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ABSTRACT 

 
An intelligent industrial robot is a remarkably useful combination of a manipulator, sensors 

and controls.  The use of these machines in factory automation can improve productivity, 

increase product quality and improve competitiveness.  Robots have been created to 

perform a wide variety of tasks spanning from educational robots in classrooms, to arc 

welding robots in the automobile industry, to teleoperated robot arms and mobile robots in 

space.  This chapter focuses on the application of industrial robots within a manufacturing 

setting, and their contribution to further enhance their capabilities for flexibility in 

automation.  In proper selection of a robot, one has to consider the various robot 

characteristics such as the way the robot links are connected and controlled at each joint.  

Next, a comprehensive review of the robot kinematics, dynamics and control strategies 

along with a treatment of the artificial neural network will describe the recent attempts to 

advance the development of intelligent control systems for industrial robots. 

 

1. Introduction 

The Robot Industries Association (RIA) has defined an industrial robot as "a 

reprogrammable multi-functional manipulator designed to move material, parts, tools or 

specialized devices, through variable programmed motions for the performance of a 

variety of tasks."  The most common types of manipulators may be modeled as an open 

kinematic chain of rigid bodies called links, interconnected by joints. Some have closed 
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kinematic chains such as four bar mechanisms for some links. The typical  industrial robot 

is mounted on a fixed pedestal base which is connected to other links.  The end-effector 

attaches to the free end and enables the robot to manipulate objects and perform required 

tasks.  Hard automation is differentiated because of the single function. Computer 

numerical control (CNC) machines have a smaller variety of tasks. 

 

A more general definition of a robot is: a general-purpose, reprogrammable machine 

capable of processing certain human-like characteristics such as judgment, reasoning, 

learning, and vision.  Although industrial robots have been successfully used in a variety of 

manufacturing applications, most robots used are deaf, dumb, blind, and stationary [Hall 

and Hall, 1985].  In fact, they have been used more like automated machines where the 

jobs are repetitive, dirty, dangerous, or very difficult.  An industrial robot is limited in 

sensory capabilities (vision and tactile), flexibility, adaptability, learning and creativity.   

 

Current researchers are attempting to develop  intelligent robots. Hall and Hall [1985] 

define an intelligent robot as one that responds to changes to its environment through 

sensors connected to its controller.  Much of the research in robotics has been concerned 

with vision (eyes) and  tactile (fingers).  Artificial intelligence (AI) programs using 

heuristic methods have somewhat solved the problem of adapting, reasoning, and 

responding to changes in the robot's environment.  For example, one of the most 

important considerations in using a robot in a workplace is human safety.  A robot 

equipped with sensory devices that detect the presence of an obstacle or a human worker 

within its work space, could automatically shut itself down in order to prevent any harm to 

itself and/or the human worker. 

 

Kohonen [1988] suggests a higher degree of learning is possible with the use of neural 

computers.  The intelligent robot is supposed to plan its action in the natural environment, 

while at the same time performing non-programmed tasks.  For example, the learning of 

locomotion in an unknown environment is extremely difficult to achieve by formal logic 

programming.  Typical robot applications in manufacturing assembly tasks may require 

locating components and placing them in random positions.   
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2. Automation and Robotics 

In the manufacturing industry, the term automation is very common.  It was introduced in 

the 1940s at the Ford Motor Company, where specialized machines helped manufacture 

high volume production of mechanical and electrical parts.  However, the high cost of 

tooling for new models limit production flexibility.  This type of automation is referred to 

as hard or fixed automation.  The advantage is high production rate.  Hard automation is 

still being used for the production of light bulbs at General Electric at a rate of two billion 

light bulbs per year. [Asfahl, 1992]. 

 

In the early 1950s numerically controlled (NC) machine tools were introduced.  Later, NC 

machines evolved into computer numerical control (CNC) machines. Since CNCs can be 

easily reprogrammed through software to accommodate high product variety relative to 

hard automation, they are referred to as soft or flexible automation.  The 

reprogrammability of flexible automation equipment gives it a key advantage over hard 

automation.  Robots and their development are a natural extension of the concepts of NC 

and CNC.  The robot's reprogrammable feature has enhanced the flexibility of the 

automation systems and is referred to as an example of soft or flexible automation [Asfahl, 

1992].   

 

Industrial robots were first commercially marketed in 1956 by a firm named Unimation.  In 

1961, Ford Motor Company was the first to use a Unimate robot to unload a die-casting 

machine [Odrey, 1993].  Since then, the automobile industry has been largely responsible 

for development of the flexible manufacturing system (FMS) with industrial robots.  

Introducing robot technology into the factories has improved productivity, quality, and 

flexibility which could not be realized on the basis of hard or fixed automation structure.  

However, robots in the early 1980's were limited in capabilities and performance due to 

their drive mechanisms, controller systems and programming environment.  They weren't 

well suited for most manufacturing tasks and were often too expensive.  As a result, the 

increase of robot installation through the mid 80's turned into a significant slump which 

lasted into the early nineties [Holusha, 1994].  Due to the steep decline in robot orders, 
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many US manufacturers chose to pull out and ceded the market to foreign competitors.  

Adept Technology Inc. (San Jose, CA) is the only major US robot manufacturer to survive 

in the $700 million market with about $60 million in annual sales [Sinton, 1995].   

 

The introduction of robots is often justified on the basis that they perform consistently and 

productively.  Often a few people suffer the loss of employment. Others believe robotic 

technology creates skilled jobs with greater creativity.  However, the question of the social 

impact of robotics has yet to be adequately addressed [McKerrow, 1991].   

 

Lower cost, greater reliability, and targeting tasks that are too difficult or dangerous for 

humans have led to a renewed interest in robotics during the early nineties.  Finally, US 

manufacturers are realizing the significant impact robots can have in improving 

productivity, quality, flexibility, and time-to-market.  Process repeatability and final 

product uniformity are more important than labor cost.  And unlike dedicated machinery 

(fixed automation) which is designed to perform a specific task, today's robot can be used 

for multiple products with ease.  It has become the critical element in many applications 

such as welding, sealing, and painting.  Other applications (material handling, assembly, 

and inspection) in non-automotive industries such as electronics, consumer products, 

pharmaceutical, and service, are maturing rapidly [Weil, 1994].  According to the Robotic 

Industries Association (RIA), the robot industry is in a recovery mode, particularly in the 

US, as manufacturers invest in robotics to stay competitive.  Figure 1 illustrates the 

renewed strength in robotics since 1987 [Holusha, 1994].  

 

Record breaking shipments from US manufacturers has totaled 12,459 robots valued at    

$ 1.1 billion in 1997.  This represents a 172% increase in robotic systems and a 136% 

increase in revenues since 1992.  According to new statistics released by the Robotic 

Industries Association, the worlds population of installed robots at the end of 1997 

exceeded 500,000.  The country that has the largest population of industrial robots is 

Japan (400,000); it is followed by the USA (80,000), and then the Western European 

nations combined (120,000). 
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Figure 1 Industrial robot market 

 

Industrial robot applications are not limited to automotive industries.  A summary of robot 

applications, along with the share of robot market in the USA for the year 1995, is 

displayed in Table 1.  Traditional applications of spot and arc welding, and spray painting 

continue to dominate.  The market share for assembly robots has grown over the past 

decade.  The discussion that follows, however not all-inclusive, offers an overview of such 

applications by type.  In addition, excellent reviews of existing robot applications are given 

by Odery [1993] and examples and case studies in the textbook by Asfahal [1992]. 
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TABLE 1. USA robot market [RIA, 1995] 

 

Welding. Welding is the process of joining metals by fusing them together, commonly 

used in the fabrication industry. Spot and arc welding are the top industrial robot 

applications as of the early 1990's.  Continuous arc welding is a more difficult process for 

a robot than spot welding.  An arc weld has to be placed along a joint between two pieces 

of metal.  Part misalignment or dimensional variations in parts are the major causes of 

problems often encountered in robot arc welding.  Researchers are investigating the 

variety of sensors that can provide feedback information for the purpose of guiding the 

weld path [Klafter, Chmielewski, and Negin, 1989].   

 

Robotic arc welding cells provide the following advantages: higher productivity as 

measured by greater "arc-on" time, reduced worker fatigue, improved safety, and 

decreased idle time.  Broshco, a division of Jay Plastic (Mansfield, OH), is a producer of 

robotic welded assemblies for automobile seating units. It purchased a Motoman 

ArcWorld 2000, with six axes of motion in order to improve productivity per man hour, 

weld quality, and work environment.  The installation is part of the automation strategy 

for the new product line [Rottenbach, 1992]. 

 

Material handling.  Applications of this type refer to grasping and movement of work 

parts from one point to another.  Examples include machine loading and unloading, 

automated palletizing, and automated warehousing.  Material handling applications are 

      Application                                               Percent 

     welding                            53.0 

     material handling              24.0 

     assembly                           10.0 

     spray coating                      8.5 

     inspection                           1.0 

     other                                  3.5 
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typically simple with regard to degrees of  freedom required.  Specialized gripper design is 

an active area of research, where quick retooling enables the robot during the production 

cycle. Automated palletizing operations may require additional degrees of freedom with 

more sophisticated drive mechanisms, controllers, and expert programming features [Hall, 

Slutzky, and Shell, 1989].  In GE's Electrical Distribution & Control plant (Morristown, 

TN) five CG-120 gantry robots (C&D Robotics) palletize a range of product sizes 

(cartons range from 8x8 in2. to 12x40 in2.).  Since 1989, GE's robots have provided 

versatility over manual and conventional palletizing and eliminated injuries caused by 

manual lifting [Labrenz, 1992].  

 

Spray coating.  Spray coating is the  process of applying paint or a coating agent in thin 

layers to an object, resulting in a smooth finish.  Industrial robots are suitable for such 

applications, where a human worker is in constant exposure to hazardous fumes and mist 

which can cause illness and fire.  In addition, industrial robots provide a higher level of 

consistency than the human operator. Continuous-path control is required to emulate the 

motions of a human worker, with flexible multiple programming features for quick 

changeovers.  Hydraulic drives are recommended to minimize electrical spark hazards.  

Chrysler Corp. has found an alternative process to fill the seams on its new LH vehicles to 

eliminate warping and inconsistent filling.  In 1992, a four-robot station (Nachi Robotic 

Systems Inc.) at Chrysler's completely retooled plant (Ontario, Canada) successfully 

replaced the manual filling of the seams with silicon-bronze wire. [Sauer, 1992]. 

 

Assembly.  Many products designed for human assembly cannot be assembled 

automatically by industrial robots. The integration of product design and assembly design, 

belongs to the concept of  design for manufacturability [Boothroyd, Poli, and Murch, 

1982].  More recent research in design for assembly has been completed at the University 

of Cincinnati [Hoekstra, 1992].  Design for manufacturability results in the design of 

factories for robots.  Fewer parts, complex molding, and subassemblies which allow a 

hierarchical approach to assembly has lead to robotic applications.  For example, the IBM 

Proprinter, which was designed for automatic assembly, uses 30 parts with mating 

capabilities (screwless) to assemble and test in less than five minutes. For part-mating 
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applications such as inserting a semiconductor chip into a circuit board (peg-in-hole), 

remote center compliance (RCC) devices have proved to be an excellent solution.  More 

recently, Reichle (Wetzikon, Switzerland), a midsize manufacturer of telecommunications 

switching equipment, needed a system to automate the labor intensive assembly of 

electronic connectors.  Using hardware and software from Adept Technology Inc. (San 

Jose, CA), three AdeptOne robots reduce manpower requirements from 10 to 2.  In 

addition, the system provides speed and a high degree of robotic accuracy [Farnum, 

1992]. 

 

Inspection & Measurement.  With a growing interest in product quality, the focus has 

been on "zero-defects".  However, the human inspection system has somehow failed to 

achieve its objectives.  Robot application of vision systems have provided services in part 

location, completeness and correctness of assembly products, and collision detection 

during navigation.  Current vision systems, typically two-dimensional systems, compare 

extracted information from objects to previously trained patterns for achieving their goals.  

Coordinate measuring machines (CMM) are probing machining centers used for 

measuring various part features such as concentricity, perpendicularity, flatness, and size 

in a three dimensional rectilinear or polar coordinate systems.  As an integrated part of a 

flexible manufacturing system, the CMMs have reduced inspection time and cost 

considerably, when applied to complex part measurement. 

 

Machine vision applications require the ability to control both position and appearance in 

order to become a productive component of an automated system.  This may require a 

three-dimensional vision capability which is an active research area [Nurre and Hall, 

1989].  At Loranger Manufacturing (Warren, PA), 100% inspection of the rim of an 

ignition part is required for completeness.  Using back lighting and with the camera 

mounted in line, each rim is viewed using pixel connectivity.  When a break in pixel is 

detected an automatic reject arm takes the part off the line [Davies, 1992]. 

 

Other processing applications for robot use include machining (grinding, deburring, 

drilling, and wire brushing) and water jet cutting operations.  These operations employ 
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powerful spindles attached to the robot end-effector, rotating against a stationary piece.  

For example, Hydro-Abrasive Machining (Los Angeles, CA) uses two gantry robots with 

abrasive water jet machining heads.  They cut and machine anything from thin sheet metal 

to composites several inches thick with tolerances of .005 in. for small parts to .01 in. for 

larger parts [Davies, 1992].  Flexible manufacturing systems combined with robotic 

assembly and inspection, on the one hand, and intelligent robots with improved 

functionality and adaptability on the other hand, will initiate a structural change in the 

manufacturing industry for improved productivity for years to come.  

 

3. Robot Characteristics  

In this section an industrial robot is considered to be an open kinematic chain of rigid 

bodies called links, interconnected by joints with actuators to drive them.  A robot can 

also be viewed as a set of integrated subsystems [Klafter, Chmielewski, and Negin, 1989]: 

1.  Manipulator.  The mechanical structure that performs the actual work of the 

robot, consisting of links and joints with actuators. 

2.  Feedback devices.  Transducers that  sense the position of various linkages and/or 

joints that transmit this information to the controller. 

3.  Controller.  Computer used to generate signals for the drive system so as to 

reduce response error in positioning and applying force during robot assignments. 

4.  Power source.  Electric, pneumatic, and hydraulic power systems used to provide 

and regulate the energy needed for the manipulator's actuators. 
 

The manipulator configuration is an important consideration in the  selection of a robot. It 

is based on the kinematic structure of the various joints and links and their relationships 

with each other.  There are six basic motions or degrees of freedom to arbitrarily position 

and orient an object in a three-dimensional space (three arm and body motions and three 

wrist movements).  The first three links, called the major links, carry the gross 

manipulation tasks (positioning).  Examples are arc welding, spray painting, and water jet 

cutting applications.  The last three links, the minor links, carry the fine manipulation tasks 

(force/tactile).  Robots with more than six axes of motion are called redundant degree of 

freedom robots.  The redundant axes are used for greater flexibility such as obstacle 

avoidance in the workplace.  Examples are parts assembly, and machining applications.  
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Typical joints are revolute (R) joints, which provide rotational motion about an axis, and 

prismatic (P) joints, which provide sliding (linear) motion along an axis.  Using this 

notation, a robot with three revolute joints would be abbreviated as RRR, while one with 

two revolute joints followed by one prismatic joint would be denoted RRP.    

 

There are five major mechanical configurations commonly used for robots: Cartesian, 

cylindrical, spherical, articulated, and SCARA (Selective Compliance Articulated Robot 

for Assembly).  Workplace coverage, particular reach and collision avoidance, are 

important considerations in the  selection of a robot for an application.  Table 2 provides a 

comparative analysis of the most commonly used robot configurations along with their 

percent of use.  Details for each configuration are documented by Ty and Tien [1993].  

Figure 2 shows the arm geometries for the most commonly used robot configuration: a) 

Cartesian (PPP), b) cylindrical (RPP), c) articulated (RRR), d) spherical (RRP), and e) 

SCARA (RRP).  However, there are other configurations used in either research or 

specialized applications. 

Figure 2 Common robot arm geometries 
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The gantry configuration is essentially a Cartesian configuration with the robot mounted 

on an overhead track. A redundant robot configuration may be used when more than six 

degrees of freedom is needed to reach a particular orientation.  All the above 

configurations are rigid serial links.  A parallel robot configuration known as Steward 

platform, also exists.  Lightweight flexible robot arms also exist for faster speed, and low 

energy consumption. Other classifications are possible based on transmission type.  

Industrial robots can be direct-driven arms (DDArm) and indirect driven arms.  Most 

industrial robots used today are indirect-drive geared mechanisms.  This drive mechanism 

may suffer from poor dynamic response under heavy mechanical load and gear friction, 

and backlash.   
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Table 2. Comparisons of robot configurations 

Robot 

Application 

Confg. % 

use  

Advantage  Disadvantage 

Cartesian  

assembly & mach. 

loading 

PPP 

  

18 linear motion in 3D; 

simple kinematics; 

rigid structure 

poor space utilization; 

limited reach; low speed 

Cylindrical 

assembly & mach. 

loading 

RPP 15 good reach; 

simple kinematics 

restricted work  space; 

variable resolution 

Spherical 

automotive 

manufacturing 

RRP  10 excellent  reach; 

very powerful w/ 

hydraulic Drive 

complex kinematics; 

variable resolution 

Articulated 

spray coating 

 RRR 42 maximum flexibility; 

large work 

envelope; high 

speed 

complex kinematics;  

rigid structure; difficult 

to control 

SCARA* 

assembly & 

insertion 

RRP 15 horiz. compliance; 

high speed; no 

gravity effect 

complex kinematics; 

variable resolution; 

limited vert. motion 

 
* Selective Compliance Articulated Robot for Assembly 
(Source for the percent of use:  V.D. Hunt, Robotics Sourcebook, New York: Elsevier, 

1988.) 

 

In DDArms no gears or other mechanical power conversion devices are used.  High 

torque motors are directly coupled to each joint, eliminating gear friction and increasing 

stiffness and speed.  However, they are more difficult to control because the inertia 

changes and gravity effects are no longer suppressed by high gear ratios [Kaiser, 1993].  
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Experimental DDArms have been built at the MIT AI Laboratory and CMU Robotics 

Institute.  The AdeptOne robot (four-axis SCARA) is the first commercially available 

direct-drive robot.  

 

 

4. Robot Control Strategies 

Robot manipulators typically perform a given task repeatedly.  Yoshikawa [1990] defines 

the fundamental elements of tasks performed by robots as:  

 

1. Gross manipulation: to move the end-effector, with or without a load, along a 

desired path (position control). 

2. Fine manipulation: to exert a desired force on an object when in contact with it 

(force control).   

 

Industrial manipulators require a high level of accuracy, speed, and stability in order to 

provide the mobility and flexibility  needed to perform the range of tasks required in a 

manufacturing setting.  An industrial robot is useful when it is capable of controlling its 

movement and the forces it applies to its environment.  Accuracy, repeatability, and 

stability are important considerations when designing a suitable robot controller.   

 

One of the major objectives of a robot is to position its tool from one point to another 

while following a planned trajectory.  This is called controlled path motion or the motion 

trajectory problem.  Motion trajectory control of the end-effector applies to the tasks in 

the first category, gross manipulation, as defined by Yoshikawa.  Robots, in general, use 

the first three axis for gross manipulation (position control) while the remaining axis orient 

the tool during the fine manipulation (force or tactile control).  The dynamic equations of 

an industrial robot are a set of highly nonlinear differential equations.  For an end-effector 

to move in a particular trajectory at a particular velocity a complex set of torque (force) 

functions are to be applied by the joint actuators.  Instantaneous feedback information on 

position, velocity, acceleration, and other physical variables can greatly enhance the 

performance of the robot. 
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In most systems, conventional single loop controllers track the tasks which are defined in 

terms of a joint space reference trajectory.  In practice, the tracking error is compensated 

through an iterative process which adjusts the reference input so that the actual response 

(Y) of the manipulator is close to the desired trajectory (Yd).  When following a planned 

trajectory, control at time t will be more accurate if the controller can account for the end-

effector's position at an earlier time.  Figure 3 represents the basic block diagram of a 

robot trajectory system interacting with its environment. 

 

With increasing demands for faster, more accurate and reliable robots, the field of robotics 

has faced the challenges of reducing the required on-line computational power, calibration 

time, and engineering cost when developing new robot controllers.  If the robot is to be 

controlled in real time the algorithms used must be efficient and robust.  Otherwise, we 

will have to compromise the robot control strategies, such as reducing the frequency 

content of the velocity profile at which the manipulator moves.   

 

Trajectory
Planning Controller  Robot Environment

Sensors

Loading conditionLink parameters

Actual joint position,

  velocity & cceleration
Joint torques

Figure 3 - Basic control block for robot
trajectory system

Yd Yτ
Desirred joint position

  velocity & cceleration
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The robot arm position control is a complex kinematic and dynamic problem and has 

received researchers' attention for quite some time.  During the last several years, most 

research on robot control has resulted in effective but computationally expensive 

algorithms.  A number of approaches have been proposed to develop controllers that are 

robust and adaptive to the nonlinearities and structural uncertainties.  However, they are 

also computationally  very difficult and expensive algorithms to solve.  As of this day, 

most robot controllers use joint controllers that are based on traditional linear controllers 

and are ineffective in dealing with the nonlinear terms such as friction and backlash. 

 

One popular robot control scheme is called "computed-torque control" or "inverse-

dynamics control".  Most robot control schemes found in robust, adaptive or learning 

control strategies can be considered as special cases of the computed-torque control.  The 

computed-torque-like control techniques involves the decomposition of the control design 

problem into two parts[Koivo, 1989]: 

 

(1) a primary controller, a feedforward (inner-loop) design to track the desired 

trajectory under ideal conditions. 

(2) a secondary controller, a feedback (outer-loop) design to compensate for 

undesirable deviations (disturbances) of the motion from the desired trajectory 

based on a linearized model. 

 

The primary controller compensates for the nonlinear dynamic effects, and attempts to 

cancel the nonlinear terms in the dynamic model.  Since the parameters in the dynamic 

model of the robot are not usually exact, undesired motion errors are expected.  These 

errors can be corrected by the secondary controller.  Figure 4 represents the 

decomposition of the robot controller showing the primary and secondary controllers. 

 

It is well known that humans perform control functions much better than the machine-like 

robots.  In order to control voluntary movements, the central nervous system must 

determine the desired trajectory in the visual coordinates, transform its coordinate to the 

body coordinate, and finally generate the motor commands [Miyamoto et al., 1988].  The 
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human information processing device (brain) has been the motivation for many researchers 

in the design of intelligent computers often referred to as neural computers.   

 

 

 

 

Psaltis, et al. [1988] describe the neural computer as a large interconnected mass of simple 

processing elements (artificial neurons).  The functionality of this mass, called the 

artificial neural network, is determined by modifying the strengths of the connections 

during the learning phase.  This basic generalization of the morphological and 

computational feature of the human brain has been the abstract model used in the design 

of the neural computers.   

 

Researchers interested in neural computers have been successful in computationally 

intensive areas such as pattern recognition and image interpretation problems.  These 

problems are generally static mapping of input vectors into corresponding output classes 

using a feedforward neural network.  The feedforward neural network is specialized for 

Figure 4 - Controller decomposition in primary and
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the static mapping problems.  Whereas in the robot control problem, nonlinear dynamic 

properties need to be dealt with and a different type of neural network structure must be 

used.  Recurrent neural networks have the dynamic properties, such as feedback 

architecture, needed for the appropriate design of such robot controllers. 

 

5. Artificial Neural Networks 

ANNs are highly parallel, adaptive and fault tolerant dynamical systems modeled like their 

biological counterparts.  The phrases "neural networks" or "neural nets" are also used 

interchangeably in the literature, which refer to neurophysiology, the study of how the 

brain and its nervous system work.  ANNs are specified by the following definitions 

[Lippman, 1987]: 

(1) Topology.  It describes the networked architecture of a set of neurons.  The set of 

neurons are organized into layers which are then classified as either feedforward 

networks or recurrent networks.  In feedforward layers, each output in a layer is 

connected to each input in the next layer.  In a recurrent ANN, each neuron can 

receive as its input a weighted output from other layers in the network, possibly 

including itself. Figure 5 illustrates three simple representations of the ANN 

topologies. 
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(2) Neuron.  A computational element that defines the characteristics of input/output 

relationships.  A simple neuron is shown in Figure 6, which sums N weighted 

inputs (called activation) and passes the result through a nonlinear transfer function 

to determine the neuron output.  Some nonlinear functions that are often used to 

mimic biological neurons are: unit step function and linear transfer-function.  A 

very common formula for determining a neuron's output is through the use of 

sigmoidal (squashing) functions: 

g(x) = (1 + e−kx),  range of (0,1)    (1a) 

g(x) = tanh(kx)     range of (-1,1)      (1b) 

  

Figure 5 - ANN topologies: (a) single-layer feedforward

(b) multilayer feedforward; (c) multilayer recurrent
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output outputoutput
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For various values of the slope parameter, k, these functions are continuous and 

have derivatives at all points. 

Figure 6 - McCulloch and Pitts neuron

X0

X1

Xn

W0
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Wn

 Σ g(.)

input output

 

 

(3) The Learning Rules. Given a set of input/output patterns, ANNs can learn to 

classify these patterns by optimizing the weights connecting the nodes (neuron) 

of the networks.  The learning algorithms for weight adaptation can be described 

as either supervised  or unsupervised learning.  In supervised learning, the desired 

output of the neuron is known, perhaps by providing training samples.  During 

supervised training, the network compares its actual response, which is the result 

of the transfer function described above, with the training example and then 

adjusts its weight in order to minimize the error between the desired and its 

actual output.  In unsupervised training, which there are no teaching examples, 

built-in rules are used for self-modification, in order to adapt the synaptic weights 

in response to the inputs to extract features from the neuron.  Kohonen's self-

organizing map is an example of unsupervised learning [Chester, 1993]. 

 

One of the first models of an artificial neuron, was introduced  in 1943 by McCulloch and 

Pitts and is shown in Figure 6.  The model, known as the McCulloch-Pitts neuron, 
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computes a weighted sum of inputs (xi) and outputs (unit step function) a binary value (Y) 

according to whether this sum is above or below a certain threshold (θ)[Hertz et al., 

1991].  

 
Y = g(Σ w ix i − η)   (2) 
 
where g(p)= +1 if p>=0; 0  otherwise. 

 
McCulloch and  Pitts proved that a synchronous network of neurons (M-P network), 

described above, is capable of performing simple logical tasks (computations) that is 

expected of a digital computer.  In 1958, Rosenblatt introduced the "perceptron", in which 

he showed how an M-P network with adjustable weights can be trained to classify sets of 

patterns.  His work was based on Hebb's model of adaptive learning rule in the human 

brain [Hebb, 1949], in which he stated the neuron's interconnecting weights change 

continuously as it learns [Vemuri 1988]. 

 

In 1960, Bernard Widrow introduced its ADALINE (ADAptive LINear element), a 

single-layer perceptron, and later extended it to what is known as MADALINE, multilayer 

ADALINE [Widrow and Lehr, 1990].  In MADALINE, Widrow introduced the steepest 

descend method to stimulate learning in the network.  His variation of learning is referred 

to as the  Widrow-Hoff rule or delta rule. 

 

In 1969, Minsky and Papert reported on the theoretical limitations of the single layer M-P 

network, by showing the inability of the network to classify the exclusive-or (XOR) 

logical problem.  They left the impression that neural network research is a farce and went 

on to establish the "artificial intelligence" laboratory at MIT.  Hence, the research activity 

related to ANNs went to sleep until the early 1980s when the work by Hopfield, an 

established physicist, on neural networks rekindled the enthusiasm for this field.  

Hopfield's autoassociative neural network (a form of recurrent neural network) solved the 

classic hard optimization problem (traveling salesman) [Hopfield and Tank, 1985].   
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Other contributors to the field, Steven Grossberg and Teuvo Kohonon, continued their 

research during the seventies and early eighties (referred to as the "quiet years" in the 

literature).  During the "quiet years", Steven Grossberg [1982 and 1988] worked on the  

mathematical development necessary to overcome one of the limitations reported by 

Minsky and Papert [1969].  Teuvo Kohonon [1982] developed the unsupervised training 

method, the self-organizing map.  Later, Bart Kosko [1988] developed bi-directional 

associative memory (BAM) based on the works of Hopfield and Grossberg.  Robert 

Hecht-Nielson [1990] pioneered the work on neurocomputing. 

 

It wasn't until 1986 that the two-volume book, by McClleland and Rumelhart, titled 

Parallel Distributed Processing (PDP), exploded the field of artificial neural networks 

[Hecht-Nielson, 1990]. In this book (PDP), a new training algorithm called The 

Backpropagation method (BP), using the gradient search technique was used to train a 

multilayer perceptron to learn the XOR mapping problem described by Minsky and Papert 

[Rumelhart, Hinton, and Williams, 1986].  Since then, ANNs have been studied for both 

design procedures and training rules (supervised and unsupervised), and are current 

research topics.  An excellent collection of theoretical and conceptual papers on neural 

networks can be found in books edited by Vemuri [1988], and Lau [1992].  Interested 

readers can also refer to a survey of neural networks book by Chapnick [1992] 

categorized by: theory, hardware and software, and how-to books.  
 

The multilayer feedforward networks, using the BP method, represent a versatile nonlinear 

map of a set of input vectors to a set of desired output vectors on the spatial context 

(space).  During the learning process, an input vector is presented to the network and 

propagates forward from input layers to output layers to determine the output signal.  The 

output signal vector is then compared with the desired output vector resulting in an error 

signal.  This error signal is backpropagated through the network in order to adjust the 

network's connecting strengths (weights).  Learning stops when the error vector has 

reached an acceptable minimum [Lippman, 1987].  An example of feedforward network 

consisting of three layers is shown in Figure 7. 
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Many studies have been undertaken in order to apply both the flexibility and the learning 

ability of backpropagation to robot control on an experimental scale [Josin, Charney and 

White, 1988; Kuperstein and Wang, 1990; Guez, Ahmad and Zelinsky, 1992].  In a recent 

study, an ANN utilizing an adaptive step size algorithm based on random search 

technique, improved the convergence speed of the BP method for solving the inverse 

kinematic problem for a two-link robot [Golnazarian, Hall, and Shell, 1992]. The robot 

control problem is a dynamic problem, where the BP method only provides a static 

mapping of the input vectors into output classes.  Therefore, its benefits are limited.  In 

addition, like any other numerical method, this novel learning method has limitations (slow 

convergence rate, local minimum).  Attempts to improve the learning rate of BP have 
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resulted in many novel approaches [Jacobs, 1988; Baba, 1989].  It is necessary to note 

that the most important behavior of the feedforward networks using the BP method is its 

classification ability or the generalization to fresh data rather than temporal utilization of 

past experiences. 
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A recurrent network is a multilayer network in which the activity of the neurons flows 

both from input layer to output layer (feedforward) and also from the output layer back to 

the input layer (feedback) in the course of learning [Hecht-Nielsen, 1990]. In a recurrent 

network each activity of the training set (input pattern) passes through the network more 
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than once before it generates an output pattern, where in standard BP only error flows 

backward, not the activity.  This network architecture can base its response to problems 

on both spatial (space) and temporal (time) contexts [Pearlmutter, 1989; Pineda, 1987]. 

Therefore, it has a potential in modeling time-dependent processes such as in robotic 

applications.  Figure 8 represents the recurrent ANN architecture. 

 

It is clearly evident that a recurrent network will require a substantial memory in 

simulation (more connections) than a standard BP.  Recurrent networks computing is a 

complex method, with a great deal of record keeping of errors and activities at each time 

phase. However, preliminary results indicate that they have the ability to learn extremely 

complex temporal patterns where data is unquantified with very little preprocessing i.e. 

stock market prediction, and Fourier transforms relationships [Caudill and Butler, 1992].  

In feedforward networks where the training process is memoryless, each input is 

independent of the previous input.  It is advantageous, especially in repetitive dynamical 

systems, to focus on the properties of the recurrent networks to design better robot 

controllers. 

 

6. Robot Arm Kinematics 

This section provides the mathematical formulations for the kinematic and dynamic 

analysis of robot manipulators.  These formulations are then considered in design of the 

control algorithms for a four-axis SCARA industrial robot (AdeptOne).  The treatment of 

robot manipulator kinematics and dynamics presented here is patterned primarily after 

discussions found in Lee [1982], Spong and Vidyasagar [1989], and Schilling [1990].  

Additional comprehensive sources of robot manipulator kinematics and dynamics can be 

found in investigations by Paul [1981], Wolovich [1986], Craig [1986], Asada and Slotine 

[1986], and Fu, Gonzalez and Lee [1987]. 

 

The purpose of a robot manipulator is to position and interface its end-effector with the 

working object.  For example, a robot has to pick up a part from a certain location, put it 

down in another location, and so on.  Robot arm kinematics deals with the geometry of 

robot arm motion as a function of time (position, velocity, and acceleration) without 
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regards to the forces and moments that cause it.  Specifically, one studies the functional 

relationship between the joint displacements and the position and orientation of the end-

effector of a robot as shown in Figure 9.  The problem of finding the end-effector position 

and orientation for a given set of joint displacements is referred to as the direct kinematic 

problem.  Thus, for a given joint coordinate vector q and the global coordinate space x, it 

is to solve:  

 
 x = f(q)    (3) 
 
where f is a nonlinear, continuous and differentiable function.  This equation has a unique 

solution.  On the other hand, given the end-effector position and orientation, the inverse 

kinematic problem calculates the corresponding joint-variables to drive the joint servo 

controllers by solving: 

 
  q = f-1(x)    (4) 
 
The solution to this equation, also called the arm solution, is not unique.  Since trajectory 

tasks are usually stated in terms of the reference coordinate frame, the inverse kinematics 

problem is used more frequently. 
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Homogeneous Transformation Matrix.  Before further analyzing the robot kinematic 

problem, a brief review of matrix transformations is needed.  Figure 10 illustrates a single 

vector defined in the {i} coordinate frame Pi =(x',y',z').  The task is to transform the vector 

defined with the {i} coordinate frame to a vector with the {i-1} coordinate frame, Pi-1 

=(x,y,z).  Simply, this transformation is broken up into a rotational part and a translational 

part.   

 

  pi-1 = Ri p
i + di  (5) 

 

Since rotation is a linear transformation, the rotation between the two coordinate frames is 

given by 

 

Direct

Kinematics

Inverse

Kinematics

link parameters

Joint angles

q1(t),...,qn(t)

Position & orientation

X1(t),...,Xn(t)

Figure 9 - The direct and inverse kinematic problems
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  pi-1 = Ri p
i   (6) 

(i)(i-1)

di

Pi

Figure 10 - Transformation between two coordinate frames

Pi-1

 

 

Here, Ri is  3x3 matrix operation about x, y, and z axis.  These matrices are 

Rx()=

1 0 0
0 cos η − sin η
0 sin η cos η           (7a) 

 

Ry(�)= 

cos η 0 sin η
0 1 0

− sin η 0 cos η     (7b) 
 
 

 Rz(�)= 

cosh− sinh0
sinh cosh 0

0 0 1    (7c) 

   

The following general statements can be made: 
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1) A coordinate transformation R represents a rotation of a coordinate frame to a new 

position. 

2) The columns of R give the direction cosines of the new frame axes expressed in the 

old frame. 

3) It can be extended to a product of more than two transformation matrices. 

 

To complete the transformation in Figure 10, translation between frames {i} and {i-1} still 

needs to take place.   

 

di = 

dx
dy
dz      (8) 

 

However, translation is a non-linear transformation, hence the matrix representation of 

equation (5) can only be in 3x4 form: 

 

p i−1 =
x
y
z

= Ri

x
Â

y
Â

z
Â

+

dx
dy
dz    (9) 

p i−1 = Ri d i
p i

1      

 

Equation (9), where [Ri di] is a (3x4) matrix and [Pi 1]T is a (4x1) vector, can only be used 

to transform the components of p from frame {i} to {i-1}.  Due to singularity of the 

matrix above, the inverse of the transformation cannot be achieved.  To incorporate the 

inverse transformation in equation (9),  the concept of homogeneous coordinate 

representation1 replaces the (3x4) transformation matrix with a (4x4) transformation 

matrix by simply appending a final (1x4) row, defined as [0 0 0 1], to [Ri di].  

Correspondingly, the Pi-1 vector will be replaced by (4x1) vector of  Pi = [Pi-1 1]T. 

                                                        
1

The representation  of an n-component position vector by an (n+1)-component  vector is called homogeneous coordinate 
representation. 
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x
y
z
1

=

dx
Ri dy

dz
0 0 0 1

xÂ

yÂ

zÂ

1    (10) 

 
It can be seen that the transformation equation (5) is equivalent to the matrix equation 

(10). The (4x4) transformation matrix, noted Hi, contains all the information about the 

final frame, expressed in terms of the original frame: 

 

H =
R d i

0 1                                                  (11) 
 

Using the fact that Ri is orthogonal it is easy to show that the inverse transformation H-1 is 

given by 

 

H−1 =
Ri

T −Ri
Td i

0 1     (12) 

 

The matrix Hi has homogenized the representation of translation and rotations of a 

coordinate frame.  Therefore, matrix Hi is called the homogeneous transformation matrix. 

The upper left (3x3) submatrix represents the rotation matrix; the upper right (3x1) 

submatrix represents the position vector of the origin of the rotated coordinate system 

with respect to the reference system; the lower left (1x3) submatrix represents perspective 

transformation for visual sensing with a camera; and the fourth diagonal element is the 

global scaling factor.  In the robot manipulator, the perspective transformation is always a 

zero vector and the scale factor is one.  The frame transformation is now given by: 

 

Pi-1 = Hi P
i      (13) 

 

This transformation, represented by the matrix Hi, is obtained from simpler 

transformations representing the three basic translations along (three entries of di), and 
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three rotations (three independent entries of Ri) about the frames axes of x, y, and z.  They 

form the six degrees of freedom associated with the configuration of P.  These 

fundamental transforms, expressed in a 4x4 matrix notation, are shown as: 

Trans(dx,dy,dz) =  

1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1    (14a) 

Rot(x,θ)  =        

1 0 0 0
0 cos η − sin η 0
0 sin η cos η 0
0 0 0 1      (14b) 

 

Rot(y,θ)    =                   

cos η 0 sin η 0
0 1 0 0

− sin η 0 cos η 0
0 0 0 1 �   (14c) 

 

Rot(z,θ)    =                   

cos η − sin η 0 0
sin η cos η 0 0

0 0 1 0
0 0 0 1   (14d) 

 

The homogeneous transformation matrix is used frequently in manipulator arm kinematics.   

 

The Denavit-Hartenberg Representation.  The most commonly accepted method for 

specifying frame position and finding the desired transformation matrices is attributed to 

the Denavit and Hartenberg (D-H) representation [Denavit and Hartenberg, 1955].  In this 

method, an orthonormal Cartesian coordinate system is established on the basis of three 

rules [Wolovich, 1986]: 

 

a) The zi-1 axes lies along the axis of motion of the ith joint. 

b) The xi axis is normal to the zi-1 axis, pointing away from it. 

c) The yi axis complete the right-hand rule coordinate system. 
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This is illustrated in Figure 11.  Note that joint i joins link i-1 with link i.  Frame i, which is 

the body frame of link i, has its z axis located at joint i+1.  If the joint is revolute, then the 

rotation is about the z axis.  If the joint is prismatic, the joint translation is along the z axis.   

 

The D-H representation depends on four geometric parameters associated with each link 

to completely describe the position of successive link coordinates: 

 

ai = the shortest distance between zi and zi-1 along the xi 
 
αi = the twist angle between zi and zi-1 about the xi  
 
di = the shortest distance between xi and xi-1 along the zi-1 
 
θi  = the angle between xi-1 and xi about the zi-1 

 

For a revolute joint, θθi is the variable representing the joint displacement where the 

adjacent links rotate with respect to each other along the joint axis.  In prismatic joints in 

which the adjacent links translate linearly to each other along the joint axis, di is the joint 

displacement variable, while θθi is constant.  In both cases, the parameters ai and αi are 

constant, determined by the  geometry of the link. 

 

In general we denote the joint displacement by qi, which is defined as: 

 

  qi = θθI for a revolute joint 

  qi = di     for a  prismatic joint 

  

Then, a (4x4) homogeneous transformation matrix can easily relate the ith coordinate 

frame to the (i-1)th coordinate frame by performing the following successive 

transformations: 

1) Rotate about zi-1 axis an angle of θi, Rot(zi-1,θi) 

2) Translate along the zi-1 axis a distance of di, Trans(0,0,di) 

3) Translate along the xi axis a distance of ai, Trans(ai,0,0) 
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4) Rotate about the xi axis an angle of αi, Rot(xi,αi) 

 

X

Y

Z

O i

a i

Z i - 1

Z i - 2

l i n k  i - 1l i n k  i

j o i n t  i - 1

j o i n t  i

j o i n t  i + 1

X i - 1

Y i - 1

O i - 1

a i - 1

d i

θ

Figure 11 - Denavit-Hartenberg frame assignment

i

i

αi

i

i

 

The operations above result in four basic homogeneous matrices.  The product of these 

matrices yields a composite homogeneous transformation matrix iAi-1.  The iAi-1 matrix is 

known as the D-H transformation matrix for adjacent coordinate frames, {i} and {i-1}.  

Thus, 

 iAi-1 = Trans(0,0,di) Rot(zi-1,θi)          

Trans(ai,0,0) Rot(xi,αi) 

 iAi-1= 

1 0 0 0
0 1 0 0
0 0 1 d i

0 0 0 1

%

cos ηi − sin ηi 0 0
sin ηi cos ηi 0 0

0 0 1 0
0 0 0 1

%
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1 0 0 a i

0 1 0 0
0 0 1 0
0 0 0 1

%

1 0 0 0
0 − cosai sinai 0
0 sinai cosai 0
0 0 0 1  

 iAi-1 = 

coshi − cosai sinhi sinai sinhi a i coshi

sinhi cosai coshi − sinai coshi ai sinhi

0 sinai cosai d i

0 0 0 1       (15) 

 

Using the iAi-1 matrix in figure 10, vector Pi expressed in homogeneous coordinates with 

respect to coordinate system {i}, relates to vector Pi-1 in coordinate {i-1} by 

 

Pi-1 = iAi-1 Pi     (16) 

where Pi-1 = (x,y,z,1)T and Pi = (x',y',z',1)T. 

 

Manipulator Arm Kinematic Equations.  The transformation matrix of equation (16) 

relates points defined in frame {i} to frame {i+1}.  For a robot manipulator with 6 links, 

the position of the end-effector (last link) with respect to the base is determined by 

successively multiplying together the single (D-H) transformation matrix that relates frame 

{6} to frame {0}: 

  6T5 = 6A5 

  
6T4 = 5A4

6T5 = 5A4
6A5 

  6T3 = 4A3
6T4 = 4A3

5A4
6A5 

  
6T2 = 3A2

6T3 = 3A2
4A3

5A4
6A5 

  6T1 = 2A1
6T2 = 2A1

3A2
4A3

5A4
6A5 

  6T0 = 1A0
6T1 =  

1A0
2A1

3A2
4A3

5A4
6A5  (17) 

 

Generalized for n degree-of-freedom, the base frame {0} is assumed to be fixed.  This is 

taken as the inertial frame with respect to which a task is specified.  The body frame {n} is 

the free moving end-effector.  The columns of the overall homogeneous transformation 

matrix, nT0, corresponds to the position and orientation of the end-effector (xn), expressed 
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in the base frame.  This transformation matrix, nT0, will be a function of all n joint 

variables (qn), with the remaining parameters constant. 

 

 nT0(xn) = 1A0(q1)
2A1(q2)

3A2(q3)...
nAn-1(qn)  (18) 

 

The final transformation matrix nT0, also called the arm matrix, defines the final 

configuration of any end-effector with respect to the inertia frame {0}, depicted in Figure 

12.  The tool origin represents any appropriate point associated with the tool frame (or the 

transporting object).  The origin of (Ot) frame can be taken either at the wrist or at the 

tool tip, or placed symmetrically between the fingers of the end-effector (gripper).  The 
nT0 matrix may be written as 

 

nT0 =
Ri d i

0 1
=

xn yn zn d i

0 0 0 1    (19)  

=
n s a d
0 0 0 1

=

nx sx ax dx

ny sy ay dy

nz sz az dz

0 0 0 1     

 

where three mutually perpendicular unit vectors, as shown in Figure 12, represent the tool 

frame in Cartesian coordinate system.  In the above equation: 

 

n = normal unit vector,  normal to the  fingers of  the robot  arm, following the right-

hand rule. 

s = unit sliding vector, pointing to the direction of the sideward motion of the fingers 

(open and close). 

a = unit approach vector, normal to the tool mounting plate of the arm. 

 

Equation (20) represents the direct (forward) kinematic problem for a robot manipulator: 

given the joint displacements (ΘΘ) and the link parameters, find the position and the 

orientation of the end-effector (X) in the base frame: 
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X = f(ΘΘ)     (20) 
 
 
where f is a nonlinear, continuous and differentiable function. This equation has a unique 

solution.  This is best illustrated by an example. 

 

 

 

Consider the Four-axis horizontal-jointed SCARA robot, AdeptOne in Figure 13.  This 

manipulator is unique because it is the first commercial robot to implement a direct-drive2 

system for actuation.  The robot consists of an RRP arm and a one degree-of-freedom 

wrist, whose motion is a roll about the fourth vertical axis.  The (D-H) link kinematic 

parameters are given in Table 3 [Schilling, 1990].   

 

                                                        
 
 
2

Direct-drive is an electrical drive in which no gear reducer is used.  Therefore the rotor of the electric motor is directly coupled 
to the load, hence the mechanical gears are not needed. This eliminates gear friction and backlash and allows for clean, 
precise, high-speed operation [Asada and Youcef-Toumi, 1987]. 

wrist
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s, sliding vector
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Figure 12 - Tool coordinate system (frame)
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Table 3. Kinematic Parameters for a four-axis SCARA robot 

Axis θθ d a αα 

1 q1 d1 = 877 mm a1 = 425 mm π 

2 q2 0 a2 = 375 mm 0 

3 0 q3 0 0 

4 q4 d4 = 200 mm 0 0 

     

Figure 13 - A four-axis SCARA robot (AdeptOne)
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All the joint axes are parallel.  The joint variable (vector-form) is q = [θ1, θ2, d3, θ4]
T.  The 

first two joint variables, θθ11  and  θθ22, are revolute variables which establish the horizontal 

component of the tool position.  The third joint variable d3, a prismatic joint, determines 

the vertical component of tool origin.  Finally, the last joint variable θθ44, which is of 

revolute kind, controls the tool orientation.  

 

Using the values from Table 3 in equation (15), the iAi-1 matrices are as follows 

 

 

1A0 =

cosh1 sinh1 0 a1 cosh1

sinh1 − cosh1 0 a1 sinh1

0 0 −1 d1

0 0 0 1                  (21a) 

 

2A1 =

cosh2 − sinh2 0 a2 cosh2

sinh2 cosh2 0 a2 sinh2

0 0 1 0
0 0 0 1                        (21b) 

 

3A2 =

1 0 0 0
0 1 0 0
0 0 1 h3

0 0 0 1     (21c) 

 

4A3 =

cosh4 − sinh4 0 0
sinh4 cosh4 0 01

0 0 1 d4

0 0 0 1    (21d) 

 

The forward kinematic solution, using equation (18) is therefore given by 
toolTbase(x4)= 

4T0(x4) 

         = 1A0(θ1)2A1(θ2)3A2(d3)4A3(θ4)    (22) 
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= 

cos(h1 −h2 −h4) sin(h1 −h2 −h4) 0 a1 cosh1 + a2 cos(h1 −h2)
sin(h1 −h2 −h4) − cos(h1 −h2 −h4) 0 a1 sinh1 + a2 sin(h1 −h2)

0 0 −1 d1 − d3 − d4

0 0 0 1      

 

In equation (22) the rotation matrix toolRbase, the (3x3) upper left sub-matrix, expresses the 

orientation of tool frame {4} relative to the base frame {0} as 

toolRbase = n s a =
nx sx ax

ny sy ay

nz sz az  

toolRbase =
cosh1 −h2 −h4) sin(h1 −h2 −h4) 0
sin(h1 −h2 −h4) − cos(h1 −h2 −h4) 0

0 0 −1           (23) 

 

Note that the approach vector a = [0 0 -1] is fixed, and independent of the joint variables.  

This is one of the characteristics of the AdeptOne robot, or even all SCARA robots, which 

are designed to manipulate objects directly from above.  Industrial applications such as 

circuit board assembly, is the common area of use for this robot. 

 

The vector di, the right column vector in equation (22), represents position of the tool 

frame {4} relative to the base frame {0} as 

 

d i =
dx
dy
dz   

=
a1 cosh1 + a2 cos(h1 −h2)
a1 sinh1 + a2 sin(h1 −h2)

d1 − d3 − d4              (24) 

 

The inverse kinematic solution.  For the purpose of driving and controlling a robot, it is 

necessary to solve equation (20) for the joint variables since the actuator variables are the 

joint variables.  This is the inverse (backward) kinematic problem associated with a robot 

manipulator: given the position and the orientation of the end-effector (X) in the base 

frame, find the joint displacement (ΘΘ): 
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(ΘΘ) = f-1(X)                                (25) 

 

The backward solution algorithm is generally more difficult than the forward solution.  In 

the three-dimensional space, six coordinates are needed to specify a rigid body (three 

position coordinates and three angles of rotation).  Since the six equations generated are 

nonlinear trigonometric functions and are coupled, a simple and unique solution for q may 

not even exist.  For a high number of degrees of freedom the inverse kinematic problem 

can result in very complicated solution algorithms [Fu et al., 1987).  

 

Some simplification is possible by properly designing the robot geometry.  For example, 

when the axes for the three revolute joints of a six degree-of-freedom robot coincide at the 

wrist of the end-effector, it is possible to decouple the six equations in (15) into two sets 

of three simpler equations [Pieper, 1968].  The first set of equations decide the position of 

the first three joint variables.  Once the first three joint variables are determined, the last 

three joint variables are obtained such that the end-effector has the correct orientation.  

 

Recall the four-axis SCARA (AdeptOne) example whose forward kinematic solution is 

defined by equation (22).  Suppose that the position and orientation of the final frame 

(tool frame) is given as equation 19 

toolTbase(x4) = 

nx sx ax dx

ny sy ay dy

nz sz az dz

0 0 0 1     

 

To find the corresponding joint variables [θ1, θ2, d3, θ4], we must solve the following 

simultaneous set of nonlinear trigonometric equations: 

 

 n x = cos ( η1 − η2 − η4)   
 
 ny = sin (h1 −h2 −h4)  
 
 nz = 0 
 
 sx = sin (h1 −h2 −h4) 
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 sy = − cos (h1 −h2 −h4) 
 
 sz = 0 
 
 ax = 0 
 
 ay = 0      
 
 az = − 1 
 
 dx = a1 cos (h1) + a2 cos (h1 −h2)   
 
 dy = a1 sin (h1) + a2 sin (h1 −h2) 
 
 dz = d1 − d3 − d4 
 

Note that, the SCARA robot has only four degrees of freedom.  Therefore, not every 

element of the orientation matrix allows a solution for equation (22).  The complete 

solution to the inverse kinematic problem of finding the joint variables [� ������� d����� ] 

in terms of the end-effector position and orientation for the SCARA manipulator is shown 

in table 4. 

 

Table 4. Inverse kinematics of a four-axis SCARA robot 

Base joint: 

 q2 = arctan 2 ! 1 − r2 r , where r2 =
dx

2+dy
2−a1

2−a2
2

2a1a2  

Elbow joint: 

 q1 = arctan 2 dx dy − arctan 2 a1 + a2 cosh2 a2 sinh2  

Vertical extension joint: 

 q3 = d1 − d4 − dz 

Tool roll joint: 

 q4 = q1 − q2 − arctan 2 ny nx  

 

This inverse kinematics solution is not unique due to multiplicity of q2.  Complete 

derivation for the solution for the four-axis SCARA (AdeptOne) robot manipulator can be 

found in textbooks by Spong and Vidyasagar [1989] and Schilling [1990].  In general, the 

inverse kinematic problem can be solved by various methods.  The methods used usually 

are algebraic, geometric or iterative.  The common approach is to use a closed form 
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solution to the inverse kinematic problem.  However, these solutions are manipulator-

dependent and still often too difficult to solve in closed form.  In many cases (non closed 

form) the iterative method is required with kinematically redundant robots [Fu et al., 

1987). 

 

One popular method is to use the N-dimensional Newton-Raphson algorithm or its 

modified version to solve the non-linear equations [Oh et al., 1984].  Fast iterative 

techniques for the inverse kinematic problems have been reported based on nonlinear least 

squares minimization with accurate and rapid convergence [Goldenberg and Lawrence, 

1985].  Other techniques based on the geometric relationship between the various links 

and joints have been reported, depending on the points of reference chosen.  In general, 

most researchers resort to numerical methods to obtain the inverse solution.  

 

The use of iterative techniques raises the problem of accurate real-time implementation of 

manipulator kinematic control.  The need to compute the inverse Jacobian at several 

points, importance of closeness of the initial solution to the exact solution (otherwise the 

algorithm diverges) and accumulation of the linearization error, reflects the computational 

complexity of the methods for on-line use. 

 

Artificial neural network (ANN) theory has provided an alternative solution for solving the 

inverse kinematic problem.  ANNs are highly parallel, adaptive and fault tolerant 

dynamical systems modeled like their biological counterparts [Rumelhart et al., 1986].  

Application of ANNs to this problem is to train the network with the input data in the 

form of pairs of end-effector positions and orientations and the corresponding joint values. 

After the training is completed, the ANN can generalize and give good results (joint 

angles) at new data points (position and orientation).  

 

Recently, artificial neural networks (ANNs) have been augmented with an iterative 

procedure using the Newton-Raphson technique resulting in an increase in computational 

efficiency by two-fold for the PUMA 560 robot [Guez et al., 1992].  An ANN based 

scheme has also been proposed for computing manipulator inverse kinematics where no 
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prior knowledge of the manipulator kinematics is required [Nguyen and Patel, 1990].  In 

the event that the physical structure of  a robot is changed (or damaged) during an 

operation, ANN architecture can supplement the existing robot controller to learn the new 

transformations quickly without repairing the robot physically [Josin et al., 1988].  In a 

recent study, an ANN utilizing an adaptive step size algorithm based on random search 

technique, improved the convergence speed for solving the inverse kinematic problem for 

a two-link robot [Golnazarian et al., 1992]. 

 

Manipulator motion kinematic equations.  Previously, we have described the forward 

and inverse arm solutions relating joint positions and end-effector position and orientation.  

However, the manipulator is stationary at a specific configuration.  Typically, a robot is in 

motion to perform a task such as spray painting, arc welding and sealing.  Continuous-

path motion control is required in these applications where the tool must travel a specific 

path in a prescribed time (trajectory).  One must then determine and control the velocity 

and acceleration of the end-effector between points on the path.   

 

The forward kinematic (20) relates the end-effector position to the joint displacements.  

When the end-effector is in motion, an infinitesimal directional change in its position is 

determined by differentiating the kinematic equations (20) with respect to time, this yields: 

dxm = ¹xm

¹q1
¹q1 + ¹xm

¹q2
¹q2 + ¹xm

¹q3
¹q3 + ... + ¹xm

¹qn
¹qn

 

dxm = J(q) dqn 

X
.

m = J(q)h
.

n    (27) 

The J(q) matrix, called manipulator Jacobian or Jacobian, defines the linear 

transformation from joint coordinates to Cartesian coordinates, n is the number of joints of 

the manipulator and m is the dimensionality of the Cartesian coordinate of the tool under 

consideration.  The Jacobian, is one of the most important quantities in the analysis and 

control of robot motion.  It is used for smooth trajectory planning and execution, in the 

derivation of the dynamic equations, and in transformation of forces applied by the end-
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effector into the resultant torque generated at each joint.  The generalized Cartesian 

velocity vector, X
.
 is defined as 

  
X
.

=
m

z  

where ������ x,� y���z ] represents the linear velocity and the ������� x���y���z�  

the angular velocity of the tool.   

 

Consider the four-axis SCARA robot whose kinematic description has been developed.  

The Jacobian of the SCARA robot is  

J(q) =

−a1 sin η1 − a2 sin(η1 − η2) a2 sin(η1 − η2) 0 0
a1 cos η1 + a2 cos(η1 − η2) − a2 cos(η1 − η2) 0 0

0 0 −1 0

0
0
1

0
0
-1

0
0
-1

0
0
0     (28) 

 

The first three rows of J(q) correspond to linear tool displacement, while the last three 

correspond to angular tool displacement.  Then a joint space trajectory q(t) corresponding 

to x(t) can be obtained by inverting the Jacobian along with the inverse kinematic solution. 

 

h
.

= J(h)−1X
.

     (29) 

 

By differentiating the equation (29) the desired joint accelerations are found as well, 

 

ḧ= J
.
(h)−1X

.
+ J(h)−1Ẍ     (30) 

 

The problem with solving for the joint space differentials (velocity and acceleration) using 

the Jacobian is that at certain point in joint space, the tool Jacobian may lose its rank.  

That is, there is a reduction in the number of linearly independent rows and columns.  The 

numerical solutions of equations (29) and (30) produce very large differential values.  The 
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points at which J(q) loses rank are called joint-space singularities.  There are two types of 

joint-space singularities: 

 

(1) boundary singularity, which occurs when the tool tip is on the surface of the work 

envelope.  These are not particularly serious, because they can be avoided by 

mechanical constraints. 

(2) interior singularity occurs inside the work envelope when two or more axes 

become collinear. These are more serious, because cancellation of counteracting 

rotations about an axis causes the tool tip position to remain constant. 

 

From inspection of the Jacobian for the SCARA robot, equation (28), if and only if the 

upper left 2x2 submatrix becomes singular (|J(q)| = 0), the J(q) loses rank. 

 D = J(q) = [−a1 sinh1 − a2 sin(h1 −h2)][−a2 cosh2 ] 

             − [a2 sin(h1 −h2)][a1 cosh1 + a2 cos(h1 −h2)]  

   = a1a2 sinh1 cos(h1 −h2) + a2
2 sin(h1 −h2) cos(h1 −h2) 

     − a1a2 sin(h1 −h2) cosh1 − a2
2 sin(h1 −h2) cos(h1 −h2) 

  = a1a2[sinh1 cos(h1 −h2) − cosh1 sin(h1 −h2)] 
              = a1a2 sinh2   (31) 
 

If sin(� � )=0, the Jacobian matrix is singular and has no inverse.  This will occur when the 

elbow angle q2 is an integer multiple of �.  The tool tip is on the outer surface of the work 

envelope (arm is reaching straight out).  Whereas when |q2|=�� the arm is folded inside 

the surface of the work envelope. 

 

7 Robot Arm Dynamics 

Similar to the robot kinematic problem, there are two types of robot dynamic problems, a 

direct (forward) dynamic problem and an inverse dynamic problem, as shown in Figure 14.  

The problem of direct or forward dynamics is to calculate the joint trajectories (position, 

velocity, and acceleration), q(t), given the force (torque) profile, �(t), which causes the 

desired motion trajectory: 

 

q = f(�)       (32) 
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This problem is important in computer simulation studies of robot manipulators.  

However, the vast majority of robot manipulators are driven by actuators which supply a 

force for the prismatic joint and a torque for the revolute joint to generate motion in a 

prescribed trajectory. The controller must also call for torques to compensate for inertia 

when each link is accelerated.  Therefore, the problem of inverse dynamic is to design 

efficient control algorithms to compute accurate force (torque) �(t), which causes the 

desired motion trajectories q(t): 

 

� = f -1(q)     (33) 

 

This section presents the inverse dynamic equation of motion for robot manipulators.  The 

robot arm kinematic solution along with the velocity and the acceleration of the link 

coordinates will be used to obtain the inverse dynamic model for the four-axis SCARA 

robot (AdeptOne).  

 

In order to control the robot manipulator in real time, at adequate sampling frequency, it is 

necessary to balance the generalized torques accurately and frequently from four sources 

[McKerrow, 1991]: 

1) dynamic source, arising from the motion of the robot: 

 (i) inertia, mass property resisting to change in motion, proportional to joint 

acceleration. 

(ii) Coriolis, vertical forces derived from the link interactions, proportional to 

the product of the joint velocities. 

iii) centripetal forces, constraining rotation about a point, proportional to the 

square of the joint velocity. 

2) static source, arising from friction in the joint mechanism. 

3) gravity source, arising from force of gravity on each link. 

4) external source, arising from external loads (tasks) on the end-effector. 
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F i g u r e  1 4  -  T h e  d i r e c t  a n d  i n v e r s e  d y n a m i c s  p r o b l e m s

D i r e c t

D y n a m i c s

I n v e r s e

D y n a m i c s

l i n k  p a r a m e t e r s

F o r c e  ( t o r q u e )  p r o f i l e

τ

J o i n t  t r a j e c t o r y

p r o f i l e  q ( t )

(t)

 

 

We can formulate the following expression for the inverse dynamics problem:  

t = M(h)ḧ+ C(h,h
.
) + F(h

.
) + G(h) +td                           (34) 

where, M(h),   (nxn) inertia matrix of the robot. 

C(h,h
.
), (nx1) vector of centrifugal and Coriolis terms. 

F(h
.
),   (nx1) friction vector. 

G(h),   (nx1) gravity vector. 

td,     disturbance due to unknown loading 

 
 
Detail discussions on structure and dynamic properties of the robot equations of motion 

can be found in Lewis et al. [1993] and Schilling [1990].  An excellent collection of early 

kinematics and dynamics research articles, discussed in this section, is also available by 

Lee et al. [1986]. 
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The dynamic characteristics of robot manipulators are highly nonlinear and therefore 

require a great number of mathematical 

operations.  There are two forms of inverse dynamic solutions for a robot: (1) closed 

form, and (2) recursive form.  If manipulators are kinematically and dynamically simple in 

design, an analytical expression for the closed form dynamic equations can be derived 

[Craig, 1986].  Thus, the final  analytical expression will have simple physical 

interpretation in terms of all the dynamic properties described above. 

 

An analytical approach based on the Lagrange's energy function, known as Lagrange-

Euler method (L-E), results in a dynamic solution that is simple and systematic. In this 

method, the kinetic energy (K) and the potential energy (P) are expressed in terms of joint 

motion  trajectories.  The resulting differential equations then provide the forces (torques) 

which drive the robot.  Closed form equations result in a structure that is very useful for 

robot control design and also guarantee a solution.  However, its drawback is that it 

requires redundant calculations. For instance, when a force (torque) is applied to the end-

effector, of a serial link manipulator, the joint interaction results in considerable 

duplication of calculation in the subsequent link equations.   

 

This duplication can be avoided in the recursive form and calculation can be made more 

efficient.  In addition, the L-E method is inefficient, mainly because it uses the (4x4) 

homogeneous transformation matrices that are somewhat sparse due to combination of 

rotation and translation.  Various attempts have been reported to simplify and improve the 

computational efficiency of the L-E formulation [Hollerbach, 1980] and [Renaud, 1984].  

In general, these approximations, when used for control purposes, result in suboptimal 

dynamic performance (lower speed and position inaccuracy) [Lee, 1982]. 

 

One recursive approach called  the Newton-Euler (N-E) formulation, has the advantage of 

speed and accuracy for on-line implementation [ Luh et al., 1980].  The N-E method is 

based on the Newton's mass center theorem and the Euler's theory of kinetic momentum 

applied at each robot link.  Each link is considered to be a free body and the equations of 

motion are obtained for each link in a recursive manner.  It uses a set of forward and 
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backward recursive equations.  The forward iteration propagates kinematic information 

from base frame to the end-effector.  Once the forward iteration is complete, the 

backward iteration calculates and propagates the joint forces (torques) exerted on each 

link from end-effector back to the base frame.  The N-E formulation is simple and very 

fast.  However, the derivation is messy (vector cross product terms) and recursive 

equations destroy the structure of the dynamic model, which is very important for the 

design of robot controllers [Lee, 1982].   

 

The advantage of using recursive form (numerical) over the closed form (analytical) is 

only the speed of computation, particularly as the number of axes increases.  The L-E 

method has a computational complexity of order O(n4), n being the number of axis.  This 

is in contrast to N-E formulation which has a computational complexity of order O(n).   

 

Lee et al. [1983] also obtained an efficient set of closed form solutions based on the 

generalized d'Alembert (G-D) principle that retain the structure of the problem with a 

moderate computational complexity of order O(n3).  A symbolic program called Algebraic 

Robot Modeler (AMR) has also been reported to generate efficient customized dynamic 

equations for a variety of robots [Neuman and Murray, 1987]. 

 

In the following section, the complete dynamic model of the four-axis SCARA robot 

(AdeptOne) is derived based on the L-E formulation (see Figure 13).  The (AdeptOne) 

SCARA robot is kinematically simple, and its unique direct drive actuating system 

eliminates gear friction and backlash.  It has a closed form dynamic solutions which will 

provide the simple physical interpretations (inertia, centrifugal and Coriolis forces, friction 

and gravity) necessary to design the robot controller. 

 

The Lagrange-Euler formulation.  The Lagrange-Euler method  describes the dynamic 

behavior of a robot in terms of work and energy stored in the system.  The constraining 

forces are eliminated during the formulation and the closed form solution is derived 

independent of any coordinate system.  This method is based on the utilization of [Spong 

and Vidyasagar, 1989]: 
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1) The (4x4) Denavit-Hartenberg matrix representation, iAi-1, which describes the 

spatial relationship between the ith and (i-1)th link coordinate frames. 

2) Fundamental properties of kinetic energy (K) and potential energy (P). 

3) Lagrange's equation of motion [Koivo, 1989]: 

     
tι = d

dt
¹L
¹q. i

− ¹Λ¹q i
i=1,2,...,n links

            (35) 

where  L = lagrangian function = (K - P) 

 q i = generalized coordinates of the robot arm 

 q
.

i = first derivative of q i 

       ti = generalized torques corresponding to q i 

 

The generalized torques act on link i in the direction of the qi coordinate frame.  In the 

case of revolute joint, it is composed of torque vector, or when prismatic it is a force 

vector.   

 

Since potential energy is only position dependent, equation (35) can be further defined as 

 

ti = d
dt
¹K
¹q. i

− ¹K
¹q i

+ ¹P
¹qi     (36) 

 

Let us begin by deriving the kinetic energy stored in a moving robot manipulator link (i) 

with both translation and rotation, in three dimensional space: 

 

iK = 1
2

im iv0
T iv0 + 1

2
iz0

T iI0
iz0                         (37) 

 

where  im  is the mass of link i  
i� �  is the (3x1) linear velocity vector of the center mass with respect to 

reference frame 
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i� �  is the (3x1) angular velocity vector of the link i with           respect to 

reference frame 

   iI0 is the (3x3) inertia tensor matrix of link i 

 

Since energy is additive, the total kinetic energy stored in the whole arm linkage is then 

given by 

 

K = Σ
i=1

n
iK

     (38) 

 

Recall the homogeneous transformation matrix, iT0, that gives the position and orientation 

of any link, ir, with respect to base frame as  

 

r = iTo
ir     (39) 

 

Differentiation with respect to time gives the velocity of the  link position, i� � , with 

respect to base frame as 

  

im0 = dr
dt

= d
dt

( iT0) ir = Σ
j=1

i ¹iTo

¹hj
h
.
j

ir
       (40) 

 

Substituting expression (40) in (37) and subsequently in (38) yields 

 

K =S
i=1

n
1
2

im S
j=1

i ¹iTo

¹hj
h
.
j

ir
T

S
j=1

i ¹iTo

¹hj
h
.
j

ir
 

 

+ 1
2 S

j=1

i ¹iTo

¹hj
h
.

j
ir

T

iI0 S
j=1

i ¹iTo

¹hj
h
.
j

ir
 

 

K =S
i=1

n
1
2

imS
j=1

i

S
k=1

i ¹iTo

¹hj

T
irT ir

¹iTo

¹hk
h
.

jh
.
k
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+ 1

2 S
j=1

i

S
k=1

i ¹iTo

¹hj

T
irT iI0

ir
¹iTo

¹hk
h
.
jh
.

k
               (41) 

 

Asada and Slotine [1986] suggest to rewrite the expressions in the equation (41) by using 

the (nxn) manipulator inertia tensor matrix, M,  

 

M = Σ
i=1

n
im Σ

j=1

i

Σ
k=1

i ¹iTo

¹η j

T
irT ir

¹iTo

¹ηk
+

Σ
j=1

i

Σ
k=1

i ¹iTo

¹η j

T
irT iI0

ir
¹iTo

¹ηk           (42) 

    

The matrix M incorporates all the mass properties of the entire arm linkage.  The 

manipulator inertia matrix, also called mass matrix, is symmetric and in quadratic form.  

Since the kinetic energy is positive, unless the robot is at rest, the inertia matrix is positive 

definite.   

 

K = 1
2 S

i=1

n

S
j=1

n

Mij hihj
                     (43) 

 

Note that Mij, component of inertia matrix M, is a function of joint variables q and 

represents coupling between the i and j links.  The diagonal term Mii represents the self-

inertial coefficients.  Since the mass matrix M is positive definite, the  coefficient of 

coupling falls between zero (no inertial interaction) and one (tightly coupled).  

 

Since the mass matrix M involves Jacobian matrices, which are configuration dependent 

and can vary, two links can be highly coupled in one configuration and completely 

decoupled in another.  Desirably, the manipulator inertia matrix would be diagonal with 

constant self-inertial terms.  This will allow the dynamic properties to stay the same for all 

configurations and, the control algorithms simple [Tourassis and Neuman, 1985]. 

 

The kinetic energy depends on q and dq/dt. Therefore, 
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K(q, q. ) = 1
2 q. TM(q) q.                                        (44) 

 

The potential energy of position vector defined in (36) in a gravity field g = [gx gy gz 0] is 

 

iP = − im gr = − im g iTo
ir                         (45) 

 

Then the total arm potential energy is 

 

P = − S
i=1

n

m i g iTo
ir

                                   (46) 

 

Note that the potential energy depends only on the joint variable q. 

 

The terms required in the Lagrangian equation (36) are now given by 

 

1st term:  
d
dt

¹K
¹q

.
i

= M(q)q̈ + M
.
(q)q. 

  

2nd term:  
¹K
¹qi

= 1
2
¹
¹q

(q
.TM(q)q. )

 

 

3rd term:  
¹P
¹qi

= − S
i=1

n

m i g iTo
ir

 

 

Therefore, the arm dynamic equation is  

t = M(q)q̈ + M
.
(q)q. − 1

2
¹
¹q

(q
.TM(q)q. ) + S

i=1

n

m ig iTo
ir

          (47) 

 

Defining the Coriolis/centripetal vector as 

 

C(q, q
.) = M

.
(q)q. − 1

2
¹
¹q

(q
.TM(q)q. )

                          (48) 
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The final dynamic form defined in (34) is derived.  The friction and disturbance terms can 

be added to complete the dynamic equation.  The robot dynamic equation represents 

nonlinearities due to coordinate transformations which are trigonometric.  Additional 

nonlinearities appear in both kinetic and potential energy terms due to Coriolis and 

centrifugal terms.  The Coriolis terms represent the velocity coupling of links j and k felt at 

joint i, in torque or force form.  Whereas, the centrifugal terms reflect the velocity 

coupling of only link j at joint i.  The Coriolis and centrifugal coefficients are small and 

become important when the robot is moving at high speed.   

 

The gravity coefficients arise from the potential energy stored within individual links.  

These coefficients also vary with configuration.  Equation (47) provides the dynamic 

properties based on the assumption that no loads are attached to the arm.   Effect of a load 

on the dynamic coefficients is additive and therefore can be considered as a point mass and 

an extension of the last link (tool).  Robot manipulators use actuators (electric or 

hydraulic) to move. Since the actuator and motor inertias are decoupled values acting only 

at the joints, they can be treated as additive terms to the mass matrix [Lewis et al., 1993].  

Also, note that each torque (force) computation involves three summation over a possible 

range of n joints.  This creates a computation complexity in the order of O(n4).  This high 

order of calculations is very slow for on-line implementation.  In practice, the manipulator 

dynamic must be modeled accurately for precise and high speed motion control. 

 

Dynamic model of the SCARA robot.  Tasks performed by robots are defined 

previously as gross manipulation and fine manipulation tasks.  Motion trajectory control of 

the end-effector applies to the tasks in the first category.  Robots, in general, use the first 

three axis for gross manipulation (position control) while the remaining axis orient the tool 

during the fine manipulation (force or tactile control).   

 

Robots, in parts assembly applications, are to pick a component up with a vertical 

movement, move it horizontally and then downwards vertically for insertion.  These can 

be achieved by the four-axis SCARA robots.  Examples of robots which belong to this 

class include the AdeptOne robot, the intelledex 440 robot, and the IBM 7545 robot.  The 
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first three axes of a SCARA robot position the end-effector, while the fourth axis orients 

the tool through a roll motion [Schilling, 1990]. 

 

This section provides the dynamic equations of AdeptOne SCARA robot, based on the L-

E formulation discussed above.  AdeptOne robot is a direct-drive robot.  As there is no 

gearbox, the friction at each joint is very small.  The vector of joint variables is  

  h1 h2 d3 h4   

where, the third joint is prismatic while the remaining three joints are revolute.   

 

From reviewing the results of Table 4, it is clear that the tool roll angle � 4  has no effect 

on the end-effector position, therefore � 4  can be ignored in our investigation of the 

motion trajectory control.  The mass of the fourth link and the attached end-effector is 

also assumed to be very small in comparison with the masses of the other links. 

 

The link-coordinate diagram for this robot is shown in Figure 13 for the first three axes. 

The three links are assumed to be thin cylinders of mass m1, m2, and m3.  The vertical 

column height d1 is stationary, and when joint 1 is activated, only rod of length a1 (mass of 

m1) rotates.  The dynamic relationships are governed by the equation 47. 

t = M(q)q̈ + M
.
(q)q. − 1

2
¹
¹q

(q.TM(q)q. ) + S
i=1

n

m i g iTo
ir

 

where the matrix M(q) is (nxn) symmetric and positive definite with elements mij(q), and n 

is the number of joints.  We will adopt the following  notation: 

 li, length of link i 

 mi, mass of link i 

 mass moment of inertia of link i about its center of  

 mass of thin cylinder I = (miai
2)/12. 

 g, gravity constant. 

Then the dynamic equation for the 1st joint of the manipulator would be 

 

t1 = ( m1

3 + m2 + m3) a1
2 + (m2 + 2m3)a1a2 cosh2 + ( m2

3 + m3)a2
2 ḧ1   (49) 
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− ( m2

2 + m3) a1a2 cosh2 + ( m2

3 + m3)a2
2 ḧ2 

 − (m2 + 2m3) a1a2 sinh2h
.
1h

.
2 + ( m2

2 + m3) a1a2 sinh2h
.
2
2

    

Since axis 1 is aligned with the gravitational field, the gravity term on joint one is zero. 

 

2nd joint: 

t2 = − ( m2

2 + m3)a1a2 cosh2 + ( m2

3 + m3)a2
2 ḧ1  (50) 

+ ( m2

3 + m3)a2
2ḧ2 + ( m2

2 + m3)a1a2 sinh2h
.
1
2
 

Again, there is no gravitational loading on joint two. 

 

3rd joint: 

t3 = m3ḧ3 − gm3    (51) 

 

Joint three is a prismatic joint, used to establish the vertical tool position, and is 

completely independent of the first two joints.  Thus, there is no Coriolis and centrifugal 

forces on this joint.  However, The mass of the third joint effects the motion of the first 

two joints by acting as a load. 

 

Equations (49-51) are referred to as the inverse dynamic equations of the three-axis 

SCARA robot.  One needs to know the resulting motion trajectories: h, h
.
, ḧ before one 

can calculate the joint torques, �.  These equations are time varying, nonlinear, and 

coupled differential equations.  The trajectory problem of this robot manipulator revolves 

around finding the joint torques � i(t) such that the joint angles � i(t) track the desired 

trajectories � id(t).  Torque-based control techniques are built directly on the dynamic 

models of the robot manipulators. 

 

8 Robot Neural Controller 

In order to design intelligent robot controllers, one must also provide the robot with a 

means of responding to problems on the temporal context (time) as well as spatial (space).  

It is the goal of the intelligent robot researchers to design a neural learning controller to 
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utilize the available data from the repetition in the robot operation.  The neural learning 

controller based on the recurrent network architecture has the time-varying feature that 

once a trajectory is learned, it should learn a second one in a shorter time. 

F i g u r e  1 5  -  R e c u r r e n t  n e u r a l  l e a r n i n g  c o n t r o l l e r

   n e u r a l  n e t w o r k

 S e c o n d a r y
     c o n t r o l l e r

 R o b o t
Y

dY +

-

S e n s o r s

+ +

τ
  R e c u r r e n t

L e a r n i n g

 

 

In Figure 15, the time-varying recurrent network will provide the learning block (primary 

controller) for the inverse dynamic equations discussed above.  The network compares the 

desired trajectories: hd , h
.

d , ḧd , with continuous paired values for the three-axis robot 

h, h
.
, ḧ: t, at every instant in a sampling time period.  The new trajectory parameters are 

then combined with the error signal from the secondary controller (feedback controller) 

for actuating the robot manipulator arm.  

 

Neural networks can be applied in two ways in the design of the robot controller described 

in Figure 4: (1) system identification model and (2) control.  ANNs can be used to obtain 

the system model identification which can be used to design the appropriate controller.  

They can also be used directly in design of the controller [Narendra and Parthasarathy, 

1990] once the real system model is available.  Neural network approaches to robot 

control is discussed in general by Psaltis et al. [1988], and Yabuta and Yamada [1992].  

These approaches can be classified into: 
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1. Supervised control, a trainable controller unlike the old teaching pendant, allows 

responsiveness to sensory inputs.  A trainable neuromorphic controller reported 

by Guez and Selinsky [1988] provides an example of a fast, real time, and robust 

controller. 

2. Direct inverse control, is trained for the inverse dynamic of the robot.  Kung and 

Hwang [1989] used two networks on-line in their design of the controller. 

3. Neural adaptive control, neural nets combined with adaptive controllers, results in 

greater robustness and ability to handle nonlinearity. Chen [1990] reported the 

use of the BP method for a nonlinear self-tuning adaptive controller. 

4. Backpropagation of utility, involves information flowing backward through time.  

Werbos's backpropagation through time is an example of such technique 

[Werbos, 1990]. 

5. Adaptive critic method, uses a critic evaluating robot performance during training.  

Very complex method; requires more testing [Werbos, 1991]. 

 

In the direct inverse control approach, the recurrent neural network will learn the inverse 

dynamic of the robot in order to improve the controller performance.  The neural network 

model replaces the primary controller (see Figure 4).  In this approach a feedback 

controller (secondary controller) will be used to teach the network initially.  As learning 

takes place, the neural network takes full control of the system. 

 

Kawato and his research group were successful to use this approach in trajectory control 

of a three degree-of-freedom robot [Kawato et al., 1987; Miyamoto et al., 1988].  Their 

approach is known as feedback-error-learning control.  However, their neural network 

structure was simply the linear collection of all nonlinear dynamic terms (they called them 

subsystems) in the dynamic motion equation.  Learning was purely for the estimates of the 

subsystems.  As the degree of freedom increases the network size needs to increase (order 

of n4).  For example, for six degree-of-freedom 942 subsystems are needed, compared 

with 43 for the three degree-of-freedom.  However, due to the parallel processing 

capability of the neural network, the implementation of Kawato's method is still an 

attractive method. 
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Goldberg and Pearlmutter [1989] have demonstrated the utility of the feedback-error-

learning approach for the motion control of the first two joints of the CMU DDArm II, 

using temporal windows of measured positions as input to the network.  The output of the 

network is the torque vector.  Newton and Xu [1993] used this approach to control a 

flexible space robot manipulator (SM2) in real-time.  The trajectory tracking error was 

reduced by 85% when compared to conventional PID control scheme.  More recently, 

Lewis et al. [1995] developed an on-line neural controller, based on the robot passivity 

properties (system cannot go unstable if the robot cannot create energy), using a similar 

approach with good tracking results.  The feasibility and performance of the feedback-

error-learning control with global asymptotic stability has also been reported [Kawato, 

1990 and Patino et al., 1994].  The design of a compact and generic recurrent network has 

also shown promising results in replacing the need for custom subsytems-type design such 

as the one by Kawato's group [Golnazarian, 1995].  The proposed controller performs 

based on the systematic design approach and the recurrent network's time-varying feature.  
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