
Lock-Free Pending Event Set Management in Time Warp

Sounak Gupta
Dept of of Electrical Engineering and Computing

Systems
Cincinnati, OH 45221-0030

sounak.besu@gmail.com

Philip A. Wilsey
Dept of of Electrical Engineering and Computing

Systems
Cincinnati, OH 45221-0030
wilseypa@gmail.com

ABSTRACT

The rapid growth in the parallelism of multi-core processors
has opened up new opportunities and challenges for par-
allel simulation discrete event simulation (PDES). PDES
simulators attempt to find parallelism within the pending
event set to achieve speedup. Typically the pending event
set is sorted to preserve the causal orders of the contained
events. Sorting is a key aspect that amplifies contention
for exclusive access to the shared event scheduler and events
are generally scheduled to follow the time-based order of the
pending events. In this work we leverage a Ladder Queue
data structure to partition the pending events into groups
(called buckets) arranged by adjacent and short regions of
time. We assume that the pending events within any one
bucket are causally independent and schedule them for ex-
ecution without sorting and without consideration of their
total time-based order. We use the Time Warp mechanism
to recover whenever actual dependencies arise. Due to the
lack of need for sorting, we further extend our pending event
data structure so that it can be organized for lock-free ac-
cess. Experimental results show consistent speedup for all
studied configurations and simulation models. The speedups
range from 1.1 to 1.49 with higher speedups occurring with
higher thread counts where contention for the shared event
set becomes more problematic with a conventional mutex
locking mechanism.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming, distributed programming

; I.6.8 [Simulation and Modeling]: Types of Simula-
tion—parallel, distributed, discrete event

General Terms

Algorithms, Performance

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

the author(s) must be honored. Abstracting with credit is permitted. To copy other-

wise, or republish, to post on servers or to redistribute to lists, requires prior a specific

permission and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS’14, May 18–21, 2014, Denver, CO, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2794-7/14/05 ...$15.00.

http://dx.doi.org/10.1145/2601381.2601393 .

Keywords

Time Warp, pending event lists, multi-core, threads, lock-
free

1. INTRODUCTION
The adoption of parallelism through core replication to

produce multi-core and many-core processors is widespread
and growing. Inexpensive processors with core counts of 4–
8 are common. At a slightly higher (but still affordable)
price point, core counts of 12–16 are readily available. Fur-
thermore, there is every expectation that these numbers will
continue to increase. The introduction of these multi-core
and many-core processors into mainstream Beowulf Clus-
ters means that distributed algorithms must be developed
that support parallelism both within and between the nodes
of the cluster [6]. Shared data must be represented and
organized to support high speed, access with a minimum
of contended accesses by the parallel threads that need to
read and update the shared data. This is especially true
for fine-grained applications such as parallel discrete event
simulation.

The central data structure on a discrete event simulator
is the pending event set. This set records and organizes the
events yet to be processed by the simulation kernel. For a
parallel simulation kernel with multiple threads accessing a
shared pending event set, the organization and management
of the pending event set must be carefully planned. The
pending event set is frequently accessed as the event pro-
cessing threads dequeue events for processing and enqueue
any generated events (for purposes of this manuscript, we
will ignore the details of remote event transmission to other
nodes of a Beowulf Cluster). Furthermore, since the process-
ing of discrete events is often a fine-grained computation,
significant contention for the protected pending event set
can rapidly grow to negatively impact performance. As few
as 5-6 threads can easily result in performance loss triggered
by contention [18].

This manuscript examines the management of a shared
pending-event set for a Time Warp [9, 5] synchronized par-
allel simulation kernel executing on a single node many-core
processing platform. The work builds on the two-level ap-
proach for managing the pending event set that was origi-
nally developed by Karthik [18] and extended by Dickman et
al [4]. The extension by Dickman et al used the ladder queue
data structure [29] to manage the scheduling event queue.
The ladder queue is a variant of the calendar queue [3] that
arranges events into months (or buckets) so that their times-
tamp falls within a bounded time window assigned to that

15

bucket. Thus, the events in each bucket are guaranteed to
fall within a small window of time. In the ladder queue,
these buckets are not sorted (to save time) until the actual
dequeue operations occur on a particular bucket.

At the end of their experimental analysis section, Dick-
man et al suggest that the small time window for the pend-
ing events in a particular bucket may be such that the con-
tained events are mostly causally independent. Should this
be true, in a Time Warp synchronized parallel simulation,
one could manage all of the buckets in the ladder queue
as unsorted queues and potentially use atomic operations
to build a lock-free data structure for managing the pend-
ing event set. Given the relatively high costs of locks or
other mechanisms to provide a critical region of access, a
lock-free pending event set could substantially reduce access
time and contention to this critical shared resource. Time
Warp is a critical contributor to this possibility since it can
recover, by rollback, should a causal dependency actually be
experienced when processing the unsorted events from the
ladder queue bucket. In this manuscript, we examine this
idea more fully and show experimental results for a parallel
Time Warp simulator with a lock-free unsorted ladder queue
data structure for managing the pending event set.

The remainder of this manuscript is organized as follows.
Section 2 provides a brief review of studies related to pending
event set and non-blocking, lock-free lists/queues. Section 3
provides details about the software architecture of warped,
the Time Warp simulation kernel which has been used in this
work. Section 4 describes our proposed non-blocking ladder
queue design in details. Section 5 presents the results of
our experimental analysis. Section 6 is a discussion about
the possibilities of further change in the pending event set
design. Finally, Section 7 presents the conclusions we can
draw from this experiment.

2. RELATED WORK

2.1 Pending Event Sets
warped is a parallel simulation kernel that implements

the Time Warp synchronization protocol [12, 23]. Manage-
ment of the pending event set in warped follows the model
outlined in [26] and decomposes it into Unprocessed and
Processed event pools. The Unprocessed pool stores the
events that are yet to be executed. The Processed pool
refers to those events that have been processed but not yet
committed (they must be preserved in case of rollback). As
per the Time Warp protocol, warped has been designed to
greedily process events without strict adherence to causal or-
der. Whenever causal violations are detected, warped rolls
back to a consistent state (usually the last commit point)
and re-executes the events in their proper order. To sup-
port this rollback, the Processed queue serves as the hold-
ing list for events that might need re-execution in case of a
rollback [4, 18]. Similar models have been adopted for other
time warp synchronized simulators. For example, a simple
implementation of a doubly-linked list to store all processed
and unprocessed events along with their execution status
was proposed by Ronngren et al [26]. Although this design
allows quick and efficient rollbacks and fossil collection,
it cannot effectively insert and delete events when the Un-

processed event pool is large. An improved skew heap was
suggested by Ronngren as a possible data structure that can
be effective for large Unprocessed event pools.

A medium to coarse-grained simulator was built by Prasad
et al [22] using a parallelized Calender Queue. They pro-
vided each processor with a different calender queue. Their
study showed that load balancing of a local queue-based
simulator was comparable to that of a global queue-based
simulator. However, the global queue-based simulator was
faster with fewer rollbacks. Using an array and hierarchical
bitmap, Santoro et al [27] created a Least-Timestamp-First
(LTSF) scheduler. Although similar to a Calendar Queue,
this low-overhead scheduler provides a constant access-time.

Dickman et al [4] proposed the use of multiple LTSF
queues in scheduler to reduce contention on a many-core
processing platform. A comparative analysis also showed
that Ladder Queue [29] performed better as a LTSF queue
in warped scheduler compared to STL multiset (a sorted
doubly-linked list) and Splay tree [28].

2.2 Lock Free Lists
Valois [31] proposed the first lock-free list that required

only atomic compare-and-swap (CAS) operations. He used
the technique of encoding in-progress operations in auxiliary
nodes. This technique was improved by Michael et al [15].
A lock-free ordered list was implemented by Harris [7] us-
ing pointer marking technique. The least significant bit of
the next pointer of a deleted node is marked to denote log-
ical deletion. Physical removal of that node takes place in
a separate phase. Memory reclamation in Harris’ algorithm
was improved by Michael [13] using hazard pointers [14]. A
lock-based linked list was designed by Heller et al [8] that
used wait-free look up operations. Harris and Michael used
this wait-free approach to improve the performance of their
algorithm. A wait-free queue was proposed by Kogan and
Petrank [10]. Their fast-path-slow-path method is composed
of a slower wait-free algorithm coupled with a comparatively
faster lock-free algorithm. This approach shows better per-
formance than Harris-Michael algorithm. Timnat et al used
ideas from [30] to design a wait-free ordered linked list. They
used Harris-Michael algorithm as the fast path.

Liu et al [11] proposed a lock-free scheduler for conserva-
tive parallel simulation. Their implementation uses fetch-
and-add atomic operations to improve performance on a
shared-memory multiprocessor platform. They observed that
with increases in the number of logical processes, the per-
formance improvement was marginal.

3. BACKGROUND: EVENT MANAGEMENT

AND PROCESSING IN WARPED
warped is a parallel discrete event simulation kernel that

implements the Time Warp synchronization protocol [12,
23]. Initially designed and optimized for parallel simulations
on single core processor-based Beowulf Clusters, it incorpo-
rates extensive configurable features and sub-algorithms of
the Time Warp Mechanism (e.g., adaptive periodic check-
pointing [19] and lazy, aggressive, and dynamic cancellation
[25]). On each processing node, the Logical Processes (LPs)
of a simulation are grouped together and scheduled accord-
ing to a Least-Timestamp-First (LTSF) event scheduling
policy. The TimeWarp housekeeping functions such as GVT
estimation, termination detection, and fossil collection are
organized into a set of common services for the entire LP
population on that node. This node-based architecture is
similar to that reported in [1] and [24].

16

Figure 1: Threaded structure of warped.

Recently, warped was extended to incorporate threaded
execution for multi-core and many-core processors and Be-
owulf Clusters composed of such [17, 18]. Figure 1 shows
the overall design structure consisting of the main pending
event pool and the executing threads. The initial design
worked reasonably well for smaller multi-core processor sys-
tems. A high level overview of the thread operation and
pending event set organization is provided below.

A manager thread and one or more worker threads consti-
tute a threaded instance of warped. The Time Warp house-
keeping functions are processed by the manager thread (la-
beled M in Figure 1). The receipt and transmission of event
messages exchanged with remote nodes in the cluster is also
handled by the manager thread. However, the local event
insertion is performed by the worker threads. Additional
details on the operation of the manager thread design are
provided in [18]. The dequeueing and execution of pending
events and the subsequent generation of new events is han-
dled by the worker threads (depicted as W0· · ·Wn in Figure
1).

The pending event sets are organized into a two level
structure. At the first level, each LP managed a separate
sorted linked list of its pending events. These lists are locked
and accessed by the manager and worker threads. At the
second level is (one or more) common LTSF pending event
queue where the lowest timestamped event from each LP
event list is enqueued. The worker threads use the (locked)
LTSF queue to schedule the next event for execution. After
dequeueing and processing an event from the LTSF queue,
a worker thread will replenish the LTSF queue by removing
the new lowest timestamped event from the pending event
list of the LP corresponding to the event just processed and
insert it into the LTSF queue. The algorithm shown in Fig-
ure 2 provides a pseudo code representation of the general
event processing performed by the worker threads.

When configured with only a few worker threads, this sys-
tem works well. However, once the number of worker threads
exceeds 5–6, there is a negative impact on the performance
due to contention for the LTSF queue. Contention is not a
problem for the LP event pools as these structures are inde-
pendently locked and only one worker thread and the man-
ager thread can simultaneously access the same LP event
pool. The LTSF queue is the focal point of contention for

worker_thread()

lock the LTSF queue

dequeue the smallest event from the LTSF

unlock the LTSF queue

while !done loop

process event

(assume this event belongs to LP[i])

lock LP[i] queue

dequeue smallest event from LP[i]

(assume this event to be k)

lock the LTSF queue

insert event k into the LTSF

dequeue the smallest event from the LTSF

unlock the LTSF queue

unlock LP[i] queue

end loop

Figure 2: Generalized event execution loop for any
worker thread.

pending events in this architecture. The organization of the
pending event list needs modification, especially the LTSF
queue.

The principle solution to the contention issue in threaded
warped kernel is to support multiple LTSF queues (Figure
3). The worker threads are uniformly (or near uniformly)
divided into a number of independent groups. The number
of such groups equals the number of LTSF queues desired.
Each worker thread group is statically assigned to a LTSF
queue. Figure 3 illustrates the binding of worker thread
groups to LTSF queues (the worker threads are denoted by
the bubbles labeled W0· · ·Wn). Correspondingly, the LPs
are divided into a number of independent groups bound to
specific LTSF queues. The LTSF queues are then popu-
lated with events from their assigned LPs in a manner sim-
ilar to the single LTSF implementation. The assignment of
worker thread groups is designed to be fixed throughout the
simulation. LP groups, however, can be reassigned among
the LTSF queues dynamically during simulation to facilitate

17

Figure 3: Threaded structure of warped with multiple LTSF queues.

load balancing (or more precisely to distribute the critical
path of events for processing) [4].

Partitioning the LPs into groups, each serving as event
pool to a specific LTSF queue, does improve the performance
due to reduction in contention for individual LTSF queues.
However, this re-organization can prove to be a “double-
edged sword”. The basic problem with this organization is
the challenge of statically partitioning the LP groups. The
unique aspect of the Time Warp scheduling is that events
are aggressively processed and the system is rolled back to
a consistent state when any inconsistency is detected. This
makes it difficult to determine which processes are working
effectively and which are not. One approach is to “kick-
start” the simulation with arbitrary initial partitions of the
LPs followed by intermittent monitoring and rectification of
the imbalance through load balancing [4].

The underlying data structures for Implementing the LTSF
queue were also explored [4]. In these studies, the Ladder

Queue [29] delivered superior performance over both the STL
multiset and Splay tree [28] implementations. The signif-
icant characteristic of the Ladder Queue (also its principal
difference with Calendar Queue [3]) is the dynamic splitting
of buckets (months) that store events. When the number
of stored events exceeds some threshold, Calendar queue

requires a dynamic resizing of the entire data structure.
In contrast, the Ladder queue dynamically splits a bucket
(when it exceeds some specified threshold) into a collection
of buckets and therefore requires no resizing operations. The
principal components of a Ladder Queue are shown in Fig-
ure 4. An overview of the operation of a Ladder Queue is
outlined below.

Initially the ladder queue is empty. Incoming events are
inserted into the Top component in order of their arrival
(not sorted based on event timestamp). While receiving
events into Top, the minimum and maximum timestamps
of the events placed therein are recorded. On receiving
the first dequeue request, the events in Top are transferred
to a collection of buckets in the first rung of the ladder
(Rung[1]). Each bucket in Rung[1] holds events for the
timestamp range that equally divides the time range be-

tween the minimum and maximum timestamp of events that
were originally stored in Top. Each event is placed, without
sorting, into the bucket encompassing its timestamp value.
There is an upper threshold on the number of events in each
bucket. If the first non-empty bucket of the rung exceeds
this threshold, a new lower Rung is defined and events from
the overflowing bucket are transferred to the collection of
buckets in the next lower rung (Rung[2]). This redistribu-
tion is illustrated in Figure 4.

To complete the dequeue operation, the events from the
first non-empty bucket (containing the elements with times-
tamp ranges smaller than all of the remaining buckets) of
the lowest rung are sorted and placed in Bottom. The first
event (having the lowest timestamp) is then dequeued from
Bottom. The events are pulled from Bottom for successive
dequeue operations until it becomes empty. This condi-
tion triggers another pull of events from the first non-empty
bucket of the lowest rung in the ladder. The dequeue ac-
tivity continues in this way until there are no more events
left in the Rungs and Bottom. New events from Top are then
allowed to re-populate the Rungs and Bottom in the manner
discussed above.

In the ladder queue, timestamp values govern the incom-
ing event distribution once the initial ladder structure is pop-
ulated. The ladder queue then partitions the event timeline
into epochs. Events with timestamp value between t and
t+∆t are held by the Bottom and Rung structures while the
Top acts as temporary storage for events with timestamp
above t + ∆t. When the dequeue operation empties the
Bottom and Rung contents, another ladder queue epoch oc-
curs. Events in Top are transferred to the Rungs and Bottom.
The additional special cases are discussed in [29]. For use in
threaded warped, the Ladder Queue algorithms were mod-
ified slightly (see to Section 5.2 of [4]).

4. A LOCK-FREE AND UNSORTED LTSF

QUEUE
In our past work [4], a comparative analysis of the original

Ladder Queue’s performance was presented. In this paper,
we discuss two significant modifications to the Ladder Queue

18

Figure 4: Illustration of the Ladder Queue Structure

structure to further optimize its use in the warped simula-
tion kernel. In particular, we consider:

1. replacing the sorted list in the Bottom ladder queue
structure with an unsorted list, and

2. replacing the mutex locks used in the management of
the structures of the ladder queues with lock-free ac-
cesses.

The first modification is motivated by an observation that
the limited size of the time window in Bottom is such that
most events contained there are likely to be causally inde-
pendent. Since the Time Warp mechanism is non-strict in
its adherence to causal order and since it can also recover
from causal violations, an accidental out-of-order processing
of events is not a catastrophic happening. The simulator can
merely rollback and reprocess events in their proper order.
Thus, the partitioning of events into buckets (as normally
required by the ladder queue) also partitions the events into
coarse time windows that can be greedily scheduled by the
event scheduler. Ideally, the generation of new events will
fall outside the time window of the current bucket and the
system will operate without significant rollback and without
a full sort of input events. While this style of processing may
not work efficiently for all simulation models, those models
are also not likely to be suitable for Time Warp in general.
Thus, this approach should not be a significant drawback for
a Time Warp synchronized parallel simulator. The concept
of event partitioning (into ladder queue buckets) and the

unsorted processing of events in a bucket, will be referred
to as “relaxed order of event causality” (or relaxed causal-
ity) in the remainder of this paper. Events scheduled using
the original Ladder Queue are said to have a “strict order of
event causality” (or strict causality).

The opportunity to use a lock-free modification arises be-
cause once the need to sort the queues are removed, it be-
comes possible to use a simpler data structure that can be
implemented with high performance lock-free access. The
details of the implementation and use of a suitable lock-free
data structure in warped is described in the next section.
There is, however one additional small change that we made
to our Ladder Queue implementation. Namely we removed
the check to split the Bottom queue when additional inser-
tions would normally trigger such a split. This is done to
further optimize performance. The revised algorithm that
illustrates this change to the implementation is shown in
Figure 5.

4.1 The Lock-Free Ladder Queue
The warped LTSF queue supports the following opera-

tions for an event e:

void enqueue(e): insert the event e into the LTSF queue,

event* dequeue(): return the event from the LTSF queue
that has the smallest timestamp, and

void remove(e): remove the event e from the LTSF queue.

19

void enqueue() {

/* Try inserting into Top */

if(timestamp of new event >= minimum timestamp of event in Top) {

insert into Top

return;

}

/* Try to locate a suitable rung */

while(timestamp of new event < min. timestamp of event in rung[i] &&

i <= available number of rungs) {

i++;

}

/* Check if rung found */

if(i <= available number of rungs) {

determine the bucket number (j) suitable for the new event

insert the event in the bucket j of the rung[i].

} else {

#ifdef SORTED_BOTTOM

/* Check if number of events in bottom exceeds threshold */

if(number of events in bottom > threshold) {

create a lower rung (if possible)

transfer Bottom to this lowest available rung

insert the new event in an appropriate bucket of this rung

} else {

insert into Bottom

}

#endif

#ifndef SORTED_BOTTOM

insert into Bottom

#endif

}

}

Figure 5: Ladder Queue enqueue() for unsorted Bottom written in C style. Some details have been omitted.

The remove(e) operation is needed so that when an LP
receives an event e with a timestamp that is smaller than
the timestamp for the event at the head of its unprocessed
events, the system can replace the entry in the LTSF queue.
Migrating to the Ladder queue with an unsorted bottom,
these operations are maintained, however, the dequeue()

event is redefined to simply return the event at the head of
Bottom; the sorting of events in Bottom is no longer main-
tained.

Since the implementation of a functionally correct lock-
free algorithms can be quite difficult, using a existing algo-
rithm is most desirable. Examining the literature, we found
two promising candidate solutions, namely: the queue algo-
rithm developed by Michael and Scott [16], and the LFList

algorithm developed by Zhang et al [33]. To support our
needs, the queue algorithm would have to be extended to
include the remove(e) operation and the LFList algorithm
would have to be extended to include an operation to remove
the head element. After studying the problem and develop-
ing several strategies to extend each algorithm, it became
apparent that the simpler (yet still highly efficient) solution
would be to adapt and extend the LFList algorithm for our
needs. This adaption and extension is described below.

4.2 LFList
The LFList algorithm supports an unsorted doublely-linked

list of elements using lock-free compare-and-swap (CAS) in-
structions. For uncontended cases, the insert operation re-
quires 2 CAS instructions and a remove operation requires 1
CAS instruction. To facilitate lock-free access, the LFList al-
gorithm defines four states for elements in the list, namely:
INS (insert), REM (remove), DAT (valid data), and INV
(invalid). INS and REM are intermediate states that corre-
spond to nodes that are, respectively being “inserted” and
“removed”. The DAT state is assigned to a node that has
been successfully linked into the list and the INV state is
assigned to a node that has been marked for removal. The
actual removal of INV states occurs during some later insert
or remove operation.

Pseudo code representations of the INSERT (enqueue) and
REMOVE (dequeue) operations are shown in Figures 6 and
8. Graphical representations of a representative list being
operated on by the INSERT and REMOVE function are shown
in Figures 7 and 9. In Figure 7 we can see how the in-
serted node is initially placed in the list in state INS. Upon
completion of the insert operation, the state is changed to

20

Node:

key : stores the Event pointer

next : points to successor

state: current status of any node

(insert, remove, data, invalidate)

List:

head : starting node (initially NULL)

function INSERT(Event *k in, bool out) :

1. create a new node with ‘k’ as key and

‘insert’ as status

2. add the new node at the front of list

and mark it as head using CAS.

3. check whether key ‘k’ is already

present in the list; this determines

the return value. Remove existing

‘invalid’ nodes during this search.

4. using CAS try to change the state of

the node from ‘insert’ to ‘data’ if

key is unique in the list;

else, try to ‘invalidate’ it.

5. if CAS not successful, clean up the

invalidated nodes in the list.

end INSERT

Figure 6: Non-blocking unsorted list details and in-
sert function. Some details have been omitted.

DAT. Note also that the list has a (previously deleted) node
marked as state INV. Due to the nature of this lock-free
algorithm, the remove operation actually marks nodes with
state INV (Figure 9) which is then removed on a later op-
eration (by either INSERT or REMOVE) on the list. More
complete details on the operations of LFList are available in
[33].

In our implementation of LFList, we removed the back-
ward link (prev) and the thread id (tid) that was part of
the algorithm presented by Zhang et al [33]. We did not re-
quire a doubly linked list and the thread id was needed for a
wait-free derivation of their list that we also did not require.
Finally, we also had to define a dequeue() operation for the
LFList. This is easily achieved by finding an event e from the
LTSF queue and simply using the remove(e) operation of
LFList. Pseudo code for the dequeue() operation is shown
in Figure 10.

5. EXPERIMENTAL ANALYSIS
The purpose of this study is to analyze the effectiveness

of causality relaxation in threaded warped. The use of an
unsorted list as Bottom in Ladder Queue [29] allows us to
study the overall effect of out-of-order event processing on
the simulation. The effect of lock-free operations in the
above mentioned Ladder structure is another aspect that
has been studied in this paper.

All simulations were run multiple times on the same ma-
chine and the results averaged. The machine used for our

Figure 7: Illustrative example of LFList Insert

function REMOVE(Event *k in, bool out) :

1. create a new node with ‘k’ as key and

‘remove’ as status

2. add the new node at the front of list

and mark it as head using CAS.

3. search for the node with key ‘k’ in the

rest of the list and ‘invalidate’ it if

it is in ‘data’ mode; this determines

the return value. Remove existing

‘invalid’ nodes during this search.

4. move the state of the created node to

‘invalidate’.

end REMOVE

Figure 8: Non-blocking unsorted list remove func-
tion. Some details have been omitted.

Figure 9: Illustrative example of LFList Remove

21

function DEQUEUE() :

while the list has nodes with state DAT {

find the first available node k with state DAT

if (REMOVE(k) == true) {return k;}

}

return NULL;

end DEQUEUE

Figure 10: A Dequeue operation for LFList.

Figure 11: RAID-5 Simulation Model

simulations has 48 cores — four 12-core AMD Opteron 6168
processors, each core running at a clock rate of 1.9GHz. It
is configured with 64 GB of RAM.

The following two simulation models were used for the
experimental analysis:

RAID-5: This model represents a Level 5 RAID (Redun-
dant Array of Inexpensive Disks) setup. Figure 11 shows the
schematics of this model. It consists of 136 logical processes
(LPs) that simulate 32 disks, 8 forks and 96 sources. Re-
quests for data from the array are generated by the sources.
These requests pass through their respective forks. The forks
forward each request to the necessary disks. After a pre-
determined amount of time, each disk responds to any data
request received from the fork. This model simulates the
access time to any sector of the disk. The simulation is al-
lowed to continue till the global execution time reaches one
hundred thousand seconds.

Epidemic Disease Propagation: This model simulates
the spread of disease during an epidemic outbreak. It con-
sists of 56 logical processes each of which simulates a differ-
ent location. Each location has a group of people, each with
different stages of the disease (infected, latent, incubating,
infectious, asymptotic or recovered). The progress of disease
in a person is controlled by a finite state machine proposed

Figure 12: Epidemic Simulation Model

by Barrett et al [2]. People can travel between locations
at any point during the simulation. There is a pre-defined
travel time between any two locations. A reaction-diffusion
model based on [20] has been employed to simulate the intra-
location and inter-location spread of the disease. The reac-
tion function determines the intra-location spread of disease.
The diffusion network models the inter-location movement
pattern of persons. Two types of diffusion network have
been used, namely:

1. Fully Connected : A person can travel to any loca-
tion in a single hop.

2. Watts-Strogatz [32]: This models the small-world
behavior of human networks where a person has the
option of traveling to any location in a short number
of hops.

Similar to RAID-5, the simulation is allowed to continue
until the global execution time reaches one hundred thou-
sand seconds. Figure 12 shows the schematics of this model.

Different configurations with varying numbers of worker
threads were used for the simulations. The number of worker
threads used were 4, 8, 16 and 32. These worker thread
configurations were also permuted with varying number of
LTSF queues (1, 2 and 4). The number of LTSF queues
is always kept less than the number of worker threads and
increased by a power of two. This allows even distribution of
worker threads for each LTSF queue and helps to keep the
simulations balanced. All results were obtained by taking
the mean of ten simulation runs. The results from these
LTSF queue experiments are described below.

Figures 15, 18 and 21 compare the performance of warped
scheduler by replacing its sorted Ladder Queue-based LTSF
with a lock-free Ladder Queue having an unsorted Bottom.
When using a single LTSF queue, we observe significant
speedup as the number of threads increase. This is most
likely due to role thread contention plays in slowing access
to the shared pending event set.

A sorted Ladder Queue uses traditional locks to make its
operations thread-safe. Contention for locks increase as the
number of threads is increased. Figures 13, 16 and 19 show
the effect of contention on simulation time when the num-
ber of threads is increased. In case of Raid-5 model (Figure
13), we notice the simulation time increases as the number
of threads is increased. There is some anomaly in case of
8 threads for Epidemic: Watts-Strogatz (Figure 19) and 16
threads for Epidemic: Fully Connected (Figure 16). This
is most likely due to load imbalance on the warped sched-
uler. The simulation times for sorted 2 and 4 LTSF queues
steadily increase except for some anomalies in case of (2

22

 52

 53

 54

 55

 56

 57

 58

 59

 60

4 8 16 32

S
im

u
la

ti
o

n
 ti
m

e

Number of Threads

1 LTSF Queue
2 LTSF Queues
4 LTSF Queues

Figure 13: Raid-5 model: Sorted Ladder Queue sim-
ulation time

 43

 43.2

 43.4

 43.6

 43.8

 44

 44.2

 44.4

 44.6

 44.8

4 8 16 32

S
im

u
la

ti
o

n
 ti
m

e

Number of Threads

1 LTSF Queue
2 LTSF Queues
4 LTSF Queues

Figure 14: Raid-5 model: Lock-free unsorted Ladder
Queue simulation time

 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

 1.32

 1.34

4 8 16 32

S
p

e
e

d
u

p

Number of Threads

1 LTSF Queue
2 LTSF Queues
4 LTSF Queues

Figure 15: Raid-5 model: Lock-free unsorted Ladder
Queue vs. Sorted Ladder Queue.

 14

 14.5

 15

 15.5

 16

 16.5

 17

 17.5

4 8 16 32

S
im

u
la

ti
o

n
 ti
m

e

Number of Threads

1 LTSF Queue
2 LTSF Queues
4 LTSF Queues

Figure 16: Epidemic model (Fully Connected):
Sorted Ladder Queue simulation time

 11

 11.5

 12

 12.5

 13

 13.5

4 8 16 32

S
im

u
la

ti
o

n
 ti
m

e

Number of Threads

1 LTSF Queue
2 LTSF Queues
4 LTSF Queues

Figure 17: Epidemic model (Fully Connected):
Lock-free unsorted Ladder Queue simulation time

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

4 8 16 32

S
p

e
e

d
u

p

Number of Threads

1 LTSF Queue
2 LTSF Queues
4 LTSF Queues

Figure 18: Epidemic model (Fully Connected):
Lock-free unsorted Ladder Queue vs. Sorted Lad-
der Queue.

23

 12.6

 12.7

 12.8

 12.9

 13

 13.1

 13.2

 13.3

 13.4

4 8 16 32

S
im

u
la

ti
o

n
 ti
m

e

Number of Threads

1 LTSF Queue
2 LTSF Queues
4 LTSF Queues

Figure 19: Epidemic model (Watts-Strogatz):
Sorted Ladder Queue simulation time

 15

 15.5

 16

 16.5

 17

 17.5

 18

4 8 16 32

S
im

u
la

ti
o

n
 ti
m

e

Number of Threads

1 LTSF Queue
2 LTSF Queues
4 LTSF Queues

Figure 20: Epidemic model (Watts-Strogatz): Lock-
free unsorted Ladder Queue simulation time

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

4 8 16 32

S
p

e
e

d
u

p

Number of Threads

1 LTSF Queue
2 LTSF Queues
4 LTSF Queues

Figure 21: Epidemic model (Watts-Strogatz): Lock-
free unsorted Ladder Queue vs. Sorted Ladder
Queue.

LTSF, 4 threads) for Epidemic: Fully Connected (Figure
16) and (4 LTSF, 8 threads) for Epidemic: Watts-Strogatz
(Figure 19).

On the other hand, a lock-free queue shows relatively
steady performance even when the number of threads is
increased. Figures 14, 17 and 20 show a relatively steady
behavior as the number of threads is increased. However,
Epidemic: Fully Connected (Figure 17 shows some anomaly
in case of 2 LTSF queues. The Fully Connected model es-
sentially relies on a random network and hence such anoma-
lies are possible. If there are very few causality violations
when events are scheduled using Unsorted Ladder Queue,
the number of rollbacks will remain relatively low — effec-
tively improving the simulation runtime.

In general, the speedup ratio should increase as the num-
ber of threads per LTSF queue increases and vice versa. In
case of 4 threads, we notice significant speedup in spite of
limited contention overhead for a sorted Ladder Queue. This
is due to effectiveness of relaxed causality in the unsorted
Ladder Queue. The Raid-5 model (Figure 15) shows up to
29% speedup while the Epidemic: Fully Connected (Figure
18) and Epidemic: Watts-Strogatz (Figure 21) shows up to
20% and 25% speedup respectively for 4 threads. The un-
sorted Bottom in lock-free Ladder Queue encourages relaxed
causality (refer Section 4). Speedup figures for 8, 16 and 32
threads too are boosted by relaxed causality and show an
upward trend except in case of (2 LTSF, 16 threads) for the
two epidemic models.

6. DISCUSSION
Based on the results presented in Section 5, it can be said

that the Lock-Free Ladder Queue with unsorted Bottom per-
forms very well. The Ladder Queue’s ability to coarsely sort
events into groups which are causally independent is a key
feature that we have attempted to highlight in this paper.
However, this property is dependent on the nature of event
pool. If a model generates a considerable amount of causally
dependent events within any given epoch, then the benefits
of using unsorted Bottom would be considerably diminished.
A Sorted Ladder Queue might yield better results under
such circumstances. That said, our models did not show
this behavior.

Pienta et al [21] analyzed the effect of scale-free model
topology on conservative parallel simulation. They found
that with increase in degree of any hub node, the hub node
needs to process more events during each epoch leading to
loss of parallel speedup. The scheduler design we have pro-
posed in this paper should ameliorate the speedup problem
for such hub nodes.

The other aspect of this paper is the lock-free nature of
the warped scheduler. While we have migrated to atomic
moves for the Ladder Queue with unsorted Bottom, we have
retained the locks for sorted Ladder Queue. The Bottom

structure in sorted Ladder Queue uses STL multiset to hold
events in sorted order. Heller et al [8] proposed a lock-based
optimistic list implementation with wait-free lookup options.
Based on the results presented in [33], this lock-based imple-
mentation shows performance superior to the lock-free list
implementation used for the Ladder Queue with unsorted
Bottom. Whether or not this lock-based list implementation
will boost performance of warped can only be answered
through experimental analysis in future.

24

7. CONCLUSIONS
In this paper, we explore the concept of relaxed causality

using an unsorted Bottom in a Ladder Queue that is used to
manage the pending event sets for a Time Warp parallel sim-
ulation engine. We propose the replacement of unsorted lists
in Top, Rungs and Bottom with unsorted lock-free queues.
Experimental analysis shows a speedup of 1.1 to 1.49 for
two different simulation models in various configurations of
threads and schedule queues. The results further show that
the speedup results are in the higher region of these speedups
with larger thread counts. These results help to support
our hypothesis that multiple LTSF queues, each made of
lock-free coarsely partitioned events in a ladder queue, is
an efficient candidate for scheduling events in a Time Warp
simulator.

The organization and management of the pending event
set is critical to the performance of a multi-threaded Time
Warp synchronized parallel simulation engine. The two-level
pending event set implemented with an unsorted lock-free
Ladder Queue provides the best performance among the va-
riety of configurations that we have examined. In a sepa-
rate and as yet unreported study, we have initiated studies
with hardware-based transactional memory to manage the
updates to the pending event set. These studies are show-
ing a slight improvement in performance (on the order of
10%) over the conventional mutex locked ladder queue im-
plementation of the LTSF queues. The reason these speedup
numbers are not higher is due to the collisions that still oc-
cur among the threads to this shared structure. Interest-
ingly enough, the studies with transactional memory have
also caused us to identify an approach that should further
improve performance for several of our existing solutions.
Specifically we now believe that it is best to decouple the
worker threads from the LTSF queues and then to rotate
each access by a worker thread to the next LTSF queue (in
a circular manner).1 This will spread out the concurrent ac-
cess into different data segments (each of the different LTSF
queues), reducing collisions to transactional data accesses
and/or mutex locks/shared data. Almost even more impor-
tantly, this will also have the side benefit of distributing the
critical path of LPs among the LTSF queues. Thus, load
balancing will occur naturally as a result of the event man-
agement process rather than as a separate disruptive process
(such as the technique outlined in [4]).

8. ACKNOWLEDGMENTS
Support for this work was provided in part by the National

Science Foundation under grant CNS–0915337.

9. REFERENCES
[1] H. Avril and C. Tropper. Clustered time warp and

logic simulation. In Proceedings of the Ninth Workshop
on Parallel and Distributed Simulation (PADS’95),
pages 112–119, June 1995.

[2] C. L. Barrett, K. R. Bisset, S. G. Eubank, X. Feng,
and M. V. Marathe. Episimdemics: An efficient
algorithm for simulating the spread of infectious
disease over large realistic social networks. In

1This will introduce yet another location of contention for
the worker threads. However it should be nothing more
than a fetch-and-add type operation by each worker thread
to retrieve the next index into the pool of LTSF queues.

Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, pages 37:1–37:12, 2008.

[3] R. Brown. Calendar queues: A fast O(1) priority
queue implementation for the simulation event set
problem. Communications of the ACM,
31(10):1220–1227, Oct. 1988.

[4] T. Dickman, S. Gupta, and P. A. Wilsey. Event pool
structures for pdes on many-core beowulf clusters. In
Proceedings of the 2013 ACM SIGSIM conference on
Principles of advanced discrete simulation, pages
103–114, May 2013.

[5] R. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30–53, Oct. 1990.

[6] A. Ghuloum. Face the inevitable, embrace parallelism.
Communications of the ACM, 52(9):36–38, Sept. 2009.

[7] T. L. Harris. A pragmatic implementation of
non-blocking linked-lists. In Proceedings of the 15th
International Conference on Distributed Computing,
pages 300–314. Springer-Verlag, 2001.

[8] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N.
Scherer, and N. Shavit. A lazy concurrent list-based
set algorithm. In Proceedings of the 9th International
Conference on Principles of Distributed Systems,
OPODIS’05, pages 3–16, 2006.

[9] D. Jefferson. Virtual time. ACM Transactions on
Programming Languages and Systems, 7(3):405–425,
July 1985.

[10] A. Kogan and E. Petrank. Wait-free queues with
multiple enqueuers and dequeuers. In Proceedings of
the 16th ACM Symposium on Principles and Practice
of Parallel Programming, PPoPP ’11, pages 223–234,
2011.

[11] J. Liu, D. M. Nicol, and K. Tan. Lock-free scheduling
of logical processes in parallel simulation. In
Proceedings of the Fifteenth Workshop on Parallel and
Distributed Simulation, PADS ’01, pages 22–31. IEEE
Computer Society, 2001.

[12] D. E. Martin, T. J. McBrayer, and P. A. Wilsey.
warped: A Time Warp simulation kernel for analysis
and application development. In H. El-Rewini and
B. D. Shriver, editors, 29th Hawaii International
Conference on System Sciences (HICSS-29), volume
Volume I, pages 383–386, Jan. 1996.

[13] M. M. Michael. High performance dynamic lock-free
hash tables and list-based sets. In Proceedings of the
Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’02, pages 73–82,
2002.

[14] M. M. Michael. Hazard pointers: Safe memory
reclamation for lock-free objects. IEEE Trans. Parallel
Distrib. Syst., 15(6):491–504, June 2004.

[15] M. M. Michael and M. L. Scott. Correction of a
memory management method for lock-free data
structures. Technical report, University of Rochester,
Rochester, NY, USA, 1995.

[16] M. M. Michael and M. L. Scott. Nonblocking
algorithms and preemption-safe locking on
multiprogrammed shared memory multiprocessors.
Journal of Parallel and Distributed Computing,
51(1):1–26, May 1998.

25

[17] R. Miller. Optimistic parallel discrete event simulation
on a beowulf cluster of multi-core machines. Master’s
thesis, University of Cincinnati, 2010.

[18] K. Muthalagu. Threaded warped: An optimistic
parallel discrete event simulator for clusters fo
multi-core machines. Master’s thesis, School of
Electronic and Computing Systems, University of
Cincinnati, Cincinnati, OH, Nov. 2012.

[19] A. Palaniswamy and P. A. Wilsey. Parameterized
Time Warp: An integrated adaptive solution to
optimistic pdes. Journal of Parallel and Distributed
Computing, 37(2):134–145, Sept. 1996.

[20] K. S. Perumalla and S. K. Seal. Discrete event
modeling and massively parallel execution of epidemic
outbreak phenomena. Simulation, 88(7):768–783, July
2012.

[21] R. S. Pienta and R. M. Fujimoto. On the parallel
simulation of scale-free networks. In Proceedings of the
2013 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, SIGSIM-PADS ’13,
pages 179–188, 2013.

[22] S. K. Prasad, S. I. Sawant, and B. Naqib. Using
parallel data structures in optimistic discrete event
simulation of varying granularity on shared-memory
computers. In IEEE First International Conference on
Algorithms and Architectures for Parallel Processing,
pages 365–374, Apr. 1995.

[23] R. Radhakrishnan, D. E. Martin, M. Chetlur, D. M.
Rao, and P. A. Wilsey. An Object-Oriented Time
Warp Simulation Kernel. In D. Caromel, R. R.
Oldehoeft, and M. Tholburn, editors, Proceedings of
the International Symposium on Computing in
Object-Oriented Parallel Environments (ISCOPE’98),
volume LNCS 1505, pages 13–23. Springer-Verlag,
Dec. 1998.

[24] R. Radhakrishnan, L. Moore, and P. A. Wilsey.
External adjustment of runtime parameters in Time
Warp synchronized parallel simulators. In 11th
International Parallel Processing Symposium,
(IPPS’97). IEEE Computer Society Press, Apr. 1997.

[25] R. Rajan and P. A. Wilsey. Dynamically switching
between lazy and aggressive cancellation in a Time
Warp parallel simulator. In Proc. of the 28th Annual
Simulation Symposium, pages 22–30. IEEE Computer
Society Press, Apr. 1995.

[26] R. Rönngren, R. Ayani, R. M. Fujimoto, and S. R.
Das. Efficient implementation of event sets in time
warp. In Proceedings of the 1993 workshop on Parallel
and distributed simulation, pages 101–108, May 1993.

[27] T. Santoro and F. Quaglia. A low-overhead
constant-time ltf scheduler for optimistic simulation
systems. In Proceedings of the The IEEE symposium
on Computers and Communications, pages 948–953,
June 2010.

[28] D. Sleator and R. Tarjan. Self adjusting binary search
trees. Journal of the ACM, 32(3):652–686, July 1985.

[29] W. T. Tang, R. S. M. Goh, and I. L.-J. Thng. Ladder
queue: An o(1) priority queue structure for large-scale
discrete event simulation. ACM Transactions on
Modeling and Computer Simulation, 15(3):175–204,
July 2005.

[30] S. Timnat, A. Braginsky, A. Kogan, and E. Petrank.
Wait-free linked-lists. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’12, pages 309–310,
2012.

[31] J. D. Valois. Lock-free linked lists using
compare-and-swap. In Proceedings of the Fourteenth
Annual ACM Symposium on Principles of Distributed
Computing, PODC ’95, pages 214–222, 1995.

[32] D. J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world’ networks. Nature, 393:440–442, June
1998.

[33] K. Zhang, Y. Zhao, Y. Yang, Y. Liu, and M. Spear.
Practical non-blocking unordered lists. In Distributed
Computing, volume 8205 of Lecture Notes in
Computer Science, pages 239–253. Springer Berlin
Heidelberg, 2013.

26

