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14 Introduction
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Manifesto

Our Mission: Study the geometry of curves and surfaces using methods
from calculus, i.e., differentiation and (to a lesser degree) integration
(thus “differential geometry").

In this study we will only be interested in properties that are independent
of the position of the curve or surface, that is, that are invariant under
Euclidean motions.

”

What does “geometry
greek

mean? The term “geometry” comes from the

, {'yn = ‘“earth”,

yew + petpian =~ . . .

peTpd = “measure”.
"Geometry” originated from the task of measuring the earth (for example,
a farmer’s fields). The greeks turned this “applied science” into “pure
mathematics” by studying geometric objects on an abstract level: Euclid’s
“Elements” (ca 300BC) is the most famous example of this work. Still
today, modern cartography relies on (differential) geometry.

“Differential geometry” developed much later after calculus was devel-
oped in the early 1700's: then it was possible to study more complicated
geometrical objects, such as, arbitrarily curved “curves” and “surfaces”
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in 3-space. C F Gauss' book “Disquisitiones generales circa superficies
curvas” (1827) was one of the mile-stones in this development.

Much of this text will be about the description of how objects (curves
and surfaces) in space are “curved”’ or, more generally speaking, about
their “shape”. Clearly, the “shape” of a curve or surface does not depend
on its position in space — hence the requirement for invariance under
Euclidean motions

prr Ap+c, where A€ SO(3) and c € R

What are “curves” and “surfaces”? A “curve” can be thought of as the
shape that a thin bent wire in space (or in a plane) would take; equally,
it can be thought of as the trace of a moving particle in space (we shall
see in what sense “equally”). Thus a curve is a 1-dimensional object and
will, mathematically, be described by an R3-valued function ¢ — ~(t) of
one variable (or, equivalently, by two equations for (z,v, z) € R3).

A “surface” can be thought of as, for example, a soap film or the film of
a soap bubble or the surface of a body or the earth. Thus a surface is
a 2-dimensional object and will therefore be described by an R3-valued
function (u,v) — o(u,v) of two variables (or, equivalently, by one equa-
tion for (z,v, 2z) € R3).

This rough idea of a “curve” or a “surface” will be made precise later.
A “submanifold” or a “manifold” is a generalization (and abstraction) of
a curve or surface; these notions resolve some issues that the notions of
“curve” and “surface” as discussed in the first three sections of this text
create.

What is all this good for? First of all, differential geometry is a beauti-
ful subject in pure mathematics. But, secondly, there is also a variety of
applications: in the natural sciences, most notably, in physics (for exam-
ple, when considering a moving particle or planet or when studying the
shape of thin plates) and also in engineering or architecture, where more
complicated shapes need to be modelled (for example, when designing
the shape of a car or a building).
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Ezample. Consider the ellipse E in the plane R%:

E={(z.y)[ (£ +(§) =1}
This is given in implicit form, i.e., by an equation between the two
coordinates (z,y) of R%.
Can we describe it in parametric form, i.e., E = {y(t)|t € I}, where I
is some interval and v : T — R? a suitable function?

1. As a graph: E D {(z,£b4/1—(£)?)| —a < 2 < a} — but we
do not get the whole ellipse in this way. Note that we cannot have
x = +a without loosing differentiability.

2. In parametric form: E = {y(t) := (acost,bsint) |t € R} — but
we cover the ellipse infinitely often. Note that ' # 0 everywhere.

There are theoretical tools (the implicit and inverse mapping theorems),
which show that one can pass from an implicit description to a parametric
description and vice versa — under certain conditions (see Appendix).
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1 Curves

1.1 Parametrization & Arc length

Def. v: RS — R3 is called regular if v/(t) # 0 for all t € I.

We call the image v(I) C R3 of a regular map v : I — R3 from an
open interval I into R® a curve;

~ is called a parametrization of the curve or a parametrized curve.

Examples.
(1) Straight line.
R>t—(t):=a+btecR3,
where a € R? and b € R?\ {0} are (constant) vectors.
(2) Circle.
R 3t y(t):=c+r(eicost + exsint) € R3,

where ¢ € R3 is the centre of the circle, 7 > 0 its radius and (ej, )
an orthonormal basis of its plane.

(3) Circular helix.
R >t (t) = (rcost,rsint, ht) € R,

where 7 > 0 and h € R;

note that the curve v(IR) lies on the cylinder 22 + y? = 72,
If h # 0 then the helix can also be written as a graph over its axis
(the z-axis):

r=rcosi and y=rsing, where z€R.

(4) Hyperbola.

H = {(z,y,2) |y =0,(£)* - (§)* =1}
parametrizations of the two branches are obtained by solving for x,

z(z) = (fay/1+(£)2,0,2);
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however, these contain square roots (usually undesirable!), a better
choice is given by a “reparametrization” z = bsinht, giving

t + y(t) = (acosht,0,bsinht);

note that there cannot be a smooth (hence continuous) parametriza-
tion of both branches at the same time; hence each branch is a curve
in our sense, but the hyperbola (consisting of two connected com-
ponents) is not.

Problem 1. Find parametrizations for the conic sections
C = {(z,y,2)|2® +y? = 2%, zcosa+ zsina = d},

a € [0, %] and d # 0. [Hint: distinguish a < &, a = ¥ and a > ¥ ]
Def. A reparametrization of a parametrized curve I > t v ~(t) € R®
is a new parametrized curve

5() = y(p(f)), where :I— T isontoand ¢ # 0.
Remark. The condition ¢/ (f) # 0 for all # ensures that a reparametriza-
tion 4 of « is regular (chain rule), hence a parametrization.

Problem 2. Prove that ¢ — ~(t) is a straight line if 4//(t) and ~/(t) are
linearly dependent for all t.

Motivation. Thinking of a (parametrized) curve ¢ — ~(t) as the path of
a particle moving in time, we may think of

e +/(t) as the velocity vector at given time t; and of
o |7/(t)] as the speed of the particle at given time .

The distance travelled by the particle between two given times ¢y and ¢;

is then t
[ ol
Def. The arc length of a (parametrized) curve t — ~(t), measured

from ~(tg), is .
R )= [ ol
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Remark. The arc length is indeed the length of the curve between ~(to)
and 7(t), as can be proved by polygonal approximation of the curve.

Hence, the arc length does not depend the parametrization.

Problem 3. Use substitution to show that the arc length is invariant
under reparametrization of a parametrized curve.

Lemma & Def. Any curve t — ~(t) can be reparametrized by arc
length, i.e., so that it has constant speed 1. This is called an arc
length parametrization of v and usually denoted by s +— 7(s).

Proof. Fix to and observe that s'(t) = |7/(t)] > 0 for all t. Hence we
can invert s to obtain ¢ = ¢(s) and let §(s) := v(¢(s)). Then

() = O ¢(s) = Tl =1

has length 1 (note: t/(s) = S/l(t) by chain rule). (]

Remark. An arc length parametrization is unique up to choice of “initial
point” and sense of direction (orientation) of the curve.

Ezamples.
(1) Circle. Parametrization: ¢ — ~y(t) = (r cost, rsint,0);
Arc length: f [v/(t)|dt = fot rdt =rt, thus t(s) = 2;

Arc length (re)parametrlzatlon. 5> 4(s) = (rcos £,rsin 2,0).

(2) Ellipse. Parametrization: ¢ — ~(t) = (acost, bsint,0);
Arc length: f |y (t)|dt = Ot b + (a2 — b2)sin® t dt,

..which is an elllptlc integral so that we cannot write down an arc

length (re)parametrization in terms of elementary functions.

(3) Circular helix. Parametrization: ¢ — (t) = (r cost,rsint, ht);
Arc length: s( f V2 4 h2dt = /12 + h2t;
Arc length (re)param. s+ (rcos

hs )

\/7‘2+/7,2 " \/7‘2+h2 \/7‘2+h2
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Problem 4. Consider the curve given implicitely by (£)2+(%)2+(2)? =1
and avb2 — 2z = ¢v/a? — b2z, where a > b > ¢. Compute its arc
length and find an arc length (re)parametrization.

1.2 Ribbons & Frames

If we think of an (arc length) parametrized curve ¢t — ~(t) as the path of
a body in space (moving at constant speed) it will be useful not only to
describe the direction of movement of the particle but also its orientation
in space — like a flying air plane, which does not only have a notion of
“forward” but also a notion of “upward”.

Def. Let ¢t — ~(t) be a parametrized curve. A (unit) smooth vector
field t — N(t) so that N(t) L ~/(t) for all ¢ is called a (unit) normal
field along ~.

The pair (v, N) of a parametrized curve and a unit normal field will
be called a ribbon.

Rem & Def. At each point, a regular curve has a unique normal plane
’

N(t) ={peR¥|p—~(t) LT(t)}, where T := T
denotes the unit tangent vector field of v; hence, at each point, a curve
has a circle’s worth of unit normal vectors.

A normal plane N(t) inherits a natural linear structure (with origin
4(t) =~ 0) from the 2-dimensional vector subspace {T'(t)}+ C R3 since

N () = (1) +{T(O} =7(t) +{N € R*|N LT(t)}.

Remark. A unit normal field N along ~ defines a "horizontal” plane 7 (¢)
at each point (t) of the curve in a similar way:

peT(E) = p—(t) LN(@),
i.e., we obtain a second family of planes varying smoothly along the
curve. Conversely, any such family of planes defines a unit normal field
N uniquely up to sign.

Notation. We will denote the standard basis of R? by (e1, ey, e3).
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Def. t — F(t) € SO(3) is called an (adapted) frame for a parametrized
curve t — (t) if

F(t)er =T(t) = Q;E? ;

and an (adapted) frame for a ribbon (v, N) if, additionally,
F(t)e, = N(t).

Remark. We obtain a second unit normal field alon ~y as
B:=T x N = Fes;
thus we will (not entirely appropriately) also write F' = (T, N, B).
Then, any normal field N along ~y can be written as
N = AN +uB

with suitable functions A and p and any two adapted frames F' and F
are related by a normal rotation,

1 0 0
F=F |0 cosp —sing
0 sing cosp

Lemma & Def. Let F be an adapted frame for (v, N); then there are
unique functions k,, kg and T so that

0 —Knp K
F'=F¢ with &=[y|| &n 0o -7 ; (%)
—Kg T 0

(*) are called the structure equations of the ribbon (v, N), and
® ki, its normal curvature,
e 1, its geodesic curvature and

e 7 its torsion.

Proof. Since t — F(t) € SO(3) we have F'F = id so that
0= (FLF) = (F'F') 4 (F'F')t = & + &,
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that is, ®(¢t) € o(3) is skew symmetric for all t. Hence we can find
functions k,, kg and 7 so that ® is of the above form. ]

Problem 5. Let (v, N) be a ribbon and N := N cos ¢ + Bsin, where

¢ is smooth and B = T x N. Show that (-, N) is a ribbon and compute
how the structure equations (i.e., £, kg and 7) change.

Remark. kn, kg and T are geometric quantities, i.e., are independent of
the position of 7 in space as well as of the parametrization of :

o if (,N) = (Ay + ¢, AN), where A € SO(3) and c € R, is a
Euclidean motion of (y,N) then F' = AF and ¢ = ¢;

o if (5, N)(s) = (v, N)(t(s)) is an orientation preserving (i.e., t' > 0)
reparametrization of ~, then ®(s) = t'®(¢(s)) and |5'| = |t'v],
hence &y (s) = kn(t(s)), etc.

Problem 6. Let (v, N)~be a ribbon and 4 = y ot a reparametrization
of v with ¢ > 0; set N := N ot. Show that (§,N) is a ribbon with
Fn =kpot, g =kKgotand T =T1ol.
Remark. If ~ is arc length parametrized then the structure equations read
T = knN  —kgB
F'=F¢ < N' = —g,T + 7B
B = +kyT —TN
Thus y, and kg measure how fast the tangent line changes, that is, “how

strongly the curve is curved”, and 7 measures how fast NV (and hence also
B) rotate around the curve.

Problem 7. Let v parametrize a straight line, v/ x 7" = 0, and let F
denote any adapted frame for . Show that k, = k4 = 0. Find a unit
normal field N so that 7 = 1.

Ezxamples.

(1) Circular helix. ~(t) = (r cost, rsint, ht) with “arc length element”
ds = /12 + h2 dt; as a unit normal field, we choose

N(t) := —(cost,sint,0)
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note that, for all ¢,

N(t) LT(t) = \%& = ﬁ(frsint,rcost, h)

and consider the ribbon (v, N); with the third frame vector field

B(t)=(T x N)(t) = \/ﬁ(hsint, —hcost,r)
the structure equations become
T = ———N
V/r2+h?
N= ——L_T h_p
Vr2+h? + Vr2+h?
B = —-—h _N
Vr2+h?
so that - B g
Fin = gz Kg =0, 7=

(2) Spherical curve. Let s +— (s) € S?(r) i.e., |v|? = r?, be arc length
parametrized, i.e., |7’\2 = 1. Observe that

7 =3Py =0
so that NV := %’y defines a unit normal field and
F=(,%v,37 x7)
an adapted frame for the ribbon (v, %fy) Then

kp = T'-N = Ly y = -1
kg = BT = 1(v'x9) o = Ldet(y.4.9")
T = N.B = Tiz'y’-('y’xy) =0
and the structure equations read
T — —%N _det('y,;y/,'y”)B
N' = ir

’ "
B = det(%: A7) p
Remark. Note that, in the first example, K, = 0 whereas, in the second
example, 7 = 0. These two conditions characterize two prominent classes
of ribbons/frames that we will discuss in more detail later.
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Def. A ribbon (v, N) is called
e asymptotic ribbon if k, =0,
e geodesic ribbon if k4 = 0,

e curvature ribbon if 7 = 0.
And here is one of the key theorems in curve theory:

Lemma (Fundamental theorem for ribbons). Fix three functions
S I{n(S), I{g(S), 7‘(8).

Then there is an arc length parametrized curve v and a unit normal

field N along v so that kn, kg and T are the normal and geodesic

curvatures and the torsion of the ribbon (v, N), respectively.
Moreover, this ribbon is unique up to Euclidean motion

Proof. We seek a ribbon (7, N') with |y/|> = 1 so that the adapted frame
F=(T,N,B), where T=+v"and B=T x N,

satisfies 0

—kn kg
F'=F-0, o=| &, 0o -7]. (%)
—kyg T 0

(%) is a first order linear homogeneous system of ode's. By the Picard-
Lindelsf Thm, this has a unique, globally defined solution s — F'(s) for
any given initial value F'(sg) = Fp.
Next we need to verify that F'(s) € SO(3) for all s, so that it qualifies
as a frame. To this end:
1. note that (FFt) = F(® + ®')F! = 0 so that s — F(s) € O(3) as
soon as Fy € O(3);
2. F(s) € O(3) = det F(s) = 1 and s — det F(s) € {—1,+1} is
continuous, hence cannot change sign (Intermediate value theorem),
so that s — F(s) € SO(3) as soon as Fy € SO(3).
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Now fix sg and Fy = idps and take

T:=Fe;, N:=Fe), B:=Fe3 and ~(s):= f; T(s)ds.
Clearly, ~ is arc length parametrized, |/| = |T| = 1, and F'is an adapted
frame for the ribbon (-, V) so that the structure equations (x) hold.

To see uniqueness of 4 up to Euclidean motion suppose that F' and F
are two solutions of (x); then

(FF~Y = F'F~Y - FFF' Pt = F(6 - 0)F~1 =0,

that is FF~1 = F‘(SO)F’E(SO) =: A is a constant special orthogonal
transformation as soon as F(sg), F(so) € SO(3). Hence

T=AT, N=AN, B=AB, and 5=Ay+c,

where ¢ is a constant of integration: that is, (5, N) = (4y 4+ ¢, AN) is
obtained by a Euclidean motion from (v, N). u

Problem 8. Prove that an arc length parametrized curve s — ~+(s) is
planar if and only if it has an adapted frame so that k; = 7 = 0.

1.3 Normal connection & Parallel transport

We shall now go on to study certain special frames for space curves:
frames that become particularly “simple” or well adapted to study certain
problems or notions in curve theory. These can be characterized by the
vanishing of one of the curvatures, s, or kg4, or of the torsion, 7.

We start with 7 = 0. Consider the problem of lying out a fibre cable
without twist (to minimize waste of material or interference between cur-
rents): thus we wish the material not to twist around its soul, that is, we
have to solve the purely geometric problem of finding a frame without
torsion along the soul.

Def. A normal field t — N(t) along t — ~(t) is called parallel if
VLN :=(N)- =N —(N'-T)T =0,
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where V+ denotes the normal connection along 7.
An adapted frame F = (T, N, B) is parallel if N and B are parallel.

Note. In this definition, we do not assume |[N| = 1.

Lemma. The normal connection V= is metric, i.e.,
(N1 - Np) = VEN; - Ny + Ny - VAN

parallel normal fields have constant length and make constant angles.

Proof. First we prove that V1 is metric, i.e., satisfies Leibniz’ rule:
VAN Ny + N1 - VAN, = N{ - Na + Ny - Ny = (N1 - Vo).
Hence, (N1 - N2)' =0 if Ny and N, are parallel.

In particular, (|NJ?)) = 2N - VN = 0 for a parallel normal field N,
showing that N has constant length; and two parallel normal fields make
a constant angle « since

cosa = Ny const
[N1[ N7
if N1 and N are parallel. [ ]

Problem 9. Prove that any two parallel frames of a curve ¢ — ~(t) are
related by a constant rotation in the normal plane.

Lemma. If F is an adapted frame along v and N = F'e is a parallel
normal field then F' is a parallel frame.

Proof. We need to show that B =T x N = Fej is parallel:

ViB.T=0 (def of V1),
ViB.-N=(B-N)Y -B-V-N=0 (N parallel),
ViB-B=3(BP) =0 (1B =1);

hence V1B = 0. [ ]

In the course of the proof we have also learned:
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Cor. (v, N) is a curvature ribbon iff N is a parallel unit normal field.

Proof. Writing F = (T, N, B) we have
o:T:W%l(N'-B):Hl,‘(VLN»B) & 0=VIN
since VAN L T,N. "

_ v (t) _ 1 e
T@t) = E4O] = m( rsint,rcost, h)
1"
N@t) = % = —(cost,sint,0)
B(t) = T(t)xN(t) = L__ (hsint,—hcost,r)
r24+h2
yields an adapted frame with
kn = r'zlhz’ kg = 0, 7= ﬁ

We seek a parallel normal field
N(t) = cosp(t) N(t) + sin o(t) B(t);
thus compute

AN = N—-(N-T)T = "'tB = h__ B
\Y ( ) |7 el
1B = B —(B-T)T = —|¥|7N ——h N
\Y ( ) ks e

| ~
0=V+N={¢ + \/Tzh_*_ihz}{—sincpN—i—cosapB}.

and

Hence F = (T, N, B) with
t)

\ - ht H ht
N(t) = cos T2L+h2 N(t) —sin T2L+h2 B(t)
5 — g ht ht
B(t) := sin gy N(t) + cos r;+h2 B(t)

yields a parallel frame for ~.

Note that every other parallel frame is obtained by a constant rotation of
the given one: this is reflected by the constant of integration for .

The following lemma asserts that we can always find parallel normal fields
along a curve:
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Lemma. Let t — ~y(t) be regular and & L ~'(to). Then there is a
unique parallel normal field t — £(t) along v with £(to) = &.

Proof. Wlog., |y'|> = 1; let F = (T, N, B) be an adapted frame.
With the ansats £ = aN + 8B we compute
Vie={d — 78} N + {8 +1a} B;
thus V¢ = 0 iff
a=rgsin(po +¢) and B =rgcos(po + )
with o(t) = J:; 7(t)dt and ro, po € R.

In order to obtain £(to) = &o we need to choose 1o = |£| and o € R so
that é—gl = N sin pg + B cos ¢p. [ ]
Cor & Def. Parallel normal fields along vy yield a linear isometry from
the normal plane N (to) at y(to) to the normal plane N'(t) at v(t). This
isometry is called parallel transport along ~.

Remark. This explains the term “connection” for V-: it provides a way
to identify normal planes of a curve at different points.

Remark. For “linear” to make sense, recall that a normal plane N(t)
carries a natural linear structure, with y(t) as the origin.

Proof. Fix some & L 7/(to); by the preceding lemma there is a unique
normal field ¢ with V¢ = 0 along v with &(tg) = &. Thus, there is a
unique map N (to) — N(t).

As the equation V¢ = 0 is linear in &, constant linear combinations of
parallel normal fields are parallel (“superposition principle”); hence this
map is linear.

As parallel normal fields have constant length and make constant angles,
it is an isometry. [ ]

Problem 10. Show that a curve takes values in a sphere if and only if the
curvatures ky, and kg of a parallel frame satisfy the equation of a line in
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the plane.
How can the radius of the sphere be read off from this equation?

1.4 Frenet curves

In this section we study a second special type of frames, satisfying a
“normal form” of the structure equations: after requiring 7 = 0 in the
last section we will now require k, = 0, which leads to the “classical
curve theory” of the 18th and 19th century described in most text books.

The difference between curvature and geodesic ribbons is illustrated by
the example of the motion of an air plane during taxi and during the flight.
Apart from forward or backward forces (caused by change of speed), the
passenger experiences the forces caused by change of direction as sideways
forces during taxi but as up- or downward forces during flight — this is
achieved by “twist” (torsion) of the plane during flight.

Note that, if F' = (T, N, B) denotes an adapted frame, a constant nor-
mal rotation of the frame leads to a similar “rotation” in the “curvature
plane”:

@B =w.p) (LG &n) = ()= (ma &) ()
in particular, for a 90°-rotation of the normal frame,
(N,B) = (=B,N) = (kn,g) = (En,Rg) = (g, —kn).

Hence, the geometry of geodesic ribbons (x4, = 0) and of asymptotic
ribbons (., = 0) will be very similar (but differ in interpretation).

Def. A parametrized curve t — ~(t) is called a Frenet curve if

Vi (v xy")(t) # 0.

Remark. The Frenet-condition is invariant under reparametrization.

Problem 11. Convince yourself that the Frenet-condition is invariant un-
der reparametrization.
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Lemma & Def. Ift+ (t) is a Frenet curve then T'(t) # 0 for all t.
t— N(t) == A

is called the principal normal field of 7.

Proof. By the Frenet condition (v x |7/|T7)(¢) = (7' x 7"')(t) # 0 for
all t; hence T'(t) # 0 for all t. Further, 0 = (|T)?) = 2T - T" showing
that 77(t) L /() for all ¢ so that N defines a unit normal field of 7. m

Remark. Let t — ~(t) parametrize a Frenet curve. Then (v, N) is a
geodesic ribbon iff £V is the principal normal field of ~.

Problem 12. Let ¢ — ~(t) be a Frenet curve. Prove that (v,N) is a
geodesic ribbon if and only if £V is the principal normal field of ~.

Rem & Def. At each point of the curve we can, in addition to N (t)
and T (t), consider the plane

O(t) = () + span{~/(1), 7" (1)} = ¥(t) + {(+' x +")(1)}

which intersects both N'(t) and T (t) orthogonally. This is the oscu-
lating plane of the curve at y(t).

Remark. Thinking again of a parametrized curve t — ~(t) as the path
of a particle moving in time,

e 7/(t) is the velocity vector at time ¢; and of
e ~/(t) is the acceleration vector of the particle at time ¢.

Thus the osculating plane is the plane of the forces acting on the body:
any force causing a change of speed as well as the “centripetal force”
(perpendicular to the velocity and opposite of the “centrifugal force"),
which "holds” the body on its path. If the body is moving at constant
speed then this centripetal force is given by 7 as

Ay = SRy =0
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Geometrically, the tangent line of a curve is the line through two “infinitely
close points” (s) and (s + ds) > v(s) + +'(s)ds; the osculating plane
is the plane of three “infinitely close points”

7(s) and (s L ds) ~(s) £7(s)ds + 37" (s)ds?
(as long as they are not collinear: Frenet condition).
Ezamples.
(1) Planar curve. If t — ~(t) parametrizes a planar (Frenet) curve,
yn=c

for some n € S? and ¢ € R, then the plane 7 = {p|p - n = c} of
the curve is its (fixed) osculating plane as 7/, " L n.

(2) Circular helix.

v(t) = (rcost,rsint,ht),
¥'(t) = (-rsint,rcost,h),
~v"(t) = (—rcost,—rsint,0)

so that O(t) = ~(t) + span{y/(t),7”(t)} contains, apart from the
tangent line, the “radial” line perpendicular to the axis and passing
through ~(t).

Def & Lemma. Let t — ~(t) be a Frenet curve and t — N(t) its
principal normal field. The adapted frame F = (T, N, B) of the ribbon
(v, N) is called the principal frame or Frenet frame of .

Its structure equations take the form

0 -~ O
F'=F¢ with ¢=4||x 0 -7 (%)
o = 0

with k£ > 0. These are the Frenet equations of 7.
k and T are the curvature and torsion of the Frenet curve.

Remark. Thus, for a Frenet frame, s := £, and kg = 0.
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Proof . Fristly, 1y = 0since T - B =T" - (T x {31) = 0;
andsecondlyn:nn>OasT’-N:T/-%:|T’\>0. L]
Problem 13. Let s — ~y(s) be an arc-length parametrized Frenet curve
and define the Darboux vector field by D := 7T + kB. Prove that the
Frenet equations can be written as

T"=DxT, N =DxN, B =DxB.

Problem 1/. Express curvature and torsion of a Frenet curve in terms of
kn and kg of a parallel frame, and vice versa.

Lemma. Curvature and torsion of a Frenet curve are given by
det("{/ 1"{// y’Y///)
%y ]2
In particular, they can be uniquely defined in terms of the curve (with-
out reference to a choice of normal field or frame).

’ 1"
K= - and T =

Remark. Recall that x and 7 are invariant under reparametrization.
Proof . First assume that s — 7(s) is arc-length parametrized; then

=|T'| =y = Iy x~""]|

k=T -N=T. =

/
i
sinceT=~"and " =T' LT =+, and

d TT/ T/I d I’ I/" 11’
= (T x N)- N’ = det(T, N, N') = % T ) = et‘(j,jw,,lﬁ )

since N = % and N’ = IT’I +...7".

Now, if s = §(s) := v(¢(s)) is a reparametrization of ¢ — ~(¢) then
F(s) = V() (),
F'(s) = ()" (K(s)) + A (1(s)),

F(s) = tB(s)y" () + - (1)) + - (H(5))s

()P 1y x v”\( ()
det(7,5",5")(s) = t°(s) det(',7","")(t(s))-

hence

DE
X
2
2 =
w
=
Il
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Thus R(s) = k(t(s) and  #(s) = 7(t(s)),

showing invariance of x and of 7 under reparametrization. [ ]

Problem 15. Let t — ~(t) be a Frenet curve. Prove by direct computa-
tion that 5!

/{:hx,ﬁg‘ and 7= -

'] [ >y

Conclude that x and 7 are invariant under Euclidean motions of .

det(y' "' 4""")
//‘2

For Frenet curves, our earlier Fundamental theorem for ribbons specializes
to a central theorem of classical curve theory:

Thm (Fundamental Theorem for Frenet curves). Fix two functions
s — k(s),7(s) with Vs:rk(s)>0.
Then there is an arc-length parametrized Frenet curve s — (s) with

curvature and torsion k and T, respectively.
Moreover, this curve is unique up to Euclidean motion.

Proof . By the fundamental theorem for ribbons there is a ribbon (v, N)
with [Y'[2 = 1, Kk, = &, kg = 0 and torsion 7; this ribbon is unique up
to Euclidean motion

¥ — Ay+c with A€ SO(3) and c€ R3.

We need to prove that v is a Frenet curve and that N is its principal
normal field: as Ky = 0 and k # 0,
T' =k,N=rN#0 and |T'|=k,
sothat v/ x7” =T xT' = kT x N # 0 and s — (s) is a Frenet curve;
/ ’ .

moreover, N = % = ‘;—,‘ is its principal normal field. ]
Remark. There is a similar, simpler statement for (planar) curves in R?,
where only one function s — x(s) appears.

Problem _16. Formulate a Fundamental theorem for curves in R2.
Prove it without using the Picard-Lindelof Theorem.

Example. Let k > 0 and 7 € R be two numbers. Then there is a unique
(up to Euclidean motion) curve s — 7(s) with curvature x and torsion
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7 by the Fundamental Theorem for space curves. On the other hand, we

know that the circular helix
s y(s) = (r cos ===, rsin s __sh
() = ( Vr2en?’ Vr24h2’ \/r24h2 )

where -
k24727

is a curve with the given curvature and torsion. Thus every curve with
constant curvature and torsion is a circular helix:

r= —
r=.ts and h

Thm (Classification of Circular helices). A Frenet curve is a circular
helix if and only if it has constant curvature and torsion.
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2 Surfaces

2.1 Parametrization & Metric

Def. o : R? S U — R3 is called regular if d(u,0)0 : R? — R3 injects
for every (u,v) € U; such regular maps are also called immersions.
We call the image o(U) C R® of a regular map o : U — R® from an
open and connected subset U C R? into R® a surface;

o is called a parametrization of the surface or a parametrized surface.

Remark. o is regular iff o (u,v) and oy (u,v) are linearly independent
for all (u,v) € U, that is, iff (0y, x 0y)(u,v) # 0 for all (u,v) € U.

Ezxamples.

(1) Plane. A plane {p € R3|p-n = d}, where n € S? is a unit normal
and d € R its directed distance from the origin, can be parametrized
by

(u,v) = o(u,v) :==pg +uer +vey,
where py € 7 is some point and (e1,ep) is a basis of the linear
subspace {n}~ C R3; o is regular since e x ey # 0.

(2) Sphere. A common parametrization is given by
(u,v) — o(u,v) := (cosucos v, cosusinv,sinu);
but there is a problem: the parametrization ceases to be regular
for cosu = 0 and sinu = %1 (“north” and “south poles” of the
sphere); this problem is symptomatic and cannot be resolved: there
is no regular parametrization of the whole sphere at once. This

shows a weakness of our definition of a surface and can only be
resolved by a “better” definition.
Problem 1. Show that the (twice punctured) ellipsoid
E={(z,y,2) [ ()2 + (L2 + (2)> =1, ]2 < ¢},

a>b>c>0,is asurface by finding a regular (prove it) parametrization.
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(3) Hyperboloids. The equations
(2P + (B - (2P ==L
a,b,c > 0, each pose 1 constraint on the 3 coordinates of space,

hence we may expect them to describe surfaces;
in the +1-case

(u,v) = o(u,v) := (acoshwucoswv,bcoshusinv, csinhu)

gives a (regular) parametrization, hence the equation defines a sur-
face: the 1-sheeted hyperboloid,
in the —1-case, the described set is a 2-sheeted hyperboloid, which
has two connected components, hence does not have a chance of be-
ing a surface in our sense — however, each component is, as these
can be (regularly) paramtrized by

(u,0) > 0% (u, ) = (2,9, ey /T+ (21 + (D2
note that
(u,v) — (asinhucos v, bsinh usin v, +c cosh u)
does not give regular parametrizations.

Problem 2. Consider T2 = {(z,y,2)| (/22 +y? — R)?> + 22 = r?},
where 0 < 7 < R. Show that the torus T2 is a surface.

Def. A reparametrization of a parametrized surface o : U — R3 is a
new parametrized surface

(i, 0) = o(p(ii,)), where ¢:U — U is a diffeomorphism,

i.e., a smooth bijection with smooth inverse 1.

Remark. If 5(@,?) (
then N
Gy X 05 = det (u” "v) (0w X 0p) 0 p;

Vg Vo

thus a reparametrization of a parametrized surface is regular.
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Rem & Def. At each point o(u,v), a surface has a tangent plane
T (u,v) = 0(u,v) + diy,p)0(R?) = o(u,v) + {(ou x 00)(u,v)}*,

which inherits a natural linear structure (with origin o(u,v) ~ 0)
from the 2-dimensional vector subspace {(oy x 0y)(u,v)}*+ C R3, the
tangent space of the surface at o(u,v).

As d(y,v)0 injects
d(y,v)0 : R? = R?

can be used to identify tangent vectors with vectors in IR?.
Next we introduce a way to measure length and angles of tangent vectors:

Lemma & Def. Let U > (u,v) — o(u,v) € R® be a parametrized

surface; then
I:=do-do

defines a positive definite, symmetric bilinear form for each (u,v) € U.

1 is the induced metric or first fundamental form of o.

Notation. The first fundamental form is often written as
[=Ed?+2Fdudv+Gd? o 1=(F§),

where E := |y, 2 F =0y 0y and G := \UU|2.

Remark. If (u,v) € U and w; = (2‘) € R?, i = 1,2, are two vectors
then )
Il(u,v)(wla ’LU2)

= dup)o(wi) - dey,pyo(w2)

= E(u,v)z122 + F(u,v) (2192 + 2211) + G(u, v) Y192

_ (zl )t E(u,v) F(u,v) (.’L‘Q )

Y1 F(u,v) G(u,v) Y2 )"

You should think of the first fundamental form as the R3-scalar product
restricted, at each point, to the tangent space of the surface; the above

form E du® + 2F dudv + G dv? is its representation in the coordinates
(u, v) of the surface.
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Proof. Clearly, the first fundamental form is a symmetric bilinear form
on RR? at each (u,v) C U. If (u,v) € U and w € R? then

0 = Ty (w,w) = |d(uyu)a(w)\2 = 0=w
since d(y,y)0 : R? — R3 injects; hence L(u,v) is positive definite. u
Ezamples.
(1) Cylinder. Let (u,v) — (x(u),y(u),v); then
E(u,v) = (2 +y?)(u), F(u,v)=0, and G(u,v)=1.

In particular, if the planar curve u — (z(u), y(u),0) is parametrized
by arc length then £ =G =1 and F =0, that is,

I=du?+ dv?
and the surface is parametrized isometrically.

Helicoid. This is a regular surface, traced out by a straight normal
line moved along a helix:

—
N
—

(u,v) = o(u,v) = (sinhucoswv,sinhusinv, v)

so that oy (u,v) = (cosh ucosv, cosh usinv,0)

oy (u,v) = (—sinhusinv,sinhucosv, 1)
and
Uy = cosh? u du? + (1 + sinh? u) dv? = cosh? u (du? + dv?);
that is, the helcoid is parametrized conformally.
Problem 3. Compute the induced metric of the catenoid

(u,v) = o(u,v) := (coshu coswv, coshu sinv,u).

Def. A surface parametrization (u,v) — o(u,v) is called conformal if
E =G and F = 0. It is called isometric if I = du? 4 dv?.

Problem 4. Find a conformal parametrization o : R?> — R3 of the unit
sphere with its north pole removed [Hint: consider the “stereographic
projection” from the north pole, obtained by drawing a line through the
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north pole and any given point on the sphere to obtain a point in R? as
the intersection of this line with the equator plane of the sphere.]

Remark. A parametrization is conformal iff it preserves angles, i.e., if the
angle of any two tangent vectors of the surface can be measured in R?.

Problem 5. Convince yourself that a surface is parametrized conformally
if and only if the parametrization preserves angles.

Remark. Isometric parametrizations are very special and do not normally
exist (not even locally) — in contrast to curves which can always be
parametrized by arc-length. We shall later see what the obstruction is.

In contrast to this:
Thm. Any surface can (locally) be conformally (re-)parametrized.

Proof. ...is beyond this text; a beautiful proof uses technology from Com-
plex Analysis. [ ]

2.2 Gauss map & Shape operator

Recall. A surface has a tangent plane at each point, in terms of a
parametrization (u,v) — o(u,v) this is given by

T (u,v) = o(u,v) + {(ou x 7p)(u,v)}+,
where {(oy, x a,)(u,v)}t C R3 is its tangent space (where tangent

vectors "live"); o0 XO
n(u,v) = 2 (u,0)

is a unit normal vector to the tangent plane/space at o(u, v).

Note that a unit normal vector of T (u,v) is unique up to sign.

TuXoy Oy X0y is
Jouxoy] VEG—F?

called the Gauss map of the parametrized surface (u,v) — o(u,v).

Def. The unit (normal) vector field n =
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Problem 6. Suppose a surface is given implicitely by F(z,y,z) =0, i.e.,
a parametrization (u,v) — o(u,v) satisfies F'o o = 0. Show that its
Gauss map is given by n = i%.
Ezample. Consider a surface of revolution

(u,v) = o(u,v) = (r(u) cosv, r(u) sinv, h(u)).

Each meridian curve v = const is the orthogonal intersection of the
surface with the plane zsinv = ycosv; hence n is obtained by rotating
the unit tangent vector field of the meridian curve by 90°:

(u,v) = n(u,v) = (=k (u) cosv, —h'(u) sinv,r’(u)).

1
r/2(u)+h'2(u)
Remark. The Gauss map of a parametrized surface is a geometric object:
if we apply a Euclidean motion,
c—>6=Ac+c = n—i=An,
that is, the Gauss map rotates with the surface.

We may run into problems when the surface is non-orientable, that is,
if we cannot choose a unit normal vector field globally: a Mébius strip
provides a simple example.

Problem 7. Let r > 0 and define a parametrization of a Mdbius strip by

o(u,v) == r(cos2u,sin 2u, 0) + v (cos u cos 2u, cos u sin 2u, sin ).
Show that o(u + m,0) = o(u, 0) but n(u + 7,0) = —n(u,0).
Agreement. All our surfaces will be orientable.

For Frenet curves, curvature measured how the principal normal field
changes. For surfaces, the Gauss map may change differently in different
directions — we pick up a “second fundamental form”:

Def. Given a parametrized surface o with Gauss map n,

II:=—dn-do
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is called the second fundamental form of o.
Lemma. I is a symmetric bilinear form for each (u,v).

Proof. Clearly, ]I(u‘yv) is a bilinear form on R2, and
1((5), () -1(3). () = —nu-ovtna-on
= N 0Oypy =N Oyy
0

showing that it symmetric. [ ]

Notation. The second fundamental form is often written as
— g2 . 0,2 _ (e f
I=edu"+2fdudv+gdvs or I = (f g) ,
where e := —ny - 0y, [ = Ny -0y = —Ny - 0y and g := —ny - Oy

Problem 8. Investigate how the first and second fundamental forms
change under Euclidean motion and under reparametrization.

Ezample. For the helicoid (u, v) — o(u,v) = (sinhwcos v, sinh usin v, v)
we have ou(u, v) = (cosh ucosv, coshusinv, 0)
oy (u,v) = (—sinhusinv,sinhucosv, 1)
so that its Gauss map
(u,v) = n(u,v) = Zi—(sinv, — cosv, sinhu)
and its second fundamental form becomes

I(y,0) = —2dudv.

Lemma & Def. Let o be a parametrized surface with Gauss map n;

then
duoyn B2 = {n(u,v)}*

takes values in the tangent space of the surface at o(u,v). Hence

(’U,,U) = S(um) = 7d(u7v)n ° (d(uﬂ))g)il € End({n(uvv)}l)



2.2 Gauss map & Shape operator 26

will be called the shape operator or Weingarten tensor of o at o(u, v).

Proof. Since |n|? = 1 we find
0 =d(|n|?) = 2n - dn,
that is, d(y,,)n : R? — {n(u,v)}* C R3 takes values in the tangent
space of o at o(u,v); also, as d(u,)0 - R? — R3 injects it is an isomor-
his

phism A(u,w)0 R? — {n(u,v)}*+ c R?
onto the tangent space, hence can be inverted. As both maps (d(u,v)o)*1
and d, ,)n are linear, S(, ,) is as well, showing that S is well defined. m
Remark. Since (0y,0,) is a basis of {n}* at each point, we can deter-
mine the shape operator by its values on this basis:

S‘(u,v)gu(u7 U) = _d(u,'u)n ((1)) = _nu(u7 U)7

S‘(u,v)o"v(uvv) = _d(u,v)n ((1)) = _nv(uvv);
The inverse (d(uﬂ,)a)_l in the definition of S|(,, ., can also be interpreted
as the Moore-Penrose pseudoinverse:

S = —dn o ((do)tdo) " (do)t.
However: this does not provide a useful matrix representation!

Ezample. Let (u,v) — o(u,v) = (r(u) cosv, r(u)sinv, h(u)) be a sur-
face of revolution with arc-length parametrized meridian, 242 =1.
Then its Gauss map is

n(u,v) = (—h'(u) cosv, —h'(u) sinv, 7’ (u));

hence r/(u)cosv  —r(u)sinv ) 5
~ 7/ (u)sin v r(u) .
d(u,v)g ~ i 10 cos v R — R

and —h!(u) cos v B/ (w)sinv
~ —h!(u)sinv  —h'(u)cos v - TR2 3

d(u,’u)n - T/S(i;n (0)cos R — R
both take values in {n(u,v)}* C R3: note that 7'+ +h'h/" = 0 so that

ny + (' —r"W)o, =0; clearly n, + hT, oy, =0.
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Hence w.r.t. the basis (o (u,v), 0y (u,v)) of {n(u,v)}* we obtain the
matrix representation

Slu,v) (M R %O(U))

Matrix representation. Writing S ~ (z“ 512) so that

21 522
S S
(”w”v) = _(Uu; 0'1/) (Sg 5;2) 5
we find
e f\ t _(EF S11S12
(7 4) = —lowo)um) = (7 &) (3 %)
Hence

_(EF\ lrefy_ 1 Ge—Ff Gf—F,
() =Fa) (7)) = st (55 557
or, equivalently,
0 = nu+ﬁ{(GefFf)au+(EffFe)av},
0 = nv+ﬁ{(Gf*Fg)Uu‘F(EQ*Ff)UU}‘

Remark. Note that, given the first fundamental form, S can be computed
from II and vice versa.

Problem 9. Compute Gauss map and shape operator of the helicoid.
Lemma. S is a symmetric endomorphism of tangent spaces.

Proof. This follows directly from Soy, - 0y = f = 0y - Soy. [ ]
Warning. Even though S is a symmetric endomorphism, its matrix rep-
resentation usually is not ((oy, o) is not orthonormal in general).

Def. Let S denote the shape operator of (u,v) — o(u,v). Then:

1 _ Eg—2Ff+eG .. )
o H:=5trS= SEC-F7) the mean curvature;

2
— S el .
o K :=detS= £Z—r is the Gauss curvature; and
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e the eigenvalues k; = H+v H? — K of S are the principal curvatures
of the surface, and
its eigendirections are the curvature directions of o.

Remark. Note that H = %(/{1 + Kk2) — hence “mean curvature”.
Remark. The shape operator and curvatures are geometric objects:

e if & = 0oy is a reparametrization of the surface and 7 = no ¢ then

Sta.0) = ~(dea,s)n © d(a,5)®) © (de(a,5)0 © da,s) @) = Sp(a,0)
sothath:Hogo, f(:Kmp, etc.

Note, however, that a reparametrization changes the basis (o4, 0y)
of the tangent space and, consequently, the matrix representation of
S does change under reparametrization.

o if o - = Ao + ¢, where A € SO(3) and ¢ € R3, is a Euclidean
motion of o then

S=—(Adn)o(Ado)™ = A0S0 Al

so that the curvatures remain invariant but the curvature directions
“rotate with the surface”.

Problem 10. Compute mean and principal curvatures of the helicoid.

Def. A point o(u,v) of a surface is called
e umbilic if x1(u,v) = ka(u,v), i.e., if (H? — K)(u,v) = 0;
o flat point if S, ,) = 0.

Ezample. Suppose (u,v) — o(u,v) takes values in a fixed plane
7={pcR3|(p—po) - m=0}

Then (o0 — pg) -m = 0, hence 0y,0, L m so that n = +m and S = 0.
Thus every point is a flat point.

Problem 11. Prove that all points of a sphere of radius r > 0 are umbilics
and compute its Gauss curvature.
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Lemma. If (u,v) — o(u,v) has no umbilics then F = f = 0 if and
only if
0 =ny + K10y = Ny + K20y,

that is, the parametrization o diagonalizes the shape operator.

Proof. Clearly, if F'= f =0 then
S = (”01 ,32) with k1 =% and Ky = Z&.
Conversely, suppose that S = (%1 32) with k1 # K2; as S is symmetric
0= (Soy):ov —ou-(Soy) = (k1 — k2) F,
that is, oy, L 0y; hence f = —ny - 0 = k1 F = 0 as well. ]
Remark. In this proof we used the symmetry of S,
(Soy) - 0y = oy - (Sow),

to show that the curvature directions intersect orthogonally (if k1 # k2).
Def. (u,v)— o(u,v) is a curvature line parametrization if F' = f = 0.

Thm. Any surface (locally) admits, away from umbilics, a curvature
line parametrization.

Proof. ...is beyond the text — as for the existence of conformal para-
metrization. n

Problem 12. Find a curvature line reparametrization for the helicoid.

2.3 Covariant differentiation & Curvature tensor

Similarly to the normal connection of a curve we define a “connection”
for tangential vector fields of a surface:
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Def. Let (u,v) — &(u,v) be a tangential vector field along a surface
parametrization (u,v) — o(u,v), i.e., §(u,v) L n(u,v) for all (u,v).

VE = (d§)" = dg — (d&-n)n

is called its covariant derivative, V is the Levi-Civita connection of 0.

Lemma. The Levi-Civita connection satisfies the Leibniz rule,
V(a€) = da € + aV¢ for any function o,
and is metric,
d(&-n) = (V&) - n+&-(Vn).

Proof. The Leibniz rule: if « is some function and £ L n then

V(af) = daé + adé — ((daé + adf) -n)n = dat + aVE.
V is metric: if £, L n then

(V&) m+&-(Vn) =(d) - n+& - (dn) =d(§-n)

since (V) -n = (d§ — (d§ - n)n) - n = (d) - n. .

Remark. Since (o4,0,) is a basis of the tangent space {n}' at every
point we can write V¢ in terms of these basis fields. In particular, we can
write

V% 0w = ouww—en = TlLo,+T120,,
V% Oy = Ow—fn = rhau + r%z”’m ()
V% Oy = Opu—fn = rélou + Fglav,
V% Oy = Oyy —gn = rézgu + r%QO—'”'

Then, writing an arbitrary tangential vector field £ = aoy, + o, in terms
of the basis fields,

Va%g = (ay+all + 8oy + (Bu + ol + BT3) 0y, (+4)
Vo & = (ay+ally+ M) ou+ (By+al3, + BT3,) 0y
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Def. Ffj are called the Christoffel symbols of o.

Matriz representation. The covariant derivatives Vo and Vg are dif-

u B
ferential operators (not endomorphismsl!); nevertheless they admit a rep-
resentation using matrices: (%) reads

o a . rtor}
va%da((ﬂ)):da((%ﬁl) (%)) with Ty = (rg Fi)

and
r

Vo do((%)) = do((Z +T2) () with Ty = (F% %) :
and, in particular, with (g) = ((1)) and (g) = (?) the defining equa-
tions (x) are recovered.

k _rk
Lemma. Fi]. = rji'

Proof. This is because 0y, = 0y S0 that Vo 0, = Vo 0y. ]
v u
Lemma (Koszul's formulas).
1 1 2.
3Bu =B + FT3), F,—3E, = FT{; + G,
1p _ prl 2 1 _ pril 2 .
5B, = ETy, + FTe,, 5Gu = I, + Gl
Fy— 3G, = BT}, + FI,, 1G, = FI}, + G,

Proof. Multiplying the first equation of (x) by o, and o, respectively,
we obtain the first two equations:

Erl +Fr3, = ou-Vo ou = 10 (04 - ou),

Frh-i-Gl'%l = O'U~V%Uu = %(Uu-av)—gu Va oy
= %(au-av)—au Vav(ru
= (%(Uu'ffu)*%%(ﬂu ou)

The other equations are obtained similarly. [ ]
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Cor. The covariant derivative V depends on I only.

Proof. As EG — F? # 0 we can solve Koszul's formulas for the Ffj:

M _ 11 G —F Eu .
r2 ) 2EG-F?\-F E)\2Fu—Ev)’
the other Ffj's can be computed from I in a similar way. [ ]

Ezample. If (u,v) — o(u,v) is an isometric parametrization, that is,
E=G=1and F =0, then all Ffj = 0 by Koszul's formulas.

Problem 13. Compute the Christoffel symbols of a conformally para-
metrized surface.

Using the Levi-Civita connection we introduce the curvature tensor; as a
consequence of the previous corollary, it will only depend on I as well:

Def. Let (u,v) — &(u,v) be a tangential vector field along a surface
parametrization (u,v) — o(u,v) and define

RE:=Va Vo £ Vo Vs &
Ou Ov dv Ou

R is called the curvature tensor of .

Remark. This is a simplified version of the “real” curvature tensor (which
is sufficient in our setup of 2-dimensional surfaces though).

Lemma. The curvature tensor R depends on I only.
Proof. This follows directly from the corresponding property of V. m

Lemma. R is a skew symmetric tensor on tangent spaces, i.e.,
(R§)-n+&-(Rn)=0 and R(af) =aR¢
for any function (u,v) — a(u,v).

Proof. To see skew symmetry observe that
(I€P)ou =26 Vo Va € +2(Va €) - (Va £):
du Ov du v
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thus

0= (‘f‘z)mt - (‘flz)uv =2(-R¢
and
0=({+mn) R(E+n)—& RE—n-Rn=¢ - Rn+n-RE

To see that R is a tensor compute

R(a€) = awé+ avv%f + auv%f +QV%V%§

Qup§ —ayVa § —ayVa £ —aVa Va
— ke Do u v Du

Hence, clearly, R, .) € End({n(u,v}+). u

Lemma. R = p(oy A 0y) with some function p and
(ouNow)& = (& ou)ow — (£ 0p)Ou.

Proof. The vector space of skew symmetric endomorphisms on a 2-
dimensional vector space is 1-dimensional; as both (dy A 04) () 7# 0
and R,,,) are skew symmetric endomorphisms of {n(u,v)}* they must
be linearly dependent. [ ]
Matriz representation. By the previous lemma
Roy = —¢{Fo, — Eo,} and Ro, =—p{Go, — Fo,}
or, in matrix representation with respect to the basis (o, o),
~ (T T _ —F -G\ _ (0 —p E F

R (i) =o (5 %)= 8)(Fa)
On the other hand, by the definition of R and the matrix representation
for the covariant derivative,

Row = do((( + (55 +T2) = (5 + 255 + ) (5))
= (10(([_27;, =T+ [rlv r2]) ((1))) and
Ro, = da((r2u =T+ [rlv r2]) (?))

where [X,Y] := XY — Y X denotes the commutator; hence, in terms

of matrices,
R~Toy — Ty +[1,12]

and g can be computed from V and I and, consequently, from 1.
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Problem 14. Show that R = 12 oy N\ av if o takes values in the sphere

S2(r) of radius r > 0, i.e., if \(7|2 = 72, [Hint: compute Vo, directly
from the definition, using n = ira.]

2.4 Gauss-Weingarten & Gauss-Codazzi equations

Using the notions from the previous sections, fundamental forms and
covariant derivative, we can now formulate the structure equations for
the frame F := (o, 0,,n) of a parametrized surface:

Gauss-Weingarten equations. If (u,v) — o(u,v) is a parametrized
surface with Gauss map (u,v) — n(u,v) then

Ouu = V%au—i-en = Fhau + r%lav + en,
ow = Vaou+fn = rhow + o, + fn,
Opy = V%UUJrgn = r%zau + F%zav + gn;
and
ny = —Soy 7ﬁ{(GefFf)au+(Ef7Fe)av},
n, = =So, = —z57={(Gf—Fg)ou+(Eg—Ff)o,}.

Def. The covariant derivative of the shape operator S is defined by
(V8) & := V(5¢) - 8(V¢),

where £ is a tangential vector field.

Lemma. VS is a tensor, i.e., for any function (u,v) — a(u,v)

(VS)(ag) = a(VS)S.

Proof. This is a straightforward computation:
(Va S)(a) = Va (aS€)—SVa (af)
(Xu S§ +aVe S§ S(aué + uVa £)
= a(VaS)e
A similar computation works for “v@ S. [ ]

v
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Matriz representation. If ¥ = (2; ig) denotes the matrix of S with

respect to the basis (o, 0,) of the tangent spaces,

S¢ = do(% (§)) for & = acy + Bo, = do(($)).

)=+ (5)
5))

then
(Va8)s = do((Z + )= (

(e
du B
= do((Zu + [N, %)) (
and similarly for Vs S.
v
Thus Va_S|(y,v) ,V@ Sleu,v) € End({n(u,v)}") have matrix representa-
du !

tions Vd S‘ (uw) = (z +[r1 Z])' (u,v)
vd S‘ (u,v) = ():7’+[r2az])‘uv

Gauss-Codazzi equations. For a parametrized surface o
(G) Roy -0y = K (EG — F2) — Gauss equation,
(€) (Va_S)oy, = (Va S)o, — Codazzi equation.

u ov

Proof. First we consider the Codazzi equation:
(Vo S)ow = —(Va ny +5Va 0);
du u u

then Ny = Ny and oy, = 04y yields

Vo ny —Vanu}
)

v

m
Vo on =Va oy
ou ov

For the Gauss equation we investigate (o4 )uv = (0 )vu:

(U’U)’Uu = (VBB Oy +gn) = (VHB Va Oy +gnu)+()n
()uw = (Va oy + fn)y = (Va Va oy + fny)+ (o)
then

0=Roy -0y — (eg— fz) =Roy -0y — K(EG — Fz)
by taking the inner product of the difference with o,,. u
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Problem 15. Prove: for a curvature line parametrization the Codazzi
equation(s) reads

0= K1y + S5 (K1 — K2) = Koy — S (K1 — K2).
Gauss’ Theorema Egregium. K depends only on 1.

Proof. By the Gauss equation

K= 7 Roy - ou = Oy N UU)UU Oy = —0,

1 [ (
EG— EG-F?
where ¢ can be computed from the I'fJ and I, hence from 1. ]

Remark. Note that we have also shown that R = —K g, A 0.

Cor. If a surface admits an isometric (re-) parametrization then, nec-
essarily, K = 0.

Proof. For an isometric parametrization all Ffj =0, hence R =0 and,
consequently, K = 0. As the Gauss curvature is a geometric invariant of
a surface, K = K o ¢ for a reparametrization & = o o ¢, we have K =0
as soon as a surface admits an isometric (re-) parametrization. u

Problem 16. Prove: for a conformally parametrized surface the Gauss

equation reads 1
K=—55AME.

Def. A surface is called totally umbilic if every point is an umbilic.

Remark. We already know: if (u,v) — o(u,v) takes values in a sphere
or plane then it parametrizes a totally umbilic surface.

Thm. A totally umbilic surface is (part of) a plane or a sphere.

Proof. If (u,v) — o(u,v) is totally umbilic then, for all (u,v),

S(u,v) = I{(u7 U) id{n(u,ﬂu)}L
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and the Codazzi equation reads
0= (Va S)oy, — (Va S)ou = kuoy — Kyoy.-
ou v
Hence K, = ky = 0 so that kK = const.
If kK =0 then n = const and the surface is part of a plane.
If K = const # 0 then ¢ := 0o + %n = const and |0 — (:\2 = é showing
1

that o takes values in a sphere of radius ™ centred at c. ]

2.5 Fundamental Theorem

Recall. The Gauss-Weingarten equations read

_ 2 . _ 1 2
ouu = T10u+Ti00+en;, ow = Tou+TH00+ fn,
_ rl 2 . _ r 2
Ovu = 500 +T500+fn; ove = [0u+T500+gn,
Ny = 5110y + 5210y, —Ny = 8120y 1 5220y

Lemma & Def. F = (0y,0,,n) is called an (adapted) frame of the
parametrized surface (u,v) — o(u,v); the structure equations of F read

Fy=F% and F,=FV, (%)
with
M Ty —su Mo M —si2
S=(T% 13 —su| and W=|T2, 2, —s»
e f 0 f 9 0
Proof. (x) are just the Gauss-Weingarten equations. [ ]

Recall. The Gauss-Codazzi equations read
R=-Ko, Ao, and (Vo S)o, = (Va S)oy.
du v

Given I and T (or I and S), all data required to check the Gauss and
Codazzi equations can be computed: in matrix representation the Gauss

equation reads
R (1 28) = (5 8) (£ )
“\rap /) \-K 0 F G)>»
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where the r;; can be computed from the Christoffel symbols I'fj,
R Ty — 1y + [, T2],
hence from I by using the Koszul's fomulas

1 1 1 1
5 E. 5E. 5Ey Fy—5G
= (2% 27" ) and 1= (7" " 27" );
Fu—-1E, 1G. 1o,  1a

the Codazzi equation reads

Cu+[M2) (3) = o+ 5D (5) »

s -1
where ¥ = (:; ;;i) = (§ g) (; ]gc) is the matrix representing S.
Since r§1 = r’fz, ie, ((1)) =TI, (é) the Codazzi equation simplifies

to
52y + 182 = 810 + 251,

where s; ::Z(é) = (;;}) and s ::Z((l)) = (:g)

Lemma (Gauss-Codazzi as compatibility for Gauss-Weingarten).
Let (u,v) — ®(u,v),¥(u,v) be given; assume IX = II and Koszul’s
formulas. Then there is (locally) a solution (u, v) — F(u,v) € GI(3) of
the Gauss-Weingarten equations (x) if and only if the Gauss-Codazzi
equations are satisfied.

Proof . If the structure equations () hold then necessarily Fy, = Fyy,
hence 0= b, — W, — [, ], (x4)
conversely, if ® and W satisfy (%) then (by the Maurer-Cartan lemma)

there is (locally) a solution (u,v) — F(u,v) € GI(3) of the structure
equations (x).

We compute ®,, — V,, — [®, V] using IX = II, so that we have matrix
representations

I —s I —s
b= ((Isj)t 01) and ¥ = ((Isj)f 02) ,
to obtain

b, — V¥, — [®,V]
_ (Mo —Tou—[M1, M)+ (5155 —s28]) T (594 +T152)— (515 +T251)
- ((Ts1)}, —(Is1)tT2)—((Is2)}, —(Is2)tT1)  (Is1)s2—(Ts2)?s1 '
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Now
o (Isy)tsp — (Is2)'sy = silsy — shIsy = 0 by the symmetry of I;
o 5185 —sas) = (:;) (512, 822) — (:g) (s11,801) = (,OK 10<)
o (Isp)l, — (Is2)'T1 = (s2u + M182)' T+ 5 (I, — (IF1) — (IM1)*) and,
by Koszul's formulas, (IF'1) + (IF1)* = I, so that
(Is2)i, — (Is2)'T1 = (s2u + M152)'T
and, similarly,

(Isl)f] — (Isl)trg = (811; + rzsl)tl.

Thus
0 = o,—V, —[d,V¥]
_ ( —R-+(s155—s25{)1 (s2u+T152)—(s10+T281)
{(s10+T281) " —(s2u +T182) } T 0
if and only if the Gauss-Codazzi equations are satisfied. n

The following theorem is usually attributed to O Bonnet:

Fundamental Theorem for Surfaces. Suppose that
I=Edu?+2Fdudv+Gdv? and T = edu? + 2f dudv + g dv?,

I positive definite, satisfy the Gauss-Codazzi equations (G) and (C).
Then there is (locally) a parametrized surface (u,v) — o(u, v) with I
and Il as its first and second fundamental forms.

Moreover, the surface is unique up to Euclidean motion.

Remark. Note that, in contrast to the corresponding theorem for curves,
we need the integrability conditions (C) and (G) to be satisfied as a
necessary (and sufficient) conditions for the existence of o.

Proof. With the matrix ¥ = I7MI of the shape operator and using
Koszul's formulas the Gauss-Weingarten equations () can be formulated.
By the above lemma, the Gauss-Codazzi equations are then sufficient to
ensure local existence of a solution (u,v) — F(u,v) € GI(3).
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By the uniqueness statement of the Maurer-Cartan lemma, such a solution
F is unique up to post-composition with some constant A € GI(3).

Since l'ffj = I'?fi and I is symmetric, We; = ®ep; hence, by the Poincaré
lemma, there is a (regular) map (u,v) — o(u,v) with

o, =Fe; and o, = Fey.
Clearly, o is unique up to translation.

We seek: o has first fundamental form I and Fe3 is a unit normal field.
Now

() (32) P = ey (M) P o
by Koszul's formulas, and similarly for the v-deritative, so that
(Ft)—1 ((IJ ?) Fl=const = F'F= ((I) (1))
as soon as we choose F to satisfy this equality at an initial point (o, vo).
This choice makes F' unique up to post-composition with A € O(3) since
F'F = F'F = FTA'AF = A'A =idps.
We seek: n := Fes is the Gauss map of 0. By the above choice Fes is
already a unit normal field; hence all we ask is
det F' = det(oy, 04,n) = (04 X 0y) -1 > 0.

As det I’ does nowhere vanish this can be achieved by possibly post-
composing F' with a reflection.

This further choice makes F' unique up to post-composition with constant
rotations A € SO(3).

Finally, we seek: II is the second fundamental form of o. This follows
now directly from the construction of ® and W since

ny, = Fde3 = (0y,04,1) (751) , ny = FWVes = (0y,0,,n) (7692) .

Finally, after the above choices, o is unique up to Euclidean motion,
o — Ag + c with A € SO(3) and ¢ € R3. L]
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3 Curves on surfaces

3.1 Natural ribbon & Special lines on surfaces

Let U > (u,v) — o(u,v) € R® be a parametrized surface. Then
t e y(t) = o(u(t),v(t)), where Vt: (u?4v"2)(t)#0,
defines a curve on the surface o(U) C R3: since I is positive definite
0=y = |owu' +o,v'|? = Eu? 4+ 2F u'v' + G o'

implies u’ = v’ = 0; hence u'? 4+ v2 # 0 ensures that  is regular.

Example & Def. For a parametrized surface (u,v) + o(u,v), the

curves to(u+t,v) and t+— o(u,v+t)

are called the parameter lines of o.

Now consider a curve y(t) = o(u(t),v(t)) on a parametrized surface o;
the Gauss map of (u,v) — o(u,v) defines a canonical unit normal field

i N(E) = n(u(t). o(8)) = (2222 (u(t), v(1))
along v — hence we obtain a natural ribbon (v, N):

Def. If t — ~(t) = o(u(t),v(t)) parametrizes a curve on a surface
then £ N(£) = n(u(t), o(t))
defines the natural ribbon (v, N) of 7. The curve ~ is called
e an asymptotic line if (v, N) is an asymptotic ribbon, i.e., ky = 0;
e a pre-geodesic if (v, N) is a geodesic ribbon, ie., kg = 0;
e a curvature line if (v, N) is a curvature ribbon, i.e., 7 = 0.
Problem 1. Suppose a surface is given implicitely by F(z,y,z) = 0 so
that grad F(z,y, z) # 0 whenever F(z,y, z) = 0. Show that the natural

ribbon of a curve ¢ — ~(t) on this surface, i.e., F oy =0, is given by

_ grad Floy __ _grad Foy
N= +|grad Fovy| or N= | grad Fory|*
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Use this to prove that ¢ — 4 (t) = (1,t,+t) are asymptotic as well as
pre-geodesic lines, but not curvature lines on the 1-sheeted hyperboloid
given by 22 4+ 3% — 22 = 1.

Problem 2. Prove Joachimsthal's Theorem: Suppose that two surfaces
intersect along a curve and that the curve is a curvature line for one of
the two surfaces; then it is a curvature line for the other as well if and
only if the two surfaces intersect at a constant angle.

Rodrigues’ equation. t — () = o(u(t), v(t)) is a curvature line iff
0= (dn + rdo)(%)),
where k(u,v) is a principal curvature of o at (u,v) = (u(t), v(t)).

Proof. t — ~(t) is a curvature line iff the torsion 7 of the natural ribbon
(v, N), where t — N(t) = n(u(t), v(t)), vanishes, that is, iff
0 = ViN
N+ k'
= (nuu +nyv') + kn (ot + opv’)
= (dn+ kndo)( g; );
on the other hand, dn = —S o do, so that Rodrigues’ equation holds

!
iff k5 is a principal curvature and do( 7, ) the corresponding curvature

direction. -

Remark. Thus (u,v) — o(u,v) is a curvature line parametrization, that
is, F = f =0, if and only if the parameter lines are curvature lines.

Example. We determined the Gauss map of a surface of revolution earlier:
(u,v) = o(u,v) = (r(u) cosv, r(u) sinv, h(u)),
(=h'(w) cos v,—h' (u)sin v,r’ (u))
V(22 ()
=0

hence

(u,v) = n(u,v) =

Thus ny + n' o

v Sy
so that the parallels t — p(t) = o(u,t) of the surface of revolution
are curvature lines. As the meridians t — p(t) = o(t,v) intersect the
parallels orthogonally, oy, - 0, = 0, they must be curvature lines as well.
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Lemma. The normal curvature of a curve t — ~(t) = o(u(t),v(t)) on
a surface is given by , ,
v ):(57))
’ ul .
()

E
Tz

v

Proof. The normal curvature of the natural ribbon (v, N) is given by

fn= g TN =gy N
with
W2 = |ou’ + o2 = Eu? +2F /v’ + Go2 =1((%), (%))
and
YN = (oyu +o,0") - n

= (w4 20tV + 0pp0"?) 0+ (ouu” + o) - n
= eu’2/+2f1,/v/+gu’2 5
= () ()

which proves the claim. [ ]

Remark. The normal curvature k,, of a curve on a surface only depends
on the tangent direction of the curve (and not on u” or v”). Thus we
also speak of the "normal curvature k,, of a tangent direction”.

Euler’'s Thm. The normal curvatures ky at a point o(u,v) satisfy
kn(9) = k1 cos2 9 + Ky sin® ¥,

where k; are the principal curvatures and 1 is the angle between the
tangent direction of ky(¥) and the curvature direction of ;.

Problem 3. Prove Euler's Theorem. [Hint: show that you can choose a
basis (e1,e;) of R? so that d(,,)0(e;) are curvature directions of o at
o(u,v) and so that it is orthonormal w.r.t. L(u,v). hence orthogonal w.r.t.
I(,,y); then consider ey = e cos¥ + exsind ]
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Cor. The principal curvatures can be characterized as the extremal
values of the normal curvatures at a point of a surface.

As another application of the above lemma we obtain a characterization
of asymptotic lines:

Cor. t — ~(t) = a(u(t),v(t)) is an asymptotic line iff
(5 ), Z:)) =0 < eu?+2fuv +gv?=0.

Example. Circular helices as asymptotic lines on the helicoid. For
the helicoid (u,v) — o(u,v) = (sinhucosv,sinhusinv,v) we computed
earlier
Iy 0) = —2dudv;
hence, for r := sinh u, the circular helices
t— y(t) = (rcost,rsint,t) = o(u,t)
are asymptotic lines since g = 0.

Problem 4. Fix a point o(u,v) on a parametrized surface. Prove that no
asymptotic line can pass through o(u,v) if K(u,v) > 0; if K(u,v) <0,
then an asymptotic line can pass through y(u,v) in two different (inde-
pendent) directions. What can be said in case K (u,v) = 07?

3.2 Geodesics

Geometrically, geodesics can be thought of as the shortest possible curve
on a surface between two points (at least locally); equivalently, they can
be characterized as the “straight lines” in the surface, i.e., those which
are not curved: x4 = 0. This is what we call “pre-geodesics”.

From a physics point of view, one may think of a geodesic as the path of
a particle on a surface which has no forces acting on it (besides the one
keeping it on the surface), i.e., it has “no acceleration inside the surface”
and it is only accelerated normal to the surface. Thus, additionally to not
being curved (inside the surface), a “geodesic’ does not change speed:
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Def. Let (v, N) be the natural ribbon along a curve on a surface and
let t — &(t) L N(t) be a vector field along ~ tangential to the surface.

Be=¢ —(¢-N)N

is called the covariant derivative of § along the curve and ~ is called a
geodesic if

@' =

Example. Circular helices as geodesics of a cylinder. Let
(u,v) = o(u,v) = (rcosv,rsinv,u)

parametrize a cylinder of radius r > 0; its Gauss map is
(u,v) = n(u,v) = —(cosv,sinv,0).

Thus, for a circular helix

t — v(t) = (rcost,rsint, ht) = o(ht,t)

we find
%fy’:’y”f(’y"-N)N:errN:O

so that 7 is a geodesic of the cylinder.
Remark. Writing v(t) = o(u(t),v(t)) and®) £ = aoy, + Bo, we find
%5 = do, + a(u’V%au + ’U'V% o)
+ Bloy+ /B(u/v% oy + /U/V% o)
= {o/ +a(uTTh +0'Th) + BT +v'T1)} oy
+ {8+ a3 +v'T2) + B3 +v'T%,)} o
in particular, %5 can be computed from I alone.
With £ =+ = u/oy, + vy, we see that 7 is a geodesic iff
0 = o’ +Thu?+2rhu'v + F§2v’2
0 = v” + F2 u'? 4 2F22u’v’ + 2,072,

*) More precisely, t — &(t) = a(t)ou(u(t), v(t)) + B(t)ow (u(t), v(t)).
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Thm. Given a point pg = o(up,vg) on a surface and a tangent direc-
tion to L n(ug,vo) at po, there is a unique geodesic y with

v(0) =po and +'(0) = to.

Proof. Write v(t) = o(u(t),v(t)) and to = agoy (ug, vo) + Boow (ug, vo).

With w = (u,u/,v,v’) the equations (x) for v to be a geodesic form a
system of ODEs of the form w’ = f(w), where f is differentiable:
wy = w2,

why = =T} (w1, w3)wl — 2k, (w1, w3) wows — My (w1, w3) w2,
wh = ws,

;o 2 2 2 2 2
wy = —T(wi,ws)ws — 20, (wi, ws) waws — 5, (wr, w3) wy.

Hence, the sought geodesic is obtained from a solution of the initial value
roblem

P w' = f(w). w(0) = (uo, a0, 0, fo),

and the claim follows from the Picard-Lindel6f Thm (1st special case). m

Problem 5. Find the geodesics + of a plane 7 C R with v(0) = pg € .
Thm. Geodesics are the constant speed pre-geodesics.

Proof. Let (v, N) be the natural ribbon of ¢ — ~(t) = o(u(t),v(t)).
Asy" =3y + (" N)N
SR =A A=A B
and, by the structure equations for ribbons,
_T/(TxN) _ det(N,T,T') _ det(Ny'y'") _ det(N', 2+)
R4 o [v1 - VT3 o 4K
Thus, if v is a geodesic, %'y’ =0, then |y| = const and k4 = 0.

kg =

Conversely, suppose that |7/|? = const and r, = 0. Then
N by definition of T
Dyl dy since Y| = const,
N x~' since kg =0;
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hence 2+’ =0 and ~ is a geodesic. n
Remark. As £~/ can be computed from I alone, so can geodesics and
LEMAark. aY P g
geodesic curvature. In particular,
VEG—F? det (u u +I'%1u/2+2l'i2u v +I’22v )
3 2 2 2 2 2
vV Eu24+2Fu/ v/ +Gv’? ol v T a4 2T u v T, o

Thm (Clairaut’s theorem). For a geodesic on a surface of revolution
the product

Rg =

r sinf = const,

where r = r(s) is the distance from the axis and § = 0(s) is the angle
that the geodesic makes with the meridians.

Proof. Let s — 7(s) = (r(s) cos ¢(s), r(s)sin¢(s), h(s)) be a geodesic
on a surface of revolution, wlog., arc length parametrized.

We denote cost —sint 0
ay (5) — (smt coost ({) ’Y(S);
note that s — a¢(s) is an arc-length parametrized geodesic for each ¢.
Further let
. o]
X(s) = &, gels) = es x y(s),
where e3 = (0,0, 1) spans the axis of the surface of revolution. Then

rsing =rcos(§ —0) = yeX = (aéat 6tat)\t 0,

and
a0 a a 0 a 10 (0 9 _
75 (Fs0 - grou) = G55 grou + 35 (gsae - gzan) =0
~—— —_——
[|n 1n =1

hence rsin 0 = const.

Remark. Note that Clairaut’'s theorem provides a necessary condition
for a geodesic, not a sufficient condition: there are curves satisfying
Clairaut's relation rsin = const that are not geodesics.

Ezample. Let pg € S? and t L pg be a unit tangent vector at pg, then

s+ y(s) = pocoss + tosins
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is the geodesic with (0) = pg and 7/(0) = o since 4"/ = —v so that
7 =-7+7=0 and ¥(0)=po, +'(0)=to.

Now consider S2 as a surface of revolution with the z-axis Rejs as its axis
of rotation; then

. ".(e3x " .(e3x
r=les x| and sind = LRl =
so that rsin@ =’ - (e3 x ) = det(es,y,~’) = det(es, po, to) = const.

Thus, when e3 is not in the plane of the geodesic, the geodesic becomes
horizontal where the distance from the axis is the smallest and it is steep-
est where it crosses the equator.

Note however that the curves z = const # 0 are not (pre-) geodesics on
52, even though 7sinf = /1 — 22 - 1 = const.

Problem 6. Let (u,v) — o(u,v) = (r(u)cosv,r(u)sinv, h(u)) be a
surface of revolution. Prove that:

(a) if a parallel t — o(u,t) is a geodesic then we must have r’(u) = 0;

(b) if 2 + h'2 = 1 then the meridians t — o(t,v) are geodesics.

3.3 Geodesic polar coordinates & Minding’'s theorem

Let ¥ C IR® be a surface, pg € X and let T(pg) denote the tangent plane
of ¥ at pp. Now choose an orthonormal basis (e1, e2) for T (po), that is,
orthonormal vectors so that

T(po) = po +span{er,ex} = {po + Ae1 + pe2 | A, € R},
and let 7y denote the unique geodesic in ¥ with
v9(0) =po and 77’9(0) = ejcost + epsind.

There is € > 0 so that all vy are defined for |t| < ¢ — hence we can use
the vy to (locally) parametrize X:
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Def. We say that (r,¢) — o(r,9) := vy(r) is a parametrization by
geodesic polar coordinates around pog.

Remark. o is not regular for r = 0 since o(0,1) = pg for all ¥; however,
it is regular for (r,9Y) € (0,¢) x R for some ¢ > 0.

Problem 7. Parametrize S?(R) = {(x,y,2)|2? + y* + 22 = R?} by
geodesic polar coordinates around pg = (0,0, R). Compute the metric.

Lemma. In geodesic polar coordinates (r,),

I=dr? +Gd? with VG|.g=0 and 2G| _o=1.

Proof. First observe that o(0,9) = pg for all ¥, hence oy|r—g = 0.
E = 1. vy is arc-length parametrized, hence E = |o,.|*> = |'yl/9\2 =1
F =0. oyly=0 =0, hence F|,—0 = 0 - 0y|r=0 = 0; moreover
F.=0p 09 +0p-0p9 =009+ %Eﬁ =0
since oy = 24/ +..N. So, 7 — F(r,9) = 0 for all 9.

\/é‘r:o =0. 0'19‘71:0 = O, hence G‘T:o = ‘019|2|1~:0 =0.

6(,‘,/?\7}:0 = 1. We take it for granted that aﬁ‘/ré\,,':o exists and # 0.

Then o o
VG), r=0 _ 2v/G lr=0 — 2(V/G), lr=0
by de I'Hospital’s rule and, as oy|r—0 = 0 and \%%’9(0)\2 =1,
%GTT —0 = (07'7'19 COY9 + O - J'r"0)|T:0 =1
VG — /Grr —
Hence Z3- . o = 1. [ ]

Problem 8. Prove: K = —

% in geodesic polar coordinates (r, 7).
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Cor. Geodesics are (locally) the shortest curves between two points.

Proof. Let pg,p € ¥ be two points so that p is in a geodesic polar co-
ordinates neighbourhood of py, i.e., (r,9) are geodesic polar coordinates
around py and p = y9(R) = o(R, ©) for some R and ©.

Let t — ~(t) = o(r(t),9(t)) be a curve with 4(0) = po and (1) = p,
hence r(0) = 0 and (1) = R; then its length

fo || dt = fo w/r’2+Grz9)z9’2dt>f ' dt =

with equality iff ¥/ =0 and ' > 0, that is, iff y =yg o 7. L]

Cor (Minding’s theorem). Any two surfaces with the same constant
Gauss curvature are locally isometric, i.e., there are local parametriza-
tions o and o2 so that their first fundamental forms I' = 12,

Remark. Gauss Theorema egregium says: two isometric surfaces do
necessarily have the same Gauss curvature; Minding's theorem says: for
surfaces of constant Gauss curvatures this is also sufficient.

Proof. In geodesic polar coordinates (r, 9),
I=dr?+Gdv?* with VG|,—o=0 and (\@)T\Tzo =1
and from the Gauss equation and Koszul's equations

VG)rr
Ja
Thus, if K = const then G satisfies, for fixed ¥, the initial value problem

0=(G)mw +KVG, 0=vVG|—g and 1= (VG),|r=o,
which has a unique solution
1 . .
TR sin(vVKr) if K >0,
G(r,9)=<r if K =0,
\/;K sinh(v—Kr) if K <O0.
Hence the metric I is uniquely determined by K and parametrization by

geodesic polar coordinates shows that any two surfaces with the same
constant Gauss curvature are isometric. ]

K=-
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4 Manifolds

We have already seen some problems with our definitions of curves and
surfaces: for example,

(1) a hyperbola does not qualify as a curve (according to our definition)
as it consists of two components, hence cannot be parametrized by
a single regular (hence continuous) map defined on an open interval;

(2) the sphere S? does not qualify as a surface since there cannot be a
(regular) parametrization of all of S? defined on an open connected
subset U C R? (by the “hairy ball theorem”).

The notion of a k-dimensional submanifold of R™ (“curve” if k =1 and
“surface” if k = 2) resolves this problem — at the cost of introducing
another restriction, which can in turn be resolved by the notion of an
“immersed abstract manifold”. At the same time, the following discus-
sions will shed light on the notion of “local” (as opposed by “global”),
used previously in this text in an informal way.

Different characterizations for submanifolds will also provide criteria which
allow to pass from an implicit representation of a curve or surface to a
parametric description, and vice versa — at least theoretically.

1 Submanifolds of R

There are several equivalent definitions/characterizations of submanifolds
in Euclidean space:

Def 1. “A submanifold can locally be flattened”;

M C R" is called a k-dimensional submanifold of R™ if:

for every p € M there is a diffeomorphism ¢ : U — U between open
neighbourhoods U, U € R™ of p and 0, respectively, so that

oM NU)=0Un(RF x{0}), where R"=RFx R"*.

Def 2. “A submanifold is locally a level set (defined by equations)”;
M C R"™ is called a k-dimensional submanifold of R™ if:
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for every p € M there is a submersion F : U — R"* from an open
neighbourhood U € R™ of p to R*™* so that

MNU = F1({o}).

Remark. In Def 2, it is sufficient to require d,, F' to surject for all p € M:
if dpF surjects then, by the Inertia principle (¢ — dgF is continuous),
there is a neighbourhood U C U of p so that d4F' surjects for all ¢ € U.

Def 3. “A submanifold can locally be parametrized”;
M C R"™ is called a k-dimensional submanifold of R™ if:
for every p € M there is an immersion f : V — U from an open
neighbourhood V' C RF of 0 to an open neighbourhood U C R™ of p
50 that
50 tha MAU=f(V)and f:V 5 MNU
is a homeomorphism (using the induced topology on U N M).
Remark. f being an immersion excludes “kinks”; injectivity of f excludes
self-intersections and continuity of the inverse excludes “T-junctions”.
Proof. (Equivalence of the three definitions). Throughout the proof we
write 7 : R = RF x R"™% — RF, (z,9) = z;

T R*"=RF xR % 5 R*™F  (z,9) =y
1 = 24 3. First note that Def 1 easily implies the other two:
(2) for a submersion whose level set is M N U let

F:=mop:U— Rk,
(3) for a local parametrization let V = 71 (T7) € R and
f=¢ Yy:V=UcR"

Conversely:
2=1 let F: U — R"* be a submersion so that U N M = F~1({0})
and choose an orthonormal basis (t1, ..., t;) of kerd, F C R". Define

0:U—=RFXxR"™F=R" q—o0q):=(q t1,...,q t, F(q)).
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Now d,F(v) =0 = v = Zle(v -t;)t;, hence dpp(v) =0 = v =0.
Consequently d,¢ : R™ — R" is invertible and, by the Inverse mapping
theorem: after possibly making U smaller,

(i) ¢ : U — R™ injects (so that ¢ : U — ¢(U) is invertible);
(i) U := o(U) C R™ is open;
(iii) ¢=1: T — U is continuously differentiable.
In other words: ¢ : U — U is a diffeomorphism.
Finally,
geMNU & F(g)=0 & o(q) € Un(RF x{0}).

3=1. let f: R* DV — U C R" be a local parametrization and
choose a basis (n1, . ..,n,_1) of (dof(IRF))L C R™. Define

_ -k
V x Rk 3 (1'71/) = Q(I,y) = f(CC) + Z?:l yen € R™.

Now dgg ~ (ﬂ(O),.‘.,%(0),7”,.‘.,71”,;6) cRF x Rk 5 R" is

oz
invertible; hence, by the Inverse mapping theorem, g has a local smooth
inverse s o
¢ = (glg) " 9(U) = U.

Wiog g(0) € U; as f(m1(T)) € M is open we may assume U = g(0)
by possibly making U smaller. Hence

geUNM & FrxemU)CV:q= f(z)=g(z,0)
& pla) = (2,0) € TN (RF x {0}).

Problem 1. Use the Implicit mapping theorem to show directly that an
implicitely defined submanifold (Def 2) has local parametrizations (Def 3).
[Hint: write R™ = kerd, F x (kerd,F)*]

Examples.

(1) Plane. 7 = {p € R?|p-n = d} is a 2-dimensional submanifold of

R3: with
R¥3>p—F(p)=p-n—decR
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7= F71({0}) and v+ d,F(v) = v - n surjects as d, F(n) # 0.
(2) Sphere. S? = {p € R®||p|? = 1} is a 2-dimensional submanifold of
R3: taking
R\{0} 5pr F(p):=p’ ~1€ R
52 = F~1({0}) and F is a submersion, i.e., v — dpF(v) = 2v - p
surjects for all p € R3\ {0}, since d, F(p) = 2|p| # 0.
(3) Hyperboloids. Hy = {(x,y.2) € R*[(£)* + (£)* — (£)> = £1}
are 2-dimensional submanifolds of R3: here we take
Fi(r,y,2) = (82 + () - (P F1
hence Hy = F:t ({0}) and grad Fi(z,y,2) =2(%5, %, 5) # 0 as
soon as (z,y,z) # (0,0,0). Hence, in order to obtain submersions,

we set U=R3\{0}, Fi:U—R

Problem 2. Let Fy,F> : R3 > U — R with (grad Fi x grad F5)(p) # 0
for all p € U. Prove that the equations Fi(p) = F>(p) = 0 define a
1-dimensional submanifold of R3. Hence show that the conic sections

Co = {(2,y,2)|2® +9y? = 2%, xcosa+ zsina = d},
where o € R and d # 0, are 1-dimensional submanifolds of R3.

Ezample. Gerono’s lemniscate is a curve in the plane R? defined by the

t
equation 2t — 2?4 y? = 0;

a regular (check) parametrization is given by

t— (2(t),y(t)) =sint (1, cost).
This curve has a self intersection at (z,y) = (0,0) < ¢ = kn, k € Z,
hence is not a 1-dimensional submanlfold.

Problem 3. Prove that Gerono's lemniscate is not a submanifold.

Remark. Note that the definition of a k-dimensional submanifold ex-
cludes self-intersections — which may be undesirable in some contexts.

Problem 4. Prove that SO(3) C M(3 x 3, R) = R? is a 3-dimensional
submanifold. [Hint: Sym(3) = {A € M(3 x 3, R)| A* = A} =~ RS ]
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Def. The tangent space of a k-dimensional submanifold M C R" at
p € M is the k-dimensional subspace

T,M = d, f(R*) C R",
where f : R¥ 5V — R" is a parametrisation of M around p = f(z).

Remark. Ty, M is independent of the choice of local parametrisation:
if f:V — R™is another local parametrisation around p = f(:i) then
f = f o u with a diffeomorphism 1 : V' — V so that 2 = pu(&); hence

dz [(R*) = d f(dzi(R")) = o f(RF).
Remark. If M = F~1({0}) is defined as a level set of a submersion
SRS T,M = ker d, F.
Namely, F'o f = 0 for a local parametrisation f around p = f(z) so that
dpFod,f=0 = T,M C kerd,F,
then dim 7}, M = dim ker d,, F" implies T, M = ker d,F'.
Ezample. The tangent space of O(3) = {4 € GI(3) | F(A) = 0} with
F:GI(3) = Sym(3), A F(A) = A'A —idps
at A € O(3) is the 3-dimensional subspace
TAO(3) = kerdaF = {X € gl(3)| A71X € o(3)}.
Note that T450(3) = T4O(3) for A € SO(3).

2 Functions on submanifolds

Now that we have described submanifolds M C R™ and, in particular,
curves and surfaces in R? as subsets of the Euclidean ambient space it
becomes necessary to discuss analysis issues: previously, functions, vector
fields, etc, were defined on a parameter domain, that is, an open subset of
IR or R? and it was clear what, for example, differentiability meant; now
the situation has changed and the domain of a function on a submanifold
is no longer an open set in R™, making it necessary to revisit basic notions
of analysis. The key idea is to define the derivative so that the chain rule
holds:
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Def. A function ¢ : M — R on a submanifold M C R" is said to be
differentiable at p € M with derivative

dpp :=do(po f)o(dof) L : dof(R¥) =T,M - R

ifoof : RF % V — R is differentiable at 0 for some local parametriza-
tion f:V — M of M around p with p = f(0).

Remark. This definition makes sense as differentiability and derivative of
© do not depend on the choice of parametrization: if f=fotisa local
reparametrization around a point p € M then ¢ is a diffeomorphism,
hence p o f = ¢ o f o1 is differentiable as soon as o f is.

Remark. This definition has an obvious generalization to R™-valued
maps, hence to maps between submanifolds of Euclidean spaces.

Remark. If & : R™ — R is differentiable and M C R™ is a submanifold
then ¢ := ®|5; : M — R is differentiable with

dp@ = dpq)'Tp,M : ijw — R.
Namely: ¢ is clearly differentiable as ® o f is for any parametrization f;
moreover, if v = dg f(w) then

dpp(v) = do(p © f)(w) = do(® o f)(w) = dp®(v).

Def. Let ¢ : M — IR be differentiable; the gradient of p at p € M is
the unique vector grad p(p) € T, M with

Yo € TyM : dpp(v) = v - grad ¢(p).

Ezample. Consider a parametrized surface (u,v) — o(u,v) € R® with
first fundamental form I = E du? + 2F dudv + G dv?; let

Tu = B FZ(GO'U Fo,) and o} = ﬁ(—FUU-‘rEov)

and note that o - 0y, =0}, - 0, =1 and o3, - 0, = 0}, - 0, = 0. Hence,
if o : M =0o(U) — R is differentiable and v := p o 7, then

Gy —F1poy Epy—Fipy
(grad @) o 0 = Yy 05 + Yyoy = EG F"”zb ou + chﬁzb Oy-
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Problem 5. Prove the Lagrange multiplier theorem: if M = F~1({0})
is a surface in R3 and ® : R® — R is differentiable then p € M is a
critical point (hence candidate for an extremum) of p := ®|5; : M — R
iff there is A € IR so that (X, p) is a critical point of

Rx R33 (\p)— &(p) — A\F(p) € R.

After fixing the idea of how to differentiate functions on a submanifold,
hence also vector fields, it is fairly straightforward to carry over most
notions developed for curves and/or surfaces to submanifolds, such as
the first and second fundamental forms, the shape operator, covariant
derivative (the curvature tensor will become more complicated when the
manifold has higher dimension though). For example:

Def. Let & be a tangential vector field, i.e., £ : M — R'™ differentiable
so that {(p) € T, M for all p € M, and let v € T, M ; then

Villp = (do(€ o F)(w))",
where f is a local parametrization of M around p with f(0) = p
and do f(w) = v; as usual, (..)T denotes the tangential part, i.c., the
orthogonal projection R"™ — T), M onto the tangent space.
V is called the Levi-Civita connection of M.

This also yields a notion of second derivative for functions:

Def & Lemma. The Hessian
TpyM x T, M 3 (v,w) — (hess )|, (v, w) = w - Vy(grad )|,

of a smooth function ¢ : M — R at p € M is a symmetric tensor.

Proof. Clearly, hess ¢ is a tensor.

To see symmetry let f be a local parametrization around p and compute
s ae (o f) = g5 (& gradg)o f)

{(Ve; &) -grad o+ &5 - (Ve, grad )} o f

= {dp(Ve;&;) + hess (&, &)}t o f,
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where we let §; o f = %f Clearly the left hand side is symmetric in 4

and j and*), as in the case of surfaces,

(Vgifj — ng fz) of = (8% rn f- a('“) ' )T =0.
Hence hess ¢(&;,&;) = hessp(&;,&;) for i,j € {1,...,k} showing that
hess |, is a symmetric bilinear form on every tangent space T, M. ]

Remark. From the above computation we see that the Hessian is the
covariant derivative of de:

hess (&, m) = (Vedp)(n) = d(de(n))(&) — de(Ven)-
Note that the Hessian depends on the covariant derivative, hence on the
induced metric: not just on the differentiable structure on M.

However, if p = f(x) is a critical point of ¢, i.e., grad ¢(p) = 0, then
9 0
hess ¢|p(&i(p), & (P)) = B ij o f)()
can be computed without reference to the covariant derivative or induced
metric — hence providing a simple(r) criterion to detect local extrema.

Poincaré lemma. A tangential vector field & has a local potential ,
ie., locally ¢ = grad ¢, if and only if (v,w) — w - V¢ is symmetric.

Proof. We have seen above that symmetry of (v,w) — w -V, is a
necessary condition for £ to be a (local) gradient vector field, £ = grad ¢.

To see that it is also sufficient we use a local parametrization f and
R - Of . . .

employ the above notation §; o f = z=-: thus given £ we are seeking a
function ¢ = p o f with

oY

g =(&-9of.
Now, as above

296 -9 0 /) ={(Ve, &) £+ & - (Ve )b o f,

which is symmetric in ¢ and j as soon as &; - (V¢ §) is — hence the
Poincaré lemma in R* yields the result. [ ]

*) This is, V is a “torsion free connection”.
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Def. The Laplacian of ¢ on M is defined by

Ay = trhessy,
where trace is taken with respect to the first fundamental form, that
is, with an orthonormal basis (ey, ..., ey) of T,M

trhess p|, = Z]’:l hess |, (e;, ;).
A function ¢ : M — R is called harmonic if Ap = 0.

Remark. First note that the trace of a bilinear form 3 can be computed

as
tr B = B(w1, w) + Bwa, wy)
with “dual bases” (wr,w2) and (wf,w}), i.e., w} - w; = d;;: writing
both bases in terms of an orthonormal basis (which is “self-dual”),
-1
_ ai] a _ ai] a
(s, 02) = (en,e2) (32 42) and (w3 = Cenea) (13 22)

the above formula for the trace of 3 is readily verified.
Now consider a parametrized surface (u,v) — o(u,v); to compute the
Laplacian of a function ¢ : M = o(U) — R write W := VEG — F? and
GYu—Fipy oy + EYy—Fipy o0

w w w W

(gradp) 0 0 = Yyoy, + hyoy =

employing our previous notations. From Koszul's formulas we find
FEy—E EGy—FE
Vo, R = EhmEte s EGmeie — o,
a.

0 Vo, T +oy

* g _ GE. FG FG, GE .
on Vo, ¢ +05 Vo, 5 = SEfCu FCGu_GE, 0

hence G u—F b Evy—Fipu
(Ap)oo = W{( 2 ¥ Yu + ( ww S )}
This is often called the Ldpldce—Beltrami operator.

Problem 6. Let (r,9) — o(r,9) be a parametrization by geodesic po-
lar coordinates and suppose that the induced metric is rotationally sym-
metric, Gy = 0, and has constant Gauss curvature K. Determine all
rotationally symmetric (i.e., ¥y = (¢ 0 o)y = 0) harmonic functions .

Ezample. Let M? C R3 be a 2-dimensional submanifold in R3 and
denote the inclusion by ¢ : M2 — R3, p+ 1(p) = p. Then

too=o0 and dypt =dgy(L00) o(dyo)™t = id7, m



3 Vector fields & Flows 60

for a (local) parametrization o : R? >V — M? C R3 of M?. With our
previous notation for the covariant derivative (along o)

el
V%ozj = Vai” (&5 00) = (Vg &) 00, where & oo = 350
so that, with the Gauss map n of o,

(hess (6.6) 07 = o i — (Ve, ) 00 = T 7).

i

Hence
(At)oo = (trhesst) oo = (tr M) n = (trS)n = 2H n,

that is, the mean curvature H of any parametrization of M? vanishes if
and only if the inclusion ¢+ : M? — R3 is harmonic.

3 Vector fields & Flows

Knowing the velocity vector field of a flow on a surface or in space it
is possible to predict the paths of particles dropped into the flow: an
obvious example is a paper boat dropped into a brook, where the stream
can be obstructed by stones or little islands. This circle of ideas shall be
made precise here.

Def. Let § be a (tangential) vector field on a (sub-)manifold M C R™.
A curve v : I — M on an open interval I C R is an integral curve of
¢if /

v =80y

it is maximal if v cannot be extended as an integral curve of &.

Remark. We do not require regularity: for example, if £ = 0 then every
integral curve of £ is constant.

Lemma. Through any point p € M passes a unique maximal integral
curve of a given (smooth) vector field & on M.

Proof. We only need to prove local existence and uniqueness.
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Thus let f: V — M be a local parametrization of M around p = f(zo);

M o= dfoy, e, Vo eV E(f(2) = dof (y(x)),
with a vector field y on V C R¥; the ansatz v = f o x then yields
7 =€foqy & ' =youx
since dpf : RF = T,V — T'y(2yM is an isomorphism for every z € V.

Now the claim follows from the Picard-Lindelof theorem: the initial value
problem

' =youx, z(0)=umx
has a solution = : J — V on some open interval J with 0 € .J, which is
unique up to extension. ]

Remark. Note the difference with the differential equation for geodesics:
here the derivative of the curve is given, whereas it was part of the un-
known data in the case of geodesics.

These constructed maximal integral curves of a vector field £ can be
assembled into a single map:

Thm & Def. Given a tangent vector field £ on a (sub-)manifold M,
its maximal flow is the unique smooth map

O W = M, (t,p) — P(p)
on an open neighbourhood W of {0} x M C R x M so that
(i) ®o =idps;

(it) Ip :={t|(t,p) € W} is an open interval about 0 for each p € M,
and

(iii) Ip >t — ®4(p) is the maximal integral curve of ¢ through p.

Proof. Denoting by 7, the unique maximal integral curve of &,
Yp = E0p, with 7,(0) = p,
the maximal flow ® of £ must be uniquely defined by
UpeM I, x {p} =W 3 (t,p) = ®¢(p) = 1p(t) € M.
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W C Rx M isopenand ® : W — M smooth by the smooth dependence
of solutions of the ODE defining +y, on the initial condition. ]

Warning. There may not be any € > 0 so that W D (—¢,g) x M: for
example, with M = {(u,v) € R?||u| < 1} and ¢ = (é) we obtain for
fixed (u,v) € M

Yu,v) * I(u,v) = (71 —u,1— u) - M, t— 'Yp(t) =u+t.

Rem & Def. If M is compact or, more generally, £ is compactly supported

th
o W=RxM and Vs,t € R: Gy = by 0Py
moreover, ®, : M — M is a diffeomorphism for any fixed ¢t € R: that is,
®: R x M — M is a 1-parameter group of diffecomorphisms.
This is what is often also called a "flow" .
Ezample. Let M = S? ¢ R? and £(p) := e3 xp. Then, for p = (z,v, 2),
&y(x,y,2) = (zcost — ysint, zsint + y cost, z).
Note the similarity with ay(s) from the proof of Clairaut’s thm (which is
not a coincidence).

Rem & Def. In general, the maximal flow ® : W — M of a vector field
& is a “local flow", that is, there is a neighbourhood (—e,e) x U C W
of (0, p) for any p € M so that

(a) @ty : U — &4(U) is a diffeomorphism for each ¢ € (—¢,¢);
(b) ®s1t(q) = (P50 d;)(g) whenever g € U and |s], [t], |s + t] < e.

Proof. Fix p € M; as W is open there is a neighbourhood U C M of p
and € > 0 so that W D (—e¢,¢) x U. Since &gl = idy is a diffeomor-
phism the ®|¢; are by inertia, after possibly making the neighbourhood
smaller.

To prove (b) consider the curve v(s) := v4(s + t) = ®444(q): since
7' = &0y and 7(0) = (1) = ®4(q),

~ is the integral curve of & with v(0) = ®4(g), hence v(s) = ®(P+(q))

and the claim follows. n



63 4 Manifolds

Notation. If £ is a vector field and ¢ a function on M we define a new

MICHON o M R, pi (60)(0) = dppl€(0))

Thus we think of the vector field ¢ as a differential operator, which yields
a directional derivative of ¢ at every point. In particular, ¢ — £ is linear
and the Leibniz rule holds,

E(p) = (Ep)¥ + p(E9).

Lemma. If (p)(p) = 0 for every function ¢ on M then &(p) = 0.

Proof. We use a local parametrization f around p = f(z) and use the
“coordinate functions”

Y5 = (fil)’i :Wio(f71)7 1= 17"'7k7
as test functions: for y := (duf) " (£(p)) we learn
(€pi)(p) = du(pi © f)(y) = dumily) = vi
so that (§¢;)(p) = 0 implies y = 0, hence £(p) = 0. L]

Lemma & Def. Let { and n be two tangent vector fields on M. There
is a unique vector field [£,n] on M so that, for every smooth function

on M,
v [€.nle = £(ne) — n(&p).
[€, 7] is called the Lie bracket of £ and 7.

Proof. We use a local parametrization f and set {; o f = a—if Note
that (&¢)o f = a%i(z/) o f) for any function 1) so that
&) — &) of = 35 (&) o f) = g5 (&) o f)

(oo ) - (oo )

©

Now write k k
§=3 . & and n="1 " Bi&

and compute (using also the Leibniz rule)

Ene) = n(e) = Sy o1 (€)= Bi(&0i)} ().
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k .
Hence [¢,1] = Zi,j:l{aj(gjﬁi) — Bj(&i)} & by the previous lemma,
as the above equation holds for any function . [ ]

Remark. Clearly the Lie bracket is skew symmetric, [, 1] + [7,£] = 0; it
also satisfies the (straightforward to verify) Jacobi identity,

& I, AN+ [ € mll + [, [€, €] = O

Thus, with the Lie bracket as a multiplication, the vector space of smooth
vector fields on a (sub-)manifold becomes a Lie algebra.

Remark. In the case of a submanifold M C R"™ the Lie bracket of two
vector fields is related to the Levi-Civita connection:

[§n] = Ven—Vy&.
This characterizes the Levi-Civita connection as “torsion free”.

The flow ¢ — ®; of a vector field £ allows to identify tangent spaces along
the integral curves of &: if y € T, M is a tangent vector at ¢ = ®;(p) then
dqg®_¢(y) € T, M is a tangent vector at p as _; maps a neighbourhood
of ¢ to a neighbourhood of p. This observation allows to compute the
derivative of a vector field 7 in the flow direction:

Def. Let £ and n be tangent vector fields on a manifold M and let
® denote the maximal flow of {. The Lie derivative of np at p € M in
direction {(p) is defined by

(Len)(p) = 5,y doy ) ®—e(n(®:(0))-
Lemma. L¢n =[]

Proof. Fix p € M and set y: := do, () P—t(7(Pt(p)))-

First observe: given ¢ € M and any function ¢ on M we have

(9 0 ®1)(0) = do, (9)(& © P1(2)) = (69)(®e(0))
for t € I; thus Taylor expansion of the function ¢ — (¢ o ®;)(q) yields

(o ®:)(q) = ¢(a) + t(&p)(q) + 1q(t), where ry(t) = oft)
is differentiable as a function (¢, q) — r4(t) since (t,q) — (¢ o ®4)(q) is.
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Secondly: fix a test function ¢ and observe that
dpe(ye) = dpp(de, () P—t(n(Pe(p))))
do, () (¢ 0 P_1)(n(P+(p)))
n(p o ®_¢)(®e(p))
= e —t(p) + r(=1))(®:(p))

Now:

o & | o(nr(=t)) o &y = “mt%o(nT(?t)) o ®; = 0 since r(t) = o(t);

4 o (Ep) 0 ®r = limi_son(Ep) 0 ®; = n(&yp) since ®o = idas;

. % ’t:O(mp) o &, = £(nyp) by the first observation.

Consequently, (Len)e(p) = dpap(d—/|t 0) = [¢,n]¢(p) and the claim
follows since (Len — [€,1])¢(p) = O for every test function ¢ on M at
every point p € M. [ ]

Def. Two vector fields ,m on M are said to commute if [, 1] = 0;
two (local) flows &, W commute if (wherever all terms of the equation
are defined) ®; o Wy = Wy 0 &y,

Thm. Two vector fields commute iff their maximal flows do.

Proof. Let ® and W denote the maximal flows of & and 7, respectively.
Using that &, = ®; 0 ®; = &, o & and writing ¢ = ®,(p) we obtain
Ao,y ()P (rrt)(N(P712(P))) = doy(q)(P—7 0 P—i)(n(Pe(a)))
= dg® 7 (do,(q)®—+(n(®:(q))))

hence
& ]tzfdoap)%t(n(%(p))) =do, (p)P—r(Len(®-(p)) (%)

Now write (s, t) := (®_¢ o Ws 0 ®;)(p) and observe that
BA(s,1) = doy(y(s,))P—t (4 (Vs 0 O¢)(p))

Ao, (4(s,)) P—t (M(Pe(7(5,1))))- ()
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Thus, if ® and W commute, ®_; o W, 0 &y = W, then ~(s,t) = V4(p)
depends on s only and, in particular ~(0,¢) = p for all t. Consequently,

o, (@1 (n(®1(p))) = £7(0,1) = £7(0,0) = n(p)
by (x*), hence

Len(p) = §|,_ydoym®—e(n(®e(p))) = & £(0,1) =0.

Conversely, if £ and  commute, L¢n = 0, then (x) yields
t dq,t(q)tb,t(n(dh(q))) = const = 1(q)

for any ¢. In particular, for ¢ = (s, t) we learn from (%x) that
Z(s.t) =n(1(s,1)); with (0,1) = p

this shows that s — ~(s,t) is the integral curve of 1 through p = (0, t)
for each fixed ¢, that is, v(s,t) = Ws(p) for every fixed t. L]

Thm & Def. Let &, i =1,...,k, be pairwise commuting vector fields
on a k-dimensional mamfold ]\[ that are linearly independent at every
point of M. Then there is a local parametrization f around each point

p € M so that 9
of= Wf for i=1,...,k.
(&1, ..., &) is called the Gaussian basis field of f.

Remark. We already saw that the vector fields of a Gaussian basis field

commute: if & o f = BL f then [§;,&;] = 0.

Proof. Let ®* denote the maximal flows of £. Fix p € M and define
flay, . ag) = (9 00 0k )(p)

on a suitable neighbourhood of 0 € R* (so that the expression is defined).

Using that the flows ®* commute and ®F is the flow of £, we compute
%f(xlw'ka) - ﬁlk ((Dk cl)9151 : O¢I;kl1)(]3)

(gkoq)l'k O(Dil : o¢ik11)(p)

= (& Of)(371.,...,:(:k)
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and similarly for i = 1,...,k — 1. In particular, dof : RF — TpM is an
isomorphism so that f is a local diffeomorphism by the Inverse mapping
theorem, hence qualifies as a local parametrization. [ ]

4 Surfaces revisited

We shall now return to surfaces in R3 and re-investigate their geometry
in the light of we have learned in this chapter.

Thus let M? C R? be a 2-dimensional submanifold. We assume that M?
is orientable, that is, there exists a smooth map

v:M? — S2C R3 such that Vp e M :v(p) L T, M;
v is called a Gauss map of the surface M?> C R3. Note that such
an orientable surface M? C R3 admits two Gauss maps — a choice of
Gauss map equips M? with an orientation, that is, turns M? C R3 into
an oriented submanifold.

Def. The shape operator S of an oriented surface (M?, v) (with respect

to v) is given by S J
= —dv.

Remark. If o : R?2 DV — M is a local parametrization around p = o(z)
and n :=wv oo then

Sp = —dpv = —dy(vo o) o (dyo) ™t = —dyn o (dyo)~?

yields our earlier definition of the shape operator. Thus the principal,
mean and Gauss curvatures of (M?,v) are the eigenvalues, trace and
determinant of S, respectively.

Def. Two vector fields & and 1 on M? are said to form a local basis
field (&, ) around p € M? if

Vg € U : span{é(a),n(a)} = T,M?,
where U C M? is an open neighbourhood of p. (£,7) is called

e orthonormal if |¢]2 = |n> =1 and € - =0 on U;
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e principal if S§¢ = k1€ and Snp = kon in U.

Remark. A manifold M? does not necessarily carry a non-vanishing vector
field: for example, every vector field £ on S? must have at least one zero
by the “hairy ball theorem™.

Lemma. If[¢,n] = a& — by for an orthonormal local basis field then

Vel =—an, Vyl=bn, Ven=a§, Vyn=-bE.

Proof. Using that V is torsion free
al —bn=1[&,n] = Ven — V¢,

where Ven || € and V€ || 7 since 0 = &(|n]?) = 257 - Ven and similarly
for V,,§. Hence
Ven =a€ and V,€ = bn.

Further V¢& || n and Vyn || € by the same argument so that
0=2¢(&m) = (Ved) - n+&-(Ven) = (Veb) -n+a,
hence V¢ = —an and, similarly, V,n = —b§. [ ]

Lemma. If (¢,n) is a principal orthonormal local basis field then

(6.0 = — gt ((nk1)E + (Ek2)n).

Proof. Since (&,7) is a local basis field [¢,1] = a& — by with suitable
functions a and b; then, using the previous lemma and by the Codazzi
equation,

0 = (VeS)n—(VyS)g
{—(nk1) — a(ky — k2)} € + {(€k2) — b(kr — k2)} n

_ 1k _ &k
hence a = e and b = e [ ]
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Cor. Any surface of constant mean curvature M? C R? admits (away
from umbilics) local conformal curvature line parametrizations.

Proof. Let (&,7) denote a local principal orthonormal basis field (this is
where we need to stay away from umbilics),

SE =ki1&, Sy =kon with ky = H4 e 2%, ky= H — e 2%,
where H = const and ¢ is some function. Then
(€, e#n] = 22 {[E, 1] + (Ep)n — (np)€} =0

by the previous lemma. Hence around every point p € M? there is a local
parametrization (u,v) — o(u, v) so that

e"¢ =0, and e'n = oy,
in particular, I = ezﬂo(du2 +dv2), that is, o is a conformal curvature line
parametrization. | ]

Cor. A surface of constant negative Gauss curvature admits local cur-
vature line parametrizations (u,v) — o(u,v) so that, with a suitable
function w, the induced metric becomes

I = cos? w du? + sin? w dv?.

Proof. Writing k1 = ctanw and ky = —ccotw, where K = —¢? and w
is a function with values in (0, 5), the above lemma yields

[coswé&, sinwn] = coswsinw [€, 7] + cos? w (Ew)n + sin w (nw)€ = 0.
Hence, as above, every point p € M? has a neighbourhood, where M?
has a local parametrization (u,v) — o(u,v) so that

coswé =0, and sinwn = o,
and the induced metric has the claimed form. [ ]

Cor & Def. Any surface of constant negative Gauss curvature carries
locally asymptotic Chebyshev nets, that is, parametrizations so that
the parameter lines are asymptotic and arc length parametrized.

Proof. Using the same notations as in the previous corollary set
&y i=coswé Esinwn
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and observe that
[€£[>=1 and S&t L &+,

As constant linear combinations of commuting vector fields the {4+ com-

mute. [£+7E*] = 0*,

hence give rise to a local parametrization (u,v) — o(u,v) (note that &+
are linearly independent, hence (&4,&_) is a local basis field) with

oy =¢&4 and 0, =&,

so that that parameter lines are asymptotic and parametrized by arc
length. [ ]

Remark. Using similar ideas one can prove that every surface M? ¢ R3
can locally be parametrized by curvature lines. This is not true for

o surfaces M2 C R" for n > 4;

e hypersurfaces M* c RF+1.
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Appendix - Tools from Analysis

Obviously, differentiability is a key issue in differential geometry. Perhaps
less obviously, the Inverse and Implicit mapping theorems and solutions
of (ordinary and partial) differential equations as well as their uniqueness
are also key issues.

Thus, after recalling the notion of differentiability and differentiation rules
(and, in the process, fixing notations), we briefly discuss the Inverse and
Implicit mapping theorems and collect some theorems about differential
equations that are used in the text.

Recall. A map f: R™ % U — R™ is differentiable at p € U if there is
a linear map d,, f € Hom(R™, R™) from R™ to R™ so that

. h)— —dp f(h
iy LELD 0 10) _ g,

If f is differentiable at p € U é IR™ then its derivative is given by the
Jacobi matrix

15 15
Lw) o 2w
dpf = : :
Afn Ifn
(N 0 ()

Note, however, that existence of the Jacobi matrix does not prove dif-
ferentiability (see problem below) — but if the Jacobi matrix depends
continuously on p then f is continuously differentiable and, in particu-
lar, differentiable at every point p € U.

We will often write partial derivatives using subscripts: f, := %, etc.

Problem 1. Compute the Jacobi matrix of

uv?y/u 402
f: R? > R, (u,v) — f(u"u) = { T T for (U,U) 7é (0,0),

0 for (u,v) = (0,0)
at (u,v) = (0,0) and prove that f is not differentiable at (u,v) = (0, 0).



1 Analysis: Inverse & Implicit mapping theorems 72

Agreement. For the purposes of this text we will assume that every
function is as often differentiable as we like, i.e., every function is C'*°.
Such functions are often called “smooth”.

Two differentiation rules are paramount in differential geometry:

1. Product rule: if ® : R™ x R™ — RF denotes some “product”,
i.e., a bilinear map, and U 5 p — f;(p) € R™, i = 1,2, are smooth
then their product p — (f1 ® f2)(p) is smooth with derivative

dp(f1 © f2)(h) = (dpf1(h)) © f2(p) + f1(p) © (dp f2(h));

2. Chain rule: if g : U — V and f:V — R"™ are smooth then their
composition fog:U — R™ is smooth with derivative

dp(f og)(h) = dg(p)f(dpg(h)) = (dg(p)f ° P.q)(h)v
i.e., the Jacobi matrices get multiplied (observe the order!).

Problem 2. Let B : R™ x R™ x R™ — R be tri-linear; assuming that
(3 is differentiable show that

d(ay,a9,a3)8(T1, T2, 73) = B(21, a2, a3) + B(a1, 22, a3) + B(a1, a2, x3).
Conclude that det : GI(3) — R is differentiable with

d 4 det(X _
7Adetet1g ):tr(A 1X).

1 Analysis: Inverse & Implicit mapping theorems

Two theorems are key in understanding the notion of a submanifold and
the equivalence of the different characterizations: more specifically, these
theorems are the key to relating the implicit and explicit (parametric)
representations of curves or surfaces.

o
Inverse Mapping Theorem. Suppose that f : R® D U — R™ is
continuously differentiable and that d,f : R™ — R" is invertible at
some p € U. Then there is an open neighbourhood B C U of p so
that:

(i) fls : B — R™ injects (so that f : B — f(B) is invertible);
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(i) f(B) C R™ is open;
(i) f~1: f(B) — B is continuously differentiable with, for q € f(B),
dqf_l = (df—l(q)f)_l.

For short. A smooth map f : R™ D U — R" has, locally, a smooth
inverse where its derivative is invertible (and the derivative of the inverse
is the inverse of the derivative, as obtained from the chain rule).

Implicit Mapping Theorem. Let F : R™ x RF SUXV = R be
continuously differentiable and suppose that the R*-part

dp.) Flioyxmi = {0} x RF - RF

of dy, o) F is invertible for some (p,q) € U x V. Then there are

P,q)

o o
e open neighbourhoods A C U of p and B C V of q, and
e a (unique) continuously differentiable function g : A — B

so that g(p) = q and F(z, g(z)) = F(p, q); moreover,
V(z,y) € Ax B: F(z,y) = F(p,q) = y = g(x).

For short. The equation F(z,y) = F(p,q) can locally, around p, be

solved for y if the equation d(;, o) F'(v,w) = 0 can be solved for w.

Problem 3. Use the Implicit mapping theorem to show that, for any point
(2.9.2) € E={(z.9,2) e | (§ + (§)* +(£) =1}

on the ellipsoid E C R3, there is a neighbourhood U of (z,y, z) so that

the intersection ENU can be parametrized as a graph of a (real valued)

function over one of the coordinate planes.

Remark. The Implicit and Inverse mapping theorems are equivalent.

To prove the Inverse mapping theorem from the Implicit mapping theo-
rem: let f satisfy the assumptions of the Inverse mapping theorem, i.e.,
let f € CY(U, R™) so that d, f is invertible for some p € U, and consider

F:UxR'—=R", (z,y)~ F(z,y):= f(z) -y
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Now let ¢ := f(p) and observe that

d(pﬁq)F = (dpf, —id) so that d(p,q)F‘ﬂ?"x{O} = pf
is invertible. Hence, by the Implicit mapping theorem, there is some
continuously differentiable map

g:R" OB ACU
with p € A and ¢ € B so that

0=F(p.q) = F(9(y),v) = f(9(¥)) —v
for all y € B; moreover, if f(x) =y for (z,y) € A x B then z = g(y):
hence, f : A — B injects and g is the inverse of f|4.

Problem 4. Prove the Implicit from the Inverse mapping theorem.

Def. Let f: R™ S U—U E R"™ be smooth. Then f is called:
e an immersion if d, f injects for all p € U (in partiular, m < n);
e a submersion if dy f surjects for all p € U (in particular, m > n);

e a diffeomorphism if it has a smooth inverse (hence, m = n).

2 ODEs: the Picard-Lindel6f theorem

Recall that an ordinary differential equation (of order n) is an equation

2(t) = f(t,2(t). 2’ (1), ..., 2 (2)) ()
for an unknown function = = x(t) which depends on a (real) variable ¢;
however, x may be R™-valued.

Any such ODE can be re-written as a (system of) ODE(s) of order n = 1
by introducing the derivatives as new functions: with y; = y(k’l) the
equation (1) is equivalent to the system

zi(t) = a(t)
T (t) = za(t)
a, (t) = f(t,z1(t), ..., zn(t)).
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Hence we never need to think about higher order ODEs.

o
Picard-Lindelof theorem. Let RxR™ D IxU > (t,z) — f(t,z) € R"®
be continuous and Lipschitz continuous in y and (to, zo) € I x U; then
there is € > 0 so that the initial value problem

a(t) = f(t,x(t),  x(to) = zo (*)

has a unique®) solution on (tg — €,tq + €).

Proof. Can be found in any good analysis text book. n

Special cases. Two special cases of the Picard-Lindelof theorem are of
particular importance to us:

(1) if z — f(t,z) = f(x) is differentiable then (%) has a unique local
solution (prove it for n = 1!);

(2) if y — f(t,z) = A(t)z is linear then (x) has a unique global(!)
solution x : I — R™.

Problem 5. Let t — k(t) be some function. Find the solution of

() =(25) () win (5)@=(b)- (+)

[Hint: write (z,y) in polar coordinates.]

3 PDEs: the Poincaré and Maurer-Cartan lemmas

Partial differential equations come in many different flavours. For us
the following two (systems of) partial differential equations will be of
particular importance.

*) of course, choosing another (smaller) ¢ gives a restriction of the previous solution, hence
“another” solution. Compare this with the Peano theorem which only requires continuity but
does not assert uniqueness (expl.: 2> = |z|, (0) = 0).
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Poincaré lemma. Given ¢ = ¢(u,v) and p = (u,v) the partial
differential equation

Oy = ¢

oy =1

has a local (on simply connected domains) solution o iff @, = 1hy,.
Moreover, the solution is unique up to an additive constant.

do=pdu+ydv & {

Proof. Can be found in any good analysis text book. [ ]

The following theorem is less commonly found in analysis textbooks:

Maurer-Cartan lemma. Given ¢ = ®(u,v),V = V(u,v) € gl(n) the

partial differential equation

Fu=F-0
_ (*)

F,=F -V

can locally (on small open sets) be solved to get F' = F(u,v) € Gl(n)

iff

dF =F - (¢du+WVdv) & {

®y — W, = [0, V] == OV — Vo, (%)

The solution is unique up to left multiplication by a constant matrix.

Proof. First we show that the Maurer-Cartan equation (x*) is neces-
sary: if F'is a solution of (x) then

0 = (-Fu)v - (Fv)u
= F,$+Fo,—-F,V-FV,
= Fo+0o,—-0V-v,).
To show that (%x) is also a sufficient condition suppose that ¢ and ¥
are defined on (—¢,¢)? and satisfy (). We first use the Picard-Lindelsf
theorem twice to obtain F:
(1) fix v =0 and consider the initial value problem
Fy(u,0) = F(u,0)®(u,0), F(0,0)=idgn,
which is a linear system of ordinary differential equations, hence has
a unique solution u — F(u,0) by the Picard-Lindelsf theorem;
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(2) now fix u and consider the initial value problem
Fy(u,v) = F(u,v)¥(u,v), F(u,0) as obtained in (1),

which is again has a unique solution v — F(u,v) by the Picard-

Lindelof theorem.
Now we got F(u,v) at every (u,v) € (—¢,¢)?. Taking differentiability of
F for granted we have now to verify that F’ satisfies (). By construction
in (2), F, = FV so that we only need to verify F,, = F®. Thus compute

(Fy — F®), = Fy, —F,%—Fo,
(FV), — FUd — Fo,
FV+FWV, -, — Vo)
= (F, - FO)W

by (%x); which, as a linear system of ODEs (u is fixed), has the unique
solution F,, — F® = 0 since (F,, — F$)(u,0) = 0 by construction in (1).

Next we wish to show that F'(u,v) € GI(n) for all (u,v) € (—¢,¢)?. Sup-
pose F'(ug, vg) was not invertible at some point (ug,vg). Then F'(ug,vg)
would not surject and there we could find a non-zero vector v € R" so
that v F(ug,vg) = 0. On the other hand, v!F satisfies

(W' F)y = (@'F)® and (v'F), = (v'F)V,
which is a linear system of partial differential equations, thus has a unique
solution by a similar argument as above. As v!F = 0 is a solution with

the given initial value v F'(ug,vg) = 0, this would be it and we also would
have v* = v!F'(0,0) = 0, contradicting the initial assumption.

Finally we wish to examine uniqueness: suppose that £ is another solution
of (). Using that
0= (idps)u = (FF7Y), = F,F~L + F(F71),

that
sotha (F1), = —FlF,F1,

we compute
(FFY, = (F)F 1 - F(F'FF 1) = F(d - ®)F 1 =0,
and similarly for (F'F~1),, showing that £ = AF with constant A. =



8 PDEs: the Poincaré and Maurer-Cartan lemmas 78

Problem 6. Let (u,v) — ®(u,v), V(u,v) € gl(2) be trace free. Prove
that a solution (u,v) — F(u,v) € GI(2) of F\, = F® and F,, = FV has
constant determinant. [Hint: verify that (det F'), = det F tr(F~1F,).]
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Appendix - Vector algebra
The following notations, definitions and formulas are used throughout

the text without further comment or explanation. It should make a good
exercise to prove any unfamiliar identities.

1 Products of vectors in R3

R3 x R3 5 (a,b) — a-b e R, the Euclidean inner product on R3:

the inner product is symmetric, a-b = b-a; two vectors a and b are said
to be orthogonal or perpendicular if a-b = 0; more generally, the angle
/(a,b) between two vectors is given by

a-b=|alb| cos L(a,b).

R3 x R3 5 (a,b) — a x b e R3, the cross product on R3:

the cross product is skew-symmetric, a X b = —b X a; two vectors a and
b are linearly dependent if and only if a x b = 0.

Also,
Ja x b2 = |al2[b[2 — (a- b) = [af?[b? sin® £(a, b)

giving the area of the parallelogram spanned by a and b;
a-(bxc)=det(a,b,c)
showing that b,c L bx cand (¢ xa)-b+a-(cxb)=0.

R3 x R3 > (a.b) = a Ab € o(3), the wedge product, defined by
(anb)z:=(x-a)b—(z-b)a=(axDb)x

the product is skew-symmetric, a ANb = —b A a, and a A b is a skew-
symmetric endomorphism,

((and)z)-y+x-((anbd)y)=0.

Remark. The inner and wedge products generalize to R™ in an entirely
straightforward way, the cross product does not.
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2 Transformations of R3

Endomorphisms are linear maps from a vector space to itself:
End(R3) := {X : R® — R3®| X linear} = M(3 x 3, R),
where a basis (e, e, e3) of R3 is used to identify an endomorphism with

a matrix: 3
Xej = Zi:l €;Tjj.

Linear transformations of R3 are invertible endomorphisms; important
transformation groups are:

GI(3) = {A€End(R3)|detA #0},
Si(3) = {Ae€GI(3)] detA =1},
0(3) = {A€End(R3)|Vv,we R (Av)- (Aw)=v-w}
>~ {AeMBx3,R)|AA=idyp},
SO3) = {A€O0(3)|detA=1},

the general and special linear groups and the orthogonal and special
orthogonal groups, respectively. Note that

A€O0(3)=det A =+1.

When ¢ — A(t) € G is differentiable with A(0) = idp3 then A’(0) € g,
where g corresponding to G from the above list is?):

gl(3) = End(R®),

sl(3) {X € End(R%)| tr X = 0},

0(3) {X € End(R3?)|Vv,w € R®: (Xv) w4+ v (Xw) =0}
{X e M(3x3,R)| Xt + X =0};

note that, if ¢t — A(t) € O(3) then, in fact, ¢ — A(t) € SO(3) since the
determinant ¢ — det A(t) € {—1,+1} is continuous and A(0) € SO(3).

1

1) The first of these is fairly obvious, the others are not — for the second see Problem 2 (Tools
from Analysis), the third is discussed in Chapter 1.
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The Euclidean motions also form a transformation group:
R332z Az +ceR3 where AcSO(3) and c € R

thus a Euclidean motion is the composition of a rotation and a trans-
lation. Note, however, that Euclidean motions are generally not linear
since 0 4 0 (if ¢ # 0).
If A € SO(3) then a; = Ae; form a positively oriented orthonormal
basis of R3:
a; -a; = 0;; and det(ay,az,a3) >0
(0i; denotes the Kronecker symbol). In particular,
ap X a2 =a3, a2 X a3z =ai, a3z X ayp = a
and
(Av) - (Aw) =v-w, (Av) x (Aw) = A(v x w).
Remark. Every fact in this section — apart from those that involve the
cross product — generalizes to higher dimensions in an entirely straight-
forward way, i.e., without any non-obvious changes.
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