v/ with

a. E D G D 1, F D 0, ` D 1 D �n,m D 0
b. E D G D 1, F D 0, ` D eu D n,m D 0
c. E D 1, F D 0,G D cos2 u, ` D cos2 u,m D 0, n D 1

8. a. Modify the proof of Theorem 3.6 to prove that a smooth, compact surface withK > 0 and constant

mean curvature is a sphere.

b. Give an example to show that the result of Lemma 3.7 fails if we assumek1 has a local minimum

andk2 has a local maximum atP .

9. Give examples of (locally)non-congruentparametrized surfacesx andx� with

a. ID I�

b. II D II� (Hint: Try reparametrizing some of our simplest surfaces.)

10. Let x.u; v/ D ˛.u/ C vˇ.u/ be a parametrization of a ruled surface. Prove that the tangent plane

is constant along rulings (i.e., the surface is flat) if and only if˛0.u/, ˇ.u/, andˇ0.u/ are linearly

dependent for everyu. (Hint: When isSP .xv/ D 0? Alternatively, considerxu�xv and apply Exercise

A.2.1.)

11. Prove that̨ is a line of curvature inM if and only if the ruled surface formed by the surface normals

along˛ is flat. (Hint: See Exercise 10.)

12. Show that the Gaussian curvature of the parametrized surfaces

x.u; v/ D .u cosv; u sinv; v/

y.u; v/ D .u cosv; u sinv; lnu/

is the same for each.u; v/, and yet the first fundamental forms Ix and Iy do not agree. (Thus, the

converse of Corollary 3.2 is false.)

13. Suppose that through each point of a surfaceM there is a planar asymptotic curve with nonzero curva-

ture. Prove thatM must be a (subset of a) plane. (Hint: Apply Proposition 3.4.)

14. Suppose that the surfaceM is doubly ruled by orthogonal lines (i.e., through each point ofM there pass

two orthogonal lines).

a. Using the Gauss equations, prove thatK D 0.
b. Now deduce thatM must be a plane.

(Hint: As usual, assume that, locally, the families of lines areu- andv-curves.)

15. SupposeM is a surface with no umbilic points and one constant principal curvaturek1 ¤ 0. Prove that

M is (a subset of) a tube of radiusr D 1=jk1j about a curve. That is, there is a curve˛ so thatM is

(a subset of) the union of circles of radiusr in each normal plane, centered along the curve. (Hints: As

usual, work with a parametrization where theu-curves are lines of curvature with principal curvature

k1 and thev-curves are lines of curvature with principal curvaturek2. Use Lemma 3.3 to show that the

u-curves have curvaturejk1j and are planar. Then definęappropriately and check that it is a regular

curve.)
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16. IfM is a surface with both principal curvatures constant, prove thatM is (a subset of) either a sphere,

a plane, or a right circular cylinder. (Hint: See Exercise 2.2.14, Proposition 3.4, and Exercise 15.)

17. Consider the parametrized surfaces

x.u; v/ D .� coshu sinv; coshu cosv; u/ (a catenoid)

y.u; v/ D .u cosv; u sinv; v/ (a helicoid).

a. Compute the first and second fundamental forms of both surfaces, and check that both surfaces are

minimal.

b. Find the asymptotic curves on both surfaces.

c. Show that we can locally reparametrize the helicoid in such a way as to make the first fundamental

forms of the two surfaces agree; this means that the two surfaces are locally isometric. (Hint: See

p. 39. Replaceu with sinhu in the parametrization of the helicoid. Why is this legitimate?)

d. Why are they not globally isometric?

e. (for the student who’s seen a bit of complex variables) As a hint to what’s going on here, let

z D u C iv and Z D x C iy, and check that, continuing to use the substitution from part c,

Z D .siniz; cosiz; z/. Understand now how one can obtain a one-parameter family of isometric

surfaces interpolating between the helicoid and the catenoid.

18. Find all the surfaces of revolution of constant curvature

a. K D 0
b. K D 1
c. K D �1
(Hint: There are more than you might suspect. But your answers will involve integrals you cannot

express in terms of elementary functions.)

4. Covariant Differentiation, Parallel Translation, and Geodesics

Now we turn to the “intrinsic” geometry of a surface, i.e., the geometry that can be observed by an

inhabitant (for example, a very thin ant) of the surface, who can only perceive what happens along (or, say,

tangential to) the surface. Anyone who has studied Euclidean geometry knows how important the notion of

parallelism is (and classical non-Euclidean geometry arises when one removes Euclid’s parallel postulate,

which stipulates that given any lineL in the plane and any pointP not lying onL, there is a unique line

throughP parallel toL). It seems quite intuitive to say that, working just inR3, two vectorsV (thought of

as being “tangent atP ”) andW (thought of as being “tangent atQ”) are parallel provided that we obtainW
when we moveV “parallel to itself” fromP toQ; in other words, ifW D V. But what would an inhabitant

of the sphere say? How should he compare a tangent vector at one point of the sphere to a tangent vector

at another and determine if they’re “parallel”? (See Figure 4.1.) Perhaps a better question is this: Given

a curve˛ on the surface and a vector fieldX defined along̨ , should we sayX is parallel if it has zero

derivative along̨ ?

We already know how an inhabitant differentiates a scalar functionf WM ! R, by considering the

directional derivativeDVf for any tangent vectorV 2 TPM . We now begin with a
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Are V and W parallel?

P Q

V W

FIGURE 4.1

Definition. We say a functionXWM ! R
3 is avector fieldonM if

(1) X.P / 2 TPM for everyP 2M , and

(2) for any parametrizationxWU !M , the functionXıxWU ! R
3 is (continuously) differentiable.

Now, we can differentiate a vector fieldX onM in the customary fashion: IfV 2 TPM , we choose a

curve˛ with ˛.0/ D P and˛0.0/ D V and setDVX D .Xı˛/0.0/. (As usual, the chain rule tells us this is

well-defined.) But the inhabitant of the surface can only see that portion of this vector lying in the tangent

plane. This brings us to the

Definition. Given a vector fieldX andV 2 TPM , we define thecovariant derivative

rVX D .DVX/k D the projection ofDVX ontoTPM

D DVX � .DVX � n/n:

Given a curvę in M , we say the vector fieldX is covariant constantor parallel along˛ if r˛0.t/X D 0
for all t . (This means thatD˛0.t/X D .Xı˛/0.t/ is a multiple of the normal vectorn.˛.t//.)

Example 1. Let M be a sphere and let̨ be a great circle inM . The derivative of the unit tangent

vector of˛ points towards the center of the circle, which is in this case the center of the sphere, and thus is

completely normal to the sphere. Therefore, the unit tangent vector field of˛ is parallel along̨ . Observe

that the constant vector field.0; 0; 1/ is parallel along the equatorz D 0 of a sphere centered at the origin.

Is this true of any other constant vector field?O

Example 2. A fundamental example requires that we revisit the Christoffel symbols. Given a parametrized

surfacexWU !M , we have

rxu
xu D .xuu/

k D � u
uuxu C � v

uuxv

rxv
xu D .xuv/

k D � u
uvxu C � v

uvxv D rxu
xv ; and

rxv
xv D .xvv/

k D � u
vvxu C � v

vvxv : O

The first result we prove is the following

Proposition 4.1. Let I be an interval inR with 0 2 I . Given a curvę W I ! M with ˛.0/ D P and

X0 2 TPM , there is a unique parallel vector fieldX defined along̨ with X.P / D X0.
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Proof. Assuming˛ lies in a parametrized portionxWU ! M , set ˛.t/ D x.u.t/; v.t// and write

X.˛.t// D a.t/xu.u.t/; v.t// C b.t/xv.u.t/; v.t//. Then˛0.t/ D u0.t/xu C v0.t/xv (where the the cum-

bersome argument.u.t/; v.t// is understood). So, by the product rule and chain rule, we have

r˛0.t/X D
�

.Xı˛/0.t/
�k D

�
d

dt

�

a.t/xu.u.t/; v.t//C b.t/xv.u.t/; v.t//
�
�k

D a0.t/xu C b0.t/xv C a.t/
�
d

dt
xu.u.t/; v.t//

�k
C b.t/

�
d

dt
xv.u.t/; v.t//

�k

D a0.t/xu C b0.t/xv C a.t/
�

u0.t/xuu C v0.t/xuv

�k C b.t/
�

u0.t/xvu C v0.t/xvv

�k

D a0.t/xu C b0.t/xv C a.t/
�

u0.t/.� u
uuxu C � v

uuxv/C v0.t/.� u
uvxu C � v

uvxv/
�

C b.t/
�

u0.t/.� u
vuxu C � v

vuxv/C v0.t/.� u
vvxu C � v

vvxv/
�

D
�

a0.t/C a.t/.� u
uuu

0.t/C � u
uvv

0.t//C b.t/.� u
vuu

0.t/C � u
vvv

0.t//
�

xu

C
�

b0.t/C a.t/.� v
uuu

0.t/C � v
uvv

0.t//C b.t/.� v
vuu

0.t/C � v
vvv

0.t//
�

xv :

Thus, to sayX is parallel along the curvę is to say thata.t/ andb.t/ are solutions of the linear system of

first order differential equations

a0.t/C a.t/.� u
uuu

0.t/C � u
uvv

0.t//C b.t/.� u
vuu

0.t/C � u
vvv

0.t// D 0
(|)

b0.t/C a.t/.� v
uuu

0.t/C � v
uvv

0.t//C b.t/.� v
vuu

0.t/C � v
vvv

0.t// D 0:

By Theorem 3.2 of the Appendix, this system has a unique solution onŒ0; 1� once we specifya.0/ andb.0/,

and hence we obtain a unique parallel vector fieldX with X.P / D X0. �

Definition. If Q D ˛.1/, we refer toX.Q/ as theparallel translateof X0 along˛, or the result of

parallel translationalong˛.

Remark. The system of differential equations (|) that defines parallel translation shows that it is “in-

trinsic,” i.e., depends only on the first fundamental form ofM , despite our original extrinsic definition. In

particular, parallel translation in locally isometric surfaces will be identical.

Example 3. Fix a latitude circleu D u0 (u0 ¤ 0; �) on the unit sphere (see Example 1(d) on p. 37) and

let’s calculate the effect of parallel-translating the vectorX0 D xv starting at the pointP given byu D u0,

v D 0, once around the circle, counterclockwise. We parametrize the curve byu.t/ D u0, v.t/ D t ,

0 � t � 2� . Using our computation of the Christoffel symbols of the sphere in Example 1 or 2 of Section

3, we obtain from (|) the differential equations

a0.t/ D sinu0 cosu0b.t/; a.0/ D 0
b0.t/ D � cotu0a.t/; b.0/ D 1:

We solve this system by differentiating the second equation again and substituting the first:

b00.t/ D � cotu0a
0.t/ D � cos2 u0b.t/; b.0/ D 1:

Recalling that every solution of the differential equationy00.t/ C k2y.t/ D 0 is of the formy.t/ D
c1 cos.kt/C c2 sin.kt/, c1; c2 2 R, we see that the solution is

a.t/ D sinu0 sin
�

.cosu0/t
�

; b.t/ D cos
�

.cosu0/t
�

:
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Note thatkX.˛.t//k2 D Ea.t/2C 2Fa.t/b.t/CGb.t/2 D sin2 u0 for all t . That is, the original vectorX0

rotates as we parallel translate it around the latitude circle, and its length is preserved. As we see in Figure

4.2, the vector rotates clockwise as we proceed around the latitude circle (in the upper hemisphere). But this

P

X02π cos u0

u0

FIGURE 4.2

makes sense: If we just take the covariant derivative of the tangent vector to the circle, it points upwards

(cf. Figure 3.1), so the vector field must rotate clockwise to counteract that effect in order to remain parallel.

Sinceb.2�/ D cos.2� cosu0/, we see that the vector turns through an angle of�2� cosu0. O

Example 4(Foucault pendulum). Foucault observed in 1851 that the swing plane of a pendulum located

on the latitude circleu D u0 precesses with a period ofT D 24= cosu0 hours. We can use the result of

Example 3 to explain this. We imagine the earth as fixed and “transport” the swinging pendulum once around

the circle in24 hours. If we make the pendulum very long and the swing rather short, the motion will be

“essentially” tangential to the surface of the earth. If we move slowly around the circle, the forces will be

“essentially” normal to the sphere: In particular, lettingR denote the radius of the earth (approximately

3960 mi), the tangential component of the centripetal acceleration is (cf. Figure 3.1)

.R sinu0/ cosu0

�
2�

24

�2

� 2�2R

242
� 135:7 mi/hr2 � 0:0553 ft/sec2 � 0:17%g:

Thus, the “swing vector field” is, for all practical purposes, parallel along the curve. Therefore, it turns

through an angle of2� cosu0 in one trip around the circle, so it takes
2�

.2� cosu0/=24
D 24

cosu0
hours to

return to its original swing plane. O

Our experience in Example 3 suggests the following

Proposition 4.2. Parallel translation preserves lengths and angles. That is, ifX andY are parallel vector

fields along a curvę fromP toQ, thenkX.P /k D kX.Q/k and the angle betweenX.P / andY.P / equals

the angle betweenX.Q/ andY.Q/ (assuming these are nonzero vectors).

Proof. Considerf .t/ D X.˛.t// � Y.˛.t//. Then

f 0.t/ D .Xı˛/0.t/ � .Yı˛/.t/C .Xı˛/.t/ � .Yı˛/0.t/

D D˛0.t/X � Y C X �D˛0.t/Y
.1/
=D r˛0.t/X � Y C X � r˛0.t/Y

.2/
=D 0:
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Note that equality (1) holds becauseX andY are tangent toM and hence their dot product with any vector

normal to the surface is0. Equality (2) holds becauseX andY are assumed parallel along̨. It follows that

the dot productX � Y remains constant along̨. TakingY D X, we infer thatkXk (and similarlykYk) is

constant. Knowing that, using the famous formula cos� D X � Y=kXkkYk for the angle� betweenX and

Y, we infer that the angle remains constant.�

Now we change gears somewhat. We saw in Exercise 1.1.8 that the shortest path joining two points

in R
3 is a line segment and in Exercise 1.3.1 that the shortest path joining two points on the unit sphere

is a great circle. One characterization of the line segment is that it never changes direction, so that its unit

tangent vector is parallel (so no distance is wasted by turning). (What about the sphere?) It seems plausible

that the mythical inhabitant of our general surfaceM might try to travel from one point to another inM ,

staying inM , by similarly not turning; that is, so that his unit tangent vector field is parallel along his path.

Physically, this means that if he travels at constant speed, any acceleration should be normal to the surface.

This leads us to the following

Definition. We say a parametrized curvęin a surfaceM is ageodesicif its tangent vector is parallel

along the curve, i.e., ifr˛0˛0 D 0.

Recall that since parallel translation preserves lengths,˛ must have constant speed, although it may not

be arclength-parametrized. In general, we refer to an unparametrized curve as a geodesic if its arclength

parametrization is in fact a geodesic.

In general, given any arclength-parametrized curve˛ lying onM , we defined its normal curvature at

the end of Section 2. Instead of using the Frenet frame, it is natural to consider theDarboux framefor ˛,

which takes into account the fact that˛ lies on the surfaceM . (Both are illustrated in Figure 4.3.) We take

T

n
n×T

NN

B

The Frenet and Darboux frames

FIGURE 4.3

the right-handed orthonormal basisfT;n � T;ng; note that the first two vectors give a basis forTPM . We

can decompose the curvature vector

�N D
�

�N � .n � T/
„ ƒ‚ …

�g

�

.n � T/C
�

�N � n
„ƒ‚…

�n

�

n:

As we saw before,�n gives thenormal component of the curvature vector;�g gives thetangentialcom-

ponent of the curvature vector and is called thegeodesic curvature. This terminology arises from the fact

that ˛ is a geodesic if and only if its geodesic curvature vanishes. (When� D 0, the principal normal is

not defined, and we really should writę00 in the place of�N. If the acceleration vanishes at a point, then

certainly its normal and tangential components are both0.)

Example 5. We saw in Example 1 that every great circle on a sphere is a geodesic. Are there others?

Let ˛ be a geodesic on a sphere centered at the origin. Since�g D 0, the acceleration vector̨00.s/ must be
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a multiple of˛.s/ for everys, and sǫ 00 � ˛ D 0. Thereforę 0 � ˛ D A is a constant vector, sǫ lies in

the plane passing through the origin with normal vectorA. That is,˛ is a great circle. O

Using the equations (|), let’s now give the equations for the curve˛.t/ D x.u.t/; v.t// to be a geodesic.

SinceX D ˛0.t/ D u0.t/xu C v0.t/xv , we havea.t/ D u0.t/ andb.t/ D v0.t/, and the resulting equations

are

u00.t/C � u
uuu

0.t/2 C 2� u
uvu

0.t/v0.t/C � u
vvv

0.t/2 D 0
(||)

v00.t/C � v
uuu

0.t/2 C 2� v
uvu

0.t/v0.t/C � v
vvv

0.t/2 D 0:

The following result is a consequence of basic results on differential equations (see Theorem 3.1 of the

Appendix).

Proposition 4.3. Given a pointP 2M andV 2 TPM , V ¤ 0, there exist" > 0 and auniquegeodesic

˛W .�"; "/!M with ˛.0/ D P and˛0.0/ D V.

Example 6. We now use the equations (||) to solve for geodesics analytically in a few examples.

(a) Letx.u; v/ D .u; v/ be the obvious parametrization of the plane. Then all the Christoffel symbols

vanish and the geodesics are the solutions of

u00.t/ D v00.t/ D 0;

so we get the lines̨ .t/ D .u.t/; v.t// D .a1t C b1; a2t C b2/, as expected. Note that̨does in

fact have constant speed.

(b) Using the standard spherical coordinate parametrization of the sphere, we obtain (see Example 1 or

2 of Section 3) the equations

(�) u00.t/ � sinu.t/ cosu.t/v0.t/2 D 0 D v00.t/C 2 cotu.t/u0.t/v0.t/:

Well, one obvious set of solutions is to takeu.t/ D t , v.t/ D v0 (and these, indeed, give the

great circles through the north pole). Integrating the second equation in (�) we obtain lnv0.t/ D
�2 ln sinu.t/C const, so

v0.t/ D c

sin2 u.t/

for some constantc. Substituting this in the first equation in (�) we find that

u00.t/ � c
2 cosu.t/

sin3 u.t/
D 0I

multiplying both sides byu0.t/ (the “energy trick” from physics) and integrating, we get

u0.t/2 D C 2 � c2

sin2 u.t/
; and so u0.t/ D ˙

s

C 2 � c2

sin2 u.t/

for some constantC . Switching to Leibniz notation for obvious reasons, we obtain

dv

du
D v0.t/

u0.t/
D ˙ c csc2 up

C 2 � c2 csc2 u
I thus, separating variables gives

dv D ˙ c csc2 udup
C 2 � c2 csc2 u

D ˙ c csc2 udu
p

.C 2 � c2/ � c2 cot2 u
:
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Now we make the substitutionc cotu D
p
C 2 � c2 sinw; then we have

dv D ˙ c csc2 udu
p

.C 2 � c2/ � c2 cot2 u
D �dw;

and so, at long last, we havew D ˙v C a for some constanta. Thus,

c cotu D
p
C 2 � c2 sinw D

p
C 2 � c2 sin.˙v C a/ D

p
C 2 � c2.sin a cosv ˙ cosa sinv/;

and so, finally, we have the equation

c cosuC
p
C 2 � c2 sin u.A cosv C B sinv/ D 0;

which we should recognize as the equation of a great circle! (Here’s a hint: This curve lies on the

plane
p
C 2 � c2.Ax C By/C cz D 0.) O

We can now give a beautiful geometric description of the geodesics on a surface of revolution.

Proposition 4.4(Clairaut’s relation). The geodesics on a surface of revolution satisfy the equation

(}) r cos� D const;

wherer is the distance from the axis of revolution and� is the angle between the geodesic and the parallel.

Conversely, any (constant speed) curve satisfying(}) that isnot a parallel is a geodesic.

Proof. For the surface of revolution parametrized as in Example 9 of Section 2, we haveE D 1,F D 0,
G D f .u/2, � v

uv D � v
vu D f 0.u/=f .u/, � u

vv D �f .u/f 0.u/, and all other Christoffel symbols are0 (see

Exercise 2.3.2d.). Then the system (||) of differential equations becomes

u00 � ff 0.v0/2 D 0(�1)

v00 C 2f 0

f
u0v0 D 0:(�2)

Rewriting the equation (�2) and integrating, we obtain

v00.t/

v0.t/
D �2f

0.u.t//u0.t/

f .u.t//

lnv0.t/ D �2 ln f .u.t//C const

v0.t/ D c

f .u.t//2
;

so along a geodesic the quantityf .u/2v0 D Gv0 is constant. We recognize this as the dot product of the

tangent vector of our geodesic with the vectorxv, and so we infer thatkxvk cos� D r cos� is constant.

(Recall that, by Proposition 4.2, the tangent vector of the geodesic has constant length.)

To this point we have seen that the equation (�2) is equivalent to the conditionr cos� D const, provided

we assumek˛0k2 D u02 CGv02 is constant as well. But if

u0.t/2 CGv0.t/2 D u0.t/2 C f .u.t//2v0.t/2 D const;

we differentiate and obtain

u0.t/u00.t/C f .u.t//2v0.t/v00.t/C f .u.t//f 0.u.t//u0.t/v0.t/2 D 0I
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substituting forv00.t/ using (�2), we find

u0.t/
�

u00.t/ � f .u.t//f 0.u.t//v0.t/2
�

D 0:

In other words,providedu0.t/ ¤ 0, a constant-speed curve satisfying (�2) satisfies (�1) as well. (See

Exercise 6 for the case of the parallels.)�

Remark. We can give a simple physical interpretation of Clairaut’s relation. Imagine a particle with

mass1 constrained to move along a surface. If no external forces are acting, then the particle moves along

a geodesic and, moreover, angular momentum is conserved (because there are no torques). In the case

of our surface of revolution, the vertical component of the angular momentumL D ˛ � ˛0 is—surprise,

surprise!—f 2v0, which we’ve shown is constant. Perhaps some forces normal to the surface are required

to keep the particle on the surface; then the particle still moves along a geodesic (why?). Moreover, since

.˛ � n/ � .0; 0; 1/ D 0, the resulting torquesstill have no vertical component.

Returning to our original motivation for geodesics, we now consider the following scenario. Choose

P 2 M arbitrary and a geodesic throughP , and draw a curveC0 throughP orthogonal to. We now

choose a parametrizationx.u; v/ so thatx.0; 0/ D P , theu-curves are geodesics orthogonal toC0, and the

v-curves are the orthogonal trajectories of theu-curves, as pictured in Figure 4.4. (It follows from Theorem

C0
P

Q

FIGURE 4.4

3.3 of the Appendix that we can do this on some neighborhood ofP .)

In this parametrization we haveF D 0 andE D E.u/ (see Exercise 13). Now, if̨.t/ D x.u.t/; v.t//,
a � t � b, is any path fromP D x.0; 0/ toQ D x.u0; 0/, we have

length.˛/ D
Z b

a

q

E.u.t//u0.t/2 CG.u.t/; v.t//v0.t/2dt �
Z b

a

p

E.u.t//ju0.t/jdt

�
Z u0

0

p

E.u/du;

which is the length of the geodesic arc fromP toQ. Thus, we have deduced the following.

Proposition 4.5. For any pointQ on  contained in this parametrization, any path fromP toQ con-

tained in this parametrizationis at least as long as the length of the geodesic segment. More colloquially,

geodesics arelocally distance-minimizing.

Example 7. Why is Proposition 4.5 a local statement? Well, consider a great circle on a sphere, as

shown in Figure 4.5. If we go more than halfway around, we obviously have not taken the shortest path.

O
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P

Qshortest

longer

FIGURE 4.5

Remark. It turns out that any surface can be endowed with ametric (or distance measure) by defining

the distance between any two points to be the infimum (usually, the minimum) of the lengths of all piecewise-

C
1 paths joining them. (Although the distance measure is different from the Euclidean distance as the

surface sits inR3, the topology—notion of “neighborhood”—induced by this metric structure is the induced

topology that the surface inherits as a subspace ofR
3.) It is a consequence of the Hopf-Rinow Theorem (see

M. doCarmo,Differential Geometry of Curves and Surfaces, Prentice Hall, 1976, p. 333, or M. Spivak,A

Comprehensive Introduction to Differential Geometry, third edition, volume 1, Publish or Perish, Inc., 1999,

p. 342) that in a surface in which every parametrized geodesic is defined for all time (a “complete” surface),

every two points are in fact joined by a geodesic of least length. The proof of this result is quite tantalizing:

To find the shortest path fromP to Q, one walks around the “geodesic circle” of points a small distance

from P and finds the pointR on it closest toQ; one then proves that the unique geodesic emanating from

P that passes throughR must eventually pass throughQ, and there can be no shorter path.

We referred earlier to two surfacesM andM � as being globally isometric (e.g., in Example 6 in Section

1). We can now give the official definition: There should be a functionf WM !M � that establishes a one-

to-one correspondence and preserves distance—for anyP;Q 2 M , the distance betweenP andQ in M

should be equal to the distance betweenf .P / andf .Q/ in M �.

EXERCISES 2.4

1. Determine the result of parallel translating the vector.0; 0; 1/ once around the circlex2 C y2 D a2,

z D 0, on the right circular cylinderx2 C y2 D a2.

2. Prove that�2 D �2
g C �2

n.

3. Supposę is a non-arclength-parametrized curve. Using the formula (��) on p. 14, prove that the

velocity vector of̨ is parallel along̨ if and only if �g D 0 and� 0 D 0.

*4. Find the geodesic curvature�g of a latitude circleu D u0 on the unit sphere (see Example 1(d) on

p. 37)

a. directly

b. by applying the result of Exercise 2

5. Consider the right circular cone with vertex angle2� parametrized by

x.u; v/ D .u tan� cosv; u tan� sinv; u/; 0 < u � u0; 0 � v � 2�:
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Find the geodesic curvature�g of the circleu D u0 by using trigonometric considerations. Check that

your answer agrees with the curvature of the circle you get by unrolling the cone to form a “pacman”

figure, as shown in Figure 4.6. (For a proof that these curvatures should agree, see Exercise 3.1.7.)

FIGURE 4.6

6. Check that the parallelu D u0 is a geodesic on the surface of revolution parametrized as in Proposition

4.4 if and only iff 0.u0/ D 0. Give a geometric interpretation of and explanation for this result.

7. Use the equations (|), as in Example 3, to determine through what angle a vector turns when it is

parallel-translated once around the circleu D u0 on the conex.u; v/ D .u cosv; u sinv; cu/, c ¤ 0.

(See Exercise 2.3.2c.)

8. a. Prove that if the surfacesM andM � are tangent along the curveC , parallel translation alongC is

the same in both surfaces.

b. Use the result of part a to determine the effect of parallel translation around the latitude circleu D
u0 on the unit sphere (once again, see Example 1(d) on p. 37), using only geometry, trigonometry,

and Figure 4.6. (Note the Remark on p. 68.)

*9. What curves lying on a sphere have constant geodesic curvature?

10. Use the equations (||) to find the geodesics on parametrized surfacex.u; v/ D .eu cosv; eu sinv; 0/.

(Hint: Aim for dv=du. Use the second equation in (||) and the fact that geodesics must have constant

speed.)

11. Use the equations (||) to find the geodesics on the plane parametrized by polar coordinates. (Hint:

Examine Example 6(b).)

12. Prove or give a counterexample:

a. A curve is both an asymptotic curve and a geodesic if and only if it is a line.

b. If a curve is both a geodesic and a line of curvature, then it must be planar.

]13. a. SupposeF D 0 and theu-curves are geodesics. Use the equations (||) to prove thatE is a

function ofu only.

b. SupposeF D 0 and theu- andv-curves are geodesics. Prove that the surface is flat.

14. SupposeF D 0 and theu-curves are geodesics. Prove that the length of theu-curve fromu D u0 to

u D u1 is independent ofv. (See Figure 4.7.)

15. a. Prove that an arclength-parametrized curve˛ on a surfaceM with � ¤ 0 is a geodesic if and only

if n D ˙N.
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FIGURE 4.7

b. Let˛ be a space curve, and letM be the ruled surface generated by its binormals. Prove that the

curve is a geodesic onM .

16. a. Suppose a geodesic is planar and has� ¤ 0 at P . Prove that its tangent vector atP must be a

principal direction. (Hint: Use Exercise 15.)

b. Prove that if every geodesic of a (connected) surface is planar, then the surface is contained in a

plane or a sphere.

17. Show that the geodesic curvature atP of a curveC in M is equal (in absolute value) to the curvature at

P of the projection ofC into TPM .

*18. Use Clairaut’s relation, Proposition 4.4, to analyze the geodesics on each of the surfaces pictured in

Figure 4.8. In particular, other than the meridians, in each case which geodesics are unbounded (i.e., go

off to infinity)?

(a) (b)

FIGURE 4.8

19. Check using Clairaut’s relation, Proposition 4.4, that great circles are geodesics on a sphere. (Hint: The

result of Exercise A.1.3 may be useful.)

20. LetM be a surface andP 2M . We sayU;V 2 TPM areconjugateif II P .U;V/ D 0.
a. LetC � M be a curve (with the property that its tangent vector is never a principal direction with

principal curvature0). Define theenvelopeM � of the tangent planes toM alongC to be the ruled

surface whose generator atP 2 C is the limiting position asQ! P of the intersection line of the

tangent planes toM atP andQ. Prove that the generator atP is conjugate to the tangent line to

C atP .

b. Prove that ifC is nowhere tangent to an asymptotic direction, thenM � is smooth (at least nearC ).

Prove, moreover, thatM � is tangent toM alongC and is a developable (flat ruled) surface.
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c. Apply part b to give a geometric way of computing parallel translation. In particular, do this for a

latitude circle on the sphere. (Cf. Exercise 8.)

21. Suppose that on a surfaceM the parallel translation of a vector from one point to another is independent

of the path chosen. Prove thatM must be flat. (Hint: Fix an orthonormal basiseo
1;e

o
2 for TPM and

define vector fieldse1;e2 by parallel translating. Choose coordinates so that theu-curves are always

tangent toe1 and thev-curves are always tangent toe2. See Exercise 13.)

22. Use the Clairaut relation, Proposition 4.4, to describe the geodesics on the torus as parametrized in

Example 1(c) of Section 1. (Start with a geodesic starting at and making angle�0 with the outer

parallel. Your description should distinguish between the cases0 < cos�0 � a�b
aCb

and cos�0 >
a�b
aCb

.

Which geodesics never cross the outer parallel at all? Also, remember that through each point there is a

uniquegeodesic in each direction.)

23. Use the proof of the Clairaut relation, Proposition 4.4, to show that a unit-speed geodesic on a surface

of revolution is given in terms of the standard parametrization in Example 9 of Section 2 by

v D c
Z

du

f .u/
p

f .u/2 � c2
C const:

Now deduce that in the case of a non-arclength parametrization we obtain

v D c
Z p

f 0.u/2 C g0.u/2

f .u/
p

f .u/2 � c2
duC const:

*24. Use Exercise 23 to give equations of the geodesics on the pseudosphere (see Example 8 of Section 2).

Deduce, in particular, that the only geodesics that are unbounded are the meridians.

25. Use Exercise 23 to show that any geodesic on the paraboloidz D x2 C y2 that is not a meridian

intersects every meridian. (Hint: Show that it cannot approach a meridian asymptotically.)

26. LetM be the hyperboloidx2 C y2 � z2 D 1, and letC be the circlex2 C y2 D 1, z D 0.
a. Use Clairaut’s relation, Proposition 4.4, to show that, with the exception of the circleC , every

geodesic onM is unbounded.

b. Show that there are geodesics that approach the circleC asymptotically. (Hint: Use Exercise 23.)

27. LetC be a parallel (withu D u0) in a surface of revolutionM . Suppose a geodesic approachesC

asymptotically.

a. Use Clairaut’s relation, Proposition 4.4, to show that must approach “from above” (i.e., with

r > r0 D f .u0/).

b. Use Exercise 23 to show thatC must itself be a geodesic. (Hint: Consider the Taylor expansion

f .u/ D f .u0/C f 0.u0/.u � u0/C 1
2
f 00.u0/.u � u0/

2 C : : :.)
c. Give an alternative argument for the result of part b by using the fact that the metric discussed in

the Remark on p. 74 is a continuous function of the pair of points. You will also need to use the

fact that when points are sufficiently close, there is a unique shortest geodesic joining them.
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28. Consider the surfacez D f .u; v/. A curve˛ whose tangent vector at each pointP D .u; v; f .u; v//

projects to a scalar multiple ofrf .u; v/ is a curve of steepest ascent (why?). Suppose such a curve˛

is also a geodesic.

a. Prove that the projection of̨ into theuv-plane is, suitably reparametrized, a geodesic in theuv-

plane. (Hint: What is the projection of̨00?)

b. Deduce that̨ is also a line of curvature. (Hint: See Exercise 16 when˛ is not a line. The case of

a line can be deduced from the computation in part c.)

c. Show that if all the curves of steepest ascent are geodesics, thenf satisfies the partial differential

equation

fufv.fvv � fuu/C fuv.f
2

u � f 2
v / D 0:

(Hint: When are the integral curves ofrf lines?)

d. Show that if all the curves of steepest ascent are geodesics, the level curves off are parallel (see

Exercise 1.2.24). (Hint: Show thatkrf k is constant along level curves.)

e. Give a characterization of the surfaces with the property that all curves of steepest ascent are

geodesics.



CHAPTER 3

Surfaces: Further Topics

The first section is required reading, but the remaining sections of this chapter are independent of one

another.

1. Holonomy and the Gauss-Bonnet Theorem

Let’s now pursue the discussion of parallel translation that we began in Chapter 2. LetM be a surface

and˛ a closed curve inM . We begin by fixing a smoothly-varying orthonormal basise1;e2 (a so-called

framing) for the tangent planes ofM in an open set ofM containing˛, as shown in Figure 1.1 below. Now

e1

e1

e1

e1

e1

e2

e2

e2

e2
e2 α

FIGURE 1.1

we make the following

Definition. Let ˛ be aclosedcurve in a surfaceM . The angle through which a vector turnsrelative to

the given framingas we parallel translate it once around the curve˛ is called theholonomy1 around˛.

For example, if we take a framing around˛ by using the unit tangent vectors tǫas our vectorse1, then, by

the definition of a geodesic, there there will be zero holonomy around a closed geodesic (why?). For another

example, if we use the framing on (most of) the sphere given by the tangents to the lines of longitude and

lines of latitude, the computation in Example 3 of Section 4 of Chapter 2 shows that the holonomy around a

latitude circleu D u0 of the unit sphere is�2� cosu0.

To make this more precise, for ease of understanding, let’s work in an orthogonal parametrization2 and

define a framing by setting

e1 D
xup
E

and e2 D
xvp
G
:

Since (much as in the case of curves)e1 and e2 give an orthonormal basis for the tangent space of our

surface at each point, all the intrinsic curvature information (such as given by the Christoffel symbols)

1from holo-+-nomy, the study of the whole
2As usual, away from umbilic points, we can apply Theorem 3.3 of the Appendix to obtain a parametrization where theu- and

v-curves are lines of curvature.

79
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is encapsulated in knowing howe1 twists towardse2 as we move around the surface. In particular, if

˛.t/ D x.u.t/; v.t//, a � t � b, is a parametrized curve, we can set

�12.t/ D
d

dt

�

e1.u.t/; v.t//
�

� e2.u.t/; v.t//;

which we may write more casually ase0
1.t/ � e2.t/, with the understanding that everything must be done in

terms of the parametrization. We emphasize that�12 depends in an essential way on theparametrizedcurve

˛. Perhaps it’s better, then, to write

�12 D r˛0e1 � e2 :

Note, moreover, that the proof of Proposition 4.2 of Chapter 2 shows thatr˛0e2 �e1 D ��12 andr˛0e1 �e1 D
r˛0e2 � e2 D 0. (Why?)

Remark. Although the notation seems cumbersome, it reminds us that�12 is measuring howe1 twists

towardse2 as we move along the curvę. This notation will fit in a more general context in Section 3.

Let’s now derive an explicit formula for the function�12.

Proposition 1.1. In an orthogonal parametrization withe1 D xu=
p
E and e2 D xv=

p
G, we have

�12 D
1

2
p
EG

�

�Evu
0 CGuv

0�.

Proof. The key point is to take full advantage of the orthogonality ofxu andxv.

�12 D
d

dt

�
xup
E

�

� xvp
G

D 1p
EG

�

xuuu
0 C xuvv

0� � xv

(since the term that would arise from differentiating
p
E will involve xu � xv D 0)

D 1p
EG

�

.� u
uuxu C � v

uuxv/u
0 C .� u

uvxu C � v
uvxv/v

0� � xv

D Gp
EG

�

� v
uuu

0 C � v
uvv

0� D 1

2
p
EG

�

�Evu
0 C Guv

0�;

by the formulas (�) on p. 58. �

Suppose now that̨ is aclosedcurve and we are interested in the holonomy around˛. If e1 happens

to be parallel along̨ , then the holonomy will, of course, be0. If not, let’s considerX.t/ to be the parallel

translation ofe1 along˛.t/ and writeX.t/ D cos .t/e1C sin .t/e2, taking .0/ D 0. ThenX is parallel

along˛ if and only if

0D r˛0X D r˛0.cos e1 C sin e2/

D cos r˛0e1 C sin r˛0e2 C .� sin e1 C cos e2/ 
0

D cos �12e2 � sin �12e1 C .� sin e1 C cos e2/ 
0

D .�12 C  0/.� sin e1 C cos e2/:

Thus,X is parallel along̨ if and only if 0.t/ D ��12.t/. We therefore conclude:
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Proposition 1.2. The holonomy around the closed curveC equals� D �
Z b

a

�12.t/dt .

Remark. Note that the angle is measured frome1 in the direction ofe2. Whether the vector turns

counterclockwise or clockwise from our external viewpoint depends on the orientation of the framing.

Example 1. Back to our example of the latitude circleu D u0 on the unit sphere. Thene1 D xu and

e2 D .1= sinu/xv. If we parametrize the curve by takingv D t , 0 � t � 2� , then we have (see Example 1

of Chapter 2, Section 3)

r˛0e1 D r˛0xu D .xuv/
k D cotu0xv D cosu0e2 ;

and so�12 D cosu0. Therefore, the holonomy around the latitude circle (oriented counterclockwise) is

� D �
Z 2�

0

cosu0dt D �2� cosu0, confirming our previous results.

Note that if we wish to parametrize the curve by arclength (as will be important shortly), we take

s D .sinu0/v, 0 � s � 2� sinu0. Then, with respect to this parametrization, we have�12.s/ D cotu0.

(Why?)

For completeness, we can use Proposition 1.1 to calculate�12 as well: WithE D 1, G D sin2 u,

u D u0, andv.s/ D s= sinu0, we have�12 D
1

2 sin u0

�

2 sinu0 cosu0 �
1

sinu0

�

D cotu0, as before. O

Suppose now that̨ is an arclength-parametrized curve and let’s write˛.s/ D x.u.s/; v.s// andT.s/ D
˛0.s/ D cos�.s/e1Csin�.s/e2, s 2 Œ0; L�, for aC1 function�.s/ (cf. Lemma 3.6 of Chapter 1), as indicated

in Figure 1.2. A formula fundamental for the rest of our work is the following:

e1

e2

FIGURE 1.2

Proposition 1.3. When˛ is an arclength-parametrized curve, the geodesic curvature of˛ is given by

�g.s/ D �12.s/C � 0.s/ D 1

2
p
EG

�

�Evu
0.s/CGuv

0.s/
�

C � 0.s/:

Proof. Recall that�g D �N � .n � T/ D T0 � .n � T/. Now, sinceT D cos�e1 C sin�e2, n � T D
� sin�e1 C cos�e2 (why?), and so

�g D rTT � .� sin�e1 C cos�e2/

D rT.cos�e1 C sin�e2/ � .� sin�e1 C cos�e2/

D
�

cos�rTe1 C sin�rTe2

�

� .� sin�e1 C cos�e2/C
�

.� sin�/� 0.� sin�/C .cos�/� 0.cos�/
�

D .cos2 � C sin2 �/.�12 C � 0/ D �12 C � 0;

as required. Now the result follows by applying Proposition 1.1 when˛ is arclength-parametrized.�
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Remark. The first equality in Proposition 1.3 should not be surprising in the least. Curvature of a

plane curve measures the rate at which its unit tangent vector turns relative to a fixed reference direction.

Similarly, the geodesic curvature of a curve in a surface measures the rate at which its unit tangent vector

turns relative to a parallel vector field along the curve;� 0 measures its turning relative toe1, which is itself

turning at a rate given by�12, so the geodesic curvature is the sum of those two rates.

Now suppose that̨ is aclosedcurve bounding a regionR � M . We denote the boundary ofR by @R.

Then by Green’s Theorem (see Theorem 2.6 of the Appendix), we have
Z L

0

�12.s/ds D
Z L

0

1

2
p
EG

�

�Evu
0.s/CGuv

0.s/
�

ds D
Z

@R

1

2
p
EG

�

�EvduCGudv
�

D
“

R

�� Ev

2
p
EG

�

v
C
� Gu

2
p
EG

�

u

�

dudv

(�)

D
“

R

1

2
p
EG

�� Evp
EG

�

v
C
� Gup

EG

�

u

�p
EGdudv

„ ƒ‚ …

dA

D �
“

R

KdA

by the formula (�) for Gaussian curvature on p. 60. (Recall from the end of Section 1 of Chapter 2 that the

element of surface area on a parametrized surface is given bydA D kxu�xvkdudv D
p
EG � F 2dudv.)

We now see that Gaussian curvature and holonomy are intimately related:

Corollary 1.4. WhenR is a region with smooth boundary lying in an orthogonal parametrization, the

holonomy around@R is� D
’

RKdA.

Proof. This follows immediately from Proposition 1.2 and the formula (�) above. �

We conclude further from Proposition 1.3 that
Z

@R

�gds D
Z

@R

�12ds C �.L/ � �.0/
„ ƒ‚ …

��

;

so the total angle through which the tangent vector to@R turns is given by

�� D
Z

@R

�gds C
“

R

KdA:

Now, whenR is simply connected (i.e., can be continuously deformed to a point), it is not too surprising

that�� D 2� . Intuitively, as we shrink the curve to a point,e1 becomes almost constant along the curve,

but the tangent vector must make one full rotation (as a consequence of the Hopf Umlaufsatz, Theorem 3.5

of Chapter 1). Since�� is an integral multiple of2� that varies continuously as we deform the curve, it

must stay equal to2� throughout.

Corollary 1.5. If R is a simply connected region whose boundary curve is a geodesic, then
’

RKdA D
�� D 2� .

Example 2. We takeR to be the upper hemisphere and use the usual spherical coordinates parametriza-

tion. Then the unit tangent vector along@R is e2 everywhere, so�� D 0, in contradiction with Corollary
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1.5. Alternatively,C D @R is a geodesic, so there should be zero holonomy aroundC (computed with

respect to this framing).

How do we resolve this paradox? Well, although we’ve been sloppy about this point, the spherical

coordinates parametrization actually fails at the north pole (sincexv D 0). Indeed, there is no framing of

the upper hemisphere withe2 everywhere tangent to the equator. However, the reader can rest assured that

thereis some orthogonal parametrization of the upper hemisphere, e.g., by stereographic projection from

the south pole (cf. Example 1(e) in Section 1 of Chapter 2).O

Remark. In more advanced courses, the holonomy around the closed curve˛ is interpreted as a rota-

tion of the tangent plane ofM at ˛.0/. That is, what matters is� .mod 2�/, i.e., the change in angle

disregarding multiples of2� . This quantity does not depend on the choice of framinge1;e2.

We now set to work on one of the crowning results of surface theory.

Theorem 1.6(Local Gauss-Bonnet). SupposeR is a simply connected region with piecewise smooth

boundary in a parametrized surface. IfC D @R has exterior angles�j , j D 1; : : : ; `, then

Z

@R

�gds C
“

R

KdAC
X̀

j D1

�j D 2�:

C

FIGURE 1.3

Note, as we indicate in Figure 1.3, that we measure exterior angles so thatj�j j � � for all j .

Proof. If @R is smooth, then from our earlier discussion we infer that
Z

@R

�gds C
“

R

KdA D �� D 2�:

But when@R has corners, the unit tangent vector turnslessby the amount
P`

j D1 �j , so the result follows.

(Technically, what we need is the correction of the Hopf Umlaufsatz when the curve has corners. See

Exercise 1.3.12.) �

Corollary 1.7. For a geodesic triangle (i.e., a region whose boundary consists of three geodesic seg-

ments)R with interior angles�1, �2, �3, we have
’

RKdA D .�1 C �2 C �3/ � � , theangle excess.

Proof. Since the boundary consists of geodesic segments, the geodesic curvature integral drops out, and

we are left with
“

R

KdA D 2� �
3
X

j D1

�j D 2� �
3
X

j D1

.� � �j / D
3
X

j D1

�j � �;

as required. �
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Remark. It is worthwhile to consider the three special casesK D 0, K D 1, K D �1, as pictured in

Figure 1.4. WhenM is flat, the sum of the angles of a triangle is� , as in the Euclidean case. WhenM

K=1 K=−1K=0

FIGURE 1.4

is positively curved, it takes more than� for the triangle to close up, and whenM is negatively curved, it

takes less. Intuitively, this is because geodesics seem to “bow out” whenK > 0 and “bow in” whenK < 0

(cf. Exercise 3.2.17).

Example 3. Let’s consider Theorem 1.6 in the case of a spherical cap, as shown in Figure 1.5. Using

the usual spherical coordinates parametrization, we have0 � u � u0. By Proposition 1.3 and Example 1,

FIGURE 1.5

since� D �=2 along thev-curve, we have�g D �12.s/ D cotu0 (cf. also Exercise 2.4.4). Therefore, we

have
“

R

KdA D 2� �
Z

@R

�gds D 2�.1 � cosu0/;

which checks, of course, sinceK D 1 and the area of this cap is indeed
Z 2�

0

Z u0

0

sinududv D 2�.1 � cosu0/: O

Remark. Notice that the sign of�g depends on both the orientation of˛ and the orientation of the

surface. If we rescale the surface by a factor ofc, then the integral
R

@R �gds does not change, as the

arclength changes by a factor ofc and the geodesic curvature by a factor of1=c. Similarly, the integral
’

R KdA does not change when we rescale the surface: Area changes by a factor ofc2 and Gaussian

curvature changes by a factor of1=c2.
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n

FIGURE 1.6

We now come to one of the crowning results of modern-day mathematics, one which has led to much

subsequent research and generalization. We say a surfaceM � R
3 is orientedif we have chosen a con-

tinuous unit normal field defined everywhere onM . We now consider a compact, oriented surface with

piecewise-smooth boundary, as pictured in Figure 1.6. T. Radó proved in 1925 that any such surfaceM can

be triangulated. That is, we may writeM D
mS

�D1

�� where

(i) �� is the image of a triangle under an (orientation-preserving) orthogonal parametrization;

(ii) �� \�� is either empty, a single vertex, or a single edge;

(iii) when�� \ �� consists of a single edge, the orientations of the edge are opposite in�� and

��; and

(iv) at most one edge of�� is contained in the boundary ofM .

We now make a standard

Definition. Given a triangulationT of a surfaceM with V vertices,E edges, andF faces, we define

theEuler characteristic�.M;T/ D V �E C F .

Example 4. We can triangulate a disk as shown in Figure 1.7, obtaining� D 1. Without being so

V−E+F = 5−8+4 = 1

∆1∆2

∆3 ∆4

V−E+F = 9−18+10 = 1

FIGURE 1.7

pedantic as to require that each�� be the image of a triangle under an orthogonal parametrization, we might

just think of the disk as a single triangle with its edges puffed out; then we would have� D V �E C F D
3� 3C 1 D 1, as well. We leave it to the reader to triangulate a sphere and check that�.†;T/ D 2. O

Remark. It’s important to note that by choosing the orientations on the “triangles”�� compatibly,

we get an orientation on the boundary ofM . That is, a choice ofn onM determines which direction we

proceed on@M . This is precisely the case any time one deals with Green’s Theorem (or its generalization

to oriented surfaces, Stokes’s Theorem). Nevertheless, following up on the Remark on p. 84, the sign of�g

on @M is independent of the choice of orientation onM , for, if we changen to �n, the orientation on@M

switches andn � T stays the same.
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The beautiful result to which we’ve been headed is now the following

Theorem 1.8(Global Gauss-Bonnet). Let M be a compact, oriented surface with piecewise-smooth

boundary, equipped with a triangulationT as above. If�k, k D 1; : : : ; `, are the exterior angles of@M , then

Z

@M

�gds C
“

M

KdAC
X̀

kD1

�k D 2��.M;T/:

Proof. As we illustrate in Figure 1.8, we will distinguish vertices on the boundary and in the interior,

denoting the respective total numbers byVb andVi . Similarly, we distinguish among edges on the boundary,

edges in the interior, and edges that join a boundary vertex to an interior vertex; we denote the respective

FIGURE 1.8

numbers of these byEb,Ei , andEib. Now observe that
“

R

KdA D
m
X

�D1

“

��

KdA

since all the orientations are compatible, and
Z

@R

�gds D
m
X

�D1

Z

@��

�gds

because the line integrals over interior and interior/boundary edges cancel in pairs (recall that�g changes

sign when we reverse the orientation of the curve). Let��j , j D 1; 2; 3, denote the exterior angles of the

“triangle” ��. Then, applying Theorem 1.6 to��, we have

Z

@��

�gds C
“

��

KdAC
3
X

j D1

��j D 2�;

and now, summing over the triangles, we obtain

Z

@M

�gds C
“

M

KdAC
m
X

�D1

3
X

j D1

��j D 2�m D 2�F :
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Now we must do some careful accounting: Letting��j denote the respective interior angles of triangle��,

we have
X

interior
vertices

��j D
X

interior
vertices

.� � ��j / D �.2Ei CEib/ � 2�Vi(�)

inasmuch as each interior edge contributes two interior vertices, whereas each interior/boundary edge con-

tributes just one, and the interior angles at each interior vertex sum to2� . Next,

X

boundary
vertices

��j D �Eib C
X̀

kD1

�k :(��)

To see this, we reason as follows. Given a boundary vertexv, denote by a superscript.v/ the relevant angle

or number for which the vertexv is involved. Note first of all that any boundary vertexv is contained in

E
.v/

ib
C 1 faces. Moreover, for a fixed boundary vertexv,

X

�
.v/

�j
D

8

<

:

�; v a smooth boundary vertex

� � �k ; v a corner of@M with exterior angle�k

:

Thus,

X

boundary
vertices

��j D
X

boundary
verticesv

.� � ��j / D
X

boundary
verticesv

�.E
.v/

ib
C 1/ �

� X

v smooth

��j C
X

v corner

��j

�

D �Eib C
X̀

kD1

�k :

Adding equations (�) and (��) yields

X

�;j

��j D
X

interior
vertices

��j C
X

boundary
vertices

��j D 2�.Ei CEib � Vi /C
X̀

kD1

�k :

At long last, therefore, our reckoning concludes:

Z

@M

�gds C
“

M

KdAC
X̀

kD1

�k D 2�
�

F � .Ei CEib/C Vi

�

D 2�
�

F � .Ei CEib CEb/C .Vi C Vb/
�

D 2�.V �E C F /
D 2��.M;T/:

(Note that because the boundary curve@M is closed, we haveVb D Eb.) �

We now derive some interesting conclusions:

Corollary 1.9. The Euler characteristic�.M;T/ does not depend on the triangulationT of M .

Proof. The left-hand side of the equality in Theorem 1.8 has nothing whatsoever to do with the trian-

gulation. �
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It is therefore legitimate to denote the Euler characteristic by�.M/, with no reference to the triangulation.

It is proved in a course in algebraic topology that the Euler characteristic is a “topological invariant”; i.e., if

we deform the surfaceM in a bijective, continuous manner (so as to obtain ahomeomorphicsurface), the

Euler characteristic does not change. We therefore deduce:

Corollary 1.10. The quantity
Z

@M

�gds C
“

M

KdAC
X̀

kD1

�k

is a topological invariant, i.e., does not change as we deform the surfaceM .

In particular, in the event that@M D ; (so many people refer to the surfaceM as aclosedsurface), we

have

Corollary 1.11. WhenM is a compact, oriented surface without boundary, we have
“

M

KdA D 2��.M/:

It is very interesting that thetotal curvaturedoes not change as we deform the surface, for example, as shown

in Figure 1.9. In a topology course, one proves that any compact, oriented surface without boundary must

FIGURE 1.9

have the topological type of a sphere or of ag-holed torus for some positive integerg. Thus (cf. Exercise

4), the possible Euler characteristics of such a surface are2, 0, �2,�4, ...; moreover, the integral
’

M KdA

determines the topological type of the surface.

We conclude this section with a few applications of the Gauss-Bonnet Theorem.

Example 5. SupposeM is a surface of nonpositive Gaussian curvature. Then there cannot be a geodesic

2-gonR onM that bounds a simply connected region. For if there were, by Theorem 1.6 we would have

0 �
“

R

KdA D 2� � .�1 C �2/ > 0;

which is a contradiction. (Note that the exterior angles must be strictly less than� because there is a unique

(smooth) geodesic with a given tangent direction.)O

Example 6. SupposeM is topologically equivalent to a cylinder and its Gaussian curvature is negative.

Then there is at most one simple closed geodesic inM . Note, first, as indicated in Figure 1.10, that if

there is a simple closed geodesic˛, either it must separateM into two unbounded pieces or else it bounds
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R

FIGURE 1.10

a diskR, in which case we would have0 >
’

RKdA D 2��.R/ D 2� , which is a contradiction. On

the other hand, suppose there were two. If they don’t intersect, then they bound a cylinderR and we get

0 >
’

R KdA D 2��.R/ D 0, which is a contradiction. If they do intersect, then we we have a geodesic

2-gon bounding a simply connected region, which cannot happen by Example 5.O

EXERCISES 3.1

1. Compute the holonomy around the parallelu D u0 (and indicate which direction the rotation occurs

from the viewpoint of an observer away from the surface down thex-axis) on

*a. the torusx.u; v/ D
�

.aC b cosu/ cosv; .aC b cosu/ sinv; b sinu
�

b. the paraboloidx.u; v/ D .u cosv; u sinv; u2/

c. the catenoidx.u; v/ D .coshu cosv; coshu sinv; u/

*2. Determine whether there can be a (smooth) closed geodesic on a surface when

a. K > 0

b. K D 0
c. K < 0

If the closed geodesic can bound a simply connected region, give an example.

3. Calculate the Gaussian curvature of a torus (as parametrized in Example 1(c) of Section 1 of Chapter 2)

and verify Corollary 1.11.

4. a. Triangulate a cylinder, a sphere, a torus, and a two-holed torus; verify that� D 0, 2, 0, and�2,
respectively. Pay particular attention to condition (ii) in the definition of triangulation.

b. Prove by induction that ag-holed torus has� D 2 � 2g.

5. SupposeM is a compact, oriented surface without boundary that isnot of the topological type of a

sphere. Prove that there are points inM where Gaussian curvature is positive, zero, and negative.

6. LetM be a surface withK > 0 that is topologically a cylinder. Prove that there cannot be two disjoint

simple closed geodesics both going around the neck of the surface.

7. SupposeM andM � are locally isometric and compatibly oriented. Use Proposition 1.3 to prove that if

˛ and˛� are corresponding arclength-parametrized curves, then their geodesic curvatures are equal at

corresponding points.
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8. Consider the paraboloidM parametrized byx.u; v/ D .u cosv; u sinv; u2/, 0 � u, 0 � v � 2� .

Denote byMr that portion of the paraboloid defined by0 � u � r .
a. Calculate the geodesic curvature of the boundary circle and compute

Z

@Mr

�gds.

b. Calculate�.Mr/.

c. Use the Gauss-Bonnet Theorem to compute
“

Mr

KdA. Find the limit asr ! 1. (This is the

total curvature of the paraboloid.)

d. CalculateK directly (however you wish) and compute
“

M

KdA explicitly.

e. Explain the relation between the total curvature and the image of the Gauss map ofM .

9. Consider the pseudosphere (with boundary)M parametrized as in Example 8 of Chapter 2, Section 2,

but here we takeu � 0. Denote byMr that portion defined by0 � u � r . (Note that we are including

the boundary circleu D 0.)
a. Calculate the geodesic curvature of the circleu D u0 and compute

Z

@Mr

�gds. Watch out for the

orientations of the two circles.

b. Calculate�.Mr/.

c. Use the Gauss-Bonnet Theorem to compute
“

Mr

KdA. Find the limit asr ! 1. (This is the

total curvature of the pseudosphere.)

d. Calculate the area ofMr directly, and use this to deduce the value of
“

M

KdA.

e. Explain the relation between the total curvature and the image of the Gauss map ofM .

10. Give a different version of the accounting to prove Theorem 1.8 as follows.

a. Show that3F D 2.Ei C Eib/C Eb, and conclude that3F D 2E � Vb.

b. Show that
P

interior vertices��j D 2�Vi and
P

boundary vertices��j D �Vb �
P
�k.

c. Conclude that
P

�;j ��j D 3�F �
P

�;j ��j D 2�.E � V /C
P
�k and complete the proof of the

theorem.

11. a. Use Corollary 1.4 to prove thatM is flat if and only if the holonomy around all (“small”) closed

curves that bound a region inM is zero.

b. Show that even on a flat surface, holonomy can be nontrivial around certain curves.

12. Reprove the result of part a of Exercise 2.3.14 by considering the holonomy around a (sufficiently small)

quadrilateral formed by four of the lines. Does the result hold if there are two families ofgeodesicsin

M always intersecting at right angles?

13. In this exercise we explore what happens when we try to apply the Gauss-Bonnet Theorem to the

simplest non-smooth surface, a right circular cone. LetR denote the surface given in Exercise 2.4.5 and

@R its boundary curve.

a. Show that if we makeR by gluing the edges of a circular sector (“pacman”) of central angleˇ,

as indicated in Figure 1.11, then
Z

@R

�gds D 2� sin� D ˇ. We callˇ thecone angleof R at its

vertex.

b. Show that Theorem 1.6 holds forR if we add2� � ˇ to
’

RKdA.
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FIGURE 1.11

c. Show that we obtain the same result by “smoothing” the cone point, as pictured in Figure 1.12.

(Hint: Interpret
’

RKdA as the area of the image of the Gauss map.)

FIGURE 1.12

Remark. It is not hard to give an explicitC2 such smoothing. For example, construct aC
2 convex

functionf on Œ0; 1� with f .0/ D f 0.0/ D 0, f .1/ D f 0.1/ D 1, andf 00.1/ D 0.

14. Supposę is a closed space curve with� ¤ 0. Assume that thenormal indicatrix(i.e., the curve traced

out on the unit sphere by the principal normal) is a simple closed curve in the unit sphere. Prove then

that it divides the unit sphere into two regions of equal area. (Hint: Apply the Gauss-Bonnet Theorem

to one of those regions.)

15. SupposeM � R
3 is a compact, oriented surface with no boundary withK > 0. It follows thatM is

topologically a sphere (why?). Prove thatM is convex; i.e., for eachP 2 M ,M lies on only one side

of the tangent planeTPM . (Hint: Use the Gauss-Bonnet Theorem and Gauss’s original interpretation

of curvature indicated in the remark on p. 51 to show the Gauss map must be one-to-one (except perhaps

on a subset with no area). Then look at the end of the proof of Theorem 3.4 of Chapter 1.)

2. An Introduction to Hyperbolic Geometry

Hilbert proved in 1901 that there is no surface (without boundary) inR
3 with constant negative curvature

with the property that it is a closed subset ofR
3 (i.e., every Cauchy sequence of points in the surface

converges to a point of the surface). The pseudosphere fails the latter condition. Nevertheless, it is possible

to give a definition of an “abstract surface” (not sitting insideR
3) together with a first fundamental form.

As we know, this will be all we need to calculate Christoffel symbols, curvature (Theorem 3.1 of Chapter

2), geodesics, and so on.

Definition. The hyperbolic planeH is defined to be the half-planef.u; v/ 2 R
2 W v > 0g, equipped

with the first fundamental form I given byE D G D 1=v2, F D 0.
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Now, using the formulas (�) on p. 58, we find that

� u
uu D

Eu

2E
D 0 � v

uu D �
Ev

2G
D 1

v

� u
uv D

Ev

2E
D �1

v
� v

uv D
Gu

2G
D 0

� u
vv D �

Gu

2E
D 0 � v

vv D
Gv

2G
D �1

v
:

Using the formula (�) for Gaussian curvature on p. 60, we find

K D � 1

2
p
EG

�� Evp
EG

�

v
C
� Gup

EG

�

u

�

D �v
2

2

�

� 2
v3
� v2

�

v
D �v

2

2
� 2
v2
D �1:

Thus, the hyperbolic plane has constant curvature�1. Note that it is a consequence of Corollary 1.7 that the

area of a geodesic triangle inH is equal to� � .�1 C �2 C �3/.
What are the geodesics in this surface? Using the equations (||) on p. 71, we obtain the equations

u00 � 2
v
u0v0 D v00 C 1

v
.u02 � v02/ D 0:

Obviously, the vertical raysu D const give us solutions (withv.t/ D c1e
c2t ). Next we seek geodesics with

u0 ¤ 0, so we start with
dv

du
D v0

u0 and apply the chain rule judiciously:

d2v

du2
D d

du

�
v0

u0

�

D u0v00 � u00v0

u02 � 1
u0

D 1

u03

�

u0
�
1

v

�
�

v02 � u02� � v0
�
2

v
u0v0

��

D �1
v

 

1C
�
v0

u0

�2
!

D �1
v

 

1C
�
dv

du

�2
!

:

This means we are left with the differential equation

v
d2v

du2
C
�
dv

du

�2

D d

du

�

v
dv

du

�

D �1;

and integrating this twice gives us the solutions

u2 C v2 D auC b:

That is, the geodesics inH are the vertical rays and the semicircles centered on theu-axis, as pictured

in Figure 2.1. Note that any semicircle centered on theu-axis intersects each vertical line at most one

time. It now follows that any two pointsP;Q 2 H are joined by a unique geodesic. IfP andQ lie on

a vertical line, then the vertical ray through them is the unique geodesic joining them. IfP andQ do not

lie on a vertical line, letC be the intersection of the perpendicular bisector ofPQ and theu-axis; then the

semicircle centered atC is the unique geodesic joiningP andQ.

Example 1. GivenP;Q 2 H, we would like to find a formula for the (geodesic) distanced.P;Q/

between them. Let’s start withP D .u0; a/ andQ D .u0; b/, with 0 < a < b. Parametrizing the line

segment fromP toQ by u D u0, v D t , a � t � b, we have

d.P;Q/ D
Z b

a

q

Eu0.t/2 CGv0.t/2dt D
Z b

a

dt

t
D ln

b

a
:
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u

v

FIGURE 2.1

Note that, fixingQ and lettingP approach theu-axis, d.P;Q/ ! 1; thus, it is reasonable to think of

points on theu-axis as “virtual” points at infinity.

In general, we parametrize the arc of a semicircle.u0 C r cost; r sint/, �1 � t � �2, going fromP to

u

v

P

Q

A B

r

FIGURE 2.2

Q, as shown in Figure 2.2. Then we have

d.P;Q/ D
ˇ
ˇ
ˇ
ˇ
ˇ

Z �2

�1

q

Eu0.t/2 CGv0.t/2dt

ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ

Z �2

�1

rdt

r sin t

ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ

Z �2

�1

dt

sint

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ
ln

 

1C cos�1

sin�1

,

1C cos�2

sin�2

!ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ln

 

2 cos.�1=2/

2 sin.�1=2/

,

2 cos.�2=2/

2 sin.�2=2/

!ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ln

�
AP

BP

.AQ

BQ

�ˇ
ˇ
ˇ
ˇ
;

where the lengths in the final formula are Euclidean. (See Exercise 12 for the connection with cross ratio.)

O

It follows from the first part of Example 1 that the curvesv D a andv D b are a constant distance apart

(measured along geodesics orthogonal to both), like parallel lines in Euclidean geometry. These curves are

classically calledhorocycles. As we see in Figure 2.3, these curves are the curves orthogonal to the family

of the “vertical geodesics.” If, instead, we consider all the geodesics passing through a given pointQ “at

infinity” on v D 0, as we ask the reader to check in Exercise 5, the orthogonal trajectories will be curves in

H represented by circles tangent to theu-axis atQ.

Example 2. Let’s calculate the geodesic curvature of the horocyclev D a. We start by parametrizing

the curve by̨ .t/ D .t; a/. Then˛0.t/ D .1; 0/. Note that�.t/ D k˛0.t/k D
p

E.1/2 CG.0/2 D 1=a. By
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Q

FIGURE 2.3

Proposition 1.1,

�12 D
1

2
q

1
a4

.2a�3 � 1/ D 1

a
:

(Heree1 D v.1; 0/ ande2 D v.0; 1/ at the point.u; v/ 2 H. Why?) To calculate the geodesic curvature,

we wish to apply Proposition 1.3, which requires differentiation with respect to arclength, so we’ll use the

chain rule as in Chapter 1, multiplying thet-derivative by1=�.t/ D a. Note, also, that̨ 0 makes the constant

angle� D 0 with e1, so� 0 D 0. Thus,

�g D
1

�.t/
�12 D a �

1

a
D 1;

as required. O

We ask the reader to do the analogous calculations for the circles tangent to theu-axis in Exercise 6.

Moreover, as we ask the reader to check in Exercise 7, every curve inH of constant geodesic curvature

�g D 1 is a horocycle.

The isometries of the Euclidean plane form a group, the Euclidean groupE.2/; the isometries of the

sphere likewise form a group, the orthogonal groupO.3/. Each of these is a3-dimensional Lie group.

Intuitively, there are three degrees of freedom because we must specify where a pointP goes (two degrees

of freedom) and where a single unit tangent vector at that pointP goes (one more degree of freedom). We

might likewise expect the isometries ofH to form a3-dimensional group. And indeed it is. We deal with

just the orientation-preserving isometries here.

We considerH � C by letting.u; v/ correspond toz D uC iv, and we consider the collection oflinear

fractional transformations

T .z/ D az C b
cz C d ; a; b; c; d 2 R; ad � bc D 1:

We must now check several things:

(i) Composition of functions corresponds to multiplication of the2 � 2 matrices

�
a b

c d

�

with

determinant1, so we obtain a group.

(ii) T mapsH bijectively toH.

(iii) T is an isometry ofH.

We leave it to the reader to check the first two in Exercise 8, and we check the third here. Given the point

z D u C iv, we want to compute the lengths of the vectorsTu andTv at the image pointT .z/ D x C iy
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and see that the two vectors are orthogonal. Note that

az C b
cz C d D

.az C b/.cz C d/
jcz C d j2 D

�

a.uC iv/C b
��

c.u � iv/C d
�

jcz C d j2

D
�

ac.u2 C v2/C .ad C bc/u
�

C i
�

.ad � bc/v
�

jcz C d j2 ;

soy D v

jcz C d j2 . Now we have3

xu C iyu D �ixv C yv D T 0.z/ D .cz C d/a � .az C b/c
.cz C d/2 D 1

.cz C d/2 ;

so we have

QE D x2
u C y2

u

y2
D 1

y2
jT 0.z/j2 D 1

y2
� 1

jcz C d j4 D
1

v2
D E;

and, similarly, QG D x2
v C y2

v

y2
D G. On the other hand,

QF D xuyu C xvyv

y2
D xu.�xv/C xv.xu/

y2
D 0 D F ;

as desired.

Now, as we verify in Exercise 12 or in Exercise 14, linear fractional transformations carry lines and

circles inC to either lines or circles. Since our particular linear fractional transformations preserve the real

axis ([f1g) and preserve angles as well, it follows that vertical lines and semicircles centered on the real

axis map to one another. Thus, our isometries do in fact map geodesics to geodesics (how comforting!).

If we think of H as modeling non-Euclidean geometry, with lines in our geometry being the geodesics,

note that given any linè and pointP … `, there areinfinitely manylines passing throughP “parallel”

to (i.e., not intersecting)̀. As we see in Figure 2.4, there are two special lines throughP that “meet` at

P

FIGURE 2.4

infinity”; the rest are often calledultraparallels.

We conclude with an interesting application. As we saw in the previous section, the Gauss-Bonnet

Theorem gives a deep relation between the total curvature of a surface and its topological structure (Euler

characteristic). We know that if a compact surfaceM is topologically equivalent to a sphere, then its total

curvature must be that of a round sphere, namely4� . If M is topologically equivalent to a torus, then (as

the reader checked in Exercise 3.1.3) its total curvature must be0. We know that there is no way of making

3These are the Cauchy-Riemann equations from basic complex analysis.
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FIGURE 2.5

the torus inR3 in such a way that it has constant Gaussian curvatureK D 0 (why?), but wecanconstruct a

flat torus inR4 by taking

x.u; v/ D .cosu; sinu; cosv; sinv/; 0 � u; v � 2�:

(We take a piece of paper and identify opposite edges, as indicated in Figure 2.5; this can be rolled into a

cylinder inR3 but into a torus only inR4.) So what happens with a2-holed torus? In that case,�.M/ D �2,
so the total curvature should be�4� , and we can reasonably ask if there’s a2-holed torus withconstant

negative curvature. Note that we can obtain a2-holed torus by identifying pairs of edges on an octagon, as

a

a

b

b

c

c

d

d

FIGURE 2.6

shown in Figure 2.6.

This leads us to wonder whether we might have regularn-gonsR in H. By the Gauss-Bonnet formula,

we would have area.R/ D .n�2/��
P
�j , so it’s obviously necessary that

P
�j < .n�2/� . This shouldn’t

be difficult so long asn � 3. First, let’s convince ourselves that, given any pointP 2 H, 0 < ˛ < � , and

0 < ˇ < .� � ˛/=2, we can construct an isosceles triangle with vertex angle˛ atP and base anglě. We

r
r

P

Q R

FIGURE 2.7

draw two geodesics emanating fromP with angle˛ between them, as shown in Figure 2.7. Proceeding a

geodesic distancer on each of them to pointsQ andR, we then obtain an isosceles triangle4PQR with



÷2. AN INTRODUCTION TOHYPERBOLICGEOMETRY 97

vertex anglę . Now, the base angle of that triangle approaches.� � ˛/=2 asr ! 0C and approaches0

asr ! 1. It follows (presuming that the angle varies continuously withr) that for somer , we obtain the

desired base anglě. Let’s now apply this construction with̨ D 2�=n andˇ D �=n, n � 5. Repeating

the constructionn times (dividing the angle atP into n angles of2�=n each), we obtain a regularn-gon

with the property that
P
�j D 2� , as shown (approximately?) in Figure 2.8 for the casen D 8. The point

FIGURE 2.8

is that because the interior angles add up to2� , when we identify edges as in Figure 2.6, we will obtain a

smooth2-holed torus with constant curvatureK D �1. The analogous construction works for theg-holed

torus, constructing a regular4g-gon whose interior angles sum to2� .

EXERCISES 3.2

1. Find the geodesic joiningP andQ in H and calculated.P;Q/.

a. P D .4; 3/,Q D .�3; 4/
*b. P D .1; 2/,Q D .0; 1/
c. P D .10; 15/, Q D .2; 19/

2. Suppose there is a geodesic perpendicular to two geodesics inH. What can you prove about the latter

two?

3. Prove the angle-angle-anglecongruencetheorem for hyperbolic triangles: If†A Š †A0, †B Š †B 0,

and†C Š †C 0, then4ABC Š 4A0B 0C 0. (Hint: Use an isometry to moveA0 to A, B 0 along the

geodesic fromA toB, andC 0 along the geodesic fromA toC .)

4. a. Verify Local Gauss-Bonnet, Theorem 1.6, for the regionR bounded byu D A, u D B, v D a,

andv D b.

b. Verify Local Gauss-Bonnet for the regionR bounded by the segmentv D a, A � u � B, and the

geodesic joining the two endpoints.

c. Use Local Gauss-Bonnet (and the analysis of part b) to deduce the result of Example 2.
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5. Show that the circles tangent to theu-axis at the origin are the orthogonal trajectories of the family

of geodesicsu2 � 2cu C v2 D 0, c 2 R (together with the positivev-axis). (Hint: Remember that

orthogonal lines have slopes that are negative reciprocals. Eliminatec to obtain the differential equation
dv

du
D 2uv

u2 � v2
, and solve this “homogeneous” differential equation by substitutingv D uz and getting

a separable differential equation foru andz.)

6. a. Prove that circles tangent to theu-axis have�g D 1.
b. Prove that the horocyclesu2Cv2�2av D 0 andu2Cv2�2bv D 0 are a constant geodesic distance

apart. (Hint: Consider the intersections of the two horocycles with a geodesicu2 � 2cuC v2 D 0
orthogonal to them both.)

7. Prove that every curve inH of constant geodesic curvature�g D 1 is either a horizontal line (as in

Example 2) or a circle tangent to theu-axis. (Hints: Assume we start with an arclength parametrization

.u.s/; v.s//, and use Proposition 1.3 to show that we have1 D u0

v
C � 0 andu02C v02 D v2. Obtain the

differential equation

v
d2v

du2
D
�

1C
�dv

du

�2
�3=2

�
�dv

du

�2
� 1;

and solve this by substitutingz D dv=du and getting a separable differential equation fordz=dv.)

8. LetTa;b;c;d .z/ D
az C b
cz C d , a; b; c; d 2 R, with ad � bc D 1.

a. Supposea0; b0; c0; d 0 2 R anda0d 0 � b0c0 D 1. Check that

Ta0;b0;c0;d 0 ıTa;b;c;d D Ta0aCb0c;a0bCb0d;c0aCd 0c;c0bCd 0d and

.a0aC b0c/.c0b C d 0d/ � .a0b C b0d/.c0aC d 0c/ D 1:

Show, moreover, thatTd;�b;�c;a D T �1
a;b;c;d

. (Note thatTa;b;c;d D T�a;�b;�c;�d . The reader

who’s taken group theory will recognize that we’re defining an isomorphism between the group of

linear fractional transformations and the groupSL.2;R/=f˙I g of 2� 2matrices with determinant

1, identifying a matrix and its additive inverse.)

b. LetT D Ta;b;c;d . Prove that ifz D uC iv andv > 0, thenT .z/ D x C iy with y > 0. Deduce

thatT mapsH to itself bijectively.

9. Show thatreflectionacross the geodesicu D 0 is given byr.z/ D �z. Use this to determine the form

of the reflection across a general geodesic.

10. The geodesic circle of radiusR centered atP is the set of pointsQ so thatd.P;Q/ D R. Prove that

geodesic circles inH are Euclidean circles. One way to proceed is as follows: The geodesic circle

centered atP D .0; 1/ with radiusR D ln a must pass through.0; a/ and.0; 1=a/, and hence ought to

be a Euclidean circle centered at.0; 1
2
.a C 1=a//. Check that all the points on this circle are in fact a

hyperbolic distanceR away fromP . (Hint: It is probably easiest to work with the cartesian equation of

the circle. Find the equation of the geodesic throughP and an arbitrary point of the circle.)

*11. What is the geodesic curvature of a geodesic circle of radiusR in H? (See Exercise 10.)
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12. Recall (see, for example, p. 298 and pp. 350–1 of Shifrin’sAbstract Algebra: A Geometric Approach)

that thecross ratioof four numbersA;B;P;Q 2 C [ f1g is defined to be

ŒA W B W P W Q� D Q � A
P � A

.Q � B
P � B :

a. Show thatA, B, P , andQ lie on a line or circle if and only if their cross ratio is a real number.

b. Prove that ifS is a linear fractional transformation withS.A/ D 0, S.B/ D 1, andS.P / D 1,

thenS.Q/ D ŒA W B W P W Q�. Use this to deduce that for any linear fractional transformationT ,

we haveŒT .A/ W T .B/ W T .P / W T .Q/� D ŒA W B W P W Q�.
c. Prove that linear fractional transformations map lines and circles to either lines or circles. (For

which such transformations do lines necessarily map to lines?)

d. Show that ifA, B, P , andQ lie on a line or circle, then

jŒA W B W P W Q�j D AQ

AP

.BQ

BP
:

Conclude thatd.P;Q/ D j lnŒA W B W P W Q�j, whereA, B, P , andQ are as illustrated in Figure

2.2.

e. Check that ifT is a linear fractional transformation carryingA to 0, B to1, P to P 0, andQ to

Q0, thend.P;Q/ D d.P 0;Q0/.

13. a. LetO be any point not lying on a circleC and letP andQ be points on the circleC so that

O, P , andQ are collinear. LetT be the point onC so thatOT is tangent toC. Prove that

.OP /.OQ/ D .OT /2.

b. Defineinversionin the circle of radiusR centered atO by sending a pointP to the pointP 0 on

the rayOP with .OP /.OP 0/ D R2. Show that an inversion in a circle centered at the origin maps

a circleC centered on theu-axis andnot passing throughO to another circleC0 centered on the

u-axis. (Hint: For anyP 2 C, letQ be the other point onC collinear withO andP , and letQ0 be

the image ofQ under inversion. Use the result of part a to show thatOP=OQ0 is constant. IfC

is the center ofC, let C 0 be the point on theu-axis so thatC 0Q0kCP . Show thatQ0 traces out a

circleC
0 centered atC 0.)

c. Show that inversion in the circle of radiusR centered atO maps vertical lines to circles centered

on theu-axis and passing throughO and vice-versa.

14. a. Prove that every (orientation-preserving) isometry ofH can be written as the composition of linear

fractional transformations of the form

T1.z/ D z C b for someb 2 R; T2.z/ D �
1

z
; and T3.z/ D cz for somec > 0:

(Hint: It’s probably easiest to work with matrices. Show that you have matrices of the form
�
a 0

0 1=a

�

,

�
1 b

0 1

�

,

�
0 �1
1 0

�

, and therefore

�
1 0

b 1

�

, and that any matrix of determinant1 can be

obtained as a product of such.)

b. Prove thatT2 maps circles centered on theu-axis and vertical lines to circles centered on theu-axis

and vertical lines (not necessarily respectively). Either do this algebraically or use Exercise 13.

c. Use the results of parts a and b to prove that isometries ofH map geodesics to geodesics.
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15. We say a linear fractional transformationT D Ta;b;c;d is elliptic if it has one fixed point, parabolic if it

has one fixed point at infinity, and hyperbolic if it has two fixed points at infinity.

a. Show thatT is elliptic if jaC d j < 2, parabolic ifjaC d j D 2, and hyperbolic ifjaC d j > 2.
b. Describe the three types of isometries geometrically. (Hint: In particular, what is the relation

between horocycles and parabolic linear fractional transformations?)

16. Suppose4ABC is a hyperbolic right triangle with “hypotenuse”c. Use Figure 2.9 to prove the follow-

ing:

sin†A D sinha

sinhc
; cos†A D tanhb

tanhc
; coshc D cosha coshb:

(The last is the hyperbolic Pythagorean Theorem.) (Hint: Start by showing, for example, that coshb D

a

b

c

R

r

A

B

C

ψ
θτ

FIGURE 2.9

csc� , coshc D .1 � cos cos�/=.sin sin�/, and cos� � cos D sin� cot� . You will need two

equations trigonometrically relatingR andr .)

17. Given a pointP on a surfaceM , we define the geodesic circle of radiusR centered atP to be the locus

of points whose (geodesic) distance fromP isR. LetC.R/ denote its circumference.

a. Show that on the unit sphere

lim
R!0C

2�R � C.R/
�R3

D 1

3
:

b. Show that the geodesic curvature�g of a spherical geodesic circle of radiusR is

cotR � 1
R
.1� R2

3
C : : :/.

The Poincaŕe diskis defined to be the “abstract surface”D D f.u; v/ W u2 C v2 < 1g with the first

fundamental form given, in polar coordinates.r; �/, byE D 4

.1 � r2/2
, F D 0, G D 4r2

.1� r2/2
. This

is called thehyperbolic metriconD.

c. Check that inD the geodesics through the origin are Euclidean line segments; conclude that the

Euclidean circle of radiusr centered at the origin is a hyperbolic circle of radiusR D ln

�
1C r
1� r

�

,

and sor D tanh
R

2
. (Remark: Other geodesics are semicircles orthogonal to the unit circle, the

“virtual boundary” ofD. This should make sense since there is a linear fractional transformation

mappingH to D; by Exercise 12c, it will map semicircles orthogonal to theu-axis to semicircles

orthogonal to the unit circle.)

d. Check that the circumference of the hyperbolic circle is2� sinhR �
2�.RC R3

6
C : : :/, and so

lim
R!0C

2�R � C.R/
�R3

D �1
3
:
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e. Compute (using a double integral) that the area of a disk of hyperbolic radiusR is 4� sinh2 R
2
�

�R2.1C R2

12
C : : :/. Use the Gauss-Bonnet Theorem to deduce that the geodesic curvature�g of

the hyperbolic circle of radiusR is cothR � 1
R
.1C R2

3
C : : :/.

18. Here we give another model for hyperbolic geometry, called the Klein-Beltrami model. Consider the fol-

lowing parametrization of the hyperbolic disk: Start with the open unit disk,
˚

x2
1 C x2

2 < 1; x3 D 0
	

, vertically project to the southern hemisphere of the unit sphere, and then

stereographically project (from the north pole) back to the unit disk.

a. Show that this mapping is given in polar coordinates by

x.R; �/ D .r; �/ D
�

R

1C
p
1 �R2

; �

�

:

Compute that the first fundamental form of the Poincaré metric onD (see Exercise 17) is given

in .R; �/ coordinates byQE D 1

.1�R2/2
, QF D 0, QG D R2

1�R2
. (Hint: Compute carefully and

economically!)

b. Compute the distance from.0; 0/ to .a; 0/; compare with the formula for distance in the Poincaré

model.

c. Changing now to Euclidean coordinates.u; v/, show that

OE D 1 � v2

.1 � u2 � v2/2
; OF D uv

.1 � u2 � v2/2
; OG D 1 � u2

.1 � u2 � v2/2
;

whence you derive

� u
uu D

2u

1� u2 � v2
; � v

uu D 0 ;

� u
uv D

v

1� u2 � v2
; � v

uv D
u

1 � u2 � v2
;

� u
vv D 0 ; � v

vv D
2v

1 � u2 � v2
:

d. Use part b to show that the geodesics of the disk using the first fundamental formOI are chords of

the circleu2Cv2 D 1. (Hint: Show (by using the chain rule) that the equations for a geodesic give

d2v=du2 D 0.) Discuss the advantages and disadvantages of this model (compared to Poincaré’s).

e. Check your answer in part c by proving (geometrically?) that chords of the circle map byx to

geodesics in the hyperbolic disk. (See Exercise 2.1.8.)

3. Surface Theory with Differential Forms

We’ve seen that it can be quite awkward to work with coordinates to study surfaces. (For example, the

Codazzi and Gauss Equations in Section 3 of Chapter 2 are far from beautiful.) For those who’ve learned

about differential forms, we can given a quick and elegant treatment that is conceptually quite clean.

We start (much like the situation with curves) with amoving framee1;e2;e3 on (an open subset of) our

(oriented) surfaceM . Hereei are vector fields defined onM with the properties that

(i) fe1;e2;e3g gives an orthonormal basis forR3 at each point (so the matrix with those respective

column vectors is an orthogonal matrix);
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(ii) fe1;e2g is a basis for the tangent space ofM ande3 D n.

How do we know such a moving frame exists? IfxWU ! M is a parametrized surface, we can start with

our usual vectorsxu, xv and apply the Gram-Schmidt process to obtain an orthonormal basis. Or, ifM

is a surface containing no umbilic points, then we can choosee1 ande2 to be unit vectors pointing in the

principal directions; this approach was tacit in many of our proofs earlier.

If xWM ! R
3 is the inclusion map (which we may choose, in a computational setting, to consider as

the parametrization mappingU ! R
3), then we define1-forms!1; !2 onM by

dx D !1e1 C !2e2I

i.e., for anyV 2 TPM , we haveV D !1.V/e1 C !2.V/e2, so!˛.V/ D I.V; ę / for ˛ D 1; 2. So far,!1

and!2 keep track of how our point moves around onM . Next we want to see how the frame itself twists,

so we define1-forms!ij , i; j D 1; 2; 3, by

dei D
3
X

j D1

!ij ej :

Note that sinceei � ej D const for anyi; j D 1; 2; 3, we have

0 D d.ei � ej / D dei � ej C ei � dej D
� 3
X

kD1

!ikek

�

� ej C
� 3
X

kD1

!jkek

�

� ei

D !ij C !j i ;

so!j i D �!ij for all i; j D 1; 2; 3. (In particular, sinceei is always a unit vector,!i i D 0 for all i .) If

V 2 TPM , !ij .V/ tells us how fastei is twisting towardsej atP as we move with velocityV.

Note, in particular, that the shape operator is embodied in the equation

de3 D !31e1 C !32e2 D �
�

!13e1 C !23e2

�

:

Then for anyV 2 TPM we have!13.V/ D II.V;e1/ and!23.V/ D II .V;e2/. Indeed, when we write

!13 D h11!1 C h12!2

!23 D h21!1 C h22!2

for appropriate coefficient functionsh˛ˇ , we see that the matrix of the shape operatorSP with respect to the

basisfe1;e2g for TPM is nothing but
�

h˛ˇ

�

.

Most of our results will come from the following

Theorem 3.1(Structure Equations).

d!1 D !12 ^ !2 and d!2 D !1 ^ !12; and

d!ij D
3
X

kD1

!ik ^ !kj for all i; j D 1; 2; 3:

Proof. From the properties of the exterior derivative, we have

0D d.dx/ D d!1e1 C d!2e2 � !1 ^
� 3
X

j D1

!1j ej

�

� !2 ^
� 3
X

j D1

!2j ej

�
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D
�

d!1 � !2 ^ !21

�

e1 C
�

d!2 � !1 ^ !12

�

e2 �
�

!1 ^ !13 C !2 ^ !23

�

e3 ;

so from the fact thatfe1;e2;e3g is a basis forR3 we infer that

d!1 D !2 ^ !21 D �!2 ^ !12 D !12 ^ !2 and d!2 D !1 ^ !12:

Similarly, we obtain

0D d.dei / D d
� 3
X

kD1

!ikek

�

D
3
X

kD1

�

d!ikek � !ik ^
3
X

j D1

!kj ej

�

D
3
X

j D1

d!ij ej �
3
X

j D1

� 3
X

kD1

!ik ^ !kj

�

ej D
3
X

j D1

�

d!ij �
3
X

kD1

!ik ^ !kj

�

ej ;

sod!ij �
3P

kD1

!ik ^ !kj D 0 for all i; j . �

We also have the following additional consequence of the proof:

Proposition 3.2. The shape operator is symmetric, i.e.,h12 D h21.

Proof. From thee3 component of the equationd.dx/ D 0 in the proof of Theorem 3.1 we have

0 D !1 ^ !13 C !2 ^ !23 D !1 ^ .h11!1 C h12!2/C !2 ^ .h21!1 C h22!2/ D .h12 � h21/!1 ^ !2;

soh12 � h21 D 0. �

Recall thatV is a principal direction ifde3.V/ is a scalar multiple ofV. Soe1 ande2 are principal

directions if and only ifh12 D 0 and we have!13 D k1!1 and!23 D k2!2, wherek1 andk2 are, as usual,

the principal curvatures.

It is important to understand how our battery of forms changes if we change our moving frame by

rotatinge1;e2 through some angle� (which may be a function).

Lemma 3.3. Supposee1 D cos�e1C sin�e2 ande2 D � sin�e1C cos�e2 for some function� . Then

we have

!1 D cos�!1 C sin�!2

!2 D � sin�!1 C cos�!2

!12 D !12 C d�
!13 D cos�!13 C sin�!23

!23 D � sin�!13 C cos�!23

Note, in particular, that!1 ^ !2 D !1 ^ !2 and!13 ^ !23 D !13 ^ !23.

Proof. We leave this to the reader in Exercise 1.�

It is often convenient when we study curves in surfaces (as we did in Sections 3 and 4 of Chapter 2)

to use the Darboux frame, a moving frame for the surface adapted so thate1 is tangent to the curve. (See

Exercise 3.) For example,̨ is a geodesic if and only if in terms of the Darboux frame we have!12 D 0 as

a1-form on˛.

Let’s now examine the structure equations more carefully.
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Gauss equation: d!12 D �!13 ^ !23

Codazzi equations: d!13 D !12 ^ !23

d!23 D �!12 ^ !13

Example 1. To illustrate the power of the moving frame approach, we reprove Proposition 3.4 of Chap-

ter 2: SupposeK D 0 andM has no planar points. Then we claim thatM is ruled and the tangent plane

of M is constant along the rulings. We work in a principal moving frame withk1 D 0, so!13 D 0.

Therefore, by the first Codazzi equation,d!13 D 0 D !12 ^ !23 D !12 ^ k2!2. Sincek2 ¤ 0, we

must have!12 ^ !2 D 0, and so!12 D f!2 for some functionf . Therefore,!12.e1/ D 0, and so

de1.e1/ D !12.e1/e2C !13.e1/e3 D 0. It follows thate1 stays constant as we move in thee1 direction, so

following thee1 direction gives us a line. Moreover,de3.e1/ D 0 (sincek1 D 0), so the tangent plane to

M is constant along that line. O

The Gauss equation is particularly interesting. First, note that

!13 ^ !23 D .h11!1 C h12!2/ ^ .h12!1 C h22!2/ D .h11h22 � h2
12/!1 ^ !2 D KdA;

whereK D det
�

h˛ˇ

�

D detSP is the Gaussian curvature. So, the Gauss equation really reads:

(?) d!12 D �KdA:

(How elegant!) Note, moreover, that, by Lemma 3.3, for any two moving framese1;e2;e3 ande1;e2;e3, we

haved!12 D d!12 (which is good, since the right-hand side of (?) doesn’t depend on the frame field). Next,

we observe that, because of the first equations in Theorem 3.1,!12 can be computed just from knowing!1

and!2, hence depends just on the first fundamental form of the surface. (If we write!12 D P!1 CQ!2,

then the first equation determinesP and the second determinesQ.) We therefore arrive at a new proof of

Gauss’s Theorema Egregium, Theorem 3.1 of Chapter 2.

The1-form !12 is called theconnection formand measures the tangential twist ofe1. Just as we saw in

Section 1, then,rVe1 is the tangential component ofDVe1 D de1.V/ D !12.V/e2 C !13.V/e3, which is,

of course,!12.V/e2. In particular,!12.e1/ recovers the geodesic curvature of thee1-curve.

Example 2. Let’s go back to our usual parametrization of the unit sphere,

x.u; v/ D .sinu cosv; sinu sinv; cosu/; 0 < u < �; 0 < v < 2�:

Then we have

dx D xuduC xvdv D .cosu cosv; cosu sinv;� sinu/
„ ƒ‚ …

e1

duC .� sinv; cosv; 0/
„ ƒ‚ …

e2

.sinudv/:

Note thate1 D xu ande2 D xv=
p
G, as we might expect. So this gives us

!1 D du and !2 D sinudv:

Next,d!1 D 0 andd!2 D cosudu ^ dv D du ^ .cosudv/, so we see from the first structure equations

that!12 D cosudv. It is hard to miss the similarity this bears to the discussion of�12 and Example 1

in Section 1. Now we haved!12 D � sinudu ^ dv D �!1 ^ !2, so, indeed, the sphere has Gaussian

curvatureK D 1.
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Let’s now compute the geodesic curvature�g of the latitude circleu D u0. We obtain a Darboux frame

by takinge1 D e2 and e2 D �e1. Now, !12 D �!21 D !12 (this also follows from Lemma 3.3). Then

�g D !12.e1/ D !12.e2/. Now note that!12 D cosudv D cotu!2, so�g D cotu0. O

To illustrate the power of the differential forms approach, we give a proof of the following result (see

Exercise 2.3.15).

Proposition 3.4. SupposeM has no umbilic points andk1 is constant. ThenM is (a subset of) a tube

of radiusr D 1=jk1j about a regular curvę.

Proof. Choose a principal moving framee1;e2. We have!13 D k1!1 and!23 D k2!2. Differentiating

the first, sincek1 is constant, we get!12^!23 D k1!12^!2, so!12^.k2�k1/!2 D 0. Sincek2�k1 ¤ 0,
we infer that!12 D �!2 for some scalar function�. Now let e1 D e1, e2, e3 be the Frenet frame of the

e1-curve and apply Exercise 3. Since!12 D 0 and!13 ¤ 0 when restricted to ane1-curve, we infer that

cos� D 0 and� D ˙�=2 all along the curve. Then!23 D �!1 D 0 on thee1-curve, so� D 0 and the

curve is planar. But then�!1 D !12 D ˙!13 D ˙k1!1, so� D jk1j is constant and thee1-curves are

circles.

Now consider̨ D xC 1

k1
e3. Then

d˛ D dxC 1

k1
de3 D !1e1 C !2e2 C

1

k1
.�k1!1e1 � k2!2e2/ D

�

1� k2

k1

�

!2e2;

so ˛ is constant along thee1-curves andd˛ ¤ 0, which means that the image of˛ is a regular curve, the

center of the tube, as desired.�

From the Gauss equation and Stokes’s Theorem, the Gauss-Bonnet formula follows immediately for an

oriented surfaceM with (piecewise smooth) boundary@M on which we can globally define a moving frame.

That is, we can reprove the Local Gauss-Bonnet formula, Theorem 1.6, quite effortlessly.

Proof. We start with an arbitrary moving framee1;e2;e3 and take a Darboux framee1;e2;e3 along

@M . We writee1 D cos�e1 C sin�e2 ande2 D � sin�e1 C cos�e2 (where� is smoothly chosen along

the smooth pieces of@M and the exterior angle�j atPj gives the “jump” of� as we crossPj ). Then, by

Stokes’s Theorem and Lemma 3.3, we have
“

M

KdA D �
“

M

d!12 D �
Z

@M

!12 D �
Z

@M

�

!12 � d�
�

D �
Z

@M

�gds C .2� �
X

�j /:

(See Exercise 2.) �

EXERCISES 3.3

1. Prove Lemma 3.3.

2. Let e1;e2;e3 be the Darboux frame along a curvę. Show that as a1-form on˛, !12 D �g!1. Use

this result to reprove the result of Exercise 3.1.7.

3. Supposę is a curve lying in the surfaceM . Let e1;e2;e3 be the Darboux frame along̨ (i.e., a

moving frame for the surface withe1 tangent tǫ ), and lete1 D e1;e2;e3 be the Frenet frame. Then,
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by analogy with Lemma 3.3,e2;e3 are obtained frome2;e3 by rotating through some angle� . Show

that, as1-forms on˛, we have:

!12 D �!1 D cos�!12 C sin�!13

!13 D 0 D � sin�!12 C cos�!13

!23 D �!1 D !23 C d� :

*4. Use Exercise 3 to prove Meusnier’s Theorem (Proposition 2.5 of Chapter 2).

5. Use Exercise 3 to prove that ifC � M is a line of curvature and the osculating plane ofC makes a

constant angle with the tangent plane ofM , thenC is planar.

6. Use moving frames to redo Exercise 2.2.14. (Hint: Use the Codazzi equations to show thatdk ^ !1 D
dk ^ !2 D 0.)

7. Use moving frames to redo Exercise 2.2.15.

*8. Use moving frames to compute the Gaussian curvature of the torus, parametrized as in Example 1(c) of

Chapter 2.

9. The vectorse1 D v.1; 0/ ande2 D v.0; 1/ give a moving frame at.u; v/ 2 H. Set!1 D du=v and

!2 D dv=v.

a. Check that for anyV 2 T.u;v/H, !1.V/ D I.V;e1/ and!2.V/ D I.V;e2/.

b. Compute!12 andd!12 and verify thatK D �1.

10. Use moving frames to redo

a. Exercise 3.1.8

b. Exercise 3.1.9

11. a. Use moving frames to reprove the result of Exercise 2.3.14.

b. Use moving frames to reprove the result of Exercise 2.4.13. That is, prove that if there are two

families of geodesics inM that are everywhere orthogonal, thenM is flat.

c. Suppose there are two families of geodesics inM making a constant angle� . Prove or disprove:

M is flat.

12. Recall that locally any1-form � with d� D 0 can be written in the form� D df for some functionf .

a. Prove that if a surfaceM is flat, then locally we can find a moving framee1;e2 on M so that

!12 D 0. (Hint: Start with an arbitrary moving frame.)

b. Deduce that ifM is flat, locally we can find a parametrizationx of M with E D G D 1 and

F D 0. (That is, locallyM is isometric to a plane.)

13. (The Bäcklund transform)SupposeM andM are two surfaces inR3 andf WM ! M is a smooth

bijective function with the properties that

(i) the line fromP to f .P / is tangent toM atP and tangent toM at f .P /;

(ii) the distance betweenP andf .P / is a constantr , independent ofP ;

(iii) the angle betweenn.P / andn.f .P // is a constant� , independent ofP .
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Prove that bothM andM have constant curvatureK D �.sin2 �/=r2. (Hints: WriteP D f .P /, and

let e1;e2;e3 (resp.e1;e2;e3) be moving frames atP (resp.P ) with e1 D e1 in the direction of
��!
PP .

Letx andx D f ıx be local parametrizations. How else arex andx related?)

4. Calculus of Variations and Surfaces of Constant Mean Curvature

Every student of calculus is familiar with the necessary condition for a differentiable functionf WRn !
R to have a local extreme point (minimum or maximum) atP : We must haverf .P / D 0. Phrased slightly

differently, for every vectorV, the directional derivative

DVf .P / D lim
"!0

f .P C "V/� f .P /
"

should vanish. Moreover, if we are given a constraint setM D fx 2 R
n W g1.x/ D 0; g2.x/ D

0; : : : ; gk.x/ D 0g, the method of Lagrange multipliers tells us that at a constrained extreme pointP we

must have

rf .P / D
k
X

iD1

�irgi .P /

for some scalars�1; : : : ; �k . (There is also a nondegeneracy hypothesis here thatrg1.P /; : : : ;rgk.P / be

linearly independent.)

Suppose we are given a regular parametrized surfacexWU ! R
3 and want to find—without the benefit

of the analysis of Section 4 of Chapter 2—a geodesic fromP D x.u0; v0/ toQ D x.u1; v1/. Among all

paths̨ W Œ0; 1�!M with ˛.0/ D P and˛.1/ D Q, we wish to find the shortest. That is, we want to choose

the path̨ .t/ D x.u.t/; v.t// so as tominimizethe integral
Z 1

0

k˛0.t/kdt D
Z 1

0

q

E.u.t/; v.t//.u0.t//2 C 2F.u.t/; v.t//u0.t/v0.t/C G.u.t/; v.t//.v0.t//2dt

subject to the constraints that.u.0/; v.0// D .u0; v0/ and.u.1/; v.1// D .u1; v1/, as indicated in Figure

4.1. Now we’re doing a minimization problem in the space of all (C
1) curves.u.t/; v.t//with .u.0/; v.0// D

(u0,v0)

(u1,v1) P

Q

FIGURE 4.1

.u0; v0/ and.u.1/; v.1// D .u1; v1/. Even though we’re now working in an infinite-dimensional setting,
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we should not panic. In classical terminology, we have afunctionalF defined on the spaceX of C1 curves

uW Œ0; 1�! R
3, i.e.,

(�) F.u/ D
Z 1

0

f .t;u.t/;u0.t//dt :

For example, in the case of the arclength problem, we have

f
�

t; .u.t/; v.t//; .u0.t/; v0.t//
�

D
q

E.u.t/; v.t//.u0.t//2 C 2F.u.t/; v.t//u0.t/v0.t/CG.u.t/; v.t//.v0.t//2:

To say that a particular curveu� is a local extreme point (with fixed endpoints) of the functionalF given

in (�) is to say that for anyvariation �W Œ0; 1�! R
2 with �.0/ D �.1/ D 0, the directional derivative

D�F.u
�/ D lim

"!0

F.u� C "�/ � F.u�/

"
D d

d"

ˇ
ˇ
ˇ
ˇ
"D0

F.u� C "�/

should vanish. This leads us to the

Theorem 4.1(Euler-Lagrange Equations). If u� is a local extreme point of the functionalF given above

in (�), then atu� we have
@f

@u
D d

dt

�
@f

@u0

�

;

evaluating these both at.t;u�.t/;u�0.t//, for all 0 � t � 1.

Proof. Let �W Œ0; 1� ! R
2 be aC1 curve with�.0/ D �.1/ D 0. Then, using the fact that we can pull

the derivative under the integral sign (see Exercise 1) and then the chain rule, we have

d

d"

ˇ
ˇ
ˇ
ˇ
"D0

F.u� C "�/ D d

d"

ˇ
ˇ
ˇ
ˇ
"D0

Z 1

0

f .t;u�.t/C "�.t/;u�0.t/C "�0.t//dt

D
Z 1

0

@

@"

ˇ
ˇ
ˇ
ˇ
"D0

f .t;u�.t/C "�.t/;u�0.t/C "�0.t//dt

D
Z 1

0

�@f

@u
.t;u�.t/;u�0.t// � �.t/C @f

@u0 .t;u
�.t/;u�0.t// � �0.t/

�

dt

and so, integrating by parts, we have

D
Z 1

0

�@f

@u
� �.t/ � d

dt

�
@f

@u0

�

� �.t/
�

dt C @f

@u0 � �.t/
i1

0

D
Z 1

0

�@f

@u
� d

dt

�
@f

@u0

��

� �.t/dt :

Now, applying Exercise 2, since this holds forall C1 � with �.0/ D �.1/ D 0, we infer that

@f

@u
� d

dt

�
@f

@u0

�

D 0;

as desired. �
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Of course, the Euler-Lagrange equations really give a system of differential equations:

@f

@u
D d

dt

�
@f

@u0

�

(|)
@f

@v
D d

dt

�
@f

@v0

�

:

Example 1. Recall that for the unit sphere in the usual parametrization we haveE D 1, F D 0, and

G D sin2 u. To find the shortest path from.u0; v0/ D .u0; v0/ to the point.u1; v1/ D .u1; v0/, we want to

minimize the functional

F.u; v/ D
Z 1

0

q

.u0.t//2 C sin2 u.t/.v0.t//2dt :

Assuming our critical pathu� is parametrized at constant speed, the equations (|) give usv0.t/ D const

andu00.t/ D sinu.t/ cosu.t/v0.t/2. (Cf. Example 6(b) in Section 4 of Chapter 2.)O

We now come to two problems that interest us here: What is the surface of least area with a given

boundary curve? And what is the surface of least area containing a given volume? For this we must

consider parametrized surfaces and hence functionals defined on functions of two variables. In particular,

for functionsxWD ! R
3 defined on a given domainD � R

2, we consider

F.x/ D
“

D

kxu � xvkdudv:

We seek a functionx� so that, for all variations�WD ! R
3 with � D 0 on@D,

D�F.u
�/ D lim

"!0

F.u� C "�/ � F.u�/

"
D d

d"

ˇ
ˇ
ˇ
ˇ
"D0

F.u� C "�/ D 0:

Now we compute: Recalling that
d

dt
kf.t/k D f.t/ � f0.t/

kf.t/k and settingx D x� C "�, we have

d

d"

ˇ
ˇ
ˇ
ˇ
"D0

kxu � xvk D
1

kx�
u � x�

vk
�

.�u � x�
v C x�

u � �v/ � .x�
u � x�

v/
�

D .�u � x�
v C x�

u � �v/ � n:

Next we observe that

.�u � x�
v/ � n D

�

.� � x�
v/ � n

�

u
� .� � x�

uv/ � n � .� � x�
v/ � nu

.x�
u � �v/ � n D

�

.x�
u � �/ � n

�

v
� .x�

uv � �/ � n � .x�
u � �/ � nv ;

and so, adding these equations, we obtain

.�u � x�
v C x�

u � �v/ � n D
�

.� � x�
v/ � n

�

u
C
�

.x�
u � �/ � n

�

v
�
�

.� � x�
v/ � nu C .x�

u � �/ � nv

�

D
�

.� � x�
v/ � n

�

u
�
�

.� � x�
u/ � n

�

v
�
�

.� � x�
v/ � nu C .x�

u � �/ � nv

�

D
�

.� � x�
v/ � n

�

u
�
�

.� � x�
u/ � n

�

v
� � �

�

x�
v � nu C nv � x�

u

�

:

At the last step, we’ve used the identity.U � V/ �W D .W � U/ � V D .V � W/ � U. The appropriate

way to integrate by parts in the two-dimensional setting is to apply Green’s Theorem, Theorem 2.6 of the

Appendix, and so we letP D .� � x�
u/ � n andQ D .� � x�

v/ � n and obtain
“

D

.�u � x�
v C x�

u � �v/ � ndudv
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D
“

D

�
�

.� � x�
v/ � n

�

u
„ ƒ‚ …

Qu

�
�

.� � x�
u/ � n

�

v
„ ƒ‚ …

Pv

�

dudv �
“

D

� �
�

x�
v � nu C nv � x�

u

�

dudv

D
Z

@D

.� � x�
u/ � n

„ ƒ‚ …

P

duC .� � x�
v/ � n

„ ƒ‚ …

Q

dv �
“

D

� �
�

x�
v � nu C nv � x�

u

�

dudv:

Since� D 0 on @D, the line integral vanishes. Using the equations (��) on p. 59, we find thatx�
v � nu D

a.x�
u � x�

v/ andnv � x�
u D d.x�

u � x�
v/, so, at long last, we obtain

d

d"

ˇ
ˇ
ˇ
ˇ
"D0

“

D

kxu � xvkdudv D
“

D

.�u � x�
v C x�

u � �v/ � ndudv

D �
“

D

� �
�

x�
v � nu C nv � x�

u

�

dudv

D �
“

D

.aC d/� � .x�
u � x�

v/dudv D �
“

D

2H� � ndA;

sinceH D 1
2

trSP .

We conclude from this, using a two-dimensional analogue of Exercise 2, the following

Theorem 4.2. Among all (parametrized) surfaces with a given boundary curve, the one of least area is

minimal, i.e., hasH D 0.

This result, indeed, is the origin of the terminology.

Next, suppose we wish to characterize those closed surfaces (compact surfaces with no boundary) of

least area containing a given volumeV . To make a parametrized surface closed, we require thatx.u; v/ D x0

for all .u; v/ 2 @D. But how do we express the volume constraint in terms ofx? The answer comes from

the Divergence Theorem and is the three-dimensional analogue of the result of Exercise A.2.5: The volume

enclosed by the parametrized surfacex is given by

vol.V / D 1

3

“

D

x � ndA:

Thus, the method of Lagrange multipliers suggests that for a surface of least area there must be a constant�

so that
“

D

.2H��/� �ndA D 0 for all variations� with � D 0 on@D. Once again, using a two-dimensional

analogue of Exercise 2, we see that2H � � D 0 and henceH must be constant. (Also see Exercise 6.) We

conclude:

Theorem 4.3. Among all (parametrized) surfaces containing a fixed volume, the one of least area has

constant mean curvature.

In particular, a soap bubble should have constant mean curvature. A nontrivial theorem of Alexandrov,

analogous to Theorem 3.6 of Chapter 2, states that a smooth, compact surface of constant mean curvature

must be a sphere. So soap bubbles should be spheres. How do you explain “double bubbles”?

Example 2. If we ask which surfaces of revolution have constant mean curvatureH0, the statement of

Exercise 2.2.21a. leads us to the differential equation

h00

.1C h02/3=2
� 1

h.1C h02/1=2
D 2H0:
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(Here the surface is obtained by rotating the graph ofh about the coordinate axis.) We can rewrite this

equation as follows:

�hh00 C .1C h02/

.1C h02/3=2
C 2H0h D 0

and, multiplying through byh0,

h0�hh00 C .1C h02/

.1C h02/3=2
C 2H0hh

0 D 0
�

hp
1C h02

�0
C 2H0

�1

2
h2
�0 D 0

hp
1C h02

CH0h
2 D const:(�)

We now show that such functions have a wonderful geometric characterization, as suggested in Figure

4.2. Starting with an ellipse with semimajor axisa and semiminor axisb, we consider the locus of one

FIGURE 4.2

focus as we roll the ellipse along thex-axis. By definition of an ellipse, we havek���!F1Qk C k
���!
F2Qk D 2a,

and by Exercise 7, we haveyy2 D b2 (see Figure 4.3). On the other hand, we deduce from Exercise 8

that
���!
F1Q is normal to the curve, and that, therefore,y D k���!F1Qk cos�. Since the “reflectivity” property

of the ellipse tells us that†F1QP1 Š †F2QP2, we havey2 D k
���!
F2Qk cos�. Since cos� D dx=ds and

F2

P2P1

F1

Q

y
y2x

FIGURE 4.3

ds=dx D
p

1C .dy=dx/2, we have

y C b2

y
D y C y2 D 2a cos� D 2adx

ds



112 CHAPTER3. SURFACES: FURTHER TOPICS

and so

0 D y2 � 2ay dx
ds
C b2 D y2 � 2ay

p

1C y02
C b2 D 0:

SettingH0 D �1=2a, we see that this matches the equation (�) above. O

EXERCISES 3.4

]1. SupposegW Œ0; 1� � .�1; 1/ ! R is continuous and letG."/ D
Z 1

0

g.t; "/dt . Prove that if
@g

@"
is

continuous, thenG0.0/ D
Z 1

0

@g

@"
.t; 0/dt . (Hint: Considerh."/ D

Z "

0

Z 1

0

@g

@"
.t; u/dtdu.)

]2. *a. Supposef is a continuous function onŒ0; 1� and
Z 1

0

f .t/�.t/dt D 0 for all continuous functions

� on Œ0; 1�. Prove thatf D 0. (Hint: Take� D f .)

b. Supposef is a continuous function onŒ0; 1� and
Z 1

0

f .t/�.t/dt D 0 for all continuous functions

� on Œ0; 1� with �.0/ D �.1/ D 0. Prove thatf D 0. (Hint: Take� D  f for an appropriate

continuous function .)

c. Deduce the same result forC1 functions�.

d. Deduce the same result for vector-valued functionsf and�.

3. Use the Euler-Lagrange equations to show that the shortest path joining two points in the Euclidean

plane is a line segment.

4. Use the functionalF.u/ D
Z b

a

2�u.t/

q

1C .u0.t//2dt to determine the surface of revolution of least

area with two parallel circles (perhaps of different radii) as boundary. (Hint: You should end up with

the same differential equation as in Exercise 2.2.21.)

5. Prove the analogue of Theorem 4.3 for curves. That is, show that of all closed plane curves enclosing

a given area, the circle has the least perimeter. (Cf. Theorem 3.10 of Chapter 1. Hint: Start with

Exercise A.2.5. Show that the constrained Euler-Lagrange equations imply that the extremizing curve

has constant curvature. Proposition 2.2 of Chapter 1 will help.)

6. Interpreting the integral
Z 1

0

f .t/g.t/dt as an inner product (dot product)hf; gi on the vector space

of continuous functions onŒ0; 1�, prove that if
Z 1

0

f .t/g.t/dt D 0 for all continuous functionsg with
Z 1

0

g.t/dt D 0, thenf must be constant. (Hint: Writef D hf; 1i1C f ?, wherehf ?; 1i D 0.)

7. Prove thepedal propertyof the ellipse: The product of the distances from the foci to the tangent line of

the ellipse at any point is a constant (in fact, the square of the semiminor axis).

8. The arclength-parametrized curvę.s/ rolls without slipping along thex-axis, starting at the point

˛.0/ D 0. A point F is fixed relative to the curve. Leť .s/ be the curve thatF traces out. As

indicated in Figure 4.4, let�.s/ be the anglę 0.s/ makes with the positivex-axis. Denote byR� D
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F F'Q

Q'

FIGURE 4.4

"

cos� � sin�

sin� cos�

#

the matrix that gives rotation of the plane through angle� .

a. Show thať .s/ D .s; 0/C R��.s/.F � ˛.s//.

b. Show thať 0.s/ � R��.s/.F � ˛.s// D 0. That is, asF moves, instantaneously it rotates about the

contact point on thex-axis. (Cf. Exercise A.1.4.)

9. Find the path followed by the focus of the parabolay D x2=2 as the parabola rolls along thex-axis.

The focus is originally at.0; 1=2/. (Hint: See Example 2.)

10. Generalizing Exercise 8, prove that the result remains true if˛ rolls without slipping along another

smooth curve. (Hint: Parametrize the other curve by.s/, wheres is arclength of̨ . Note that if the

rolling starts at̨ .0/ D .0/, then the fact that the curve rolls without slipping tells us thats is likewise

the arclength of .)



APPENDIX

Review of Linear Algebra and Calculus

1. Linear Algebra Review

Recall that the setfv1; : : : ; vkg of vectors inRn gives a basis for a subspaceV of Rn if and only if

every vectorv 2 V can be writtenuniquelyas a linear combinationv D c1v1 C � � � C ckvk . In particular,

v1; : : : ; vn will form a basis forRn if and only if then � nmatrix

A D

2

6
4

j j j
v1 v2 � � � vn

j j j

3

7
5

is invertible, and are said to bepositively orientedif the determinant detA is positive. In particular, given

two linearly independent vectorsv;w 2 R
3, the setfv;w; v � wg always gives a positively- oriented basis

for R3.

We saye1; : : : ;ek 2 R
n form anorthonormalset inRn if ei � ej D 0 for all i ¤ j andkeik D 1 for all

i D 1; : : : ; k. Then we have the following

Proposition 1.1. If fe1; : : : ;eng is an orthonormal set of vectors inRn, then they form a basis forRn

and, given anyv 2 R
n, we havev D

nP

iD1

.v � ei /ei .

We say ann � n matrix A is orthogonal if ATA D I . It is easy to check that the column vectors of

A form an orthonormal basis forRn (and the same for the row vectors). Moreover, from the basic formula

Ax �y D x �ATy we deduce that ife1; : : : ;ek form an orthonormal set of vectors inRn andA is an orthogonal

n � nmatrix, thenAe1; : : : ; Aek are likewise an orthonormal set of vectors.

An important issue for differential geometry is to identify the isometries ofR
3 (although the same

argument will work in any dimension). Recall that anisometryof R3 is a functionfWR3 ! R
3 so that for

anyx; y 2 R
3, we havekf.x/ � f.y/k D kx � yk. We now prove the

Theorem 1.2. Any isometryf of R3 can be written in the formf.x/ D AxCc for some orthogonal3�3
matrixA and some vectorc 2 R

3.

Proof. Let f.0/ D c, and replacef with the functionf � c. It too is an isometry (why?) and fixes the

origin. Thenkf.x/k D kf.x/ � f.0/k D kx � 0k D kxk, so thatf preserves lengths of vectors. Using this

fact, we prove thatf.x/ � f.y/ D x � y for all x; y 2 R
3. We have

kf.x/ � f.y/k2 D kx � yk2 D .x � y/ � .x � y/ D kxk2 � 2x � yC kyk2 I

on the other hand, in a similar fashion,

kf.x/ � f.y/k2 D kf.x/k2 � 2f.x/ � f.y/C kf.y/k2 D kxk2 � 2f.x/ � f.y/C kyk2 :

114
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We conclude thatf.x/ � f.y/ D x � y, as desired.

We next prove thatf must be a linear function. Letfe1;e2;e3g be the standard orthonormal basis for

R
3, and letf.ej / D vj , j D 1; 2; 3. It follows from what we’ve already proved thatfv1; v2; v3g is also an

orthonormal basis. Given an arbitrary vectorx 2 R
3, write x D

3P

iD1

xiei andf .x/ D
3P

j D1

yj vj . Then it

follows from Proposition 1.1 that

yi D f.x/ � vi D x � ei D xi ;

sof is in fact linear. The matrixA representingf with respect to the standard basis has as itsj th column the

vectorvj . Therefore, by our earlier remarks,A is an orthogonal matrix, as required.�

Indeed, recall that ifT WRn ! R
n is a linear map andB D fv1; : : : ; vkg is a basis forRn, then the

matrix forT with respect to the basisB is the matrix whosej th column consists of the coefficients ofT .vj /

with respect to the basisB. That is, it is the matrix

A D
�

aij

�

; where T .vj / D
n
X

iD1

aij vi :

Recall that ifA is ann � n matrix (orT WRn ! R
n is a linear map), a nonzero vectorx is called an

eigenvectorif Ax D �x (T .x/ D �x, resp.) for some scalar�, called the associatedeigenvalue.

Theorem 1.3. A symmetric2 � 2 matrix A D
�
a b

b c

�

(or symmetric linear mapT WR2 ! R
2) has

two real eigenvalues�1 and�2, and, provided�1 ¤ �2, the corresponding eigenvectorsv1 and v2 are

orthogonal.

Proof. Consider the function

f WR2 ! R; f .x/ D Ax � x D ax2
1 C 2bx1x2 C cx2

2 :

By the maximum value theorem,f has a minimum and a maximum subject to the constraintg.x/ D
x2

1 C x2
2 D 1. Say these occur, respectively, atv1 andv2. By the method of Lagrange multipliers, we infer

that there are scalars�i so thatrf .vi/ D �irg.vi /, i D 1; 2. By Exercise 5, this meansAvi D �ivi , and

so the Lagrange multipliers are actually the associated eigenvalues. Now

�1.v1 � v2/ D Av1 � v2 D v1 �Av2 D �2.v1 � v2/:

It follows that if �1 ¤ �2, we must havev1 � v2 D 0, as desired. �

We recall that, in practice, we find the eigenvalues by solving for the roots of thecharacteristic polyno-

mial p.t/ D det.A � tI /. In the case of a symmetric2 � 2 matrixA D
�
a b

b c

�

, we obtain the polynomial

p.t/ D t2 � .aC c/t C .ac � b2/, whose roots are

�1 D
1

2

�

.aC c/ �
q

.a � c/2 C 4b2
�

and �2 D
1

2

�

.aC c/C
q

.a � c/2 C 4b2
�

:
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EXERCISES A.1

]*1. Supposefv1; v2g gives a basis forR2. Given vectorsx; y 2 R
2, prove thatx D y if and only if

x � vi D y � vi , i D 1; 2.

*2. The geometric-arithmetic mean inequality states that
p
ab � aC b

2
for positive numbersa andb;

with equality holding if and only ifa D b. Give a one-line proof using the Cauchy-Schwarz inequality:

ju � vj � kukkvk for vectorsu andv 2 R
n;

with equality holding if and only if one is a scalar multiple of the other.

3. Letw; x; y; z 2 R
3. Prove that

.w � x/ � .y � z/ D .w � y/.x � z/ � .w � z/.x � y/:

(Hint: Both sides are linear in each of the four variables, so it suffices to check the result on basis

vectors.)

]4. SupposeA.t/ is a differentiable family of3 � 3 orthogonal matrices. Prove thatA.t/�1A0.t/ is always

skew-symmetric.

5. If A D
�
a b

b c

�

is a symmetric2 � 2 matrix, setf .x/ D Ax � x and check thatrf .x/ D 2Ax.

2. Calculus Review

Recall that a functionf WU ! R defined on an open subsetU � R
n is C

k (k D 0; 1; 2; : : : ;1) if

all its partial derivatives of order� k exist and are continuous onU . We will use the notation
@f

@u
and fu

interchangeably, and similarly with higher order derivatives:
@2f

@v@u
D @

@v

�@f

@u

�

is the same asfuv, and so

on.

One of the extremely important results for differential geometry is the following

Theorem 2.1. If f is aC2 function, then
@2f

@u@v
D @2f

@v@u
(or fuv D fvu).

The same results apply to vector-valued functions, working with component functions separately.

If f WU ! R is C
1 we can form itsgradient by taking the vectorrf D

�

fx1
; fx2

; : : : ; fxn

�

of its

partial derivatives. One of the most fundamental formulas in differential calculus is thechain rule:

Theorem 2.2. Supposef WRn ! R and˛WR! R
n are differentiable. Then.f ı˛/0.t/ D rf .˛.t// �

˛0.t/.

In particular, if˛.0/ D P and˛0.0/ D V 2 R
n, then.f ı˛/0.0/ D rf .P / � V. This is somewhat

surprising, as the rate of change off along˛ atP depends only on the tangent vector and on nothing more

subtle about the curve.
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Proposition 2.3.DVf .P / D rf .P / � V. Thus, the directional derivative is a linear function ofV.

Proof. If we take ˛.t/ D P C tV, then by definition of the directional derivative,DVf .P / D
.f ı˛/0.0/ D rf .P / � V. �

Another important consequence of the chain rule, essential throughout differential geometry, is the following

Proposition 2.4. SupposeS � R
n is a subset with the property that any pair of points ofS can be

joined by aC1 curve. Then aC1 functionf WS ! R with rf D 0 everywhere is a constant function.

Proof. Fix P 2 S and letQ 2 S be arbitrary. Choose aC1 curve˛ with ˛.0/ D P and˛.1/ D Q.

Then .f ı˛/0.t/ D rf .˛.t// � ˛0.t/ D 0 for all t . It is a consequence of the Mean Value Theorem in

introductory calculus that a functiongW Œ0; 1� ! R that is continuous onŒ0; 1� and has zero derivative

throughout the interval must be a constant. Therefore,f .Q/ D .f ı˛/.1/ D .f ı˛/.0/ D f .P /. It follows

thatf must be constant onS . �

We will also have plenty of occasion to use the vector version of the product rule:

Proposition 2.5. Supposef;gWR! R
3 are differentiable. Then we have

.f � g/0.t/ D f0.t/ � g.t/C f.t/ � g0.t/ and

.f � g/0.t/ D f0.t/ � g.t/C f.t/ � g0.t/:

Last, from vector integral calculus, we recall the analogue of the Fundamental Theorem of Calculus in

R
2:

Theorem 2.6 (Green’s Theorem). Let R � R
2 be a region, and let@R denote its boundary curve,

oriented counterclockwise (i.e., so that the region is to its “left”). SupposeP andQ areC
1 functions

throughoutR. Then
Z

@R

P.u; v/duCQ.u; v/dv D
“

R

�
@Q

@u
� @P
@v

�

dudv:

a b

c

d

FIGURE 2.1

Proof. We give the proof here just for the case whereR is a rectangle. TakeR D Œa; b� � Œc; d �, as

shown in Figure 2.1. Now we merely calculate, using the Fundamental Theorem of Calculus appropriately:
“

R

�
@Q

@u
� @P
@v

�

dudv D
Z d

c

 
Z b

a

@Q

@u
du

!

dv �
Z b

a

 
Z d

c

@P

@v
dv

!

du
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D
Z d

c

�

Q.b; v/ �Q.a; v/
�

dv �
Z b

a

�

P.u; d/ � P.u; c/
�

du

D
Z b

a

P.u; c/duC
Z d

c

Q.b; v/dv �
Z b

a

P.u; d/du �
Z d

c

Q.a; v/dv

D
Z

@R

P.u; v/duCQ.u; v/dv;

as required. �

EXERCISES A.2

]1. SupposefW .a; b/ ! R
n is C

1 and nowhere zero. Prove thatf=kfk is constant if and only iff0.t/ D
�.t/f.t/ for some continuous scalar function�. (Hint: Setg D f=kfk and differentiate. Why must

g0 � gD 0?)

2. Supposę W .a; b/ ! R
3 is twice-differentiable and� is a nowhere-zero twice differentiable scalar

function. Prove that̨ , ˛0, and˛00 are everywhere linearly independent if and only if�˛, .�˛/0, and

.�˛/00 are everywhere linearly independent.

3. Let f;gWR ! R
3 beC1 vector functions with the property thatf.0/ and.0/ are linearly independent.

Suppose

f0.t/ D a.t/f.t/C b.t/g.t/
g0.t/ D c.t/f.t/ � a.t/g.t/

for some continuous functionsa, b, andc. Prove that the parallelogram spanned byf.t/ andg.t/ lies in

a fixed plane and has constant area.

]*4. Prove that for any continuous vector-valued functionfW Œa; b�! R
3, we have







Z b

a

f.t/dt






�
Z b

a

kf.t/kdt :

]5. LetR � R
2 be a region. Prove that

area.R/ D
Z

@R

udv D �
Z

@R

vdu D 1

2

Z

@R

�vduC udv:

3. Differential Equations

Theorem 3.1 (Fundamental Theorem of ODE’s). SupposeU � R
n is open andI � R is an open

interval containing0. Supposex0 2 U . If fWU � I ! R
n is continuous and Lipschitz inx (this means

that there is a constantC so thatkf.x; t/ � f.y; t/k � Ckx � yk for all x; y 2 U and allt 2 I ), then the
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differential equation
dx
dt
D f.x; t/; x.0/ D x0

has a unique solutionx D x.t; x0/ defined for allt in some intervalI 0 � I . Moreover, Iff is C
k , thenx is

C
k as a function ofboth t and the initial conditionx0 (defined fort in some interval andx0 in some open

set).

Of special interest to us will be linear differential equations.

Theorem 3.2.SupposeA.t/ is a continuousn�nmatrix function on an intervalI . Then the differential

equation
dx
dt
D A.t/x.t/; x0 D x0 ;

has a unique solution on the entire original intervalI .

For proofs of these, and related, theorems in differential equations, we refer the reader to any standard

differential equations text (e.g., Hirsch-Smale or Birkhoff-Rota).

Theorem 3.3. Let k � 1. Given twoCk vector fieldsX and Y that are linearly independent on a

neighborhoodU of 0 2 R
2, locally we can chooseCk coordinates.u; v/ onU 0 � U so thatX is tangent to

theu-curves (i.e., the curvesv D const) andY is tangent to thev-curves (i.e., the curvesu D const).

Proof. We make a linear change of coordinates so thatX.0/ andY.0/ are the unit standard basis vectors.

Let x.t; x0/ be the solution of the differential equationdx=dt D X, x.0/ D x0, given by Theorem 3.1. On

a neighborhood of0, each point.x; y/ can be written as

.x; y/ D x.t; .0; v//

for some uniquet andv, as illustrated in Figure 3.1. If we define the functionf.t; v/ D x.t; .0; v// D

X(0)

Y(0)

(0,v)

(u,0)

x(t,(0,v))

y(s,(u,0))

coordinates (u,v)

FIGURE 3.1

.x.t; v/; y.t; v//, we note thatf t D X.f.t; v// andfv.0; 0/ D .0; 1/, so the derivative matrixDf.0; 0/ is the

identity matrix. It follows from the Inverse Function Theorem that (locally) we can solve for.t; v/ as aCk

function of.x; y/. Note that the level curves ofv have tangent vectorX, as desired.

Now we repeat this procedure with the vector fieldY. Let y.s; y0/ be the solution of the differential

equationdy=ds D Y and write

.x; y/ D y.s; .u; 0//
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for some uniques andu. We similarly obtain.s; u/ locally as aCk function of.x; y/. We claim that.u; v/

give the desired coordinates. We only need to check that on a suitable neighborhood of the origin they

are independent; but from our earlier discussion we havevx D 0, vy D 1 at the origin, and, analogously,

ux D 1 anduy D 0, as well. Thus, the derivative matrix of.u; v/ is the identity at the origin and the

functions therefore give a local parametrization.�

EXERCISES A.3

1. SupposeM.s/ is a differentiable3 � 3 matrix function ofs, K.s/ is a skew-symmetric3 � 3 matrix

function ofs, and

M 0.s/ DM.s/K.s/; M.0/ D O:

Show thatM.s/ D O for all s by showing that the trace of.M TM/0.s/ is identically0.

2. (Gronwall inequalityand consequences)

a. Supposef W Œa; b�! R is differentiable, nonnegative, andf .a/ D c > 0. SupposegW Œa; b�! R

is continuous andf 0.t/ � g.t/f .t/ for all t . Prove that

f .t/ � c exp

�Z t

a

g.u/du

�

for all t :

b. Conclude that iff .a/ D 0, thenf .t/ D 0 for all t .

c. Suppose nowvW Œa; b� ! R
n is a differentiable vector function, andM.t/ is a continuousn � n

matrix function fort 2 Œa; b/, andv0.t/ D M.t/v.t/. Apply the result of part b to conclude that if

v.a/ D 0, thenv.t/ D 0 for all t . Deduce uniqueness of solutions tolinear first order differential

equations for vector functions. (Hint: Letf .t/ D kv.t/k2 andg.t/ D 2nmaxfjmij .t/jg.)
d. Use part c to deduce uniqueness of solutions to linearnth order differential equations. (Hint: Intro-

duce new variables corresponding to higher derivatives.)



ANSWERS TO SELECTED EXERCISES

1.1.1 ˛.t/ D
�

1�t2

1Ct2 ;
2t

1Ct2

�

.

1.1.4 We parametrize the curve by̨.t/ D .t; f .t//, a � t � b, and so length.˛/ D
R b

a k˛0.t/kdt D
R b

a

p

1C .f 0.t//2 dt .

1.1.6 ˇ.s/ D
�

1
2
.
p
s2 C 4C s/; 1

2
.
p
s2 C 4 � s/;

p
2 ln..

p
s2 C 4C s/=2/

�

.

1.2.1 c. � D 1

2
p

2
p

1�s2

1.2.3 a. T D 1
2
.
p
1C s;�

p
1 � s;

p
2/, � D 1

2
p

2
p

1�s2
, N D 1=

p
2.
p
1� s;

p
1C s; 0/, B D

1
2
.�
p
1C s;

p
1 � s;

p
2/, � D 1

2
p

2
p

1�s2
; c. T D 1p

2
p

1Ct2
.t;
p
1C t2; 1/, � D � D

1=2.1C t2/, N D 1p
1Ct2

.1; 0;�t/, B D 1p
2

p
1Ct2

.�t;
p
1C t2;�1/

1.2.5 � D 1= sinht (which we see, once again, is the absolute value of the slope).

1.2.6 B0 D .T �N/0 D T0 �NC T �N0 D .�N/ �NC T � .��TC �B/ D �.T � B/ D �.�N/,
as required.

1.2.9 b. If all the osculating planes pass through the origin, then there are scalar functions� and
� so that0 D ˛ C �T C �N. Differentiating and using the Frenet formulas, we obtain
0 D T C ��N C �0T C �

�

��T C �B
�

C �0N; collecting terms, we have0 D
�

1 C �0 �
��
�

T C
�

�� C �0�NC ��B. SincefT;N;Bg is a basis forR3, we infer, in particular, that
�� D 0. (We could also just have taken the dot product of the entire expression withB.)
�.s/ D 0 leads to a contradiction, so we must have� D 0 and so the curve is planar.

1.2.11 We havę 0�˛00 D ��3B, so˛0�˛000 D .˛0�˛00/0 D .��3B/0 D .��3/0BC .��3/.���N/,
so .˛0 � ˛000/ � ˛00 D ��2��6. Therefore,� D ˛0 � .˛00 � ˛000/=.�2�6/, and inserting the
formula of Proposition 2.2 gives the result.

1.2.25 a. Consider the unit normalAs;t to the plane throughP D 0, Q D ˛.s/, andR D ˛.t/.
Choosing coordinates so thatT.0/ D .1; 0; 0/, N.0/ D .0; 1; 0/, andB.0/ D .0; 0; 1/, we
apply Proposition 2.6 to obtain

˛.s/ � ˛.t/ D
st.s � t/
12

�

��2
0�0st C : : : ; 2�0�0.s C t/C : : : ;�6�0 C 2�0

0.s C t/ � �3
0st C : : :

�

;

so As;t D
˛.s/ � ˛.t/

k˛.s/ � ˛.t/k ! A D .0; 0;�1/ ass; t ! 0. Thus, the plane throughP with

normalA is the osculating plane.
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1.2.25 a. cont. Alternatively, let the equation of the plane throughP , Q, andR be As;t � x D 0

(where we chooseAs;t to vary continuously with length1). We want to determineA D
lims;t!0 As;t . For fixeds andt , consider the functionFs;t .u/ D As;t �˛.u/. ThenFs;t .0/ D
Fs;t .s/ D Fs;t .t/ D 0, so, by the mean value theorem, there are�1 and�2 so thatF 0

s;t .�1/ D
F 0

s;t .�2/ D 0, hence� so thatF 00
s;t .�/ D 0. Now F 0

s;t .0/ D As;t � T.0/ andF 00
s;t .0/ D

As;t � �0N.0/. Since�i ! 0 and�! 0 ass; t ! 0, we obtainA � T.0/ D A � N.0/ D 0, so
A D ˙B.0/, as desired.

1.3.4 LetL D length.C /. Then by Theorem 3.5 we have2� D
R L

0 �.s/ ds �
R L

0 c ds D cL, so
L � 2�=c.

2.1.3 a. E D a2, F D 0,G D a2 sin2 u; d. E D G D a2 cosh2 u, F D 0

2.1.4 a. 4�2ab

2.1.5 Say all the normal lines pass through the origin. Then there is a function� so thatx D �n.
Differentiating, we havexu D �nu C �un and xv D �nv C �vn. Dotting with n, we
get0 D �u D �v. Therefore,� is a constant and sokxk D const. Alternatively, from the
statementx D �n we proceed as follows. Sincen�xu D n�xv D 0, we havex�xu D x�xv D 0.
Therefore,.x � x/u D .x � x/v D 0, sokxk2 is constant.

2.1.7 Forx to be conformal, we must haveE D G andF D 0; for it to preserve area we must have
1 D
p
EG � F 2, soE D G D 1 andF D 0, which characterizes a local isometry with the

plane. The converse is immediate.

2.1.8 We check thatE D G D 4=.1C u2 C v2/2 andF D 0, so the result follows from Exercise
6.

2.1.10 b. One of these is:x.u; v/ D .cosuC v sinu; sinu � v cosu; v/.

2.1.15 a. If a cosh.1=a/ D R, the area is2�
�

aCR
p
R2 � a2

�

.

2.2.1 If u- andv-curves are lines of curvature, thenF D 0 (because principal directions are or-
thogonal away from umbilic points) andm D SP .xu/ � xv D k1xu � xv D 0. Moreover, if
SP .xu/ D k1xu andSP .xv/ D k2xv, we dot withxu andxv, respectively, to obtaiǹD Ek1

andn D Gk2. Conversely, settingSP .xu/ D axu C bxv, we infer that ifF D m D 0, then
0 D SP .xu/ � xv D Fa C Gb D Gb, and sob D 0. Therefore,xu (and, similarly,xv) is an
eigenvector ofSP .

2.2.3 b. ` D b, m D 0, n D cosu.a C b cosu/, SP D
"

1=b 0

0 cosu=.aC b cosu/

#

,

H D 1
2

�

1
b
C cosu

aCb cosu

�

, K D cosu
b.aCb cosu/

; d. ` D �a, m D 0, n D a, SP D
"

�.1=a/ sech2 u 0

0 .1=a/ sech2 u

#

,H D 0,K D �.1=a/2 sech4 u.

2.2.5 We know from Example 1 of Chapter 1, Section 2 that the principal normal of the helix points
along the ruling and is therefore orthogonal ton. As we move along a ruling,n twists in a
plane orthogonal to the ruling, so its directional derivative in the direction of the ruling is
orthogonal to the ruling.
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2.2.6 E D tanh2 u, F D 0,G D sech2 u, �` D sechu tanhu D n,m D 0

2.3.2 d. � v
uv D � v

vu D f 0.u/=f .u/, � u
vv D �f .u/f 0.u/, all others0.

2.4.4 �g D cotu0; we can also deduce this from Figure 3.1, as the curvature vector �N D
.1= sinu0/N has tangential component�.1= sinu0/ cosu0xu D cotu0.n � T/.

2.4.9 Only circles. By Exercise 2 such a curve will also have constant curvature, and by Meusnier’s
Formula, Proposition 2.5, the angle� betweenN and n D ˛ is constant. Differentiating
˛ � N D cos� D const yields�.˛ � B/ D 0. Either� D 0, in which case the curve is planar,
or else˛ � B D 0, in which casę D ˙N, so� D N0 � B D ˙˛0 � B D ˙T � B D 0. (In the
latter case, the curve is a great circle.)

2.4.18 a. Obviously, the meridians are geodesics and the central circle r D r0 is the only parallel
that is a geodesic. Observe that if we have some other geodesic, thenr cos� D c andc < r0.
The geodesic withr cos� D c will cross the central circle and then either approach one of
the parallelsr D c asymptotically or hit one of the parallelsr D c tangentially and bounce
back and forth between those two parallels. In either event,such a geodesic is bounded. (In
fact, if a geodesic approaches a parallel asymptotically, that parallelmust be a geodesic; see
Exercise 27.)

2.4.24 The geodesics are of the form cosh2 uC .v C c1/
2 D c2

2 for constantsc1 andc2.

3.1.1 a. 2� sinu0

3.1.2 a. yes, yes,b. yes, yes,c. yes, no.

3.2.1 b. The semicircle centered at.2; 0/ of radius
p
5; d.P;Q/ D ln

�

.3C
p
5/=2

�

� 0:962.

3.2.11 �g D cothR

3.3.4 We have�n D II.e1; e1/ D �de3.e1/ � e1 D !13.e1/. Sincee3 D sin�e2C cos�e3, the cal-
culations of Exercise 3 show that!13 D sin�!12Ccos�!13, so!13.e1/ D sin�!12.e1/ D
� sin� . Here� is the angle betweene3 ande3, so this agrees with our previous result.

3.3.8 We have!1 D b du and !2 D .a C b cosu/ dv, so !12 D � sinudv and d!12 D
� cosudu ^ dv D �

�

cosu

b.aC b cosu/

�

!1 ^ !2, soK D cosu

b.aC b cosu/
.

3.4.2 a. Taking� D f gives us
R 1

0 f .t/
2 dt D 0. Sincef .t/2 � 0 for all t , if f .t0/ ¤ 0, we have

an intervalŒt0 � ı; t0 C ı� on whichf .t/2 � f .t0/2=2, and so
R 1

0 f .t/
2 dt � f .t0/2ı > 0.

3.4.9 y D 1
2

cosh.2x/

A.1.1 Considerz D x � y. Then we know thatz � vi D 0, i D 1; 2. Sincefv1; v2g is a basis
for R2, there are scalarsa andb so thatz D av1 C bv2. Thenz � z D z � .av1 C bv2/ D
a.z � v1/C b.z � v2/ D 0, soz D 0, as desired.

A.1.2 Hint: Takeu D .
p
a;
p
b/ andv D .

p
b;
p
a/.

A.2.4 Let v D
R b

a f.t/ dt . Note that the result is obvious ifv D 0. We havekvk2 D v �
R b

a f.t/ dt D
R b

a v � f.t/ dt �
R b

a kvkkf.t/kdt D kvk
R b

a kf.t/kdt (using the Cauchy-Schwarz inequality

u � v � kuk kvk), so, if v ¤ 0, we havekvk �
R b

a kf.t/kdt , as needed.
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angle excess, 83
arclength, 6
asymptotic curve, 48, 51, 55
asymptotic direction, 48, 53, 56

Bäcklund, 106
Bertrand mates, 21
binormal vector, 11
Bishop frame, 33

C
k, 1, 35, 116

catenary, 5
catenoid, 43, 66
Cauchy-Schwarz inequality, 116
chain rule, 116
characteristic polynomial, 115
Christoffel symbols, 57
Clairaut’s relation, 72, 76, 77
Codazzi equations, 59, 63, 104
compact, 61
cone angle, 90
conformal, 40
connection form, 104
convex, 28
covariant constant, 67
covariant derivative, 67
Crofton’s formula, 25, 33
cross ratio, 99
cubic

cuspidal, 2
nodal, 2
twisted, 3

curvature, 11
curve, simple closed, 26
cycloid, 3
cylindrical projection, 42

Darboux frame, 70, 103, 105

developable,see ruled surface, developable
directrix, 38
Dupin indicatrix, 56

eigenvalue, 115
eigenvector, 115
elliptic point, 50
Euler characteristic, 85
exterior angle, 33, 83

first fundamental form, 39
flat, 49, 60, 61, 65, 77, 84, 90, 104
Foucault pendulum, 69
Frenet formulas, 11
Frenet frame, 11
functional, 108

Gauss equation, 60, 63, 104
Gauss map, 24, 44
Gauss-Bonnet formula, 83, 86, 96, 105
Gauss-Bonnet Theorem, 95

global, 86
local, 83

Gaussian curvature, 49, 51, 53, 57, 60, 82, 104
constant, 62, 92

generalized helix, 15
geodesic, 70
geodesic curvature, 70
globally isometric, 74
gradient, 116
Gronwall inequality, 120

h, 93
H , 49
helicoid, 35, 48, 55, 66
helix, 3
holonomy, 79, 82
hyperbolic plane, 91

Klein-Beltrami model, 101

124
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Poincaré model, 100
hyperbolic point, 50

inversion, 99
involute, 19
isometry, 114

K, 49
k-point contact, 56
knot, 26

Laplacian, 64
line of curvature, 47
linear fractional transformation, 94
locally isometric, 39

mean curvature, 49
meridian, 38, 52
metric, 74
Meusnier’s Formula, 51
minimal surface, 49, 55, 64, 110
moving frame, 101

normal curvature, 51
normal field, 32
normal plane, 17

oriented, 85
orthogonal, 114
orthonormal, 114
osculating circle, 22
osculating plane, 17, 22
osculating sphere, 22

parabolic point, 50
parallel, 38, 52, 67, 75, 95
parallel translate, 68
parametrization

regular, 1, 35
parametrized by arclength, 7
parametrized curve, 1
pedal property, 112
planar point, 50
Poincaré disk, 100
positively oriented, 114
principal curvature, 47

constant, 65, 66
principal direction, 47, 53

principal normal vector, 11
profile curve, 38
pseudosphere, 51

rectifying plane, 17
reflection, 98
regular, 1
regular parametrization, 35
rotation index, 27
ruled surface, 38

developable, 42, 61, 65, 76
ruling, 38

second fundamental form, 46, 53
shape operator, 45, 53
smooth, 1, 35
spherical coordinates, 37
stereographic projection, 37
support line, 32
surface, 35
surface area, 41
surface of revolution, 37
symmetric, 45

tangent indicatrix, 24
tangent plane, 38
Theorema Egregium, 60, 104
torsion, 11
torus, 36
total curvature, 24, 88
total twist, 32
tractrix, 5, 13
triply orthogonal system, 55
Tschebyschev net, 42
twist, 32

u-, v-curves, 35
ultraparallels, 95
umbilic, 50
unit normal, 39
unit tangent vector, 11

variation, 108
vector field, 67
velocity, 1
vertex, 29

zone, 41


