
Quantitative Driven Optimization of a Time Warp Kernel

Sounak Gupta
Dept of EECS, PO Box 210030

Cincinnati, OH 45110–0030
sounak.besu@gmail.com

Philip A. Wilsey
Dept of EECS, PO Box 210030

Cincinnati, OH 45110–0030
wilseypa@gmail.com

ABSTRACT

The set of events available for execution in a Parallel Dis-
crete Event Simulation (PDES) are known as the pending
event set. In a Time Warp synchronized simulation engine,
these pending events are scheduled for execution in an ag-
gressive manner that does not strictly enforce the causal
relations between events. One of the key principles of Time
Warp is that this relaxed causality will result in the process-
ing of events in a manner that implicitly satisfies their causal
order without paying the overhead costs of a strict enforce-
ment of their causal order. On a shared memory platform
the event scheduler generally attempts to schedule all avail-
able events in their Least TimeStamp First (LTSF) order to
facilitate event processing in their causal order. By follow-
ing an LTSF scheduling policy, a Time Warp scheduler can
generally process events so that: (i) the critical path of the
event timestamps is scheduled as early as possible, and (ii)
causal violations occur infrequently. While this works effec-
tively to minimize rollback (triggered by causal violations),
as the number of parallel threads increases, the contention
to the shared data structures holding the pending events can
have significant negative impacts on overall event processing
throughput.

This work examines the application of profile data taken
from Discrete-Event Simulation (DES) models to drive the
simulation kernel optimization process. In particular, we
take profile data about events in the schedule pool from three
DES models to derive alternate scheduling possibilities in a
Time Warp simulation kernel. Profile data from the stud-
ied DES models suggests that in many cases each Logical
Process (LP) in a simulation will have multiple events that
can be dequeued and executed as a set. In this work, we re-
view the profile data and implement group event scheduling
strategies based on this profile data. Experimental results
show that event group scheduling can help alleviate con-
tention and improve performance. However, the size of the
event groups matters, small groupings can improve perfor-
mance, larger groupings can trigger more frequent causal

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS’17 May 24-26, 2017, Singapore, Singapore

c© 2017 ACM. ISBN 978-1-4503-4489-0/17/05. . . 15.00

DOI: http://dx.doi.org/10.1145/3064911.3064932

violations and actually slow the parallel simulation.

Keywords

Pending event set; Profile Guided Optimization; Event Schedul-
ing; Lock contention; Parallel and distributed simulation;
Time warp

1. INTRODUCTION
The set of events available for execution in a Parallel Dis-

crete Event Simulation (PDES) are known as the pending
event set. In an Time Warp synchronized simulation en-
gine, these pending events are scheduled for execution in an
aggressive manner that does not strictly enforce the causal
relations between events [6, 10]. One of the key principles
of Time Warp is that this relaxed causality will result in
the processing of events in a manner that implicitly satisfies
their causal order without paying the overhead costs of a
strict enforcement of their causal order. Unfortunately, the
event processing granularities of most discrete event simula-
tion models are generally quite small which aggravates con-
tention to the pending event shared data structures of a par-
allel simulation engine on a multi-processor platform. To al-
leviate this, some researchers have attempted to exploit lock-
free methods [7], hardware transactional memory [8, 16], or
synchronization friendly data structures [5]. Unfortunately,
lock-free methods have additional overheads when incor-
porating sorting and deletion operations. While hardware
transactional memory does reduce overhead this is mostly
due to higher performing locking methods rather than pro-
viding any significant overall reduction in contention. Re-
structured data structures can be helpful to reduce con-
tention, but even then we have found that contention re-
mains an issue that needs to be addressed.

The work in this paper attempts to draw on the success
of the computer architecture community in the use of appli-
cation profile data to optimize the design and implementa-
tion of a compute platform [9]. In particular, we examine
profile data from discrete event simulation models to help
guide the design and optimization of scheduling strategies
for the pending event set in a Time Warp synchronized sim-
ulation kernel. In this study, we focus on a single node
shared memory platform to demonstrate the application of
quantitative based design optimization. The profile data we
use comes from previous work to build a system to profile
discrete event simulations [20]. In this work, we will focus
specifically on the data regarding event chains as reported
in [20]. From that work, the event chain data data illus-
trates how many events could potentially be dequeued and





Algorithm 1: Event execution loop schematics

1 Lock the LTSF Queue linked to the worker thread;
2 Dequeue the smallest event em from that LTSF Queue;
3 Unlock that LTSF Queue;
4 while em is a valid event do

5 Process em (assume em belongs to LPi);
6 Lock Input Queue for LPi;
7 Move em from Input Queue to the Processed Queue;
8 Read the next smallest event en from Input Queue;
9 Lock the LTSF Queue linked to the worker thread;

10 Insert en into LTSF Queue;
11 Dequeue the smallest event em from the LTSF

Queue;
12 Unlock the LTSF Queue;
13 Unlock Input Queue;

14 end

1

13.3%

2

18.4%3

18.3%

4

15.5%

>=5

34.4%

Percent of Events in Local Event Chains

Figure 2: Percent of Events in the Event Chains in

an Automobile Traffic Model

contention on a many-core processing platform. The main
event processing loop in the warped2 simulation kernel is
depicted in Algorithm 1. In warped2, each event processing
thread is called a worker thread that continuously executes
events from the pending event set until some termination
condition is satisfied. A separate manager thread processes
remote communication and Time Warp housekeeping func-
tions, including termination detection.

3. MOTIVATING RESULTS FROM QUAN-

TITATIVE STUDIES
Contention for access to the pending event set is a problem

that we have studied for several years in the warped2 simu-
lation kernel. We have explored various approaches such as:
different organizations of data structures [5], model parti-
tioning [1], lock-free algorithms for the pending event set[7],
and transactional memory to access the pending event set
[8]. While each provides a measure of relief for the con-
tention, each have either limited success or disadvantages
that inhibit their widespread use.

In a related study, we have pursued the development of
methods to quantify the runtime profile of events in a dis-
crete event simulation model [20]. This study developed
tools to analyze the runtime traces of events processed by
a simulation engine in order to discover certain properties
about the events generated and processed by the simula-
tion model. While the work profiled various characteristics
such as events available for execution and the communica-

1

13.5%

2

17.2%

3

16.4%

4

13.8%

>=5

39.1%

Percent of Events in Local Event Chains

Figure 3: Percent of Events in the Event Chains in

a Portable Cellular Service Model

1

73.5%

>=2

26.5%

Percent of Events in Local Event Chains

Figure 4: Percent of Events in the Event Chains in a

Model of Disease Propagation through a Population

tion density of objects in the simulation, one characteristic
that was captured called event chains suggested an opti-
mization to the pending event set in a parallel simulation
engine.

In particular, event chains are the collection of events from
the pending event set of an LP that could potentially be ex-
ecuted as a group. That is, at a specific simulation time, an
event chain would contain all of the events that time would
be available in the pending event set for immediate execution
at that time. Thus, we independently examine the pending
event set of each LP. Beginning at time zero, the a chain of
events is constructed and its maximum length counted. All
of the events in that chain are treated as one and the algo-
rithm then advances to the next event following the last in
the chain to determine the length of the next chain. While
the previous paper [20] classifies chains into three types (lo-
cal, linked and global), in this paper we consider only local
chains.

Our hypothesis is that if event chains of length greater
than one are common, an interesting optimization to a sim-
ulation kernel might be to dequeue multiple events with each
execution thread to execute as a block. Using the data from
the previous study [20], Figures 2, 3, and 4 show the percent-
ages of total events within each chain class. This data shows
that events in two two of the simulation models (Figures 2
and 3) are in chains of length ≥ 2 and that they should there-
fore be candidates for scheduling in groups. However, the
third simulation model (Figure 4) has nearly 74% of events
in chains of length 1.1

1The pie chart of Figure 4 aggregates data for chains of
length greater than two are nearly zero. Because the plotting



1

35.1%

2
24.2%

3

16.0%

4

10.2%
>=5

14.5%

Distribution of Local Event Chains

Figure 5: Event Chains in an Automobile Traffic

Model

1

36.6%

2
23.3%

3

14.9%

4

9.4%
>=5

15.8%

Distribution of Local Event Chains

Figure 6: Event Chains in a Portable Cellular Ser-

vice Model

1

84.7%

>=2

15.3%

Distribution of Local Event Chains

Figure 7: Event Chains in a Model of Disease Prop-

agation through a Population

An alternate view of the event chain data is to show the
number of chains of various lengths that occur throughout
the simulation. This will help to demonstrate the percent-
ages of multi-event scheduling opportunities that exist in
the simulation. This organization of the data is shown in
Figures 5, 6, and 7. The data in these pie charts highlight
the percentage of chains of length 1 to 4 and greater than
or equal to 5 that were found in each simulation model. Ex-
amining the first two simulation models (Figures 5 and 6),
we can see that if two events are dequeued for each event
scheduling activity, the simulator should find two immedi-
ately committable events more than 64% of the time; if three
events are dequeued per scheduling activity then the simu-
lator should find three immediately committable events ap-
proximately 40% of the time. As before, the third simulation
model (Figure 7) shows that the simulator would only see
two committable events approximately 15% of the time and
nearly zero opportunities for finding chains of committable
events greater than length two.

The profile data suggests that some simulation models
will benefit from an event scheduler that distributes more
than one event at a time from the pending event set. How-
ever, this analysis is from a conservative viewpoint of the
event’s availability. In part, optimistic synchronization ben-
efits when causal relations are not strictly limited by a global
time order in the simulation. Therefore, it could very well
be that experimentation will show benefits from even larger
counts of events being scheduled as a group than the profile
data suggests.

4. PENDING EVENTS IN WARPED2

The warped2 Time Warp simulation kernel [19] is de-
signed for execution on a single SMP processor or on a Be-
owulf cluster of SMP processors communicating with each
other using MPI.warped2 uses a two-level hierarchical data
structure to maintain the pending event set, namely: (i) a
sorted list of pending events for each Logical Process (LP),
and (ii) a set of one or more more scheduling pools of events
called the LTSF queues. Each LP contains its list of pending
events. This is a shared data structure with a unique lock
assigned to each LP. The lowest timestamped event from
each LP is placed into one of the LTSF queues. Each LTSF
is also assigned a unique lock. Figure 1 presents an overview
of this hierarchical design. A static partitioning of the LPs
to the different nodes of the cluster is achieved using a profile
guided partitioning process that optimizes a min-cut of the
number of events exchanged between LPs [1]. This profile
data is also used to assign LPs within a node to one of the
LTSF queues. If there is only one LTSF queue, all LPs are
assigned to that LTSF queue.

The number of LTSF queues on each compute node of the
simulation is a runtime configuration parameter. The collec-
tion of threads that execute events (called worker threads)
on each node are then statically assigned to a specific LTSF
queue on that node. The worker threads process events from
its assigned LTSF queue and inserts any generated events di-

software overwrites the labels making the graphic difficult
to visualize, all chains longer than two are shown together.
Likewise Figure 7 (discussed in the next paragraph) also
aggregates the chain data for all chains of length two and
above. For all practical purposes, the measurable number of
chains in the epidemic model are limited to sizes of one or
two events.



Figure 8: Event Causality

rectly into the corresponding LP event queue (events gener-
ated for remote nodes are placed into a message send queue).
If a newly generated event defines a new lowest event for the
LP, the worker thread also replaces the entry in the LTSF
queue containing events for that LP. Finally there exists a
manager thread on each node that performs housekeeping
functions such as GVT and termination management [6].
The manager thread also performs the remote communi-
cation (sending and receiving) of events with other nodes.
Thus, the manager thread must also sometimes access the
shared data structures of the pending event set.

The hierarchical structure of the pending event set in
warped2 provides for a highly effective scheduling of events
that leads to infrequent rollbacks for many simulation mod-
els [5, 19]. On a single multi-core compute node using one
LTSF queue, the warped2 simulator will generally expe-
rience zero rollbacks. However, as the number of worker
threads increases beyond 4-6, contention for the LTSF queue
diminishes overall performance as additional threads are added.
In these situations, a multi-LTSF queue configuration can
regain scalability [5]. However, with more than one LTSF
queue, the scheduling of events on each node to follow the
critical path of timestamped event execution becomes more
problematic and rollbacks can increase. In this paper, we
examine structuring the worker threads to dequeue multiple
events per access to the shared pending event list data struc-
tures. This should further reduce contention and provide
improved scalability with a fewer number of LTSF queues.
The strategies explored and the results of experiments with
them are described in the next two sections.

5. GROUP SCHEDULING: BLOCKS AND

EVENT CHAINS
Group Scheduling is a opportunistic approach to schedul-

ing pending events. Processing events in groups helps to
reduce the frequency of access to the key shared data struc-
ture in the pending event set and therefore should help re-
duce contention contention to this critical resource. That
price is increased risk of causal violation. Figure 8 contains
an example illustrating a causal chain. Certain events in the
pending event pool have a chronological order and cannot be
processed greedily out of order. If such events are processed
out of order, it leads to a Causal Violation. The benefits
gained from scheduling schemes such as Group Scheduling
rests on the rationale that time saved from reduced con-
tention exceeds time wasted on rollbacks due to increased
causal violations.

In this paper, we explore two different approaches to schedul-
ing groups of events from the pending event set. In par-
ticular we consider scheduling groups of events from the

Figure 9: Chain Scheduling

Figure 10: Block Scheduling

LPs as outlined in the profile study reported in [20]. We
call this chain scheduling. Based on our initial success with
chain scheduling, we restructured the solution to simply pull
groups of events from the LTSF queue. We call this block
scheduling. Each is described more fully in the next subsec-
tions.

5.1 Chain Scheduling
Figure 9 shows the schematics of Chain Scheduling. In

this scenario, the smallest event from a LTSF Queue is con-
sidered. A group of consecutive events from the Logical Pro-
cess linked to that smallest event forms the chain. The size
of this chain (also referred to as chain size) is a configurable
parameter. All events from this chain are processed in the
same execution cycle. Output events, generated due to pro-
cessing of these events, are either sent immediately or stored
and sent in bulk but with a delay. Both these output event
sending schemes have been studied in Section 6.2.

5.2 Block Scheduling
Figure 10 shows the schematics of Block Scheduling. In

warped2, the smallest events from each Logical Process are
placed in a timestamp-ordered priority queue (generally re-
ferred to as LTSF pool). Instead of pulling out one event
per processing cycle (as is the usual scenario) from the LTSF
pool, each worker thread dequeues a group of consecutively
ordered events to form an event block. The size of this block
(also referred to as block size) is a configurable parameter.







Figure 14: Overall Speedup of Traffic using Event

Chains

Figure 15: Relative Speedup of Traffic using Event

Chains

sizes. Since one of the goals of this study is to study the im-
pact of greedy processing of event blocks on event causality,
the block size was increased to a point where causal viola-
tions could be observed. There is good overall speedup in
case of 4 and 8 worker threads. However event blocks formed
using skip distance > 0 performs worse than event blocks
formed using skip distance = 0. The same observations
are true for relative speedup as shown in Figure 18. Fig-
ure 19 shows a relatively low number of causality violations
when skip distance = 0 and it increases when skip dis-

tance > 0.

6.2.2 PCS

The model configuration mentioned in Section 6.1.2 was
used for this series of experiments. The total count of events
committed equals 45,484,953 in all cases.

Figure 20 contains the speedup results with the PCS model
when using chain scheduling. It shows decent good overall
speedup for all threads. However, with the increase in event
chain size, the performance steadily falls in case of 2 worker

Figure 16: Commitment Rate of Traffic using Event

Chains

Figure 17: Overall Speedup of Traffic using Block

Scheduling

Figure 18: Relative Speedup of Traffic using Block

Scheduling



Figure 19: Commitment Rate of Traffic using Block

Scheduling

threads. This makes sense as contention should be mini-
mal with only 2 worker threads. The performance remains
fairly stable in case of 4 worker threads until the event chain
size reaches 8. In case of 8 worker threads, the performance
actually improves and peaks for event chain size of 4 be-
fore steadily degrading beyond that. Figure 21 shows that
there is minimal or adverse relative speedup in case of 2
and 4 threads with increase in size of event chains. Only 8
worker threads shows improvement for event chain size of
4 before steadily degrading. Figure 22 plots the commit-
ment rate for event chains and shows the steady increase
in causal violations due to increase in size of event chains.
The performance of event chain improves in spite of higher
causal violations till a certain chain size. The benefit of
lower contention in event chain management is offset by the
increasing number of causal violations at that point. Sim-
ilar to Traffic model, the commitment rate here is nearly
the same for different number of worker threads and output
event sending modes.

Figure 23 contains the speedup results with the PCS model
when using block scheduling. Similar to the Traffic model,
results presented are only for large block sizes in order to
study the effect of greedy processing of event blocks on
event causality. It shows that increase in event block size
adversely affects overall performance in case of 2 worker
threads. There is good overall speedup in case of 4 and
8 worker threads. However, event blocks formed using skip

distance > 0 performs worse than event blocks formed us-
ing skip distance = 0. The same observations are true for
relative speedup as shown in Figure 24. Figure 25 shows rel-
atively low number of causality violations when skip dis-

tance = 0 and it increases marginally when skip distance

> 0.

6.2.3 Epidemic

The model configuration mentioned in Subsection 6.1.3
was used for this series of experiments. The total count of
events committed equals 30,676,881 in all cases.

If we review the profile results from Section 3, the evi-
dence for the application of group scheduling in the Epi-
demic model is not encouraging. In fact, reviewing Figure 7

Figure 20: Overall Speedup of PCS using Event

Chains

Figure 21: Relative Speedup of PCS using Event

Chains

Figure 22: Commitment Rate of PCS using Event

Chains



Figure 23: Overall Speedup of PCS using Block

Scheduling

Figure 24: Relative Speedup of PCS using Block

Scheduling

Figure 25: Commitment Rate of PCS using Block

Scheduling

we can see that nearly 85% of the event chains in the Epi-
demic model are of length 1. As will be seen below, the
experimental results mostly follow this result. While some
modest improvements are seen, the results are not as dra-
matic as they are with the Traffic and PCS models shown
above.

Figure 26 contains the speedup results with the Epidemic
model using event scheduling. It shows minor speedup for all
threads. The performance improves for event chain size of 2
in case of worker thread count of 4 and 8. Beyond this point
performance degrades and remains stable. The simulation
runs slower for all threads when output events are sent out in
Delayed mode compared to that in Immediate mode. Figure
27 shows similar relative speedup behavior till event chain
size of 2 beyond which the relative performance degrades
and remains stable. Figure 28 plots the commitment rate for
event chains and shows the increase in causal violations due
to increase in size of event chains. The commitment rates in
case of event chain sizes 4–8 are relatively similar. Since the
overall and relative speedup values are also stable for event
chain sizes 4–8, it indicates the benefit of using event chains
to offset the contention problem when there are high number
of worker threads. Similar to Traffic and PCS models, the
commitment rate is nearly the same for different number of
worker threads and output event sending modes. Though we
have not yet analyzed this behavior thoroughly, we speculate
that the scope for causal conflict remains unchanged when
the chain size is considered for this experiment.

Figure 29 contains the speedup results with the Epidemic
model using event scheduling. Similar to the Traffic and
PCS models, results discussed are for large block sizes only
since the focus of this study is the effect of greedy processing
of event blocks on event causality. It shows that performance
in case of 2 worker threads remains invariant when there is
a change in event block size. There is much better speedup
in case of 4 and 8 worker threads than was achieved with
chain scheduling. The same observations are true for rel-
ative speedup as shown in Figure 30. Figure 31 shows no
causality violations for worker thread count 2 and 4. Causal-
ity violations are observed in case of 8 worker threads. This
indicates that causal chains do not occur frequently in the
epidemic event stream.

7. CONCLUSION
The use of profile data from Discrete Event Simulation

Models to develop pending event set scheduling strategies
for a Time Warp synchronized simulation kernel is studied.
The profile data suggested that two of the studied simula-
tion models should benefit from the scheduling of multiple
events during the event scheduling step of the simulation en-
gine. Profile data from a third simulation model suggested
that the opportunity to gain speedup from group schedul-
ing would not be profitable. Experimental analysis of these
group scheduling strategies for the corresponding models de-
livered results consistent with the results of the profile data
analysis.

The two scheduling strategies (chain and block) of this
study were examined in isolation and treated separately.
The block scheduling method occurred to us more as a gen-
eralization of the chain scheduling approach rather than a
direct derivation from the profile data. However, the results
with block scheduling have encouraged us to go back to the
profile data for a deeper study of the available parallelism



Figure 26: Overall Speedup of Epidemic using Event

Chains

Figure 27: Relative Speedup of Epidemic using

Event Chains

Figure 28: Commitment Rate of Epidemic using

Event Chains

Figure 29: Overall Speedup of Epidemic using Block

Scheduling

Figure 30: Relative Speedup of Epidemic using

Block Scheduling

Figure 31: Commitment Rate of Epidemic using

Block Scheduling



results. Our next question from this study is“Should we con-
sider the average parallelism results and the chain results,
to suggest that block and chain scheduling can be combined
to achieve even better performance results?”. This remains
a question that we have yet to explore.

While the idea of scheduling multiple events during each
scheduling event is not new and has already been explored
by others, it is encouraging to have the performance results
follow the profile data results. Ideally we will be able to dis-
cover additional new optimization strategies and techniques
that are yet to be derived from a continued and extended
profiling of simulation models.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the AFOSR

under award No FA9550–15–1–0384.

9. REFERENCES
[1] A. Alt and P. A. Wilsey. Profile driven partitioning of

parallel simulation models. In Proceedings of the 2014
Winter Simulation Conference, pages 2750–2761,
Savannah, GA, USA, 2014. IEEE Press.

[2] C. L. Barrett, K. R. Bisset, S. G. Eubank, X. Feng,
and M. V. Marathe. Episimdemics: An efficient
algorithm for simulating the spread of infectious
disease over large realistic social networks. In
Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, SC ’08, pages 37:1–37:12, Piscataway,
NJ, USA, 2008. IEEE Press.

[3] C. D. Carothers, D. Bauer, and S. Pearce. ROSS: A
high-performance, low memory, modular time warp
system. In Proceedings of the Fourteenth Workshop on
Parallel and Distributed Simulation, PADS ’00, pages
53–60, Washington, DC, USA, 2000. IEEE Computer
Society.

[4] S. Das, R. Fujimoto, K. Panesar, D. Allison, and
M. Hybinette. Gtw: a time warp system for shared
memory multiprocessors. In Proceedings of the 26th
conference on Winter simulation, pages 1332–1339,
Orlando, Florida, USA, 1994. Society for Computer
Simulation International.

[5] T. Dickman, S. Gupta, and P. A. Wilsey. Event pool
structures for pdes on many-core beowulf clusters. In
Proceedings of the 1st ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, pages
103–114, Montreal, Canada, 2013. ACM.

[6] R. M. Fujimoto. Parallel and Distribution Simulation
Systems. John Wiley & Sons, Inc., New York, NY,
USA, 1st edition, 1999.

[7] S. Gupta and P. A. Wilsey. Lock-free pending event
set management in time warp. In Proceedings of the
2nd ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, pages 15–26, Denver,
CO, USA, 2014. ACM.

[8] J. Hay and P. A. Wilsey. Experiments with
hardware-based transactional memory in parallel
simulation. In Proceedings of the 3rd ACM SIGSIM
Conference on Principles of Advanced Discrete
Simulation, pages 75–86, London, UK, 2015. ACM.

[9] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
5th edition, 2012.

[10] D. Jefferson. Virtual time. ACM Transactions on
Programming Languages and Systems, 7(3):405–425,
July 1985.

[11] Y.-B. Lin and P. A. Fishwick. Asynchronous parallel
discrete event simulation. IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and
Humans, 26(4):397–412, July 1996.

[12] D. E. Martin, T. J. McBrayer, and P. A. Wilsey.
Warped: A time warp simulation kernel for analysis
and application development. In System Sciences,
1996., Proceedings of the Twenty-Ninth Hawaii
International Conference on,, volume 1, pages
383–386, Hawaii, USA, 1996. IEEE.

[13] K. S. Perumalla and S. K. Seal. Discrete event
modeling and massively parallel execution of epidemic
outbreak phenomena. Simulation, 88(7):768–783, July
2012.

[14] R. Radhakrishnan, D. E. Martin, M. Chetlur, D. M.
Rao, and P. A. Wilsey. An object-oriented time warp
simulation kernel. In International Symposium on
Computing in Object-Oriented Parallel Environments,
pages 13–23, Berlin, Germany, 1998. Springer Berlin
Heidelberg.

[15] R. Rönngren, R. Ayani, R. M. Fujimoto, and S. R.
Das. Efficient implementation of event sets in time
warp. In Proceedings of the Seventh Workshop on
Parallel and Distributed Simulation, pages 101–108,
San Diego, California, USA, 1993. ACM.

[16] E. Santini, M. Ianni, A. Pellegrini, and F. Quaglia.
Hardware-transactional-memory based speculative
parallel discrete event simulation of very fine grain
models. In Proceedings of the 2015 IEEE 22Nd
International Conference on High Performance
Computing (HiPC), pages 145–154, Washington, DC,
USA, 2015. IEEE Computer Society.

[17] S. J. Turner and M. Q. Xu. Performance evaluation of
the bounded Time Warp algorithm. Proceedings of the
SCS Multiconference on Parallel and Distributed
Simulation, 24(3):117–126, 1992.

[18] D. J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world’ networks. Nature, 393:440–442, June
1998.

[19] D. Weber. Time warp simulation on multi-core
processors and clusters. Master’s thesis, University of
Cincinnati, Cincinnati, OH, 2016.

[20] P. A. Wilsey. Some properties of events executed in
discrete-event simulation models. In Proceedings of the
2016 annual ACM Conference on SIGSIM Principles
of Advanced Discrete Simulation, pages 165–176, Banf,
Alberta, Canada, 2016. ACM.


