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Manifesto

Our Mission: Study the geometry of curves and surfaces using methods
from calculus, i.e., differentiation and (to a lesser degree) integration
(thus “differential geometry”).

In this study we will only be interested in properties that are independent
of the position of the curve or surface, that is, that are invariant under
Euclidean motions.

What does “geometry” mean? The term “geometry” comes from the
greek

γεω + µετρία '
{
γη = “earth”,

µετρώ = “measure”.

“Geometry” originated from the task of measuring the earth (for example,
a farmer’s fields). The greeks turned this “applied science” into “pure
mathematics” by studying geometric objects on an abstract level: Euclid’s
“Elements” (ca 300BC) is the most famous example of this work. Still
today, modern cartography relies on (differential) geometry.

“Differential geometry” developed much later after calculus was devel-
oped in the early 1700’s: then it was possible to study more complicated
geometrical objects, such as, arbitrarily curved “curves” and “surfaces”
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in 3-space. C F Gauss’ book “Disquisitiones generales circa superficies
curvas” (1827) was one of the mile-stones in this development.

Much of this text will be about the description of how objects (curves
and surfaces) in space are “curved” or, more generally speaking, about
their “shape”. Clearly, the “shape” of a curve or surface does not depend
on its position in space — hence the requirement for invariance under
Euclidean motions

p 7→ Ap+ c, where A ∈ SO(3) and c ∈ R3.

What are “curves” and “surfaces”? A “curve” can be thought of as the
shape that a thin bent wire in space (or in a plane) would take; equally,
it can be thought of as the trace of a moving particle in space (we shall
see in what sense “equally”). Thus a curve is a 1-dimensional object and
will, mathematically, be described by an R3-valued function t 7→ γ(t) of
one variable (or, equivalently, by two equations for (x, y, z) ∈ R3).

A “surface” can be thought of as, for example, a soap film or the film of
a soap bubble or the surface of a body or the earth. Thus a surface is
a 2-dimensional object and will therefore be described by an R3-valued
function (u, v) 7→ σ(u, v) of two variables (or, equivalently, by one equa-
tion for (x, y, z) ∈ R3).

This rough idea of a “curve” or a “surface” will be made precise later.
A “submanifold” or a “manifold” is a generalization (and abstraction) of
a curve or surface; these notions resolve some issues that the notions of
“curve” and “surface” as discussed in the first three sections of this text
create.

What is all this good for? First of all, differential geometry is a beauti-
ful subject in pure mathematics. But, secondly, there is also a variety of
applications: in the natural sciences, most notably, in physics (for exam-
ple, when considering a moving particle or planet or when studying the
shape of thin plates) and also in engineering or architecture, where more
complicated shapes need to be modelled (for example, when designing
the shape of a car or a building).
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Example. Consider the ellipse E in the plane R2:

E = {(x, y) | ( xa )2 + ( yb )2 = 1}.
This is given in implicit form, i.e., by an equation between the two
coordinates (x, y) of R2.

Can we describe it in parametric form, i.e., E = {γ(t) | t ∈ I}, where I
is some interval and γ : I → R

2 a suitable function?

1. As a graph: E ⊃ {(x,±b
√

1− ( xa )2) | − a < x < a} — but we
do not get the whole ellipse in this way. Note that we cannot have
x = ±a without loosing differentiability.

2. In parametric form: E = {γ(t) := (a cos t, b sin t) | t ∈ R} — but
we cover the ellipse infinitely often. Note that γ′ 6= 0 everywhere.

There are theoretical tools (the implicit and inverse mapping theorems),
which show that one can pass from an implicit description to a parametric
description and vice versa — under certain conditions (see Appendix).
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1 Curves

1.1 Parametrization & Arc length

Def. γ : R
◦
⊃ I → R

3 is called regular if γ′(t) 6= 0 for all t ∈ I.
We call the image γ(I) ⊂ R3 of a regular map γ : I → R

3 from an
open interval I into R3 a curve;
γ is called a parametrization of the curve or a parametrized curve.

Examples.

(1) Straight line.

R 3 t 7→ γ(t) := a+ b t ∈ R3,

where a ∈ R3 and b ∈ R3 \ {0} are (constant) vectors.

(2) Circle.

R 3 t 7→ γ(t) := c+ r (e1 cos t+ e2 sin t) ∈ R3,

where c ∈ R3 is the centre of the circle, r > 0 its radius and (e1, e2)
an orthonormal basis of its plane.

(3) Circular helix.

R 3 t 7→ γ(t) := (r cos t, r sin t, h t) ∈ R3,

where r > 0 and h ∈ R;
note that the curve γ(R) lies on the cylinder x2 + y2 = r2.
If h 6= 0 then the helix can also be written as a graph over its axis
(the z-axis):

x = r cos zh and y = r sin z
h , where z ∈ R.

(4) Hyperbola.

H := {(x, y, z) | y = 0, ( xa )2 − ( zb )2 = 1};
parametrizations of the two branches are obtained by solving for x,

z 7→ γ(z) := (±a
√

1 + ( zb )2, 0, z);
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however, these contain square roots (usually undesirable!), a better
choice is given by a “reparametrization” z = b sinh t, giving

t 7→ γ(t) = (±a cosh t, 0, b sinh t);

note that there cannot be a smooth (hence continuous) parametriza-
tion of both branches at the same time; hence each branch is a curve
in our sense, but the hyperbola (consisting of two connected com-
ponents) is not.

Problem 1. Find parametrizations for the conic sections

C = {(x, y, z) |x2 + y2 = z2, x cosα + z sinα = d},
α ∈ [0, π2 ] and d 6= 0. [Hint: distinguish α < π

4 , α = π
4 and α > π

4 .]

Def. A reparametrization of a parametrized curve I 3 t 7→ γ(t) ∈ R3

is a new parametrized curve

γ̃(t̃) = γ(ϕ(t̃)), where ϕ : Ĩ → I is onto and ϕ′ 6= 0.

Remark. The condition ϕ′(t̃) 6= 0 for all t̃ ensures that a reparametriza-
tion γ̃ of γ is regular (chain rule), hence a parametrization.

Problem 2. Prove that t 7→ γ(t) is a straight line if γ′′(t) and γ′(t) are
linearly dependent for all t.

Motivation. Thinking of a (parametrized) curve t 7→ γ(t) as the path of
a particle moving in time, we may think of

• γ′(t) as the velocity vector at given time t; and of

• |γ′(t)| as the speed of the particle at given time t.

The distance travelled by the particle between two given times t0 and t1
is then ∫ t1

t0
|γ′(t)| dt.

Def. The arc length of a (parametrized) curve t 7→ γ(t), measured
from γ(t0), is

s(t) :=
∫ t
t0
|γ′(t)| dt.
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Remark. The arc length is indeed the length of the curve between γ(t0)
and γ(t), as can be proved by polygonal approximation of the curve.

Hence, the arc length does not depend the parametrization.

Problem 3. Use substitution to show that the arc length is invariant
under reparametrization of a parametrized curve.

Lemma & Def. Any curve t 7→ γ(t) can be reparametrized by arc
length, i.e., so that it has constant speed 1. This is called an arc
length parametrization of γ and usually denoted by s 7→ γ(s).

Proof . Fix t0 and observe that s′(t) = |γ′(t)| > 0 for all t. Hence we
can invert s to obtain t = t(s) and let γ̃(s) := γ(t(s)). Then

|γ̃′(s)| = |γ′(t)| t′(s) =
|γ′(t)|
s′(t) = 1

has length 1 (note: t′(s) = 1
s′(t) by chain rule).

Remark. An arc length parametrization is unique up to choice of “initial
point” and sense of direction (orientation) of the curve.

Examples.

(1) Circle. Parametrization: t 7→ γ(t) = (r cos t, r sin t, 0);

Arc length: s(t) =
∫ t

0
|γ′(t)|dt =

∫ t
0
rdt = rt, thus t(s) = s

r ;

Arc length (re)parametrization: s 7→ γ̃(s) = (r cos sr , r sin s
r , 0).

(2) Ellipse. Parametrization: t 7→ γ(t) = (a cos t, b sin t, 0);

Arc length: s(t) =
∫ t

0
|γ′(t)|dt =

∫ t
0

√
b2 + (a2 − b2) sin2 t dt,

. . .which is an elliptic integral so that we cannot write down an arc
length (re)parametrization in terms of elementary functions.

(3) Circular helix. Parametrization: t 7→ γ(t) = (r cos t, r sin t, ht);

Arc length: s(t) =
∫ t

0

√
r2 + h2 dt =

√
r2 + h2 t;

Arc length (re)param: s 7→ (r cos s√
r2+h2

, r sin s√
r2+h2

, hs√
r2+h2

).
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Problem 4. Consider the curve given implicitely by ( xa )2+( yb )2+( zc )2 = 1

and a
√
b2 − c2 z = c

√
a2 − b2 x, where a > b > c. Compute its arc

length and find an arc length (re)parametrization.

1.2 Ribbons & Frames

If we think of an (arc length) parametrized curve t 7→ γ(t) as the path of
a body in space (moving at constant speed) it will be useful not only to
describe the direction of movement of the particle but also its orientation
in space — like a flying air plane, which does not only have a notion of
“forward” but also a notion of “upward”.

Def. Let t 7→ γ(t) be a parametrized curve. A (unit) smooth vector
field t 7→ N(t) so that N(t) ⊥ γ′(t) for all t is called a (unit) normal
field along γ.
The pair (γ,N) of a parametrized curve and a unit normal field will
be called a ribbon.

Rem & Def. At each point, a regular curve has a unique normal plane

N (t) := {p ∈ R3 | p− γ(t) ⊥ T (t)}, where T := γ′

|γ′|

denotes the unit tangent vector field of γ; hence, at each point, a curve
has a circle’s worth of unit normal vectors.
A normal plane N (t) inherits a natural linear structure (with origin
γ(t) ' 0) from the 2-dimensional vector subspace {T (t)}⊥ ⊂ R3 since

N (t) = γ(t) + {T (t)}⊥ = γ(t) + {N ∈ R3 |N ⊥ T (t)}.

Remark. A unit normal field N along γ defines a “horizontal” plane T (t)
at each point γ(t) of the curve in a similar way:

p ∈ T (t) :⇔ p− γ(t) ⊥ N(t),

i.e., we obtain a second family of planes varying smoothly along the
curve. Conversely, any such family of planes defines a unit normal field
N uniquely up to sign.

Notation. We will denote the standard basis of R3 by (e1, e2, e3).
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Def. t 7→ F (t) ∈ SO(3) is called an (adapted) frame for a parametrized
curve t 7→ γ(t) if

F (t)e1 = T (t) =
γ′(t)
|γ′(t)| ;

and an (adapted) frame for a ribbon (γ,N) if, additionally,

F (t)e2 = N(t).

Remark. We obtain a second unit normal field alon γ as

B := T ×N = Fe3;

thus we will (not entirely appropriately) also write F = (T,N,B).

Then, any normal field Ñ along γ can be written as

Ñ = λN + µB

with suitable functions λ and µ and any two adapted frames F and F̃
are related by a normal rotation,

F̃ = F

(
1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

)
.

Lemma & Def. Let F be an adapted frame for (γ,N); then there are
unique functions κn, κg and τ so that

F ′ = F Φ with Φ = |γ′|

(
0 −κn κg

κn 0 −τ
−κg τ 0

)
; (∗)

(∗) are called the structure equations of the ribbon (γ,N), and

• κn its normal curvature,

• κg its geodesic curvature and

• τ its torsion.

Proof . Since t 7→ F (t) ∈ SO(3) we have F tF ≡ id so that

0 = (F tF )′ = (F tF ′) + (F tF ′)t = Φ + Φt,
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that is, Φ(t) ∈ o(3) is skew symmetric for all t. Hence we can find
functions κn, κg and τ so that Φ is of the above form.

Problem 5. Let (γ,N) be a ribbon and Ñ := N cosϕ + B sinϕ, where
ϕ is smooth and B = T ×N . Show that (γ, Ñ) is a ribbon and compute
how the structure equations (i.e., κn, κg and τ) change.

Remark. κn, κg and τ are geometric quantities, i.e., are independent of
the position of γ in space as well as of the parametrization of γ:

• if (γ̃, Ñ) = (Aγ + c, AN), where A ∈ SO(3) and c ∈ R3, is a
Euclidean motion of (γ,N) then F̃ = AF and Φ̃ = Φ;

• if (γ̃, Ñ)(s) = (γ,N)(t(s)) is an orientation preserving (i.e., t′ > 0)
reparametrization of γ, then Φ̃(s) = t′Φ(t(s)) and |γ̃′| = |t′γ′|,
hence κ̃n(s) = κn(t(s)), etc.

Problem 6. Let (γ,N) be a ribbon and γ̃ = γ ◦ t a reparametrization
of γ with t′ > 0; set Ñ := N ◦ t. Show that (γ̃, Ñ) is a ribbon with
κ̃n = κn ◦ t, κ̃g = κg ◦ t and τ̃ = τ ◦ t.

Remark. If γ is arc length parametrized then the structure equations read

F ′ = F Φ ⇔

{
T ′ = κnN −κgB
N ′ = −κnT + τB

B′ = +κgT −τN
Thus κn and κg measure how fast the tangent line changes, that is, “how
strongly the curve is curved”, and τ measures how fast N (and hence also
B) rotate around the curve.

Problem 7. Let γ parametrize a straight line, γ′ × γ′′ ≡ 0, and let F
denote any adapted frame for γ. Show that κn = κg = 0. Find a unit
normal field N so that τ ≡ 1.

Examples.

(1) Circular helix. γ(t) = (r cos t, r sin t, ht) with “arc length element”
ds =

√
r2 + h2 dt; as a unit normal field, we choose

N(t) := −(cos t, sin t, 0)
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note that, for all t,

N(t) ⊥ T (t) =
γ′(t)
|γ′(t)| = 1√

r2+h2
(−r sin t, r cos t, h)

and consider the ribbon (γ,N); with the third frame vector field

B(t) = (T ×N)(t) = 1√
r2+h2

(h sin t,−h cos t, r)

the structure equations become

T ′ = r√
r2+h2

N

N ′ = − r√
r2+h2

T + h√
r2+h2

B

B′ = − h√
r2+h2

N

so that
κn = r

r2+h2 , κg ≡ 0, τ = h
r2+h2 .

(2) Spherical curve. Let s 7→ γ(s) ∈ S2(r) i.e., |γ|2 ≡ r2, be arc length
parametrized, i.e., |γ′|2 ≡ 1. Observe that

γ′ · γ = 1
2 (|γ|2)′ ≡ 0

so that N := 1
r γ defines a unit normal field and

F = (γ′, 1
r γ,

1
r γ
′ × γ)

an adapted frame for the ribbon (γ, 1
r γ). Then

κn = T ′ ·N = 1
r γ
′′ · γ ≡ − 1

r

κg = B′ · T = 1
r (γ′ × γ)′ · γ′ = 1

r det(γ, γ′, γ′′)

τ = N ′ ·B = 1
r2 γ
′ · (γ′ × γ) ≡ 0

and the structure equations read

T ′ = − 1
rN − det(γ,γ′,γ′′)

r B

N ′ = 1
rT

B′ =
det(γ,γ′,γ′′)

r T

Remark. Note that, in the first example, κg ≡ 0 whereas, in the second
example, τ ≡ 0. These two conditions characterize two prominent classes
of ribbons/frames that we will discuss in more detail later.
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Def. A ribbon (γ,N) is called

• asymptotic ribbon if κn ≡ 0,

• geodesic ribbon if κg ≡ 0,

• curvature ribbon if τ ≡ 0.

And here is one of the key theorems in curve theory:

Lemma (Fundamental theorem for ribbons). Fix three functions

s 7→ κn(s), κg(s), τ(s).

Then there is an arc length parametrized curve γ and a unit normal
field N along γ so that κn, κg and τ are the normal and geodesic
curvatures and the torsion of the ribbon (γ,N), respectively.
Moreover, this ribbon is unique up to Euclidean motion

Proof . We seek a ribbon (γ,N) with |γ′|2 ≡ 1 so that the adapted frame

F = (T,N,B), where T = γ′ and B = T ×N,
satisfies

F ′ = F · Φ, Φ =

(
0 −κn κg

κn 0 −τ
−κg τ 0

)
. (?)

(?) is a first order linear homogeneous system of ode’s. By the Picard-
Lindelöf Thm, this has a unique, globally defined solution s 7→ F (s) for
any given initial value F (s0) = F0.

Next we need to verify that F (s) ∈ SO(3) for all s, so that it qualifies
as a frame. To this end:

1. note that (FF t)′ = F (Φ + Φt)F t = 0 so that s 7→ F (s) ∈ O(3) as
soon as F0 ∈ O(3);

2. F (s) ∈ O(3) ⇒ detF (s) = ±1 and s 7→ detF (s) ∈ {−1,+1} is
continuous, hence cannot change sign (Intermediate value theorem),
so that s 7→ F (s) ∈ SO(3) as soon as F0 ∈ SO(3).



9 1 Curves

Now fix s0 and F0 = id
R3 and take

T := Fe1, N := Fe2, B := Fe3 and γ(s) :=
∫ s
s0
T (s)ds.

Clearly, γ is arc length parametrized, |γ′| = |T | ≡ 1, and F is an adapted
frame for the ribbon (γ,N) so that the structure equations (?) hold.

To see uniqueness of γ up to Euclidean motion suppose that F and F̃
are two solutions of (?); then

(F̃F−1)′ = F̃ ′F−1 − F̃F−1F ′F−1 = F̃ (Φ− Φ)F−1 = 0,

that is F̃F−1 ≡ F̃ (s0)F−1(s0) =: A is a constant special orthogonal
transformation as soon as F̃ (s0), F (s0) ∈ SO(3). Hence

T̃ = AT, Ñ = AN, B̃ = AB, and γ̃ = Aγ + c,

where c is a constant of integration: that is, (γ̃, Ñ) = (Aγ + c, AN) is
obtained by a Euclidean motion from (γ,N).

Problem 8. Prove that an arc length parametrized curve s 7→ γ(s) is
planar if and only if it has an adapted frame so that κg = τ ≡ 0.

1.3 Normal connection & Parallel transport

We shall now go on to study certain special frames for space curves:
frames that become particularly “simple” or well adapted to study certain
problems or notions in curve theory. These can be characterized by the
vanishing of one of the curvatures, κn or κg , or of the torsion, τ .

We start with τ ≡ 0. Consider the problem of lying out a fibre cable
without twist (to minimize waste of material or interference between cur-
rents): thus we wish the material not to twist around its soul, that is, we
have to solve the purely geometric problem of finding a frame without
torsion along the soul.

Def. A normal field t 7→ N(t) along t 7→ γ(t) is called parallel if

∇⊥N := (N ′)⊥ = N ′ − (N ′ · T )T ≡ 0,
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where ∇⊥ denotes the normal connection along γ.
An adapted frame F = (T,N,B) is parallel if N and B are parallel.

Note. In this definition, we do not assume |N | ≡ 1.

Lemma. The normal connection ∇⊥ is metric, i.e.,

(N1 ·N2)′ = ∇⊥N1 ·N2 +N1 · ∇⊥N2;

parallel normal fields have constant length and make constant angles.

Proof . First we prove that ∇⊥ is metric, i.e., satisfies Leibniz’ rule:

∇⊥N1 ·N2 +N1 · ∇⊥N2 = N ′1 ·N2 +N1 ·N ′2 = (N1 ·N2)′.

Hence, (N1 ·N2)′ = 0 if N1 and N2 are parallel.

In particular, (|N |2)′ = 2N · ∇⊥N = 0 for a parallel normal field N ,
showing that N has constant length; and two parallel normal fields make
a constant angle α since

cosα = N1·N2
|N1| |N2|

≡ const

if N1 and N2 are parallel.

Problem 9. Prove that any two parallel frames of a curve t 7→ γ(t) are
related by a constant rotation in the normal plane.

Lemma. If F is an adapted frame along γ and N = Fe2 is a parallel
normal field then F is a parallel frame.

Proof . We need to show that B = T ×N = Fe3 is parallel:
∇⊥B · T = 0 (def of ∇⊥),

∇⊥B ·N = (B ·N)′ −B · ∇⊥N = 0 (N parallel),

∇⊥B ·B = 1
2 (|B|2)′ = 0 (|B|2 ≡ 1);

hence ∇⊥B = 0.

In the course of the proof we have also learned:
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Cor. (γ,N) is a curvature ribbon iff N is a parallel unit normal field.

Proof . Writing F = (T,N,B) we have

0 = τ = 1
|γ′| (N

′ ·B) = 1
|γ′| (∇

⊥N ·B) ⇔ 0 = ∇⊥N

since ∇⊥N ⊥ T,N .

Example. Circular helix. γ(t) = (r cos t, r sin t, ht) and (see above)

T (t) =
γ′(t)
|γ′(t)| = 1√

r2+h2
(−r sin t, r cos t, h)

N(t) =
γ′′(t)
|γ′′(t)| = −(cos t, sin t, 0)

B(t) = T (t)×N(t) = 1√
r2+h2

(h sin t,−h cos t, r)

yields an adapted frame with

κn = r
r2+h2 , κg ≡ 0, τ = h

r2+h2 .

We seek a parallel normal field

Ñ(t) = cosϕ(t)N(t) + sinϕ(t)B(t);

thus compute

∇⊥N = N ′ − (N ′ · T )T = |γ′| τB = h√
r2+h2

B

∇⊥B = B′ − (B′ · T )T = −|γ′| τN = − h√
r2+h2

N

and
0

!
= ∇⊥Ñ = {ϕ′ + h√

r2+h2
} {− sinϕN + cosϕB}.

Hence F = (T, Ñ , B̃) with

Ñ(t) := cos ht√
r2+h2

N(t)− sin ht√
r2+h2

B(t)

B̃(t) := sin ht√
r2+h2

N(t) + cos ht√
r2+h2

B(t)

yields a parallel frame for γ.

Note that every other parallel frame is obtained by a constant rotation of
the given one: this is reflected by the constant of integration for ϕ.

The following lemma asserts that we can always find parallel normal fields
along a curve:
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Lemma. Let t 7→ γ(t) be regular and ξ0 ⊥ γ′(t0). Then there is a
unique parallel normal field t 7→ ξ(t) along γ with ξ(t0) = ξ0.

Proof . Wlog., |γ′|2 ≡ 1; let F = (T,N,B) be an adapted frame.

With the ansats ξ = αN + βB we compute

∇⊥ξ = {α′ − τβ}N + {β′ + τα}B;

thus ∇⊥ξ = 0 iff

α = r0 sin(ϕ0 + ϕ) and β = r0 cos(ϕ0 + ϕ)

with ϕ(t) =
∫ t
t0
τ(t)dt and r0, ϕ0 ∈ R.

In order to obtain ξ(t0) = ξ0 we need to choose r0 = |ξ0| and ϕ0 ∈ R so

that ξ0
|ξ0|

= N sinϕ0 +B cosϕ0.

Cor & Def. Parallel normal fields along γ yield a linear isometry from
the normal planeN (t0) at γ(t0) to the normal planeN (t) at γ(t). This
isometry is called parallel transport along γ.

Remark. This explains the term “connection” for ∇⊥: it provides a way
to identify normal planes of a curve at different points.

Remark. For “linear” to make sense, recall that a normal plane N (t)
carries a natural linear structure, with γ(t) as the origin.

Proof . Fix some ξ0 ⊥ γ′(t0); by the preceding lemma there is a unique
normal field ξ with ∇⊥ξ = 0 along γ with ξ(t0) = ξ0. Thus, there is a
unique map N (t0)→ N (t).

As the equation ∇⊥ξ = 0 is linear in ξ, constant linear combinations of
parallel normal fields are parallel (“superposition principle”); hence this
map is linear.

As parallel normal fields have constant length and make constant angles,
it is an isometry.

Problem 10. Show that a curve takes values in a sphere if and only if the
curvatures κn and κg of a parallel frame satisfy the equation of a line in
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the plane.
How can the radius of the sphere be read off from this equation?

1.4 Frenet curves

In this section we study a second special type of frames, satisfying a
“normal form” of the structure equations: after requiring τ ≡ 0 in the
last section we will now require κg ≡ 0, which leads to the “classical
curve theory” of the 18th and 19th century described in most text books.

The difference between curvature and geodesic ribbons is illustrated by
the example of the motion of an air plane during taxi and during the flight.
Apart from forward or backward forces (caused by change of speed), the
passenger experiences the forces caused by change of direction as sideways
forces during taxi but as up- or downward forces during flight — this is
achieved by “twist” (torsion) of the plane during flight.

Note that, if F = (T,N,B) denotes an adapted frame, a constant nor-
mal rotation of the frame leads to a similar “rotation” in the “curvature
plane”:

(Ñ , B̃) = (N,B)
(

cosα
− sinα

sinα
cosα

)
⇒
(
κ̃n
κ̃g

)
=
(

cosα
− sinα

sinα
cosα

)(
κn
κg

)
;

in particular, for a 90◦-rotation of the normal frame,

(N,B)→ (−B,N) ⇒ (κn, κg)→ (κ̃n, κ̃g) = (κg ,−κn).

Hence, the geometry of geodesic ribbons (κg ≡ 0) and of asymptotic
ribbons (κn ≡ 0) will be very similar (but differ in interpretation).

Def. A parametrized curve t 7→ γ(t) is called a Frenet curve if

∀t : (γ′ × γ′′)(t) 6= 0.

Remark. The Frenet-condition is invariant under reparametrization.

Problem 11. Convince yourself that the Frenet-condition is invariant un-
der reparametrization.
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Lemma & Def. If t 7→ γ(t) is a Frenet curve then T ′(t) 6= 0 for all t.

t 7→ N(t) :=
T ′(t)
|T ′(t)|

is called the principal normal field of γ.

Proof . By the Frenet condition (γ′ × |γ′|T ′)(t) = (γ′ × γ′′)(t) 6= 0 for
all t; hence T ′(t) 6= 0 for all t. Further, 0 = (|T |2)′ = 2T · T ′ showing
that T ′(t) ⊥ γ′(t) for all t so that N defines a unit normal field of γ.

Remark. Let t 7→ γ(t) parametrize a Frenet curve. Then (γ,N) is a
geodesic ribbon iff ±N is the principal normal field of γ.

Problem 12. Let t 7→ γ(t) be a Frenet curve. Prove that (γ,N) is a
geodesic ribbon if and only if ±N is the principal normal field of γ.

Rem & Def. At each point of the curve we can, in addition to N (t)
and T (t), consider the plane

O(t) := γ(t) + span{γ′(t), γ′′(t)} = γ(t) + {(γ′ × γ′′)(t)}⊥,

which intersects both N (t) and T (t) orthogonally. This is the oscu-
lating plane of the curve at γ(t).

Remark. Thinking again of a parametrized curve t 7→ γ(t) as the path
of a particle moving in time,

• γ′(t) is the velocity vector at time t; and of

• γ′′(t) is the acceleration vector of the particle at time t.

Thus the osculating plane is the plane of the forces acting on the body:
any force causing a change of speed as well as the “centripetal force”
(perpendicular to the velocity and opposite of the “centrifugal force”),
which “holds” the body on its path. If the body is moving at constant
speed then this centripetal force is given by γ′′ as

γ′′ · γ′ = 1
2 (|γ′|2)′ = 0.
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Geometrically, the tangent line of a curve is the line through two “infinitely
close points” γ(s) and γ(s+ ds) ' γ(s) + γ′(s)ds; the osculating plane
is the plane of three “infinitely close points”

γ(s) and γ(s± ds) ' γ(s)± γ′(s)ds+ 1
2γ
′′(s)ds2

(as long as they are not collinear: Frenet condition).

Examples.

(1) Planar curve. If t 7→ γ(t) parametrizes a planar (Frenet) curve,

γ · n ≡ c
for some n ∈ S2 and c ∈ R, then the plane π = {p | p · n = c} of
the curve is its (fixed) osculating plane as γ′, γ′′ ⊥ n.

(2) Circular helix.

γ(t) = (r cos t, r sin t, ht),

γ′(t) = (−r sin t, r cos t, h),

γ′′(t) = (−r cos t,−r sin t, 0)

so that O(t) = γ(t) + span{γ′(t), γ′′(t)} contains, apart from the
tangent line, the “radial” line perpendicular to the axis and passing
through γ(t).

Def & Lemma. Let t 7→ γ(t) be a Frenet curve and t 7→ N(t) its
principal normal field. The adapted frame F = (T,N,B) of the ribbon
(γ,N) is called the principal frame or Frenet frame of γ.
Its structure equations take the form

F ′ = F Φ with Φ = |γ′|

(
0 −κ 0

κ 0 −τ
0 τ 0

)
(∗)

with κ > 0. These are the Frenet equations of γ.
κ and τ are the curvature and torsion of the Frenet curve.

Remark. Thus, for a Frenet frame, κ := κn and κg ≡ 0.
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Proof . Fristly, κg ≡ 0 since T ′ ·B = T ′ · (T × T ′

|T ′| ) = 0;

and secondly κ = κn > 0 as T ′ ·N = T ′ · T
′

|T ′| = |T ′| > 0.

Problem 13. Let s 7→ γ(s) be an arc-length parametrized Frenet curve
and define the Darboux vector field by D := τT + κB. Prove that the
Frenet equations can be written as

T ′ = D × T, N ′ = D ×N, B′ = D ×B.

Problem 14. Express curvature and torsion of a Frenet curve in terms of
κn and κg of a parallel frame, and vice versa.

Lemma. Curvature and torsion of a Frenet curve are given by

κ =
|γ′×γ′′|
|γ′|3 and τ =

det(γ′,γ′′,γ′′′)
|γ′×γ′′|2 .

In particular, they can be uniquely defined in terms of the curve (with-
out reference to a choice of normal field or frame).

Remark. Recall that κ and τ are invariant under reparametrization.

Proof . First assume that s 7→ γ(s) is arc-length parametrized; then

κ = T ′ ·N = T ′ · T
′

|T ′| = |T ′| = |γ′′| =
|γ′×γ′′|
|γ′|3

since T = γ′ and γ′′ = T ′ ⊥ T = γ′, and

τ = (T ×N) ·N ′ = det(T,N,N ′) =
det(T,T ′,T ′′)
|T ′|2 =

det(γ′,γ′′,γ′′′)
|γ′×γ′′|2

since N = T ′

|T ′| and N ′ = T ′′

|T ′| + . . . T ′.

Now, if s 7→ γ̃(s) := γ(t(s)) is a reparametrization of t 7→ γ(t) then

γ̃′(s) = t′(s)γ′(t(s)),

γ̃′′(s) = t′2(s)γ′′(t(s)) + . . . γ′(t(s)),

γ̃′′′(s) = t′3(s)γ′′′(t(s)) + . . . γ′′(t(s)) + . . . γ′(t(s));

hence
|γ̃′ × γ̃′′|(s) = |t′(s)|3 |γ′ × γ′′|(t(s)),

det(γ̃′, γ̃′′, γ̃′′′)(s) = t′6(s) det(γ′, γ′′, γ′′′)(t(s)).
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Thus
κ̃(s) = κ(t(s)) and τ̃(s) = τ(t(s)),

showing invariance of κ and of τ under reparametrization.

Problem 15. Let t 7→ γ(t) be a Frenet curve. Prove by direct computa-
tion that

κ =
|γ′×γ′′|
|γ′|3 and τ =

det(γ′,γ′′,γ′′′)
|γ′×γ′′|2 .

Conclude that κ and τ are invariant under Euclidean motions of γ.

For Frenet curves, our earlier Fundamental theorem for ribbons specializes
to a central theorem of classical curve theory:

Thm (Fundamental Theorem for Frenet curves). Fix two functions

s 7→ κ(s), τ(s) with ∀s : κ(s) > 0.

Then there is an arc-length parametrized Frenet curve s 7→ γ(s) with
curvature and torsion κ and τ , respectively.
Moreover, this curve is unique up to Euclidean motion.

Proof . By the fundamental theorem for ribbons there is a ribbon (γ,N)
with |γ′|2 ≡ 1, κn = κ, κg ≡ 0 and torsion τ ; this ribbon is unique up
to Euclidean motion

γ → Aγ + c with A ∈ SO(3) and c ∈ R3.

We need to prove that γ is a Frenet curve and that N is its principal
normal field: as κg = 0 and κ 6= 0,

T ′ = κnN = κN 6= 0 and |T ′| = κ,

so that γ′×γ′′ = T ×T ′ = κT ×N 6= 0 and s 7→ γ(s) is a Frenet curve;

moreover, N = T ′
κ = T ′

|T ′| is its principal normal field.

Remark. There is a similar, simpler statement for (planar) curves in R2,
where only one function s 7→ κ(s) appears.

Problem 16. Formulate a Fundamental theorem for curves in R2.
Prove it without using the Picard-Lindelöf Theorem.

Example. Let κ > 0 and τ ∈ R be two numbers. Then there is a unique
(up to Euclidean motion) curve s 7→ γ(s) with curvature κ and torsion
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τ by the Fundamental Theorem for space curves. On the other hand, we
know that the circular helix

s 7→ γ(s) = (r cos s√
r2+h2

, r sin s√
r2+h2

, sh√
r2+h2

),

where
r = κ

κ2+τ2 and h = τ
κ2+τ2 ,

is a curve with the given curvature and torsion. Thus every curve with
constant curvature and torsion is a circular helix:

Thm (Classification of Circular helices). A Frenet curve is a circular
helix if and only if it has constant curvature and torsion.



19 2 Surfaces

2 Surfaces

2.1 Parametrization & Metric

Def. σ : R2
◦
⊃ U → R

3 is called regular if d(u,v)σ : R2 → R
3 injects

for every (u, v) ∈ U ; such regular maps are also called immersions.
We call the image σ(U) ⊂ R3 of a regular map σ : U → R

3 from an
open and connected subset U ⊂ R2 into R3 a surface;
σ is called a parametrization of the surface or a parametrized surface.

Remark. σ is regular iff σu(u, v) and σv(u, v) are linearly independent
for all (u, v) ∈ U , that is, iff (σu × σv)(u, v) 6= 0 for all (u, v) ∈ U .

Examples.

(1) Plane. A plane {p ∈ R3 | p · n = d}, where n ∈ S2 is a unit normal
and d ∈ R its directed distance from the origin, can be parametrized
by

(u, v) 7→ σ(u, v) := p0 + u e1 + v e2,

where p0 ∈ π is some point and (e1, e2) is a basis of the linear
subspace {n}⊥ ⊂ R3; σ is regular since e1 × e2 6= 0.

(2) Sphere. A common parametrization is given by

(u, v) 7→ σ(u, v) := (cosu cos v, cosu sin v, sinu);

but there is a problem: the parametrization ceases to be regular
for cosu = 0 and sinu = ±1 (“north” and “south poles” of the
sphere); this problem is symptomatic and cannot be resolved: there
is no regular parametrization of the whole sphere at once. This
shows a weakness of our definition of a surface and can only be
resolved by a “better” definition.

Problem 1. Show that the (twice punctured) ellipsoid

E = {(x, y, z) | ( xa )2 + ( yb )2 + ( zc )2 = 1, |z| < c},
a > b > c > 0, is a surface by finding a regular (prove it) parametrization.
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(3) Hyperboloids. The equations

( xa )2 + ( yb )2 − ( zc )2 = ±1,

a, b, c > 0, each pose 1 constraint on the 3 coordinates of space,
hence we may expect them to describe surfaces;
in the +1-case

(u, v) 7→ σ(u, v) := (a coshu cos v, b coshu sin v, c sinhu)

gives a (regular) parametrization, hence the equation defines a sur-
face: the 1-sheeted hyperboloid;
in the −1-case, the described set is a 2-sheeted hyperboloid, which
has two connected components, hence does not have a chance of be-
ing a surface in our sense — however, each component is, as these
can be (regularly) paramtrized by

(u, v) 7→ σ±(u, v) := (x, y,±c
√

1 + ( xa )2 + ( yb )2);

note that

(u, v) 7→ (a sinhu cos v, b sinhu sin v,±c coshu)

does not give regular parametrizations.

Problem 2. Consider T 2 := {(x, y, z) | (
√
x2 + y2 − R)2 + z2 = r2},

where 0 < r < R. Show that the torus T 2 is a surface.

Def. A reparametrization of a parametrized surface σ : U → R
3 is a

new parametrized surface

σ̃(ũ, ṽ) = σ(ϕ(ũ, ṽ)), where ϕ : Ũ → U is a diffeomorphism,

i.e., a smooth bijection with smooth inverse ϕ−1.

Remark. If σ̃(ũ, ṽ) = σ(ϕ(ũ, ṽ)), where ϕ(ũ, ṽ) = (u(ũ, ṽ), v(ũ, ṽ)),
then

σ̃ũ × σ̃ṽ = det
(
uũ uṽ
vũ vṽ

)
(σu × σv) ◦ ϕ;

thus a reparametrization of a parametrized surface is regular.
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Rem & Def. At each point σ(u, v), a surface has a tangent plane

T (u, v) = σ(u, v) + d(u,v)σ(R2) = σ(u, v) + {(σu × σv)(u, v)}⊥,
which inherits a natural linear structure (with origin σ(u, v) ' 0)
from the 2-dimensional vector subspace {(σu × σv)(u, v)}⊥ ⊂ R3, the
tangent space of the surface at σ(u, v).
As d(u,v)σ injects

d(u,v)σ : R2 → R
3

can be used to identify tangent vectors with vectors in R2.

Next we introduce a way to measure length and angles of tangent vectors:

Lemma & Def. Let U 3 (u, v) 7→ σ(u, v) ∈ R3 be a parametrized
surface; then

I := dσ · dσ
defines a positive definite, symmetric bilinear form for each (u, v) ∈ U .
I is the induced metric or first fundamental form of σ.

Notation. The first fundamental form is often written as

I = E du2 + 2F du dv +Gdv2 or I =
(
E
F

F
G

)
,

where E := |σu|2, F := σu · σv and G := |σv |2.

Remark. If (u, v) ∈ U and wi =
(
xi
yi

)
∈ R2, i = 1, 2, are two vectors

then

I|(u,v)(w1, w2)

= d(u,v)σ(w1) · d(u,v)σ(w2)

= E(u, v)x1x2 + F (u, v) (x1y2 + x2y1) +G(u, v) y1y2

=
(
x1
y1

)t (E(u,v)
F (u,v)

F (u,v)
G(u,v)

)(
x2
y2

)
.

You should think of the first fundamental form as the R3-scalar product
restricted, at each point, to the tangent space of the surface; the above
form E du2 + 2F du dv + Gdv2 is its representation in the coordinates
(u, v) of the surface.
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Proof . Clearly, the first fundamental form is a symmetric bilinear form
on R2 at each (u, v) ⊂ U . If (u, v) ∈ U and w ∈ R2 then

0 = I(u,v)(w,w) = |d(u,v)σ(w)|2 ⇒ 0 = w

since d(u,v)σ : R2 → R
3 injects; hence I(u,v) is positive definite.

Examples.

(1) Cylinder. Let (u, v) 7→ (x(u), y(u), v); then

E(u, v) = (x′2 + y′2)(u), F (u, v) = 0, and G(u, v) = 1.

In particular, if the planar curve u 7→ (x(u), y(u), 0) is parametrized
by arc length then E = G = 1 and F = 0, that is,

I = du2 + dv2

and the surface is parametrized isometrically .

(2) Helicoid. This is a regular surface, traced out by a straight normal
line moved along a helix:

(u, v) 7→ σ(u, v) = (sinhu cos v, sinhu sin v, v)

so that σu(u, v) = (coshu cos v, coshu sin v, 0)

σv(u, v) = (− sinhu sin v, sinhu cos v, 1)

and

I|(u,v) = cosh2 u du2 + (1 + sinh2 u) dv2 = cosh2 u (du2 + dv2);

that is, the helcoid is parametrized conformally .

Problem 3. Compute the induced metric of the catenoid

(u, v) 7→ σ(u, v) := (coshu cos v, coshu sin v, u).

Def. A surface parametrization (u, v) 7→ σ(u, v) is called conformal if
E = G and F = 0. It is called isometric if I = du2 + dv2.

Problem 4. Find a conformal parametrization σ : R2 → R
3 of the unit

sphere with its north pole removed [Hint: consider the “stereographic
projection” from the north pole, obtained by drawing a line through the
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north pole and any given point on the sphere to obtain a point in R2 as
the intersection of this line with the equator plane of the sphere.]

Remark. A parametrization is conformal iff it preserves angles, i.e., if the
angle of any two tangent vectors of the surface can be measured in R2.

Problem 5. Convince yourself that a surface is parametrized conformally
if and only if the parametrization preserves angles.

Remark. Isometric parametrizations are very special and do not normally
exist (not even locally) — in contrast to curves which can always be
parametrized by arc-length. We shall later see what the obstruction is.

In contrast to this:

Thm. Any surface can (locally) be conformally (re-)parametrized.

Proof . ...is beyond this text; a beautiful proof uses technology from Com-
plex Analysis.

2.2 Gauss map & Shape operator

Recall. A surface has a tangent plane at each point, in terms of a
parametrization (u, v) 7→ σ(u, v) this is given by

T (u, v) = σ(u, v) + {(σu × σv)(u, v)}⊥,

where {(σu × σv)(u, v)}⊥ ⊂ R
3 is its tangent space (where tangent

vectors “live”);
n(u, v) := σu×σv

|σu×σv | (u, v)

is a unit normal vector to the tangent plane/space at σ(u, v).

Note that a unit normal vector of T (u, v) is unique up to sign.

Def. The unit (normal) vector field n := σu×σv
|σu×σv | = σu×σv√

EG−F 2
is

called the Gauss map of the parametrized surface (u, v) 7→ σ(u, v).



2.2 Gauss map & Shape operator 24

Problem 6. Suppose a surface is given implicitely by F (x, y, z) = 0, i.e.,
a parametrization (u, v) 7→ σ(u, v) satisfies F ◦ σ ≡ 0. Show that its

Gauss map is given by n = ± gradF◦σ
| gradF◦σ| .

Example. Consider a surface of revolution

(u, v) 7→ σ(u, v) = (r(u) cos v, r(u) sin v, h(u)).

Each meridian curve v ≡ const is the orthogonal intersection of the
surface with the plane x sin v = y cos v; hence n is obtained by rotating
the unit tangent vector field of the meridian curve by 90◦:

(u, v) 7→ n(u, v) = 1√
r′2(u)+h′2(u)

(−h′(u) cos v,−h′(u) sin v, r′(u)).

Remark. The Gauss map of a parametrized surface is a geometric object:
if we apply a Euclidean motion,

σ → σ̃ = Aσ + c ⇒ n→ ñ = An,

that is, the Gauss map rotates with the surface.

We may run into problems when the surface is non-orientable, that is,
if we cannot choose a unit normal vector field globally : a Möbius strip
provides a simple example.

Problem 7. Let r > 0 and define a parametrization of a Möbius strip by

σ(u, v) := r (cos 2u, sin 2u, 0) + v (cosu cos 2u, cosu sin 2u, sinu).

Show that σ(u+ π, 0) = σ(u, 0) but n(u+ π, 0) = −n(u, 0).

Agreement. All our surfaces will be orientable.

For Frenet curves, curvature measured how the principal normal field
changes. For surfaces, the Gauss map may change differently in different
directions — we pick up a “second fundamental form”:

Def. Given a parametrized surface σ with Gauss map n,

II := −dn · dσ
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is called the second fundamental form of σ.

Lemma. II is a symmetric bilinear form for each (u, v).

Proof . Clearly, II(u,v) is a bilinear form on R2, and

II(
(

1
0

)
,
(

0
1

)
)− II(

(
0
1

)
,
(

1
0

)
) = −nu · σv + nv · σu

= n · σvu − n · σuv
= 0

showing that it symmetric.

Notation. The second fundamental form is often written as

II = e du2 + 2f du dv + g dv2 or II =
(
e
f
f
g

)
,

where e := −nu · σu, f := −nu · σv = −nv · σu and g := −nv · σv .

Problem 8. Investigate how the first and second fundamental forms
change under Euclidean motion and under reparametrization.

Example. For the helicoid (u, v) 7→ σ(u, v) = (sinhu cos v, sinhu sin v, v)
we have

σu(u, v) = (coshu cos v, coshu sin v, 0)

σv(u, v) = (− sinhu sin v, sinhu cos v, 1)

so that its Gauss map

(u, v) 7→ n(u, v) = 1
coshu (sin v,− cos v, sinhu)

and its second fundamental form becomes

II|(u,v) = −2du dv.

Lemma & Def. Let σ be a parametrized surface with Gauss map n;
then

d(u,v)n : R2 → {n(u, v)}⊥

takes values in the tangent space of the surface at σ(u, v). Hence

(u, v) 7→ S(u,v) := −d(u,v)n ◦ (d(u,v)σ)−1 ∈ End({n(u, v)}⊥)
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will be called the shape operator or Weingarten tensor of σ at σ(u, v).

Proof . Since |n|2 ≡ 1 we find

0 = d(|n|2) = 2n · dn,
that is, d(u,v)n : R2 → {n(u, v)}⊥ ⊂ R3 takes values in the tangent

space of σ at σ(u, v); also, as d(u,v)σ : R2 → R
3 injects it is an isomor-

phism
d(u,v)σ : R2 → {n(u, v)}⊥ ⊂ R3

onto the tangent space, hence can be inverted. As both maps (d(u,v)σ)−1

and d(u,v)n are linear, S(u,v) is as well, showing that S is well defined.

Remark. Since (σu, σv) is a basis of {n}⊥ at each point, we can deter-
mine the shape operator by its values on this basis:

S|(u,v)σu(u, v) = −d(u,v)n
(

1
0

)
= −nu(u, v),

S|(u,v)σv(u, v) = −d(u,v)n
(

0
1

)
= −nv(u, v);

The inverse (d(u,v)σ)−1 in the definition of S|(u,v) can also be interpreted
as the Moore-Penrose pseudoinverse:

S = −dn ◦ ((dσ)tdσ)−1(dσ)t.

However: this does not provide a useful matrix representation!

Example. Let (u, v) 7→ σ(u, v) = (r(u) cos v, r(u) sin v, h(u)) be a sur-
face of revolution with arc-length parametrized meridian, r′2 + h′2 ≡ 1.
Then its Gauss map is

n(u, v) = (−h′(u) cos v,−h′(u) sin v, r′(u));

hence

d(u,v)σ '
(

r′(u) cos v

r′(u) sin v

h′(u)

−r(u) sin v
r(u) cos v

0

)
: R2 → R

3

and

d(u,v)n '
(
−h′′(u) cos v

−h′′(u) sin v

r′′(u)

h′(u) sin v

−h′(u) cos v

0

)
: R2 → R

3

both take values in {n(u, v)}⊥ ⊂ R3: note that r′r′′+h′h′′ = 0 so that

nu + (r′h′′ − r′′h′)σu = 0; clearly nv + h′
r σv = 0.
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Hence w.r.t. the basis (σu(u, v), σv(u, v)) of {n(u, v)}⊥ we obtain the
matrix representation

S|(u,v) '
(

(r′h′′−r′′h′)(u)
0

0
h′
r (u)

)
.

Matrix representation. Writing S '
(
s11
s21

s12
s22

)
so that

(nu, nv) = −(σu, σv)
(
s11
s21

s12
s22

)
,

we find (
e
f
f
g

)
= −(σu, σv)t(nu, nv) =

(
E
F

F
G

)(
s11
s21

s12
s22

)
.

Hence(
s11
s21

s12
s22

)
=
(
E
F

F
G

)−1 ( e
f
f
g

)
= 1

EG−F 2

(
Ge−Ff
Ef−Fe

Gf−Fg
Eg−Ff

)
or, equivalently,

0 = nu + 1
EG−F 2 {(Ge− Ff)σu + (Ef − Fe)σv},

0 = nv + 1
EG−F 2 {(Gf − Fg)σu + (Eg − Ff)σv}.

Remark. Note that, given the first fundamental form, S can be computed
from II and vice versa.

Problem 9. Compute Gauss map and shape operator of the helicoid.

Lemma. S is a symmetric endomorphism of tangent spaces.

Proof . This follows directly from Sσu · σv = f = σu · Sσv .

Warning. Even though S is a symmetric endomorphism, its matrix rep-
resentation usually is not ((σu, σv) is not orthonormal in general).

Def. Let S denote the shape operator of (u, v) 7→ σ(u, v). Then:

• H := 1
2 tr S = Eg−2Ff+eG

2(EG−F 2)
is the mean curvature;

• K := detS = eg−f2

EG−F 2 is the Gauss curvature; and
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• the eigenvalues κi = H±
√
H2 −K of S are the principal curvatures

of the surface, and
its eigendirections are the curvature directions of σ.

Remark. Note that H = 1
2 (κ1 + κ2) — hence “mean curvature”.

Remark. The shape operator and curvatures are geometric objects:

• if σ̃ = σ ◦ϕ is a reparametrization of the surface and ñ = n◦ϕ then

S̃(ũ,ṽ) = −(dϕ(ũ,ṽ)n ◦ d(ũ,ṽ)ϕ) ◦ (dϕ(ũ,ṽ)σ ◦ d(ũ,ṽ)ϕ)−1 = Sϕ(ũ,ṽ)

so that H̃ = H ◦ ϕ, K̃ = K ◦ ϕ, etc.
Note, however, that a reparametrization changes the basis (σu, σv)
of the tangent space and, consequently, the matrix representation of
S does change under reparametrization.

• if σ → σ̃ = Aσ + c, where A ∈ SO(3) and c ∈ R3, is a Euclidean
motion of σ then

S̃ = −(Adn) ◦ (Adσ)−1 = A ◦ S ◦A−1

so that the curvatures remain invariant but the curvature directions
“rotate with the surface”.

Problem 10. Compute mean and principal curvatures of the helicoid.

Def. A point σ(u, v) of a surface is called

• umbilic if κ1(u, v) = κ2(u, v), i.e., if (H2 −K)(u, v) = 0;

• flat point if S|(u,v) = 0.

Example. Suppose (u, v) 7→ σ(u, v) takes values in a fixed plane

π = {p ∈ R3 | (p− p0) ·m = 0}.
Then (σ − p0) ·m ≡ 0, hence σu, σv ⊥ m so that n ≡ ±m and S ≡ 0.
Thus every point is a flat point.

Problem 11. Prove that all points of a sphere of radius r > 0 are umbilics
and compute its Gauss curvature.
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Lemma. If (u, v) 7→ σ(u, v) has no umbilics then F = f = 0 if and
only if

0 = nu + κ1σu = nv + κ2σv ,

that is, the parametrization σ diagonalizes the shape operator.

Proof . Clearly, if F = f = 0 then

S =
(
κ1
0

0
κ2

)
with κ1 = e

E and κ2 = g
G .

Conversely, suppose that S =
(
κ1
0

0
κ2

)
with κ1 6= κ2; as S is symmetric

0 = (Sσu) · σv − σu · (Sσv) = (κ1 − κ2)F,

that is, σu ⊥ σv ; hence f = −nu · σv = κ1 F = 0 as well.

Remark. In this proof we used the symmetry of S,

(Sσu) · σv = σu · (Sσv),

to show that the curvature directions intersect orthogonally (if κ1 6= κ2).

Def. (u, v) 7→ σ(u, v) is a curvature line parametrization if F = f = 0.

Thm. Any surface (locally) admits, away from umbilics, a curvature
line parametrization.

Proof . ...is beyond the text — as for the existence of conformal para-
metrization.

Problem 12. Find a curvature line reparametrization for the helicoid.

2.3 Covariant differentiation & Curvature tensor

Similarly to the normal connection of a curve we define a “connection”
for tangential vector fields of a surface:
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Def. Let (u, v) 7→ ξ(u, v) be a tangential vector field along a surface
parametrization (u, v) 7→ σ(u, v), i.e., ξ(u, v) ⊥ n(u, v) for all (u, v).

∇ξ := (dξ)T = dξ − (dξ · n)n

is called its covariant derivative, ∇ is the Levi-Civita connection of σ.

Lemma. The Levi-Civita connection satisfies the Leibniz rule,

∇(αξ) = dα ξ + α∇ξ for any function α,

and is metric,
d(ξ · η) = (∇ξ) · η + ξ · (∇η).

Proof . The Leibniz rule: if α is some function and ξ ⊥ n then

∇(αξ) = dα ξ + αdξ − ((dα ξ + αdξ) · n)n = dα ξ + α∇ξ.

∇ is metric: if ξ, η ⊥ n then

(∇ξ) · η + ξ · (∇η) = (dξ) · η + ξ · (dη) = d(ξ · η)

since (∇ξ) · η = (dξ − (dξ · n)n) · η = (dξ) · η.

Remark. Since (σu, σv) is a basis of the tangent space {n}⊥ at every
point we can write ∇ξ in terms of these basis fields. In particular, we can
write

∇∂
∂u
σu = σuu − e n = Γ1

11σu + Γ2
11σv ,

∇∂
∂v
σu = σuv − f n = Γ1

12σu + Γ2
12σv ,

∇∂
∂u
σv = σvu − f n = Γ1

21σu + Γ2
21σv ,

∇∂
∂v
σv = σvv − g n = Γ1

22σu + Γ2
22σv .

(?)

Then, writing an arbitrary tangential vector field ξ = ασu+βσv in terms
of the basis fields,

∇∂
∂u
ξ = (αu + αΓ1

11 + βΓ1
21)σu + (βu + αΓ2

11 + βΓ2
21)σv ,

∇∂
∂v
ξ = (αv + αΓ1

12 + βΓ1
22)σu + (βv + αΓ2

12 + βΓ2
22)σv .

(??)
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Def. Γkij are called the Christoffel symbols of σ.

Matrix representation. The covariant derivatives ∇∂
∂u

and ∇∂
∂v

are dif-

ferential operators (not endomorphisms!); nevertheless they admit a rep-
resentation using matrices: (??) reads

∇∂
∂u
dσ(
(
α
β

)
) = dσ(( ∂

∂u + Γ1)
(
α
β

)
) with Γ1 :=

(
Γ1

11

Γ2
11

Γ1
21

Γ2
21

)
and

∇∂
∂v
dσ(
(
α
β

)
) = dσ(( ∂

∂v + Γ2)
(
α
β

)
) with Γ2 :=

(
Γ1

12

Γ2
12

Γ1
22

Γ2
22

)
;

and, in particular, with
(
α
β

)
=
(

1
0

)
and
(
α
β

)
=
(

0
1

)
the defining equa-

tions (?) are recovered.

Lemma. Γkij = Γkji.

Proof . This is because σuv = σvu so that ∇∂
∂v
σu = ∇∂

∂u
σv .

Lemma (Koszul’s formulas).
1
2Eu = EΓ1

11 + FΓ2
11, Fu − 1

2Ev = FΓ1
11 +GΓ2

11;
1
2Ev = EΓ1

12 + FΓ2
12,

1
2Gu = FΓ1

12 +GΓ2
12;

Fv − 1
2Gu = EΓ1

22 + FΓ2
22,

1
2Gv = FΓ1

22 +GΓ2
22.

Proof . Multiplying the first equation of (?) by σu and σv , respectively,
we obtain the first two equations:

EΓ1
11 + FΓ2

11 = σu · ∇∂
∂u
σu = 1

2
∂
∂u (σu · σu),

FΓ1
11 +GΓ2

11 = σv · ∇∂
∂u
σu = ∂

∂u (σu · σv)− σu · ∇∂
∂u
σv

= ∂
∂u (σu · σv)− σu · ∇∂

∂v
σu

= ∂
∂u (σu · σv)− 1

2
∂
∂v (σu · σu).

The other equations are obtained similarly.
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Cor. The covariant derivative ∇ depends on I only.

Proof . As EG− F 2 6= 0 we can solve Koszul’s formulas for the Γkij :(
Γ1

11

Γ2
11

)
= 1

2
1

EG−F 2

(
G
−F

−F
E

)(
Eu

2Fu−Ev

)
;

the other Γkij ’s can be computed from I in a similar way.

Example. If (u, v) 7→ σ(u, v) is an isometric parametrization, that is,
E = G = 1 and F = 0, then all Γkij = 0 by Koszul’s formulas.

Problem 13. Compute the Christoffel symbols of a conformally para-
metrized surface.

Using the Levi-Civita connection we introduce the curvature tensor; as a
consequence of the previous corollary, it will only depend on I as well:

Def. Let (u, v) 7→ ξ(u, v) be a tangential vector field along a surface
parametrization (u, v) 7→ σ(u, v) and define

Rξ := ∇∂
∂u
∇∂
∂v
ξ −∇∂

∂v
∇∂
∂u
ξ;

R is called the curvature tensor of σ.

Remark. This is a simplified version of the “real” curvature tensor (which
is sufficient in our setup of 2-dimensional surfaces though).

Lemma. The curvature tensor R depends on I only.

Proof . This follows directly from the corresponding property of ∇.

Lemma. R is a skew symmetric tensor on tangent spaces, i.e.,

(Rξ) · η + ξ · (Rη) = 0 and R(αξ) = αRξ

for any function (u, v) 7→ α(u, v).

Proof . To see skew symmetry observe that

(|ξ|2)vu = 2ξ · ∇∂
∂u
∇∂
∂v
ξ + 2(∇∂

∂u
ξ) · (∇∂

∂v
ξ);
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thus
0 = (|ξ|2)vu − (|ξ|2)uv = 2ξ · Rξ

and

0 = (ξ + η) · R(ξ + η)− ξ · Rξ − η · Rη = ξ · Rη + η · Rξ.
To see that R is a tensor compute

R(αξ) = αvuξ + αv∇∂
∂u
ξ + αu∇∂

∂v
ξ + α∇∂

∂u
∇∂
∂v
ξ

− αuvξ − αu∇∂
∂v
ξ − αv∇∂

∂u
ξ − α∇∂

∂v
∇∂
∂u
ξ

= αRξ

Hence, clearly, R(u,v) ∈ End({n(u, v}⊥).

Lemma. R = % (σu ∧ σv) with some function % and

(σu ∧ σv) ξ := (ξ · σu)σv − (ξ · σv)σu.

Proof . The vector space of skew symmetric endomorphisms on a 2-
dimensional vector space is 1-dimensional; as both (σu ∧ σv)(u,v) 6= 0

and R(u,v) are skew symmetric endomorphisms of {n(u, v)}⊥ they must
be linearly dependent.

Matrix representation. By the previous lemma

Rσu = −% {Fσu − Eσv} and Rσv = −% {Gσu − Fσv}
or, in matrix representation with respect to the basis (σu, σv),

R '
(
r11
r21

r12
r22

)
= %
(−F

E
−G
F

)
=
(

0
%
−%

0

)(
E
F

F
G

)
.

On the other hand, by the definition of R and the matrix representation
for the covariant derivative,

Rσu = dσ((( ∂
∂u + Γ1)( ∂

∂v + Γ2)− ( ∂
∂v + Γ2)( ∂

∂u + Γ1))
(

1
0

)
)

= dσ((Γ2u − Γ1v + [Γ1, Γ2])
(

1
0

)
) and

Rσv = dσ((Γ2u − Γ1v + [Γ1, Γ2])
(

0
1

)
),

where [X,Y ] := XY − Y X denotes the commutator; hence, in terms
of matrices,

R ' Γ2u − Γ1v + [Γ1, Γ2]

and % can be computed from ∇ and I and, consequently, from I.
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Problem 14. Show that R = − 1
r2 σu ∧ σv if σ takes values in the sphere

S2(r) of radius r > 0, i.e., if |σ|2 ≡ r2. [Hint: compute ∇σu directly
from the definition, using n = ± 1

r σ.]

2.4 Gauss-Weingarten & Gauss-Codazzi equations

Using the notions from the previous sections, fundamental forms and
covariant derivative, we can now formulate the structure equations for
the frame F := (σu, σv , n) of a parametrized surface:

Gauss-Weingarten equations. If (u, v) 7→ σ(u, v) is a parametrized
surface with Gauss map (u, v) 7→ n(u, v) then

σuu = ∇∂
∂u
σu + e n = Γ1

11σu + Γ2
11σv + e n,

σuv = ∇∂
∂v
σu + f n = Γ1

12σu + Γ2
12σv + f n,

σvv = ∇∂
∂v
σv + g n = Γ1

22σu + Γ2
22σv + g n;

and
nu = −Sσu = − 1

EG−F 2 {(Ge− Ff)σu + (Ef − Fe)σv},
nv = −Sσv = − 1

EG−F 2 {(Gf − Fg)σu + (Eg − Ff)σv}.

Def. The covariant derivative of the shape operator S is defined by

(∇S) ξ := ∇(Sξ)− S(∇ξ),

where ξ is a tangential vector field.

Lemma. ∇S is a tensor, i.e., for any function (u, v) 7→ α(u, v)

(∇S)(αξ) = α (∇S)ξ.

Proof . This is a straightforward computation:

(∇∂
∂u

S)(αξ) = ∇∂
∂u

(αSξ)− S∇∂
∂u

(αξ)

= αu Sξ + α∇∂
∂u

Sξ − S(αuξ + α∇∂
∂u
ξ)

= α (∇∂
∂u

S) ξ.

A similar computation works for ∇∂
∂v

S.
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Matrix representation. If Σ =
(
s11
s21

s12
s22

)
denotes the matrix of S with

respect to the basis (σu, σv) of the tangent spaces,

Sξ = dσ(Σ
(
α
β

)
) for ξ = ασu + βσv = dσ(

(
α
β

)
),

then

(∇∂
∂u

S)ξ = dσ(( ∂
∂u + Γ1)(Σ

(
α
β

)
)− Σ ( ∂

∂u + Γ1)
(
α
β

)
)

= dσ((Σu + [Γ1,Σ])
(
α
β

)
)

and similarly for ∇∂
∂v

S.

Thus ∇∂
∂u

S|(u,v),∇∂
∂v

S|(u,v) ∈ End({n(u, v)}⊥) have matrix representa-

tions ∇∂
∂u

S|(u,v) ' (Σu + [Γ1,Σ])|(u,v),

∇∂
∂u

S|(u,v) ' (Σv + [Γ2,Σ])|(u,v).

Gauss-Codazzi equations. For a parametrized surface σ

(G) Rσv · σu = K (EG− F 2) — Gauss equation,

(C) (∇∂
∂u

S)σv = (∇∂
∂v

S)σu — Codazzi equation.

Proof . First we consider the Codazzi equation:

(∇∂
∂u

S)σv = −(∇∂
∂u
nv + S∇∂

∂u
σv);

then nuv = nvu and σuv = σvu yields

∇∂
∂u
nv = ∇∂

∂v
nu

∇∂
∂u
σv = ∇∂

∂v
σu

}
⇒ (∇∂

∂u
S)σv = (∇∂

∂v
S)σu.

For the Gauss equation we investigate (σv)uv = (σv)vu:

(σv)vu = (∇∂
∂v
σv + g n)u = (∇∂

∂u
∇∂
∂v
σv + g nu) + (. . .)n,

(σv)uv = (∇∂
∂u
σv + f n)v = (∇∂

∂v
∇∂
∂u
σv + f nv) + (. . .)n;

then

0 = Rσv · σu − (eg − f2) = Rσv · σu −K(EG− F 2)

by taking the inner product of the difference with σu.
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Problem 15. Prove: for a curvature line parametrization the Codazzi
equation(s) reads

0 = κ1v + Ev
2E (κ1 − κ2) = κ2u − Gu

2G (κ1 − κ2).

Gauss’ Theorema Egregium. K depends only on I.

Proof . By the Gauss equation

K = 1
EG−F 2 Rσv · σu = %

EG−F 2 (σu ∧ σv)σv · σu = −%,

where % can be computed from the Γkij and I, hence from I.

Remark. Note that we have also shown that R = −K σu ∧ σv .

Cor. If a surface admits an isometric (re-) parametrization then, nec-
essarily, K ≡ 0.

Proof . For an isometric parametrization all Γkij = 0, hence R ≡ 0 and,
consequently, K ≡ 0. As the Gauss curvature is a geometric invariant of
a surface, K̃ = K ◦ϕ for a reparametrization σ̃ = σ ◦ϕ, we have K ≡ 0
as soon as a surface admits an isometric (re-) parametrization.

Problem 16. Prove: for a conformally parametrized surface the Gauss
equation reads

K = − 1
2E∆ lnE.

Def. A surface is called totally umbilic if every point is an umbilic.

Remark. We already know: if (u, v) 7→ σ(u, v) takes values in a sphere
or plane then it parametrizes a totally umbilic surface.

Thm. A totally umbilic surface is (part of) a plane or a sphere.

Proof . If (u, v) 7→ σ(u, v) is totally umbilic then, for all (u, v),

S(u,v) = κ(u, v) id{n(u,v)}⊥
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and the Codazzi equation reads

0 = (∇∂
∂u

S)σv − (∇∂
∂v

S)σu = κuσv − κvσu.

Hence κu = κv ≡ 0 so that κ ≡ const.

If κ ≡ 0 then n ≡ const and the surface is part of a plane.

If κ ≡ const 6= 0 then c := σ + 1
κn ≡ const and |σ − c|2 ≡ 1

κ2 , showing

that σ takes values in a sphere of radius 1
|κ| centred at c.

2.5 Fundamental Theorem

Recall. The Gauss-Weingarten equations read

σuu = Γ1
11σu + Γ2

11σv + e n; σuv = Γ1
12σu + Γ2

12σv + f n,

σvu = Γ1
21σu + Γ2

21σv + f n; σvv = Γ1
22σu + Γ2

22σv + g n,

−nu = s11σu + s21σv ; −nv = s12σu + s22σv .

Lemma & Def. F = (σu, σv , n) is called an (adapted) frame of the
parametrized surface (u, v) 7→ σ(u, v); the structure equations of F read

Fu = FΦ and Fv = FΨ, (?)

with

Φ =

(
Γ1

11 Γ1
21 −s11

Γ2
11 Γ2

21 −s21

e f 0

)
and Ψ =

(
Γ1

12 Γ1
22 −s12

Γ2
12 Γ2

22 −s22

f g 0

)
.

Proof . (?) are just the Gauss-Weingarten equations.

Recall. The Gauss-Codazzi equations read

R = −Kσu ∧ σv and (∇∂
∂u

S)σv = (∇∂
∂v

S)σu.

Given I and II (or I and S), all data required to check the Gauss and
Codazzi equations can be computed: in matrix representation the Gauss
equation reads

R '
(
r11
r21

r12
r22

)
=
(

0
−K

K
0

)(
E
F

F
G

)
,
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where the rij can be computed from the Christoffel symbols Γkij ,

R ' Γ2u − Γ1v + [Γ1, Γ2],

hence from I by using the Koszul’s fomulas

I Γ1 =

(
1
2Eu

Fu− 1
2Ev

1
2Ev
1
2Gu

)
and I Γ2 =

(
1
2Ev
1
2Gu

Fv− 1
2Gu

1
2Gv

)
;

the Codazzi equation reads

(Σu + [Γ1,Σ])
(

0
1

)
= (Σv + [Γ2,Σ])

(
1
0

)
,

where Σ =
(
s11
s21

s12
s22

)
=
(
E
F

F
G

)−1 ( e
f
f
g

)
is the matrix representing S.

Since Γk21 = Γk12, i.e., Γ1

(
0
1

)
= Γ2

(
1
0

)
, the Codazzi equation simplifies

to
s2u + Γ1s2 = s1v + Γ2s1,

where s1 := Σ
(

1
0

)
=
(
s11
s21

)
and s2 := Σ

(
0
1

)
=
(
s12
s22

)
.

Lemma (Gauss-Codazzi as compatibility for Gauss-Weingarten).
Let (u, v) 7→ Φ(u, v),Ψ(u, v) be given; assume IΣ = II and Koszul’s
formulas. Then there is (locally) a solution (u, v) 7→ F (u, v) ∈ Gl(3) of
the Gauss-Weingarten equations (?) if and only if the Gauss-Codazzi
equations are satisfied.

Proof . If the structure equations (?) hold then necessarily Fuv = Fvu,
hence

0 = Φv −Ψu − [Φ,Ψ]; (??)

conversely, if Φ and Ψ satisfy (??) then (by the Maurer-Cartan lemma)
there is (locally) a solution (u, v) 7→ F (u, v) ∈ Gl(3) of the structure
equations (?).

We compute Φv − Ψu − [Φ,Ψ] using IΣ = II, so that we have matrix
representations

Φ =

(
Γ1

(Is1)t
−s1

0

)
and Ψ =

(
Γ2

(Is2)t
−s2

0

)
,

to obtain
Φv −Ψu − [Φ,Ψ]

=

(
(Γ1v−Γ2u−[Γ1,Γ2])+(s1s

t
2−s2s

t
1 ) I

((Is1)tv−(Is1)tΓ2)−((Is2)tu−(Is2)tΓ1)

(s2u+Γ1s2)−(s1v+Γ2s1)
(Is1)ts2−(Is2)ts1

)
.
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Now

• (Is1)ts2 − (Is2)ts1 = st1I s2 − st2I s1 = 0 by the symmetry of I;

• s1s
t
2 − s2s

t
1 =
(
s11
s21

)
(s12, s22)−

(
s12
s22

)
(s11, s21) =

(
0
−K

K
0

)
;

• (Is2)tu − (Is2)tΓ1 = (s2u + Γ1s2)tI + st2 (Iu − (IΓ1) − (IΓ1)t) and,
by Koszul’s formulas, (IΓ1) + (IΓ1)t = Iu so that

(Is2)tu − (Is2)tΓ1 = (s2u + Γ1s2)tI

and, similarly,

(Is1)tv − (Is1)tΓ2 = (s1v + Γ2s1)tI.

Thus

0 = Φv −Ψu − [Φ,Ψ]

=

(
−R+(s1s

t
2−s2s

t
1 ) I

{(s1v+Γ2s1)t−(s2u+Γ1s2)t} I
(s2u+Γ1s2)−(s1v+Γ2s1)

0

)
if and only if the Gauss-Codazzi equations are satisfied.

The following theorem is usually attributed to O Bonnet:

Fundamental Theorem for Surfaces. Suppose that

I = E du2 + 2F du dv +Gdv2 and II = e du2 + 2f du dv + g dv2,

I positive definite, satisfy the Gauss-Codazzi equations (G) and (C).
Then there is (locally) a parametrized surface (u, v) 7→ σ(u, v) with I
and II as its first and second fundamental forms.
Moreover, the surface is unique up to Euclidean motion.

Remark. Note that, in contrast to the corresponding theorem for curves,
we need the integrability conditions (C) and (G) to be satisfied as a
necessary (and sufficient) conditions for the existence of σ.

Proof . With the matrix Σ = I−1II of the shape operator and using
Koszul’s formulas the Gauss-Weingarten equations (?) can be formulated.
By the above lemma, the Gauss-Codazzi equations are then sufficient to
ensure local existence of a solution (u, v) 7→ F (u, v) ∈ Gl(3).
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By the uniqueness statement of the Maurer-Cartan lemma, such a solution
F is unique up to post-composition with some constant A ∈ Gl(3).

Since Γkij = Γkji and II is symmetric, Ψe1 = Φe2; hence, by the Poincaré

lemma, there is a (regular) map (u, v) 7→ σ(u, v) with

σu = Fe1 and σv = Fe2.

Clearly, σ is unique up to translation.

We seek: σ has first fundamental form I and Fe3 is a unit normal field.
Now

((F t)−1
(

I
0

0
1

)
F−1)u = (F t)−1

(
Iu−IΓ1−Γt1 I

0
0
0

)
F−1 = 0

by Koszul’s formulas, and similarly for the v-deritative, so that

(F t)−1
(

I
0

0
1

)
F−1 ≡ const ⇒ F tF =

(
I
0

0
1

)
as soon as we choose F to satisfy this equality at an initial point (u0, v0).

This choice makes F unique up to post-composition with A ∈ O(3) since

F tF = F̃ tF̃ = F tAtAF ⇒ AtA = id
R3 .

We seek: n := Fe3 is the Gauss map of σ. By the above choice Fe3 is
already a unit normal field; hence all we ask is

detF = det(σu, σv , n) = (σu × σv) · n > 0.

As detF does nowhere vanish this can be achieved by possibly post-
composing F with a reflection.

This further choice makes F unique up to post-composition with constant
rotations A ∈ SO(3).

Finally, we seek: II is the second fundamental form of σ. This follows
now directly from the construction of Φ and Ψ since

nu = FΦe3 = (σu, σv , n)
(−s1

0

)
, nv = FΨe3 = (σu, σv , n)

(−s2
0

)
.

Finally, after the above choices, σ is unique up to Euclidean motion,
σ → Aσ + c with A ∈ SO(3) and c ∈ R3.
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3 Curves on surfaces

3.1 Natural ribbon & Special lines on surfaces

Let U 3 (u, v) 7→ σ(u, v) ∈ R3 be a parametrized surface. Then

t 7→ γ(t) = σ(u(t), v(t)), where ∀t : (u′2 + v′2)(t) 6= 0,

defines a curve on the surface σ(U) ⊂ R3: since I is positive definite

0 = |γ′|2 = |σuu′ + σvv
′|2 = E u′2 + 2F u′v′ +Gv′2

implies u′ = v′ = 0; hence u′2 + v′2 6= 0 ensures that γ is regular.

Example & Def. For a parametrized surface (u, v) 7→ σ(u, v), the
curves

t 7→ σ(u+ t, v) and t 7→ σ(u, v + t)

are called the parameter lines of σ.

Now consider a curve γ(t) = σ(u(t), v(t)) on a parametrized surface σ;
the Gauss map of (u, v) 7→ σ(u, v) defines a canonical unit normal field

t 7→ N(t) = n(u(t), v(t)) = σu×σv
|σu×σv | (u(t), v(t))

along γ — hence we obtain a natural ribbon (γ,N):

Def. If t 7→ γ(t) = σ(u(t), v(t)) parametrizes a curve on a surface
then

t 7→ N(t) := n(u(t), v(t))

defines the natural ribbon (γ,N) of γ. The curve γ is called

• an asymptotic line if (γ,N) is an asymptotic ribbon, i.e., κn ≡ 0;

• a pre-geodesic if (γ,N) is a geodesic ribbon, i.e., κg ≡ 0;

• a curvature line if (γ,N) is a curvature ribbon, i.e., τ ≡ 0.

Problem 1. Suppose a surface is given implicitely by F (x, y, z) = 0 so
that gradF (x, y, z) 6= 0 whenever F (x, y, z) = 0. Show that the natural
ribbon of a curve t 7→ γ(t) on this surface, i.e., F ◦ γ ≡ 0, is given by

N = + gradF◦γ
| gradF◦γ| or N = − gradF◦γ

| gradF◦γ| .
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Use this to prove that t 7→ γ±(t) = (1, t,±t) are asymptotic as well as
pre-geodesic lines, but not curvature lines on the 1-sheeted hyperboloid
given by x2 + y2 − z2 = 1.

Problem 2. Prove Joachimsthal’s Theorem: Suppose that two surfaces
intersect along a curve and that the curve is a curvature line for one of
the two surfaces; then it is a curvature line for the other as well if and
only if the two surfaces intersect at a constant angle.

Rodrigues’ equation. t 7→ γ(t) = σ(u(t), v(t)) is a curvature line iff

0 = (dn+ κdσ)(u
′

v′ ),

where κ(u, v) is a principal curvature of σ at (u, v) = (u(t), v(t)).

Proof . t 7→ γ(t) is a curvature line iff the torsion τ of the natural ribbon
(γ,N), where t 7→ N(t) = n(u(t), v(t)), vanishes, that is, iff

0 = ∇⊥N
= N ′ + κnγ

′

= (nuu
′ + nvv

′) + κn(σuu
′ + σvv

′)

= (dn+ κndσ)(u
′

v′ );
on the other hand, dn = −S ◦ dσ, so that Rodrigues’ equation holds

iff κn is a principal curvature and dσ(u
′

v′ ) the corresponding curvature
direction.

Remark. Thus (u, v) 7→ σ(u, v) is a curvature line parametrization, that
is, F = f = 0, if and only if the parameter lines are curvature lines.

Example. We determined the Gauss map of a surface of revolution earlier:

(u, v) 7→ σ(u, v) = (r(u) cos v, r(u) sin v, h(u)),

hence
(u, v) 7→ n(u, v) =

(−h′(u) cos v,−h′(u) sin v,r′(u))√
(r′2+h′2)(u)

.

Thus
nv + h′

r
√
r′2+h′2

σv = 0

so that the parallels t 7→ ρ(t) = σ(u, t) of the surface of revolution
are curvature lines. As the meridians t 7→ µ(t) = σ(t, v) intersect the
parallels orthogonally, σu · σv ≡ 0, they must be curvature lines as well.
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Lemma. The normal curvature of a curve t 7→ γ(t) = σ(u(t), v(t)) on
a surface is given by

κn =
II((

u′
v′ ),(

u′
v′ ))

I((
u′
v′ ),(

u′
v′ ))

.

Proof . The normal curvature of the natural ribbon (γ,N) is given by

κn = 1
|γ′| T

′ ·N = 1
|γ′|2 γ

′′ ·N

with

|γ′|2 = |σuu′ + σvv
′|2 = E u′2 + 2F u′v′ +Gv′2 = I((u

′

v′ ), (u
′

v′ ))

and

γ′′ ·N = (σuu
′ + σvv

′)′ · n
= (σuuu

′2 + 2σuvu
′v′ + σvvv

′2) · n+ (σuu
′′ + σvv

′′) · n︸ ︷︷ ︸
=0

= e u′2 + 2f u′v′ + g u′2

= II((u
′

v′ ), (u
′

v′ )),

which proves the claim.

Remark. The normal curvature κn of a curve on a surface only depends
on the tangent direction of the curve (and not on u′′ or v′′). Thus we
also speak of the “normal curvature κn of a tangent direction”.

Euler’s Thm. The normal curvatures κn at a point σ(u, v) satisfy

κn(ϑ) = κ1 cos2 ϑ+ κ2 sin2 ϑ,

where κi are the principal curvatures and ϑ is the angle between the
tangent direction of κn(ϑ) and the curvature direction of κ1.

Problem 3. Prove Euler’s Theorem. [Hint: show that you can choose a
basis (e1, e2) of R2 so that d(u,v)σ(ei) are curvature directions of σ at
σ(u, v) and so that it is orthonormal w.r.t. I(u,v), hence orthogonal w.r.t.
II(u,v); then consider eϑ = e1 cosϑ+ e2 sinϑ.]
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Cor. The principal curvatures can be characterized as the extremal
values of the normal curvatures at a point of a surface.

As another application of the above lemma we obtain a characterization
of asymptotic lines:

Cor. t 7→ γ(t) = σ(u(t), v(t)) is an asymptotic line iff

II((u
′

v′ ), (u
′

v′ )) ≡ 0 ⇔ e u′2 + 2f u′v′ + g v′2 ≡ 0.

Example. Circular helices as asymptotic lines on the helicoid. For
the helicoid (u, v) 7→ σ(u, v) = (sinhu cos v, sinhu sin v, v) we computed
earlier

II|(u,v) = −2du dv;

hence, for r := sinhu, the circular helices

t 7→ γ(t) = (r cos t, r sin t, t) = σ(u, t)

are asymptotic lines since g ≡ 0.

Problem 4. Fix a point σ(u, v) on a parametrized surface. Prove that no
asymptotic line can pass through σ(u, v) if K(u, v) > 0; if K(u, v) < 0,
then an asymptotic line can pass through γ(u, v) in two different (inde-
pendent) directions. What can be said in case K(u, v) = 0?

3.2 Geodesics

Geometrically, geodesics can be thought of as the shortest possible curve
on a surface between two points (at least locally); equivalently, they can
be characterized as the “straight lines” in the surface, i.e., those which
are not curved: κg ≡ 0. This is what we call “pre-geodesics”.

From a physics point of view, one may think of a geodesic as the path of
a particle on a surface which has no forces acting on it (besides the one
keeping it on the surface), i.e., it has “no acceleration inside the surface”
and it is only accelerated normal to the surface. Thus, additionally to not
being curved (inside the surface), a “geodesic” does not change speed:
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Def. Let (γ,N) be the natural ribbon along a curve on a surface and
let t 7→ ξ(t) ⊥ N(t) be a vector field along γ tangential to the surface.

D
dt ξ := ξ′ − (ξ′ ·N)N

is called the covariant derivative of ξ along the curve and γ is called a
geodesic if

D
dtγ
′ ≡ 0.

Example. Circular helices as geodesics of a cylinder. Let

(u, v) 7→ σ(u, v) = (r cos v, r sin v, u)

parametrize a cylinder of radius r > 0; its Gauss map is

(u, v) 7→ n(u, v) = −(cos v, sin v, 0).

Thus, for a circular helix

t 7→ γ(t) = (r cos t, r sin t, ht) = σ(ht, t)

we find
D
dtγ
′ = γ′′ − (γ′′ ·N)N = r N − r N = 0

so that γ is a geodesic of the cylinder.

Remark. Writing γ(t) = σ(u(t), v(t)) and∗) ξ = ασu + βσv we find
D
dt ξ = α′σu + α(u′∇∂

∂u
σu + v′∇∂

∂v
σu)

+ β′σv + β(u′∇∂
∂u
σv + v′∇∂

∂v
σv)

= {α′ + α(u′Γ1
11 + v′Γ1

12) + β(u′Γ1
21 + v′Γ1

22)}σu
+ {β′ + α(u′Γ2

11 + v′Γ2
12) + β(u′Γ2

21 + v′Γ2
22)}σv ;

in particular, D
dt ξ can be computed from I alone.

With ξ = γ′ = u′σu + v′σv , we see that γ is a geodesic iff

0 = u′′ + Γ1
11u
′2 + 2Γ1

12u
′v′ + Γ1

22v
′2,

0 = v′′ + Γ2
11u
′2 + 2Γ2

12u
′v′ + Γ2

22v
′2.

(?)

∗) More precisely, t 7→ ξ(t) = α(t)σu(u(t), v(t)) + β(t)σv(u(t), v(t)).
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Thm. Given a point p0 = σ(u0, v0) on a surface and a tangent direc-
tion t0 ⊥ n(u0, v0) at p0, there is a unique geodesic γ with

γ(0) = p0 and γ′(0) = t0.

Proof . Write γ(t) = σ(u(t), v(t)) and t0 = α0σu(u0, v0)+β0σv(u0, v0).

With w = (u, u′, v, v′) the equations (?) for γ to be a geodesic form a
system of ODEs of the form w′ = f(w), where f is differentiable:

w′1 = w2,

w′2 = −Γ1
11(w1, w3)w2

2 − 2Γ1
12(w1, w3)w2w4 − Γ1

22(w1, w3)w2
4 ,

w′3 = w4,

w′4 = −Γ2
11(w1, w3)w2

2 − 2Γ2
12(w1, w3)w2w4 − Γ2

22(w1, w3)w2
4 .

Hence, the sought geodesic is obtained from a solution of the initial value
problem

w′ = f(w), w(0) = (u0, α0, v0, β0),

and the claim follows from the Picard-Lindelöf Thm (1st special case).

Problem 5. Find the geodesics γ of a plane π ⊂ R3 with γ(0) = p0 ∈ π.

Thm. Geodesics are the constant speed pre-geodesics.

Proof . Let (γ,N) be the natural ribbon of t 7→ γ(t) = σ(u(t), v(t)).

As γ′′ = D
dtγ
′ + (γ′′ ·N)N

1
2 (|γ′|2)′ = γ′ · γ′′ = γ′ · Ddtγ

′

and, by the structure equations for ribbons,

κg = −T
′·(T×N)
|γ′| =

det(N,T,T ′)
|γ′| =

det(N,γ′,γ′′)
|γ′|3 =

det(N,γ′,D
dt
γ′)

|γ′|3 .

Thus, if γ is a geodesic, D
dtγ
′ = 0, then |γ′| ≡ const and κg = 0.

Conversely, suppose that |γ′|2 ≡ const and κg ≡ 0. Then

D
dtγ
′ ⊥

N by definition of D
dt ,

γ′ since |γ′|2 ≡ const,
N × γ′ since κg ≡ 0;
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hence D
dtγ
′ ≡ 0 and γ is a geodesic.

Remark. As D
dtγ
′ can be computed from I alone, so can geodesics and

geodesic curvature. In particular,

κg =

√
EG−F 2

√
Eu′2+2Fu′v′+Gv′2

3 det
(u′ u′′+Γ1

11u
′2+2Γ1

12u
′v′+Γ1

22v
′2

v′ v′′+Γ2
11
u′2+2Γ2

12
u′v′+Γ2

22
v′2

)
.

Thm (Clairaut’s theorem). For a geodesic on a surface of revolution
the product

r sin θ ≡ const,
where r = r(s) is the distance from the axis and θ = θ(s) is the angle
that the geodesic makes with the meridians.

Proof . Let s 7→ γ(s) = (r(s) cosϕ(s), r(s) sinϕ(s), h(s)) be a geodesic
on a surface of revolution, wlog., arc length parametrized.

We denote
αt(s) :=

(
cos t
sin t

0

− sin t
cos t
0

0
0
1

)
γ(s);

note that s 7→ αt(s) is an arc-length parametrized geodesic for each t.
Further let

X(s) := ∂
∂t

∣∣
t=0

αt(s) = e3 × γ(s),

where e3 = (0, 0, 1) spans the axis of the surface of revolution. Then

r sin θ = r cos( π2 − θ) = γ′ ·X = ( ∂∂sαt ·
∂
∂tαt)|t=0,

and
∂
∂s ( ∂∂sαt ·

∂
∂tαt) = ∂

∂s
∂
∂sαt︸ ︷︷ ︸
‖n

· ∂∂tαt︸︷︷︸
⊥n

+ 1
2
∂
∂t ( ∂∂sαt ·

∂
∂sαt)︸ ︷︷ ︸

≡1

= 0

hence r sin θ ≡ const.

Remark. Note that Clairaut’s theorem provides a necessary condition
for a geodesic, not a sufficient condition: there are curves satisfying
Clairaut’s relation r sin θ ≡ const that are not geodesics.

Example. Let p0 ∈ S2 and t0 ⊥ p0 be a unit tangent vector at p0, then

s 7→ γ(s) = p0 cos s+ t0 sin s
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is the geodesic with γ(0) = p0 and γ′(0) = t0 since γ′′ = −γ so that

D
dtγ
′ = −γ + γ = 0 and γ(0) = p0, γ′(0) = t0.

Now consider S2 as a surface of revolution with the z-axis Re3 as its axis
of rotation; then

r = |e3 × γ| and sin θ =
γ′·(e3×γ)
|γ′| |e3×γ|

=
γ′·(e3×γ)
|e3×γ|

so that r sin θ = γ′ · (e3 × γ) = det(e3, γ, γ
′) = det(e3, p0, t0) ≡ const.

Thus, when e3 is not in the plane of the geodesic, the geodesic becomes
horizontal where the distance from the axis is the smallest and it is steep-
est where it crosses the equator.

Note however that the curves z = const 6= 0 are not (pre-) geodesics on
S2, even though r sin θ =

√
1− z2 · 1 ≡ const.

Problem 6. Let (u, v) 7→ σ(u, v) = (r(u) cos v, r(u) sin v, h(u)) be a
surface of revolution. Prove that:

(a) if a parallel t 7→ σ(u, t) is a geodesic then we must have r′(u) = 0;

(b) if r′2 + h′2 ≡ 1 then the meridians t 7→ σ(t, v) are geodesics.

3.3 Geodesic polar coordinates & Minding’s theorem

Let Σ ⊂ R3 be a surface, p0 ∈ Σ and let T (p0) denote the tangent plane
of Σ at p0. Now choose an orthonormal basis (e1, e2) for T (p0), that is,
orthonormal vectors so that

T (p0) = p0 + span{e1, e2} = {p0 + λe1 + µe2 |λ, µ ∈ R},

and let γϑ denote the unique geodesic in Σ with

γϑ(0) = p0 and γ′ϑ(0) = e1 cosϑ+ e2 sinϑ.

There is ε > 0 so that all γϑ are defined for |t| < ε — hence we can use
the γϑ to (locally) parametrize Σ:
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Def. We say that (r, ϑ) 7→ σ(r, ϑ) := γϑ(r) is a parametrization by
geodesic polar coordinates around p0.

Remark. σ is not regular for r = 0 since σ(0, ϑ) = p0 for all ϑ; however,
it is regular for (r, ϑ) ∈ (0, ε)×R for some ε > 0.

Problem 7. Parametrize S2(R) = {(x, y, z) |x2 + y2 + z2 = R2} by
geodesic polar coordinates around p0 = (0, 0, R). Compute the metric.

Lemma. In geodesic polar coordinates (r, ϑ),

I = dr2 +Gdϑ2 with
√
G|r=0 = 0 and ∂

√
G

∂r |r=0 = 1.

Proof . First observe that σ(0, ϑ) = p0 for all ϑ, hence σϑ|r=0 = 0.

E = 1. γϑ is arc-length parametrized, hence E = |σr |2 = |γ′ϑ|
2 = 1.

F = 0. σϑ|r=0 = 0, hence F |r=0 = σr · σϑ|r=0 = 0; moreover

Fr = σrr · σϑ + σr · σrϑ = σrr · σϑ + 1
2Eϑ = 0

since σrr = D
dtγ
′
ϑ + ...N . So, r 7→ F (r, ϑ) ≡ 0 for all ϑ.

√
G|r=0 = 0. σϑ|r=0 = 0, hence G|r=0 = |σϑ|2

∣∣
r=0

= 0.

∂
√
G

∂r |r=0 = 1. We take it for granted that ∂
√
G

∂r |r=0 exists and 6= 0.
Then

(
√
G)r
∣∣
r=0

= Gr
2
√
G

∣∣
r=0

= Grr
2(
√
G)r

∣∣
r=0

by de l’Hospital’s rule and, as σϑ|r=0 = 0 and | ddϑγ
′
ϑ(0)|2 = 1,

1
2Grr

∣∣
r=0

= (σrrϑ · σϑ + σrϑ · σrϑ)
∣∣
r=0

= 1.

Hence ∂
√
G

∂r

∣∣
r=0

=
√

Grr
2

∣∣
r=0

= 1.

Problem 8. Prove: K = − (
√
G)rr√
G

in geodesic polar coordinates (r, ϑ).
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Cor. Geodesics are (locally) the shortest curves between two points.

Proof . Let p0, p ∈ Σ be two points so that p is in a geodesic polar co-
ordinates neighbourhood of p0, i.e., (r, ϑ) are geodesic polar coordinates
around p0 and p = γΘ(R) = σ(R,Θ) for some R and Θ.

Let t 7→ γ(t) = σ(r(t), ϑ(t)) be a curve with γ(0) = p0 and γ(1) = p,
hence r(0) = 0 and r(1) = R; then its length∫ 1

0
|γ′| dt =

∫ 1

0

√
r′2 +G(r, ϑ)ϑ′2 dt ≥

∫ 1

0
r′ dt = R

with equality iff ϑ′ ≡ 0 and r′ > 0, that is, iff γ = γΘ ◦ r.

Cor (Minding’s theorem). Any two surfaces with the same constant
Gauss curvature are locally isometric, i.e., there are local parametriza-
tions σ1 and σ2 so that their first fundamental forms I1 = I2.

Remark. Gauss Theorema egregium says: two isometric surfaces do
necessarily have the same Gauss curvature; Minding’s theorem says: for
surfaces of constant Gauss curvatures this is also sufficient.

Proof . In geodesic polar coordinates (r, ϑ),

I = dr2 +Gdϑ2 with
√
G|r=0 = 0 and (

√
G)r |r=0 = 1

and from the Gauss equation and Koszul’s equations

K = − (
√
G)rr√
G

.

Thus, if K ≡ const then G satisfies, for fixed ϑ, the initial value problem

0 = (
√
G)rr +K

√
G, 0 =

√
G|r=0 and 1 = (

√
G)r |r=0,

which has a unique solution√
G(r, ϑ) =


1√
K

sin(
√
Kr) if K > 0,

r if K = 0,
1√
−K sinh(

√
−Kr) if K < 0.

Hence the metric I is uniquely determined by K and parametrization by
geodesic polar coordinates shows that any two surfaces with the same
constant Gauss curvature are isometric.
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4 Manifolds

We have already seen some problems with our definitions of curves and
surfaces: for example,

(1) a hyperbola does not qualify as a curve (according to our definition)
as it consists of two components, hence cannot be parametrized by
a single regular (hence continuous) map defined on an open interval;

(2) the sphere S2 does not qualify as a surface since there cannot be a
(regular) parametrization of all of S2 defined on an open connected
subset U ⊂ R2 (by the “hairy ball theorem”).

The notion of a k-dimensional submanifold of Rn (“curve” if k = 1 and
“surface” if k = 2) resolves this problem — at the cost of introducing
another restriction, which can in turn be resolved by the notion of an
“immersed abstract manifold”. At the same time, the following discus-
sions will shed light on the notion of “local” (as opposed by “global”),
used previously in this text in an informal way.

Different characterizations for submanifolds will also provide criteria which
allow to pass from an implicit representation of a curve or surface to a
parametric description, and vice versa — at least theoretically.

1 Submanifolds of Rn

There are several equivalent definitions/characterizations of submanifolds
in Euclidean space:

Def 1. “A submanifold can locally be flattened”;
M ⊂ Rn is called a k-dimensional submanifold of Rn if:
for every p ∈ M there is a diffeomorphism ϕ : U → Ũ between open
neighbourhoods U, Ũ ⊂ Rn of p and 0, respectively, so that

ϕ(M ∩ U) = Ũ ∩ (Rk × {0}), where R
n = R

k ×Rn−k.

Def 2. “A submanifold is locally a level set (defined by equations)”;
M ⊂ Rn is called a k-dimensional submanifold of Rn if:
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for every p ∈ M there is a submersion F : U → R
n−k from an open

neighbourhood U ⊂ Rn of p to Rn−k so that

M ∩ U = F−1({0}).

Remark. In Def 2, it is sufficient to require dpF to surject for all p ∈M :
if dpF surjects then, by the Inertia principle (q 7→ dqF is continuous),

there is a neighbourhood Ũ ⊂ U of p so that dqF surjects for all q ∈ Ũ .

Def 3. “A submanifold can locally be parametrized”;
M ⊂ Rn is called a k-dimensional submanifold of Rn if:
for every p ∈ M there is an immersion f : V → U from an open
neighbourhood V ⊂ Rk of 0 to an open neighbourhood U ⊂ Rn of p
so that

M ∩ U = f(V ) and f : V →M ∩ U
is a homeomorphism (using the induced topology on U ∩M).

Remark. f being an immersion excludes “kinks”; injectivity of f excludes
self-intersections and continuity of the inverse excludes “T-junctions”.

Proof . (Equivalence of the three definitions). Throughout the proof we
write π1 : Rn = R

k ×Rn−k → R
k, (x, y) 7→ x;

π2 : Rn = R
k ×Rn−k → R

n−k, (x, y) 7→ y.

1⇒ 2 + 3. First note that Def 1 easily implies the other two:

(2) for a submersion whose level set is M ∩ U let

F := π2 ◦ ϕ : U → R
n−k;

(3) for a local parametrization let V = π1(Ũ) ⊂ Rk and

f := ϕ−1|V : V → U ⊂ Rn.

Conversely:

2⇒ 1. let F : U → R
n−k be a submersion so that U ∩M = F−1({0})

and choose an orthonormal basis (t1, . . . , tk) of ker dpF ⊂ Rn. Define

ϕ : U → R
k ×Rn−k = R

n, q 7→ ϕ(q) := (q · t1, . . . , q · tk, F (q)).
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Now dpF (v) = 0 ⇒ v =
∑k

j=1
(v · tj) tj , hence dpϕ(v) = 0 ⇒ v = 0.

Consequently dpϕ : Rn → R
n is invertible and, by the Inverse mapping

theorem: after possibly making U smaller,

(i) ϕ : U → R
n injects (so that ϕ : U → ϕ(U) is invertible);

(ii) Ũ := ϕ(U) ⊂ Rn is open;

(iii) ϕ−1 : Ũ → U is continuously differentiable.

In other words: ϕ : U → Ũ is a diffeomorphism.

Finally,

q ∈M ∩ U ⇔ F (q) = 0 ⇔ ϕ(q) ∈ Ũ ∩ (Rk × {0}).

3⇒ 1. let f : Rk ⊃ V → U ⊂ R
n be a local parametrization and

choose a basis (n1, . . . , nn−k) of (d0f(Rk))⊥ ⊂ Rn. Define

V ×Rn−k 3 (x, y) 7→ g(x, y) := f(x) +
∑n−k

j=1
yknk ∈ Rn.

Now d0g ' ( ∂f∂x1
(0), . . . , ∂f∂xk

(0), n1, . . . , nn−k) : Rk ×Rn−k → R
n is

invertible; hence, by the Inverse mapping theorem, g has a local smooth
inverse

ϕ := (g|Ũ )−1 : g(Ũ)→ Ũ .

Wlog g(Ũ) ⊂ U ; as f(π1(Ũ)) ⊂ M is open we may assume U = g(Ũ)
by possibly making U smaller. Hence

q ∈ U ∩M ⇔ ∃x ∈ π1(Ũ) ⊂ V : q = f(x) = g(x, 0)

⇔ ϕ(q) = (x, 0) ∈ Ũ ∩ (Rk × {0}).

Problem 1. Use the Implicit mapping theorem to show directly that an
implicitely defined submanifold (Def 2) has local parametrizations (Def 3).
[Hint: write Rn = ker dpF × (ker dpF )⊥.]

Examples.

(1) Plane. π = {p ∈ R3 | p · n = d} is a 2-dimensional submanifold of
R

3: with
R

3 3 p 7→ F (p) := p · n− d ∈ R
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π = F−1({0}) and v 7→ dpF (v) = v · n surjects as dpF (n) 6= 0.

(2) Sphere. S2 = {p ∈ R3 | |p|2 = 1} is a 2-dimensional submanifold of
R

3: taking

R
3 \ {0} 3 p 7→ F (p) := |p|2 − 1 ∈ R

S2 = F−1({0}) and F is a submersion, i.e., v 7→ dpF (v) = 2v · p
surjects for all p ∈ R3 \ {0}, since dpF (p) = 2|p|2 6= 0.

(3) Hyperboloids. H± = {(x, y, z) ∈ R3 | ( xa )2 + ( yb )2 − ( zc )2 = ±1}
are 2-dimensional submanifolds of R3: here we take

F±(x, y, z) := ( xa )2 + ( yb )2 − ( zc )2 ∓ 1;

hence H± = F−1
± ({0}) and gradF±(x, y, z) = 2( x

a2 ,
y
b2 ,

z
c2 ) 6= 0 as

soon as (x, y, z) 6= (0, 0, 0). Hence, in order to obtain submersions,
we set

U := R
3 \ {0}, F± : U → R.

Problem 2. Let F1, F2 : R3 3 U → R with (gradF1 × gradF2)(p) 6= 0
for all p ∈ U . Prove that the equations F1(p) = F2(p) = 0 define a
1-dimensional submanifold of R3. Hence show that the conic sections

Cα = {(x, y, z) |x2 + y2 = z2, x cosα + z sinα = d},
where α ∈ R and d 6= 0, are 1-dimensional submanifolds of R3.

Example. Gerono’s lemniscate is a curve in the plane R2 defined by the
equation

x4 − x2 + y2 = 0;

a regular (check) parametrization is given by

t 7→ (x(t), y(t)) = sin t (1, cos t).

This curve has a self intersection at (x, y) = (0, 0) ⇔ t = kπ, k ∈ Z ,
hence is not a 1-dimensional submanifold.

Problem 3. Prove that Gerono’s lemniscate is not a submanifold.

Remark. Note that the definition of a k-dimensional submanifold ex-
cludes self-intersections — which may be undesirable in some contexts.

Problem 4. Prove that SO(3) ⊂ M(3 × 3,R) ∼= R
9 is a 3-dimensional

submanifold. [Hint: Sym(3) = {A ∈M(3× 3,R) |At = A} ∼= R
6.]
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Def. The tangent space of a k-dimensional submanifold M ⊂ Rn at
p ∈M is the k-dimensional subspace

TpM := dxf(Rk) ⊂ Rn,
where f : Rk ⊃ V → R

n is a parametrisation of M around p = f(x).

Remark. TpM is independent of the choice of local parametrisation:

if f̃ : Ṽ → R
n is another local parametrisation around p = f̃(x̃) then

f̃ = f ◦ µ with a diffeomorphism µ : Ṽ → V so that x = µ(x̃); hence

dx̃f̃(Rk) = dxf(dx̃µ(Rk)) = dxf(Rk).

Remark. If M = F−1({0}) is defined as a level set of a submersion
F : U → R

n−k then
TpM = ker dpF.

Namely, F ◦ f ≡ 0 for a local parametrisation f around p = f(x) so that

dpF ◦ dxf ≡ 0 ⇒ TpM ⊂ ker dpF ;

then dimTpM = dim ker dpF implies TpM = ker dpF .

Example. The tangent space of O(3) = {A ∈ Gl(3) |F (A) = 0} with

F : Gl(3)→ Sym(3), A 7→ F (A) = AtA− id
R3

at A ∈ O(3) is the 3-dimensional subspace

TAO(3) = ker dAF = {X ∈ gl(3) |A−1X ∈ o(3)}.
Note that TASO(3) = TAO(3) for A ∈ SO(3).

2 Functions on submanifolds

Now that we have described submanifolds M ⊂ Rn and, in particular,
curves and surfaces in R3 as subsets of the Euclidean ambient space it
becomes necessary to discuss analysis issues: previously, functions, vector
fields, etc, were defined on a parameter domain, that is, an open subset of
R or R2 and it was clear what, for example, differentiability meant; now
the situation has changed and the domain of a function on a submanifold
is no longer an open set inRn, making it necessary to revisit basic notions
of analysis. The key idea is to define the derivative so that the chain rule
holds:
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Def. A function ϕ : M → R on a submanifold M ⊂ Rn is said to be
differentiable at p ∈M with derivative

dpϕ := d0(ϕ ◦ f) ◦ (d0f)−1 : d0f(Rk) = TpM → R

if ϕ◦f : Rk
◦
⊃ V → R is differentiable at 0 for some local parametriza-

tion f : V →M of M around p with p = f(0).

Remark. This definition makes sense as differentiability and derivative of
ϕ do not depend on the choice of parametrization: if f̃ = f ◦ψ is a local
reparametrization around a point p ∈ M then ψ is a diffeomorphism,
hence ϕ ◦ f̃ = ϕ ◦ f ◦ ψ is differentiable as soon as ϕ ◦ f is.

Remark. This definition has an obvious generalization to Rm-valued
maps, hence to maps between submanifolds of Euclidean spaces.

Remark. If Φ : Rn → R is differentiable and M ⊂ Rn is a submanifold
then ϕ := Φ|M : M → R is differentiable with

dpϕ = dpΦ|TpM : TpM → R.

Namely: ϕ is clearly differentiable as Φ ◦ f is for any parametrization f ;
moreover, if v = d0f(w) then

dpϕ(v) = d0(ϕ ◦ f)(w) = d0(Φ ◦ f)(w) = dpΦ(v).

Def. Let ϕ : M → R be differentiable; the gradient of ϕ at p ∈ M is
the unique vector gradϕ(p) ∈ TpM with

∀v ∈ TpM : dpϕ(v) = v · gradϕ(p).

Example. Consider a parametrized surface (u, v) 7→ σ(u, v) ∈ R3 with
first fundamental form I = E du2 + 2F dudv +Gdv2; let

σ∗u := 1
EG−F 2 (Gσu − Fσv) and σ∗v := 1

EG−F 2 (−Fσu + Eσv)

and note that σ∗u · σu = σ∗v · σv = 1 and σ∗u · σv = σ∗v · σu = 0. Hence,
if ϕ : M = σ(U)→ R is differentiable and ψ := ϕ ◦ σ, then

(gradϕ) ◦ σ = ψuσ
∗
u + ψvσ

∗
v = Gψu−Fψv

EG−F 2 σu + Eψv−Fψu
EG−F 2 σv .
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Problem 5. Prove the Lagrange multiplier theorem: if M = F−1({0})
is a surface in R3 and Φ : R3 → R is differentiable then p ∈ M is a
critical point (hence candidate for an extremum) of ϕ := Φ|M : M → R

iff there is λ ∈ R so that (λ, p) is a critical point of

R×R3 3 (λ, p) 7→ Φ(p)− λF (p) ∈ R.

After fixing the idea of how to differentiate functions on a submanifold,
hence also vector fields, it is fairly straightforward to carry over most
notions developed for curves and/or surfaces to submanifolds, such as
the first and second fundamental forms, the shape operator, covariant
derivative (the curvature tensor will become more complicated when the
manifold has higher dimension though). For example:

Def. Let ξ be a tangential vector field, i.e., ξ : M → R
n differentiable

so that ξ(p) ∈ TpM for all p ∈M , and let v ∈ TpM ; then

∇vξ|p := (d0(ξ ◦ f)(w))T ,

where f is a local parametrization of M around p with f(0) = p
and d0f(w) = v; as usual, (..)T denotes the tangential part, i.e., the
orthogonal projection Rn → TpM onto the tangent space.
∇ is called the Levi-Civita connection of M .

This also yields a notion of second derivative for functions:

Def & Lemma. The Hessian

TpM × TpM 3 (v, w) 7→ (hessϕ)|p(v, w) := w · ∇v(gradϕ)|p
of a smooth function ϕ : M → R at p ∈M is a symmetric tensor.

Proof . Clearly, hessϕ is a tensor.

To see symmetry let f be a local parametrization around p and compute
∂
∂xi

∂
∂xj

(ϕ ◦ f) = ∂
∂xi

((ξj · gradϕ) ◦ f)

= {(∇ξiξj) · gradϕ+ ξj · (∇ξi gradϕ)} ◦ f
= {dϕ(∇ξiξj) + hessϕ(ξi, ξj)} ◦ f,
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where we let ξi ◦ f = ∂
∂xi

f . Clearly the left hand side is symmetric in i

and j and∗), as in the case of surfaces,

(∇ξiξj −∇ξj ξi) ◦ f = ( ∂
∂xi

∂
∂xj

f − ∂
∂xj

∂
∂xi

f)T = 0.

Hence hessϕ(ξi, ξj) = hessϕ(ξj , ξi) for i, j ∈ {1, . . . , k} showing that
hessϕ|p is a symmetric bilinear form on every tangent space TpM .

Remark. From the above computation we see that the Hessian is the
covariant derivative of dϕ:

hessϕ(ξ, η) = (∇ξdϕ)(η) = d(dϕ(η))(ξ)− dϕ(∇ξη).

Note that the Hessian depends on the covariant derivative, hence on the
induced metric: not just on the differentiable structure on M .

However, if p = f(x) is a critical point of ϕ, i.e., gradϕ(p) = 0, then

hessϕ|p(ξi(p), ξj(p)) = ∂
∂xi

∂
∂xj

(ϕ ◦ f)(x)

can be computed without reference to the covariant derivative or induced
metric — hence providing a simple(r) criterion to detect local extrema.

Poincaré lemma. A tangential vector field ξ has a local potential ϕ,
i.e., locally ξ = gradϕ, if and only if (v, w) 7→ w · ∇vξ is symmetric.

Proof . We have seen above that symmetry of (v, w) 7→ w · ∇vξ is a
necessary condition for ξ to be a (local) gradient vector field, ξ = gradϕ.

To see that it is also sufficient we use a local parametrization f and
employ the above notation ξi ◦ f = ∂f

∂xi
: thus given ξ we are seeking a

function ψ = ϕ ◦ f with
∂ψ
∂xi

= (ξi · ξ) ◦ f.
Now, as above,

∂
∂xi

((ξj · ξ) ◦ f) = {(∇ξiξj) · ξ + ξj · (∇ξiξ)} ◦ f,
which is symmetric in i and j as soon as ξj · (∇ξiξ) is — hence the

Poincaré lemma in Rk yields the result.

∗) This is, ∇ is a “torsion free connection”.
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Def. The Laplacian of ϕ on M is defined by

∆ϕ := tr hessϕ,

where trace is taken with respect to the first fundamental form, that
is, with an orthonormal basis (e1, . . . , ek) of TpM

tr hessϕ|p =
∑k

j=1
hessϕ|p(ej , ej).

A function ϕ : M → R is called harmonic if ∆ϕ ≡ 0.

Remark. First note that the trace of a bilinear form β can be computed
as

tr β = β(w1, w
∗
1 ) + β(w2, w

∗
2 )

with “dual bases” (w1, w2) and (w∗1 , w
∗
2 ), i.e., w∗i · wj = δij : writing

both bases in terms of an orthonormal basis (which is “self-dual”),

(w1, w2) = (e1, e2)
(
a11
a21

a12
a22

)
and (w∗1 , w

∗
2 ) = (e1, e2)

(
a11
a12

a21
a22

)−1
,

the above formula for the trace of β is readily verified.

Now consider a parametrized surface (u, v) 7→ σ(u, v); to compute the
Laplacian of a function ϕ : M = σ(U)→ R write W :=

√
EG− F 2 and

(gradϕ) ◦ σ = ψuσ
∗
u + ψvσ

∗
v = Gψu−Fψv

W
σu
W + Eψv−Fψu

W
σv
W ,

employing our previous notations. From Koszul’s formulas we find

σ∗u · ∇σu
σu
W + σ∗v · ∇σv

σu
W = FEv−EGu

2W 3 + EGu−FEv
2W 3 = 0,

σ∗u · ∇σu
σv
W + σ∗v · ∇σv

σv
W = GEv−FGu

2W 3 + FGu−GEv
2W 3 = 0;

hence
(∆ϕ) ◦ σ = 1

W {(
Gψu−Fψv

W )u + (Eψv−FψuW )v}.
This is often called the Laplace-Beltrami operator.

Problem 6. Let (r, ϑ) 7→ σ(r, ϑ) be a parametrization by geodesic po-
lar coordinates and suppose that the induced metric is rotationally sym-
metric, Gϑ ≡ 0, and has constant Gauss curvature K. Determine all
rotationally symmetric (i.e., ψϑ = (ϕ ◦ σ)ϑ ≡ 0) harmonic functions ϕ.

Example. Let M2 ⊂ R
3 be a 2-dimensional submanifold in R3 and

denote the inclusion by ι : M2 → R
3, p 7→ ι(p) = p. Then

ι ◦ σ = σ and dpι = dx(ι ◦ σ) ◦ (dxσ)−1 = idTpM
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for a (local) parametrization σ : R2 ⊃ V →M2 ⊂ R3 of M2. With our
previous notation for the covariant derivative (along σ)

∇ ∂
∂xi

σxj = ∇ ∂
∂xi

(ξj ◦ σ) = (∇ξiξj) ◦ σ, where ξi ◦ σ = ∂
∂xi

σ,

so that, with the Gauss map n of σ,

(hess ι(ξi, ξj)) ◦ σ = ∂
∂xi

∂
∂xj

σ − (∇ξiξj) ◦ σ = II( ∂
∂xi

, ∂
∂xi

)n.

Hence

(∆ι) ◦ σ = (tr hess ι) ◦ σ = (tr I−1II)n = (tr S)n = 2H n,

that is, the mean curvature H of any parametrization of M2 vanishes if
and only if the inclusion ι : M2 → R

3 is harmonic.

3 Vector fields & Flows

Knowing the velocity vector field of a flow on a surface or in space it
is possible to predict the paths of particles dropped into the flow: an
obvious example is a paper boat dropped into a brook, where the stream
can be obstructed by stones or little islands. This circle of ideas shall be
made precise here.

Def. Let ξ be a (tangential) vector field on a (sub-)manifold M ⊂ Rn.
A curve γ : I → M on an open interval I ⊂ R is an integral curve of
ξ if

γ′ = ξ ◦ γ;

it is maximal if γ cannot be extended as an integral curve of ξ.

Remark. We do not require regularity: for example, if ξ ≡ 0 then every
integral curve of ξ is constant.

Lemma. Through any point p ∈M passes a unique maximal integral
curve of a given (smooth) vector field ξ on M .

Proof . We only need to prove local existence and uniqueness.
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Thus let f : V →M be a local parametrization of M around p = f(x0);
write

ξ ◦ f = df ◦ y, i.e., ∀x ∈ V : ξ(f(x)) = dxf(y(x)),

with a vector field y on V ⊂ Rk; the ansatz γ = f ◦ x then yields

γ′ = ξ ◦ γ ⇔ x′ = y ◦ x
since dxf : Rk = TxV → Tf(x)M is an isomorphism for every x ∈ V .
Now the claim follows from the Picard-Lindelöf theorem: the initial value
problem

x′ = y ◦ x, x(0) = x0

has a solution x : J → V on some open interval J with 0 ∈ J , which is
unique up to extension.

Remark. Note the difference with the differential equation for geodesics:
here the derivative of the curve is given, whereas it was part of the un-
known data in the case of geodesics.

These constructed maximal integral curves of a vector field ξ can be
assembled into a single map:

Thm & Def. Given a tangent vector field ξ on a (sub-)manifold M ,
its maximal flow is the unique smooth map

Φ : W →M, (t, p) 7→ Φt(p)

on an open neighbourhood W of {0} ×M ⊂ R×M so that

(i) Φ0 = idM ;

(ii) Ip := {t | (t, p) ∈W} is an open interval about 0 for each p ∈M ,
and

(iii) Ip 3 t 7→ Φt(p) is the maximal integral curve of ξ through p.

Proof . Denoting by γp the unique maximal integral curve of ξ,

γ′p = ξ ◦ γp, with γp(0) = p,

the maximal flow Φ of ξ must be uniquely defined by⋃
p∈M Ip × {p} = W 3 (t, p) 7→ Φt(p) = γp(t) ∈M.
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W ⊂ R×M is open and Φ : W →M smooth by the smooth dependence
of solutions of the ODE defining γp on the initial condition.

Warning. There may not be any ε > 0 so that W ⊃ (−ε, ε) ×M : for

example, with M = {(u, v) ∈ R2 | |u| < 1} and ξ ≡
(

1
0

)
we obtain for

fixed (u, v) ∈M
γ(u,v) : I(u,v) = (−1− u, 1− u)→M, t 7→ γp(t) = u+ t.

Rem & Def. If M is compact or, more generally, ξ is compactly supported
then

W = R×M and ∀s, t ∈ R : Φs+t = Φs ◦ Φt;

moreover, Φt : M →M is a diffeomorphism for any fixed t ∈ R: that is,
Φ : R×M →M is a 1-parameter group of diffeomorphisms.

This is what is often also called a “flow”.

Example. Let M = S2 ⊂ R3 and ξ(p) := e3×p. Then, for p = (x, y, z),

Φt(x, y, z) = (x cos t− y sin t, x sin t+ y cos t, z).

Note the similarity with αt(s) from the proof of Clairaut’s thm (which is
not a coincidence).

Rem & Def. In general, the maximal flow Φ : W → M of a vector field
ξ is a “local flow”, that is, there is a neighbourhood (−ε, ε) × U ⊂ W
of (0, p) for any p ∈M so that

(a) Φt|U : U → Φt(U) is a diffeomorphism for each t ∈ (−ε, ε);

(b) Φs+t(q) = (Φs ◦ Φt)(q) whenever q ∈ U and |s|, |t|, |s+ t| < ε.

Proof . Fix p ∈M ; as W is open there is a neighbourhood U ⊂M of p
and ε > 0 so that W ⊃ (−ε, ε) × U . Since Φ0|U = idU is a diffeomor-
phism the Φt|U are by inertia, after possibly making the neighbourhood
smaller.

To prove (b) consider the curve γ(s) := γq(s+ t) = Φs+t(q): since

γ′ = ξ ◦ γ and γ(0) = γq(t) = Φt(q),

γ is the integral curve of ξ with γ(0) = Φt(q), hence γ(s) = Φs(Φt(q))
and the claim follows.
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Notation. If ξ is a vector field and ϕ a function on M we define a new
function

ξϕ : M → R, p 7→ (ξϕ)(p) := dpϕ(ξ(p)).

Thus we think of the vector field ξ as a differential operator, which yields
a directional derivative of ϕ at every point. In particular, ϕ 7→ ξϕ is linear
and the Leibniz rule holds,

ξ(ϕψ) = (ξϕ)ψ + ϕ(ξψ).

Lemma. If (ξϕ)(p) = 0 for every function ϕ on M then ξ(p) = 0.

Proof . We use a local parametrization f around p = f(x) and use the
“coordinate functions”

ϕi := (f−1)i = πi ◦ (f−1), i = 1, . . . , k,

as test functions: for y := (dxf)−1(ξ(p)) we learn

(ξϕi)(p) = dx(ϕi ◦ f)(y) = dxπi(y) = yi

so that (ξϕi)(p) = 0 implies y = 0, hence ξ(p) = 0.

Lemma & Def. Let ξ and η be two tangent vector fields on M . There
is a unique vector field [ξ, η] on M so that, for every smooth function
ϕ on M ,

[ξ, η]ϕ = ξ(ηϕ)− η(ξϕ).

[ξ, η] is called the Lie bracket of ξ and η.

Proof . We use a local parametrization f and set ξi ◦ f = ∂
∂xi

f . Note

that (ξiψ) ◦ f = ∂
∂xi

(ψ ◦ f) for any function ψ so that

{ξi(ξjϕ)− ξj(ξiϕ)} ◦ f = ∂
∂xi

((ξjϕ) ◦ f)− ∂
∂xj

((ξiϕ) ◦ f)

= ∂
∂xi

∂
∂xj

(ϕ ◦ f)− ∂
∂xj

∂
∂xi

(ϕ ◦ f)

= 0.

Now write
ξ =
∑k

i=1
αiξi and η =

∑k

i=1
βiξi

and compute (using also the Leibniz rule)

ξ(ηϕ)− η(ξϕ) =
∑k

i=1

∑k

j=1
{αj(ξjβi)− βj(ξjαi)} (ξiϕ).
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Hence [ξ, η] =
∑k

i,j=1
{αj(ξjβi)− βj(ξjαi)} ξi by the previous lemma,

as the above equation holds for any function ϕ.

Remark. Clearly the Lie bracket is skew symmetric, [ξ, η] + [η, ξ] = 0; it
also satisfies the (straightforward to verify) Jacobi identity ,

[ξ, [η, ζ]] + [ζ, [ξ, η]] + [η, [ζ, ξ]] = 0.

Thus, with the Lie bracket as a multiplication, the vector space of smooth
vector fields on a (sub-)manifold becomes a Lie algebra.

Remark. In the case of a submanifold M ⊂ Rn the Lie bracket of two
vector fields is related to the Levi-Civita connection:

[ξ, η] = ∇ξη −∇ηξ.
This characterizes the Levi-Civita connection as “torsion free”.

The flow t 7→ Φt of a vector field ξ allows to identify tangent spaces along
the integral curves of ξ: if y ∈ TqM is a tangent vector at q = Φt(p) then
dqΦ−t(y) ∈ TpM is a tangent vector at p as Φ−t maps a neighbourhood
of q to a neighbourhood of p. This observation allows to compute the
derivative of a vector field η in the flow direction:

Def. Let ξ and η be tangent vector fields on a manifold M and let
Φ denote the maximal flow of ξ. The Lie derivative of η at p ∈ M in
direction ξ(p) is defined by

(Lξη)(p) := d
dt

∣∣
t=0

dΦt(p)Φ−t(η(Φt(p))).

Lemma. Lξη = [ξ, η].

Proof . Fix p ∈M and set yt := dΦt(p)Φ−t(η(Φt(p))).

First observe: given q ∈M and any function ϕ on M we have
d
dt (ϕ ◦ Φt)(q) = dΦt(q)ϕ(ξ ◦ Φt(q)) = (ξϕ)(Φt(q))

for t ∈ Iq ; thus Taylor expansion of the function t 7→ (ϕ ◦ Φt)(q) yields

(ϕ ◦ Φt)(q) = ϕ(q) + t(ξϕ)(q) + rq(t), where rq(t) = o(t)

is differentiable as a function (t, q) 7→ rq(t) since (t, q) 7→ (ϕ ◦Φt)(q) is.
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Secondly: fix a test function ϕ and observe that

dpϕ(yt) = dpϕ(dΦt(p)Φ−t(η(Φt(p))))

= dΦt(p)(ϕ ◦ Φ−t)(η(Φt(p)))

= η(ϕ ◦ Φ−t)(Φt(p))

= η(ϕ− t(ξϕ) + r(−t))(Φt(p))

Now:

• d
dt

∣∣
t=0

(ηr(−t)) ◦ Φt = limt→0(η
r(−t)
t ) ◦ Φt = 0 since r(t) = o(t);

• d
dt

∣∣
t=0

tη(ξϕ) ◦ Φt = limt→0 η(ξϕ) ◦ Φt = η(ξϕ) since Φ0 = idM ;

• d
dt

∣∣
t=0

(ηϕ) ◦ Φt = ξ(ηϕ) by the first observation.

Consequently, (Lξη)ϕ(p) = dpϕ( dytdt

∣∣
t=0

) = [ξ, η]ϕ(p) and the claim

follows since (Lξη − [ξ, η])ϕ(p) = 0 for every test function ϕ on M at
every point p ∈M .

Def. Two vector fields ξ, η on M are said to commute if [ξ, η] = 0;
two (local) flows Φ,Ψ commute if (wherever all terms of the equation
are defined) Φt ◦Ψs = Ψs ◦ Φt.

Thm. Two vector fields commute iff their maximal flows do.

Proof . Let Φ and Ψ denote the maximal flows of ξ and η, respectively.

Using that Φτ+t = Φτ ◦Φt = Φt ◦Φτ and writing q = Φτ (p) we obtain

dΦτ+t(p)Φ−(τ+t)(η(Φτ+t(p))) = dΦt(q)(Φ−τ ◦ Φ−t)(η(Φt(q)))

= dqΦ−τ (dΦt(q)Φ−t(η(Φt(q))))

hence
d
dt

∣∣
t=τ

dΦt(p)Φ−t(η(Φt(p))) = dΦτ (p)Φ−τ (Lξη(Φτ (p))). (?)

Now write γ(s, t) := (Φ−t ◦Ψs ◦ Φt)(p) and observe that
∂
∂sγ(s, t) = dΦt(γ(s,t))Φ−t(

d
ds (Ψs ◦ Φt)(p))

= dΦt(γ(s,t))Φ−t(η(Φt(γ(s, t)))).
(??)



3 Vector fields & Flows 66

Thus, if Φ and Ψ commute, Φ−t ◦ Ψs ◦ Φt = Ψs, then γ(s, t) = Ψs(p)
depends on s only and, in particular, γ(0, t) = p for all t. Consequently,

dΦt(p)Φ−t(η(Φt(p))) = ∂
∂sγ(0, t) = ∂

∂sγ(0, 0) = η(p)

by (??), hence

Lξη(p) = d
dt

∣∣
t=0

dΦt(p)Φ−t(η(Φt(p))) = ∂
∂t

∂
∂sγ(0, t) = 0.

Conversely, if ξ and η commute, Lξη ≡ 0, then (?) yields

t 7→ dΦt(q)Φ−t(η(Φt(q))) ≡ const = η(q)

for any q. In particular, for q = γ(s, t) we learn from (??) that
∂
∂sγ(s, t) = η(γ(s, t)); with γ(0, t) = p

this shows that s 7→ γ(s, t) is the integral curve of η through p = γ(0, t)
for each fixed t, that is, γ(s, t) = Ψs(p) for every fixed t.

Thm & Def. Let ξi, i = 1, . . . , k, be pairwise commuting vector fields
on a k-dimensional manifold M that are linearly independent at every
point of M . Then there is a local parametrization f around each point
p ∈M so that

ξi ◦ f = ∂
∂xi

f for i = 1, . . . , k.

(ξ1, . . . , ξk) is called the Gaussian basis field of f .

Remark. We already saw that the vector fields of a Gaussian basis field
commute: if ξi ◦ f = ∂

∂xi
f then [ξi, ξj ] = 0.

Proof . Let Φk denote the maximal flows of ξk. Fix p ∈M and define

f(x1, . . . , xk) := (Φ1
x1
◦ · · · ◦ Φkxk )(p)

on a suitable neighbourhood of 0 ∈ Rk (so that the expression is defined).

Using that the flows Φi commute and Φk is the flow of ξk, we compute
∂
∂xk

f(x1, . . . , xk) = ∂
∂xk

(Φkxk ◦ Φ1
x1
◦ . . . ◦ Φk−1

xk−1
)(p)

= (ξk ◦ Φkxk ◦ Φ1
x1
◦ . . . ◦ Φk−1

xk−1
)(p)

= (ξk ◦ f)(x1, . . . , xk)
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and similarly for i = 1, . . . , k − 1. In particular, d0f : Rk → TpM is an
isomorphism so that f is a local diffeomorphism by the Inverse mapping
theorem, hence qualifies as a local parametrization.

4 Surfaces revisited

We shall now return to surfaces in R3 and re-investigate their geometry
in the light of we have learned in this chapter.

Thus let M2 ⊂ R3 be a 2-dimensional submanifold. We assume that M2

is orientable, that is, there exists a smooth map

ν : M2 → S2 ⊂ R3 such that ∀p ∈M : ν(p) ⊥ TpM ;

ν is called a Gauss map of the surface M2 ⊂ R
3. Note that such

an orientable surface M2 ⊂ R3 admits two Gauss maps — a choice of
Gauss map equips M2 with an orientation, that is, turns M2 ⊂ R3 into
an oriented submanifold.

Def. The shape operator S of an oriented surface (M2, ν) (with respect
to ν) is given by

S := −dν.

Remark. If σ : R2 ⊃ V →M is a local parametrization around p = σ(x)
and n := ν ◦ σ then

Sp = −dpν = −dx(ν ◦ σ) ◦ (dxσ)−1 = −dxn ◦ (dxσ)−1

yields our earlier definition of the shape operator. Thus the principal,
mean and Gauss curvatures of (M2, ν) are the eigenvalues, trace and
determinant of S, respectively.

Def. Two vector fields ξ and η on M2 are said to form a local basis
field (ξ, η) around p ∈M2 if

∀q ∈ U : span{ξ(q), η(q)} = TqM
2,

where U ⊂M2 is an open neighbourhood of p. (ξ, η) is called

• orthonormal if |ξ|2 = |η|2 = 1 and ξ · η = 0 on U ;



4 Surfaces revisited 68

• principal if Sξ = k1ξ and Sη = k2η in U .

Remark. A manifold M2 does not necessarily carry a non-vanishing vector
field: for example, every vector field ξ on S2 must have at least one zero
by the “hairy ball theorem”.

Lemma. If [ξ, η] = aξ − bη for an orthonormal local basis field then

∇ξξ = −aη, ∇ηξ = bη, ∇ξη = aξ, ∇ηη = −bξ.

Proof . Using that ∇ is torsion free

aξ − bη = [ξ, η] = ∇ξη −∇ηξ,

where ∇ξη ‖ ξ and ∇ηξ ‖ η since 0 = ξ(|η|2) = 2η · ∇ξη and similarly
for ∇ηξ. Hence

∇ξη = aξ and ∇ηξ = bη.

Further ∇ξξ ‖ η and ∇ηη ‖ ξ by the same argument so that

0 = ξ(ξ, η) = (∇ξξ) · η + ξ · (∇ξη) = (∇ξξ) · η + a,

hence ∇ξξ = −aη and, similarly, ∇ηη = −bξ.

Lemma. If (ξ, η) is a principal orthonormal local basis field then

[ξ, η] = − 1
k1−k2

((ηk1)ξ + (ξk2)η).

Proof . Since (ξ, η) is a local basis field [ξ, η] = aξ − bη with suitable
functions a and b; then, using the previous lemma and by the Codazzi
equation,

0 = (∇ξS)η − (∇ηS)ξ

= {−(ηk1)− a(k1 − k2)} ξ + {(ξk2)− b(k1 − k2)} η

hence a = − ηk1
k1−k2

and b = ξk2
k1−k2

.
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Cor. Any surface of constant mean curvature M2 ⊂ R3 admits (away
from umbilics) local conformal curvature line parametrizations.

Proof . Let (ξ, η) denote a local principal orthonormal basis field (this is
where we need to stay away from umbilics),

Sξ = k1ξ, Sη = k2η with k1 = H + e−2ϕ, k2 = H − e−2ϕ,

where H ≡ const and ϕ is some function. Then

[eϕξ, eϕη] = e2ϕ{[ξ, η] + (ξϕ)η − (ηϕ)ξ} = 0

by the previous lemma. Hence around every point p ∈M2 there is a local
parametrization (u, v) 7→ σ(u, v) so that

euξ = σu and euη = σv ;

in particular, I = e2ϕ(du2 + dv2), that is, σ is a conformal curvature line
parametrization.

Cor. A surface of constant negative Gauss curvature admits local cur-
vature line parametrizations (u, v) 7→ σ(u, v) so that, with a suitable
function ω, the induced metric becomes

I = cos2 ω du2 + sin2 ω dv2.

Proof . Writing k1 = c tanω and k2 = −c cotω, where K = −c2 and ω
is a function with values in (0, π2 ), the above lemma yields

[cosω ξ, sinω η] = cosω sinω [ξ, η] + cos2 ω (ξω)η + sin2 ω (ηω)ξ = 0.

Hence, as above, every point p ∈ M2 has a neighbourhood, where M2

has a local parametrization (u, v) 7→ σ(u, v) so that

cosω ξ = σu and sinω η = σv

and the induced metric has the claimed form.

Cor & Def. Any surface of constant negative Gauss curvature carries
locally asymptotic Chebyshev nets, that is, parametrizations so that
the parameter lines are asymptotic and arc length parametrized.

Proof . Using the same notations as in the previous corollary set

ξ± := cosω ξ ± sinω η
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and observe that
|ξ±|2 = 1 and Sξ± ⊥ ξ±.

As constant linear combinations of commuting vector fields the ξ± com-
mute,

[ξ+, ξ−] = 0,

hence give rise to a local parametrization (u, v) 7→ σ(u, v) (note that ξ±
are linearly independent, hence (ξ+, ξ−) is a local basis field) with

σu = ξ+ and σv = ξ−,

so that that parameter lines are asymptotic and parametrized by arc
length.

Remark. Using similar ideas one can prove that every surface M2 ⊂ R3

can locally be parametrized by curvature lines. This is not true for

• surfaces M2 ⊂ Rn for n ≥ 4;

• hypersurfaces Mk ⊂ Rk+1.
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Appendix - Tools from Analysis

Obviously, differentiability is a key issue in differential geometry. Perhaps
less obviously, the Inverse and Implicit mapping theorems and solutions
of (ordinary and partial) differential equations as well as their uniqueness
are also key issues.

Thus, after recalling the notion of differentiability and differentiation rules
(and, in the process, fixing notations), we briefly discuss the Inverse and
Implicit mapping theorems and collect some theorems about differential
equations that are used in the text.

Recall. A map f : Rm
◦
⊃ U → R

n is differentiable at p ∈ U if there is
a linear map dpf ∈ Hom(Rm,Rn) from R

m to Rn so that

limh→0
f(p+h)−f(p)−dpf(h)

|h| = 0.

If f is differentiable at p ∈ U
◦
⊂ Rm then its derivative is given by the

Jacobi matrix

dpf '

 ∂f1
∂x1

(p) . . . ∂f1
∂xm

(p)

...
...

∂fn
∂x1

(p) . . . ∂fn
∂xm

(p)

 .

Note, however, that existence of the Jacobi matrix does not prove dif-
ferentiability (see problem below) — but if the Jacobi matrix depends
continuously on p then f is continuously differentiable and, in particu-
lar, differentiable at every point p ∈ U .

We will often write partial derivatives using subscripts: fu := ∂f
∂u , etc.

Problem 1. Compute the Jacobi matrix of

f : R2 → R, (u, v) 7→ f(u, v) :=

{
uv2
√
u2+v2

u2+v4 for (u, v) 6= (0, 0),

0 for (u, v) = (0, 0)

at (u, v) = (0, 0) and prove that f is not differentiable at (u, v) = (0, 0).
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Agreement. For the purposes of this text we will assume that every
function is as often differentiable as we like, i.e., every function is C∞.
Such functions are often called “smooth”.

Two differentiation rules are paramount in differential geometry:

1. Product rule: if � : Rn1 × Rn2 → R
k denotes some “product”,

i.e., a bilinear map, and U 3 p 7→ fi(p) ∈ Rni , i = 1, 2, are smooth
then their product p 7→ (f1 � f2)(p) is smooth with derivative

dp(f1 � f2)(h) = (dpf1(h))� f2(p) + f1(p)� (dpf2(h));

2. Chain rule: if g : U → V and f : V → R
n are smooth then their

composition f ◦ g : U → R
n is smooth with derivative

dp(f ◦ g)(h) = dg(p)f(dpg(h)) = (dg(p)f ◦ dpg)(h),

i.e., the Jacobi matrices get multiplied (observe the order!).

Problem 2. Let β : Rm ×Rm ×Rm → R be tri-linear; assuming that
β is differentiable show that

d(a1,a2,a3)β(x1, x2, x3) = β(x1, a2, a3) + β(a1, x2, a3) + β(a1, a2, x3).

Conclude that det : Gl(3)→ R is differentiable with

dA det(X)
detA = tr(A−1X).

1 Analysis: Inverse & Implicit mapping theorems

Two theorems are key in understanding the notion of a submanifold and
the equivalence of the different characterizations: more specifically, these
theorems are the key to relating the implicit and explicit (parametric)
representations of curves or surfaces.

Inverse Mapping Theorem. Suppose that f : Rn
◦
⊃ U → R

n is
continuously differentiable and that dpf : Rn → R

n is invertible at
some p ∈ U . Then there is an open neighbourhood B ⊂ U of p so
that:

(i) f |B : B → R
n injects (so that f : B → f(B) is invertible);
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(ii) f(B) ⊂ Rn is open;

(iii) f−1 : f(B)→ B is continuously differentiable with, for q ∈ f(B),

dqf
−1 = (df−1(q)f)−1.

For short. A smooth map f : Rn ⊃ U → R
n has, locally, a smooth

inverse where its derivative is invertible (and the derivative of the inverse
is the inverse of the derivative, as obtained from the chain rule).

Implicit Mapping Theorem. Let F : Rm × Rk
◦
⊃ U × V → R

k be
continuously differentiable and suppose that the Rk-part

d(p,q)F |{0}×Rk : {0} ×Rk → R
k

of d(p,q)F is invertible for some (p, q) ∈ U × V . Then there are

• open neighbourhoods A
◦
⊂ U of p and B

◦
⊂ V of q, and

• a (unique) continuously differentiable function g : A→ B

so that g(p) = q and F (x, g(x)) ≡ F (p, q); moreover,

∀(x, y) ∈ A×B : F (x, y) = F (p, q)⇒ y = g(x).

For short. The equation F (x, y) ≡ F (p, q) can locally, around p, be
solved for y if the equation d(p,q)F (v, w) = 0 can be solved for w.

Problem 3. Use the Implicit mapping theorem to show that, for any point

(x, y, z) ∈ E = {(x, y, z) ∈ R3 | ( xa )2 + ( yb )2 + ( zc )2 = 1}
on the ellipsoid E ⊂ R3, there is a neighbourhood U of (x, y, z) so that
the intersection E ∩U can be parametrized as a graph of a (real valued)
function over one of the coordinate planes.

Remark. The Implicit and Inverse mapping theorems are equivalent.

To prove the Inverse mapping theorem from the Implicit mapping theo-
rem: let f satisfy the assumptions of the Inverse mapping theorem, i.e.,
let f ∈ C1(U,Rn) so that dpf is invertible for some p ∈ U , and consider

F : U ×Rn → R
n, (x, y) 7→ F (x, y) := f(x)− y.
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Now let q := f(p) and observe that

d(p,q)F = (dpf,−id) so that d(p,q)F |Rn×{0} = dpf

is invertible. Hence, by the Implicit mapping theorem, there is some
continuously differentiable map

g : Rn
◦
⊃ B → A

◦
⊂ U

with p ∈ A and q ∈ B so that

0 = F (p, q) = F (g(y), y) = f(g(y))− y
for all y ∈ B; moreover, if f(x) = y for (x, y) ∈ A × B then x = g(y):
hence, f : A→ B injects and g is the inverse of f |A.

Problem 4. Prove the Implicit from the Inverse mapping theorem.

Def. Let f : Rm
◦
⊃ U → Ũ

◦
⊂ Rn be smooth. Then f is called:

• an immersion if dpf injects for all p ∈ U (in partiular, m ≤ n);

• a submersion if dpf surjects for all p ∈ U (in particular, m ≥ n);

• a diffeomorphism if it has a smooth inverse (hence, m = n).

2 ODEs: the Picard-Lindelöf theorem

Recall that an ordinary differential equation (of order n) is an equation

x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)) (†)
for an unknown function x = x(t) which depends on a (real) variable t;
however, x may be Rm-valued.

Any such ODE can be re-written as a (system of) ODE(s) of order n = 1
by introducing the derivatives as new functions: with yk := y(k−1) the
equation (†) is equivalent to the system

x′1(t) = x2(t)

...

x′n−1(t) = xn(t)

x′n(t) = f(t, x1(t), . . . , xn(t)).
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Hence we never need to think about higher order ODEs.

Picard-Lindelöf theorem. LetR×Rn
◦
⊃ I×U 3 (t, x) 7→ f(t, x) ∈ Rn

be continuous and Lipschitz continuous in y and (t0, x0) ∈ I×U ; then
there is ε > 0 so that the initial value problem

x′(t) = f(t, x(t)), x(t0) = x0 (?)

has a unique∗) solution on (t0 − ε, t0 + ε).

Proof . Can be found in any good analysis text book.

Special cases. Two special cases of the Picard-Lindelöf theorem are of
particular importance to us:

(1) if x 7→ f(t, x) = f(x) is differentiable then (?) has a unique local
solution (prove it for n = 1!);

(2) if y 7→ f(t, x) = A(t)x is linear then (?) has a unique global(!)
solution x : I → R

n.

Problem 5. Let t 7→ κ(t) be some function. Find the solution of(
x
y

)′
=
(

0
κ
−κ

0

)(
x
y

)
with

(
x
y

)
(0) =

(
1
0

)
. (∗)

[Hint: write (x, y) in polar coordinates.]

3 PDEs: the Poincaré and Maurer-Cartan lemmas

Partial differential equations come in many different flavours. For us
the following two (systems of) partial differential equations will be of
particular importance.

∗) Of course, choosing another (smaller) ε gives a restriction of the previous solution, hence
“another” solution. Compare this with the Peano theorem which only requires continuity but
does not assert uniqueness (expl.: x′2 = |x|, x(0) = 0).
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Poincaré lemma. Given ϕ = ϕ(u, v) and ψ = ψ(u, v) the partial
differential equation

dσ = ϕdu+ ψ dv ⇔
{σu = ϕ

σv = ψ

has a local (on simply connected domains) solution σ iff ϕv = ψu.
Moreover, the solution is unique up to an additive constant.

Proof . Can be found in any good analysis text book.

The following theorem is less commonly found in analysis textbooks:

Maurer-Cartan lemma. Given Φ = Φ(u, v),Ψ = Ψ(u, v) ∈ gl(n) the
partial differential equation

dF = F · (Φ du+ Ψ dv) ⇔
{
Fu = F · Φ
Fv = F ·Ψ

(?)

can locally (on small open sets) be solved to get F = F (u, v) ∈ Gl(n)
iff

Φv −Ψu = [Φ,Ψ] := ΦΨ−ΨΦ. (??)

The solution is unique up to left multiplication by a constant matrix.

Proof . First we show that the Maurer-Cartan equation (??) is neces-
sary: if F is a solution of (?) then

0 = (Fu)v − (Fv)u

= FvΦ + FΦv − FuΨ− FΨu

= F (ΨΦ + Φv − ΦΨ−Ψu).

To show that (??) is also a sufficient condition suppose that Φ and Ψ
are defined on (−ε, ε)2 and satisfy (??). We first use the Picard-Lindelöf
theorem twice to obtain F :

(1) fix v = 0 and consider the initial value problem

Fu(u, 0) = F (u, 0)Φ(u, 0), F (0, 0) = idRn ,

which is a linear system of ordinary differential equations, hence has
a unique solution u 7→ F (u, 0) by the Picard-Lindelöf theorem;
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(2) now fix u and consider the initial value problem

Fv(u, v) = F (u, v)Ψ(u, v), F (u, 0) as obtained in (1),

which is again has a unique solution v 7→ F (u, v) by the Picard-
Lindelöf theorem.

Now we got F (u, v) at every (u, v) ∈ (−ε, ε)2. Taking differentiability of
F for granted we have now to verify that F satisfies (?). By construction
in (2), Fv = FΨ so that we only need to verify Fu = FΦ. Thus compute

(Fu − FΦ)v = Fvu − FvΦ− FΦv

= (FΨ)u − FΨΦ− FΦv

= FuΨ + F (Ψu − Φv −ΨΦ)

= (Fu − FΦ)Ψ

by (??); which, as a linear system of ODEs (u is fixed), has the unique
solution Fu −FΦ ≡ 0 since (Fu −FΦ)(u, 0) = 0 by construction in (1).

Next we wish to show that F (u, v) ∈ Gl(n) for all (u, v) ∈ (−ε, ε)2. Sup-
pose F (u0, v0) was not invertible at some point (u0, v0). Then F (u0, v0)
would not surject and there we could find a non-zero vector v ∈ Rn so
that vtF (u0, v0) = 0. On the other hand, vtF satisfies

(vtF )u = (vtF )Φ and (vtF )v = (vtF )Ψ,

which is a linear system of partial differential equations, thus has a unique
solution by a similar argument as above. As vtF ≡ 0 is a solution with
the given initial value vtF (u0, v0) = 0, this would be it and we also would
have vt = vtF (0, 0) = 0, contradicting the initial assumption.

Finally we wish to examine uniqueness: suppose that F̃ is another solution
of (?). Using that

0 = (id
R3 )u = (FF−1)u = FuF

−1 + F (F−1)u

so that
(F−1)u = −F−1FuF

−1,

we compute

(F̃F−1)u = (F̃u)F−1 − F̃ (F−1FuF
−1) = F̃ (Φ− Φ)F−1 = 0,

and similarly for (F̃F−1)v , showing that F̃ = AF with constant A.
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Problem 6. Let (u, v) 7→ Φ(u, v),Ψ(u, v) ∈ gl(2) be trace free. Prove
that a solution (u, v) 7→ F (u, v) ∈ Gl(2) of Fu = FΦ and Fv = FΨ has
constant determinant. [Hint: verify that (detF )u = detF tr(F−1Fu).]
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Appendix - Vector algebra

The following notations, definitions and formulas are used throughout
the text without further comment or explanation. It should make a good
exercise to prove any unfamiliar identities.

1 Products of vectors in R3

R
3 ×R3 3 (a, b) 7→ a · b ∈ R, the Euclidean inner product on R3:

the inner product is symmetric, a · b = b · a; two vectors a and b are said
to be orthogonal or perpendicular if a · b = 0; more generally, the angle
6 (a, b) between two vectors is given by

a · b = |a| |b| cos 6 (a, b).

R
3 ×R3 3 (a, b) 7→ a× b ∈ R3, the cross product on R3:

the cross product is skew-symmetric, a× b = −b× a; two vectors a and
b are linearly dependent if and only if a× b = 0.

Also,
|a× b|2 = |a|2|b|2 − (a · b)2 = |a|2|b|2 sin2 6 (a, b),

giving the area of the parallelogram spanned by a and b;

a · (b× c) = det(a, b, c)

showing that b, c ⊥ b× c and (c× a) · b+ a · (c× b) = 0.

R
3 ×R3 3 (a, b) 7→ a ∧ b ∈ o(3), the wedge product, defined by

(a ∧ b)x := (x · a) b− (x · b) a = (a× b)× x;

the product is skew-symmetric, a ∧ b = −b ∧ a, and a ∧ b is a skew-
symmetric endomorphism,

((a ∧ b)x) · y + x · ((a ∧ b) y) = 0.

Remark. The inner and wedge products generalize to Rn in an entirely
straightforward way, the cross product does not.
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2 Transformations of R3

Endomorphisms are linear maps from a vector space to itself:

End(R3) := {X : R3 → R
3 |X linear} ∼= M(3× 3,R),

where a basis (e1, e2, e3) of R3 is used to identify an endomorphism with
a matrix:

Xej =
∑3

i=1
eixij .

Linear transformations of R3 are invertible endomorphisms; important
transformation groups are:

Gl(3) := {A ∈ End(R3) | detA 6= 0},
Sl(3) := {A ∈ Gl(3) | detA = 1},
O(3) := {A ∈ End(R3) | ∀v, w ∈ R3 : (Av) · (Aw) = v · w}

∼= {A ∈M(3× 3,R) |AtA = id
R3},

SO(3) := {A ∈ O(3) | detA = 1},
the general and special linear groups and the orthogonal and special
orthogonal groups, respectively. Note that

A ∈ O(3)⇒ detA = ±1.

When t 7→ A(t) ∈ G is differentiable with A(0) = id
R3 then A′(0) ∈ g,

where g corresponding to G from the above list is†):

gl(3) := End(R3),

sl(3) := {X ∈ End(R3) | trX = 0},
o(3) := {X ∈ End(R3) | ∀v, w ∈ R3 : (Xv) · w + v · (Xw) = 0}

∼= {X ∈M(3× 3,R) |Xt +X = 0};
note that, if t 7→ A(t) ∈ O(3) then, in fact, t 7→ A(t) ∈ SO(3) since the
determinant t 7→ detA(t) ∈ {−1,+1} is continuous and A(0) ∈ SO(3).

†) The first of these is fairly obvious, the others are not — for the second see Problem 2 (Tools
from Analysis), the third is discussed in Chapter 1.
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The Euclidean motions also form a transformation group:

R
3 3 x 7→ Ax+ c ∈ R3, where A ∈ SO(3) and c ∈ R3;

thus a Euclidean motion is the composition of a rotation and a trans-
lation. Note, however, that Euclidean motions are generally not linear
since 0 67→ 0 (if c 6= 0).

If A ∈ SO(3) then ai = Aei form a positively oriented orthonormal
basis of R3:

ai · aj = δij and det(a1, a2, a3) > 0

(δij denotes the Kronecker symbol). In particular,

a1 × a2 = a3, a2 × a3 = a1, a3 × a1 = a2

and
(Av) · (Aw) = v · w, (Av)× (Aw) = A(v × w).

Remark. Every fact in this section — apart from those that involve the
cross product — generalizes to higher dimensions in an entirely straight-
forward way, i.e., without any non-obvious changes.
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