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Abstract

We model conditional market beta and alpha as flexible functions of state variables

identified via a formal variable selection procedure. In the post-1963 sample, beta of

the value premium comoves strongly with unemployment, inflation, and price-earnings

ratio in a countercyclical manner. We also uncover a novel nonlinear dependence of

alpha on business conditions: It falls sharply and becomes even negative during severe

economic downturns but is positive and flat otherwise. Conditional CAPM performs

better than unconditional CAPM but does not fully explain the value premium. Our

findings are consistent with a conditional CAPM with rare disasters.
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1 Introduction

In the post-1963 sample, value stocks have smaller market beta but higher average returns

than do growth stocks. An important risk-based explanation is that the value premium, the

return difference between value and growth stocks, is riskier during business recessions when

conditional equity premium is high than during business expansions when conditional equity

premium is low (e.g., Lettau and Ludvigson (2001) and Zhang (2005)). Existing empirical

evidence that the value premium has a countercyclical market beta is, however, inconclusive

(e.g., Ang and Kristensen (2012)). We shed new light on this issue using a novel statistical

model that allows us to tackle two possible misspecifications in previous studies.

First, earlier authors assume that the conditional beta and alpha are a linear function of

state variables, although such a relation may be more complex, as Bai, Hou, Kung, and Zhang

(2015) highlight in their investment-based model with rare disasters. Extant studies provide

little empirical evidence on this potentially restrictive assumption due to the lack of an

appropriate statistical method. We fill the gap by proposing a single-index varying-coefficient

setup. Our empirical model allows for a flexible data-determined functional dependence of

the conditional beta and alpha on an index that is a linear function of some state variables.

The single-index varying-coefficient model nests previous linear models as a special case.

Second, only time series variation in market beta that comoves with conditional equity

premium and variance drives a wedge between the unconditional and conditional CAPM, and

earlier authors use standard stock market return and variance predictors as state variables.

This approach is potentially problematic because Welch and Goyal (2008) and Paye (2012)

show that many of these variables have rather weak predictive power for stock market returns

and stock market variance, respectively. In addition, Ghysels (1998), Harvey (2001), and

Cooper and Gubellini (2011) have cautioned that the estimation of conditional factor models

can be sensitive to the choice of state variables. To address these issues, we identify the most

relevant state variables from a comprehensive pool via a formal exhaustive variable selection
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procedure. Investment-based models, e.g., Zhang (2005), stress a direct link between the

conditional beta and business fluctuations. To investigate this conjecture, we include closely

watched gauges of aggregate economic activity as candidate state variables, in addition to

commonly used stock market return and variance predictors.

The single-index modeling is a popular nonparametric approach that alleviates the curse

of dimensionality (e.g., Carroll, Fan, Gijbels, and Wand (1997), Yu and Ruppert (2002)).

It is a natural fit of our empirical specification. We can think of the single index as a

composite measure of business conditions that are the main driver of conditional equity

premium and variance in risk-based asset pricing models. When the conditional beta is a

monotonic function of the single index, the interpretation of the single-index coefficients is

similar to that for linear models. That is, we can test the hypothesis that the conditional

beta changes countercyclically across time by simply inspecting the signs of the single-index

coefficients. We make several novel extensions to the existing single-index varying-coefficient

model (Xia and Li (1999), and Fan, Yao, and Cai (2003)) when using it to estimate and test

the conditional CAPM. First, to account for heteroskedasticity in stock returns, we model

the conditional volatility as a flexible function of the single index. Second, to facilitate the

exhaustive variable selection procedure, we develop a computationally expedient iterative

fixed point algorithm using penalized splines for estimation. Last, we derive asymptotic

distributions for test statistics of the conditional CAPM.

We document strong countercyclical variation in the value premium’s market beta over

the July 1963 to December 2012 period. The unemployment rate and the inflation rate, the

two most closely monitored macroeconomic variables by the Federal Reserve, are selected as

the state variables for the conditional beta. Moreover, the conditional beta correlates neg-

atively with the procyclical inflation rate and correlates positively with the countercyclical

unemployment rate. To the best of our knowledge, the finding of a close relation between

the value premium’s conditional beta and key aggregate economic activity measures is novel.
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Among commonly used stock market return predictors, the price-earnings ratio is identified

as a significant state variable. Again, the conditional beta correlates negatively with the

procyclical price-earnings ratio. In Figure 1, we plot the fitted conditional beta, with shaded

areas indicating business recessions dated by the National Bureau of Economic Research

(NBER). Consistent with risk-based explanations, it increases sharply during business re-

cessions and decreases during business expansions. The countercyclical beta helps explain

the value premium. The alpha is 5.6% per annum for the unconditional CAPM, while it

decreases by more than 20% to 4.4% per annum for conditional CAPM. For comparison,

the alpha is 5.3% per annum when using standard predictors, i.e., the dividend yield, the

default premium, the term premium, and the risk-free rate, as the conditioning variables.

The conditional CAPM, however, does not fully account for the value premium either; its

alpha is statistically significant at the 1% level.

The conditional CAPM fails to fully explain the value premium possibly because we

omit some important state variables. To address partially this underconditioning bias, we

follow the advice by Boguth, Carlson, Fisher, and Simutin (2011) and include the value

premium’s lagged realized market beta as a candidate state variable. The variable selection

procedure identifies the lagged realized beta as a significant conditioning variable in the con-

ditional CAPM model for the value premium. The realized beta, however, does not subsume

the information content of financial and macroeconomic variables that we consider. Specifi-

cally, the inflation rate and the price-earnings ratio remain significant conditioning variables.

Again, we find that (1) the value premium’s conditional beta changes countercyclically across

time and (2) the conditional CAPM does not fully explain the value premium.

Our main results are qualitatively similar for the full sample spanning the January 1927

to December 2012 period. Figure 2 shows that the value premium’s conditional beta in-

creases during business recessions and decreases during business expansions. Campbell and

Vuolteenaho (2004) and others find that the unconditional CAPM explains the value pre-
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mium over the January 1927 to December 1963 period. Figure 2 shows that the value

premium’s market beta increases drastically during the Great Depression. This result sug-

gests that the CAPM explains the value premium in the pre-1963 period possibly because,

as Bai, Hou, Kung, and Zhang (2015) point out, the rare disaster risk that accounts for a

substantial portion of the value premium materializes during the Great Depression.

Wang (2003) adopts a fully nonparametric model and uncovers a nonlinear dependence

of the conditional beta on prespecified state variables. In contrast, using a single-index

model that is less susceptible to the curse of dimensionality and allows for variable selection

and time-varying volatility, we fail to reject the null hypothesis that the value premium’s

conditional beta is a linear function of the selected state variables. Interestingly, there

is, however, novel evidence that the conditional alpha depends nonlinearly on the single

index. Figure 3 shows that it falls sharply and becomes even negative during severe business

downturns but is significantly positive and essentially flat otherwise. Ang and Kristensen

(2012) use daily data to estimate the conditional CAPM in which the conditional beta is a

nonparametric function of calendar time. In contrast with our study, Ang and Kristensen

do not find countercyclical variation in the value premium’s conditional beta.

Our novel evidence of a strong correlation of the conditional beta with key aggregate

economic activity gauges suggests that investment-based models remain a viable explanation

of the value premium. Bai, Hou, Kung, and Zhang (2015) propose such a model in which the

conditional CAPM fails to explain the value premium in small samples because investors face

rare disaster risk. The observed nonlinear dependence of the conditional alpha on business

cycles is also a salient feature of their model.

The remainder of the paper proceeds as follows. We first explain the statistical method-

ology in Section 2. We then discuss data in Section 3. We present empirical findings in

Section 4. We offer some concluding remarks in Section 5. Some technical materials are

relegated to the Appendices.
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2 Statistical Methodology

We propose a novel single-index varying-coefficient model for the conditional CAPM:

Rt+1 = α(ztγ) + β(ztγ)Rm,t+1 + σ(ztγ)εt+1, t = 1, . . . , n, (1)

where {Rt+1}nt=1 and {Rm,t+1}nt=1 denote respectively the series of the value premium and the

excess stock market return observed at n time points. The conditional alpha α(·) and the

conditional beta β(·) are flexible functions of the so called single index ztγ, which is a linear

function of d-dimensional state variables zt, γ being the vector of single-index parameters.

For identifiability, ‖γ‖ = 1 and its first nonzero element is positive. εt+1 is the error term

with zero mean and unit variance. The conditional volatility σ(ztγ) is also a flexible function

of the single index. εt+1 is independent of zs and Rm,s+1 for s ≤ t, and εt+1 is independent of

εt′+1 for t 6= t′. The single-index varying-coefficient model nests the previous linear models,

e.g., Petkova and Zhang (2005), as special cases, and we develop new statistical test for the

functional form of alpha and beta, e.g., whether they are constant, linear, or nonlinear.

Compared with the fully nonparametric specification in which α(·), β(·), and σ(·) are

fully nonparametric functions of d-dimensional state variable vector zt, the model in equa-

tion (1) has two distinct advantages. First, single-index modeling overcomes the “curse of

dimensionality” via projecting the d-dimensional state space to the one-dimensional single

index. This advantage is especially important for our empirical investigation because we

consider a moderately large number of state variables for a relatively short sample. Second,

the single-index specification is consistent with our maintained hypothesis that the value

premium’s market beta comoves with business cycles. Specifically, we can think of the single

index as a composite measure of business conditions, which, as Zhang (2005) and others show

in their theoretical models, are the main driver of the value premium’s conditional beta.

We develop a new estimation method by combining (log) penalized splines or P-splines

and a fixed point algorithm. P-splines (e.g., Ruppert, Wand, and Carroll (2003), and Jarrow,
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Ruppert, and Yu (2004)) are used to estimate the unknown coefficient functions α(·) and β(·),

while log P-splines are used to estimate the non-negative volatility function σ(·). Fixed point

algorithm (Cui, Härdle, and Zhu (2011)) is adapted to estimate the single-index parameters.

In our experience, the fixed point algorithm based on P-splines is computationally fast and

statistically robust in the estimation of the unknown flexible functions and single-index

parameters. These properties are especially desirable when we conduct an exhaustive search

from a comprehensive pool to identify the most relevant state variables for modeling the

conditional beta.1

2.1 P-spline Estimation

Both varying coefficients α(u) and β(u) are univariate flexible functions of the single index

u = zγ and can be estimated using P-splines. To impose the constraint of positive volatility,

we estimate the volatility function σ(u) using log P-splines, i.e., the logarithmic transforma-

tion of the volatility function is modeled using P-splines (e.g., Yu, Yu, Wang, and Li (2009)).

We illustrate P-splines using truncated power basis for its easy interpretation. Other bases

such as B-splines can be similarly adopted. The truncated power basis of degree p, with

knots at v1, . . . , vk, is B(u) = (1, u, u2, . . . , up, (u − v1)
p
+, . . . , (u − vk)

p
+), where (u − vk)

p
+

equals (u − vk)
p if u ≥ vk and equals 0 otherwise. Any function with p − 1 continuous

derivatives can be approximated by

δ0 + δ1u+ δ2u
2 + . . .+ δpu

p + δp+1(u− v1)p+ + . . .+ δp+k(u− vk)p+ = Bδ,

where δ = (δ0, δ1, . . . , δp+k)
T is the spline coefficient vector.

Denote the bases Ba and Bb and the spline coefficient vectors δa and δb for conditional

alpha and beta respectively. Then at ut the conditional alpha is α(ut) = Ba,tδa and the

conditional beta is β(ut) = Bb,tδb. Combining the scalar 1 and Rm,t+1 with spline bases,

1For d candidate state variables, the number of all possible combinations is 2d, given that the constant
term is also a possible choice. Therefore, the exhaustive search can be computationally demanding when d
is relatively large.
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we can write the t-th row of “design” matrix X as Xt = (Ba,t,Bb,tRm,t+1). Define spline

coefficient parameters δ1 = (δTa , δ
T
b )T, the mean function of Rt+1 (t = 1, 2, . . . , n) can be

written as

mt ≡ E(Rt+1) = Ba,tδa + Bb,tRm,t+1δb = Xtδ1.

Similarly, we approximate the volatility function using logσ(ut) = B2(ut)δ2, or equivalently,

σ(ut) = exp{B2(ut)δ2}. Then the penalized negative log-likelihood function is

n∑
t=1

(
exp{−2B2(ztγ)δ2}{Rt+1 −Ba,t(ztγ)δa −Bb,t(ztγ)δbRm,t+1}2 + 2B2(ztγ)δ2

)
+
n

2
λaδ

T
aDaδa +

n

2
λbδ

T
b Dbδb +

n

2
λ2δ

T
2 D2δ2, (2)

where λa > 0, λb > 0, and λ2 > 0 are penalty or smoothing parameters for varying coefficient

functions and volatility function respectively; Dξ (ξ = a, b, 2) is a 0-1 diagonal matrix such

that δTξ Dξδξ =
∑kξ

j=1 δ
2
pξ+j

, where pξ and kξ + j are the polynomial degree and number of

knots of the splines, respectively.2 For notational convenience, we reserve subscript 1 for

mean and 2 for volatility unless otherwise indicated.

An appealing feature of P-splines is that the number and location of knots are no longer

crucial and the smoothness can easily be controlled by the smoothing parameter λ through

a roughness penalty term (e.g., Ruppert (2002), and Ruppert, Wand, and Carroll (2003)).

We use quadratic spline with knots placed at the equidistant quantiles of the index value.

The above P-spline estimation also allows different smoothness by using separate smoothing

parameters.

One could optimize the penalized log likelihood function (2) with respect to the model

parameters θ = (γT, δa
T, δb

T, δT2 )T in one step. However, the number of parameters could

be large and the estimation algorithm may not be efficient. Instead, we propose a two-step

algorithm which reweighs the mean function using the estimates of volatility function, in a

2As noted in Carroll, Fan, Gijbels, and Wand (1997), this specification may also apply to quasi-likelihood
models, where only the relationship between the model mean and the model variance is specified, by replacing
the conditional log-likelihood function by a quasi-likelihood function.
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fashion similar to weighted least squares. We first estimate the mean function and then use it

to calculate the volatility. Parameters in the mean function are thereafter recalculated using

weighted least squares where the weights are the inverse of the estimated volatility. The two

steps can be iterated a few times. We find two or three iterations are usually adequate.3

The two-step estimation procedure is described as follows.

Step 1: Mean Estimation.

The mean function can be estimated by minimizing

n∑
t=1

{Rt+1 −Ba,t(ztγ)δa −Bb,t(ztγ)δbRm,t+1}2 +
n

2
λ1δ

T
1 D1δ1. (3)

Given single index u = zγ and the “design” matrix X defined above, the spline coef-

ficients can be obtained by a linear shrinkage estimator δ̂1 = (XTX + nλ1D1)
−1XTR,

where λ1 = blockdiag(λa,λb) = diag(λa, . . . , λa, λb, . . . , λb) is penalty parameter matrix,

D1 = blockdiag{Da,Db}, and R = (R2, . . . , Rn+1)
T is the vector of value premiums. Es-

timated value premium is R̂ = Xδ̂1 = HR, where H = X(XTX + nλ1D1)
−1XT is the

smoothing matrix.

Step 2: Volatility Estimation and Reweighting.

The volatility coefficient parameter δ2 can be estimated by minimizing the penalized

negative log-likelihood

n∑
t=1

(
e2(ztγ)exp{−2B2(ztγ)δ2}+ 2B2(ztγ)δ2

)
+
n

2
λ2δ

T
2 D2δ2, (4)

where e(ztγ) = Rt+1 −Xtδ̂1 ≈ σ(ztγ)εt+1 is the residual from the estimation of mean

function. The volatility function is approximated using

σ̂(ztγ) = exp{B2(ztγ)δ̂2}. (5)

The new estimator δ̂1 of the mean can be obtained through (penalized) weighted least

squares where the weight is the inverse of the estimated squared volatility. More specifically,

3Similar treatments of iteratively estimating mean and volatility can be found in Carroll, Wu, and Ruppert
(1988) and Yu, Yu, Wang, and Li (2009).
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the new estimator δ̂1 minimizes the penalized weighted least squares

n∑
t=1

1

σ̂2(ztγ)

(
Rt+1 −Xtδ1

)2
+
n

2
λ1δ

T
1 D1δ1.

It has an analytical solution δ̂1 = (XTWX+nλ1D)−1XTWR, where W = diag{1/σ̂2(ztγ)}

is a diagonal weight matrix with each diagonal element calculated by (5). In the case of

homoscedasticity, the weighting procedure is unnecessary. That is, the second step and the

reweighting can be omitted altogether.

2.2 Smoothing Parameter Selection

The selection of smoothing parameters is crucial in any nonparametric estimation. The

most common criteria used to select smoothing parameters include Cross Validation (CV),

Generalized Cross Validation (GCV), Mallow’s Cp, Akaike’s Information Criterion (AIC),

and some other variations. We use GCV, which is particularly popular in the P-splines

approach. In this paper, the smoothing parameter λ1 of mean minimizes the GCV criterion

GCV (λ1) =

∑n
t=1(Rt+1 −Xtδ1)

2

n{1− n−1tr(H)}2
,

where tr(H) is the trace of the smoothing matrix and is often called the “effective” degrees

of freedom of the fit (see Hastie and Tibshirani 1990). Similarly, the smoothing parameter

λ2 of volatility minimizes the GCV criterion

GCV (λ2) =
Deviance(λ2)

n{1− n−1tr(B2(BT
2 B2 + nλ2D2)−1BT

2 )}2
,

where the numerator is the deviance of the model for a given value of λ2. The optimal

smoothing parameter is often selected through grid search. For the two-dimensional λ1, to

effectively search the optimal amount of smoothing, we recommend a straightforward grid

searching scheme. First we constraint the two smoothing parameters to be the same and

conduct a one-dimensional grid search to find the optimal smoothing parameter. Then we fix

one smoothing parameter at the value obtained from the previous grid search and conduct
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grid search for the other parameter. We have studied two-dimensional separate smoothing

parameters and found no significant improvement in the fit using separate smoothing pa-

rameters. Therefore, we present our results using a single smoothing parameter in this paper

when estimating the mean functions.

2.3 A Fixed Point Algorithm

The objective function in (2) or (3) is nonlinear in the single-index parameters γ, and we need

to estimate them using numerical methods. We do not use standard nonlinear optimization

routines, e.g, lsqnonlin and fminunc from Matlab and nls from S-PLUS, because for high

dimensional γ, the convergence of the estimates may be slow and the resulting estimates may

be very sensitive to starting values. Instead, we develop a fixed point algorithm. Cui, Härdle,

and Zhu (2011) propose the fixed point algorithm for local linear estimation for single-index

models using an estimating function approach because it works well for high dimensional

single-index models. In this paper, we adapt the algorithm to P-spline estimation for our

single-index varying-coefficient models. In our implementation, the fixed point algorithm

enables us to obtain efficient single-index parameter estimates γ in equation (3) by using a

series of equations of its first derivatives through an iterative procedure. Compared with the

aforementioned nonlinear optimization routines, our fixed point algorithm is less sensitive

to starting values and works better for high dimensional γ. The details of the fixed point

algorithm as well as the estimation algorithm are relegated to Appendix A.

2.4 Variable Selection Procedure

Few studies have addressed variable selection for single-index varying-coefficient models.

In a noticeable exception, Fan, Yao, and Cai (2003) use backward stepwise deletion in

combination with the modified t-statistic and the Akaike Information Criterion (AIC) for

variable selection. This heuristic procedure, however, does not guarantee a global solution of

the best subset variables. To address this concern, we use some criterion to choose the best
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model from all possible combinations of candidate state variables. The exhaustive search

approach can be computationally intensive and time-consuming. This drawback is not a

serious concern for our study. While we consider a quite comprehensive set of candidate

state variables, the number of all possible combinations is still manageable. Moreover, as we

discuss above, P-splines and fixed point algorithm allow for expedient computation.

Akaike’s Information Criterion (AIC, Akaike 1974) and Bayesian Information Criterion

(BIC, Schwartz 1978) are the most popular likelihood-based information criteria for variable

selection. Both criteria attempt to balance goodness of fit and simplicity of the model. We

use BIC, which tends to select more parsimonious models. BIC in our model is defined as

n∑
t=1

(
exp{−2B2(ztγ)δ2}{Rt+1 −Ba,t(ztγ)δa −Bb,t(ztγ)δbRm,t+1}2 + 2B2(ztγ)δ2

)
+ln(n)df,

where the first term is the negative two log-likelihood function of the model, and df is the

model effective degrees of freedom.4

2.5 Tests of Alpha and Beta

To test whether conditional alpha or beta is constant, linear, or nonlinear, we first establish

consistency and asymptotic normality, and then construct the Wald statistic for inferences.

There are two types of asymptotics for P-splines: Fixed knots and increasing number of knots.

We use fixed-knot asymptotics because they are most practical and relevant in empirical

applications (Yu and Ruppert (2002), and Jarrow, Ruppert, and Yu (2004)). In addition, the

bias due to fixed-knot approximation of P-splines of smooth function is negligible compared

with the standard deviation of the function estimates and the bias due to penalty. The

asymptotics introduced here are in spirit similar to Theorem 2 in Yu and Ruppert (2002)

and to Theorem 2 in Wu, Lin, and Yu (2011).

4AIC assigns smaller weight to the simplicity of the model, where ln(n) is replaced by 2. As a consequence,
AIC tends to select more complex models. This is confirmed in our empirical study. For example, for the
monthly data spanning the July 1963 to December 2012 period, in addition to the unemployment rate, the
inflation rate, and the price-earnings ratio selected by BIC, the dividend-price ratio is also selected by AIC
as a conditioning variable in the single index. Nevertheless, qualitatively similar results remain.
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Theorem 1. Under mild regularity conditions, if the smoothing parameter λn ∼ o(n−1/2),

then a sequence of estimators θ̂ = (γ̂T, δ̂a
T
, δ̂b

T
, δ̂

T

2 )T is root-n consistent and converges to a

normal distribution,

√
n(θ̂ − θ)

D→ N(0, I−1(θ)), (6)

where I(θ) is the usual Fisher Information.

The proof of the above theorem is similar to that in Yu, Yu, Wang, and Li (2009).

The penalty parameter is assumed to vanish fast enough as n goes to infinity to ensure the

result given in (6) involves no penalty parameter. For finite sample inference, asymptotic

results with fixed penalty parameter would be preferred to avoid overestimating the variance

of θ as in (6). Using the delta method, the sandwich formula for the covariance matrix

will be given by Γ−1n
(
θ(λ)

)
Λn

(
θ(λ)

)
Γ−Tn

(
θ(λ)

)
, where Γn

(
θ(λ)

)
=
∑n

t=1 (∂/∂θT)Φztγ(θ),

Λn

(
θ
)

=
∑n

t=1 Φztγ(θ)ΦT
ztγ(θ), Φztγ(θ) = −(∂/∂θT)ln(θ; ztγ) + λDθ, and ln(θ; ztγ) is the

log-likelihood function (see Yu and Ruppert (2002), and Yu, Yu, Wang, and Li (2009)). The

sandwich estimator of the covariance matrix is

Ωn(θ̂(λ)) = Γ−1n
(
θ̂(λ)

)
Λn

(
θ̂(λ)

)
Γ−Tn

(
θ̂(λ)

)
. (7)

The asymptotic properties in (7) can be conveniently used for joint inferences concerning

the spline coefficients. In general, if we are testing the null hypothesis H0 : Lθ = c, where

L is a r by dim(θ) matrix of full row rank, we construct the Wald statistic

W = (Lθ̂ − c)T
(
LΩn(θ̂(λ))L

)−1
(Lθ̂ − c). (8)

Under H0, the Wald statistic W has a limiting χ2 distribution with r degrees of freedom. In

particular, hypotheses on testing conditional alpha and beta can be formulated using spline

coefficients. For example, testing H0 : α ≡ 0 is equivalent to testing all its spline coefficients

are zeros, i.e., H0 : δa ≡ 0. The null hypothesis H0 : β is linear in single index is equivalent

to test all nonlinear spline coefficients are simultaneously zero.
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The covariance matrix Ωn(θ̂) in the Wald statistic in (8) can be difficult to calculate

using the sandwich formula for finite samples. Instead we use bootstrapping resamples to

construct the covariance matrices in (8). Because of heteroskedasticity, we use a special-

ized wild bootstrap procedure. Wild bootstrap procedure, originally proposed by Wu (1986)

and extended by Mammen (1993) and others, is particularly useful in the presence of het-

eroskedasticity and small sample sizes. Unlike the usual residual bootstrap where random

residuals are drawn and added to the estimates to construct resamples, the wild bootstrap

accounts for heteroskedasticity by creating weighted residuals where the weight is a random

variable with zero mean and unit variance. The details of the wild bootstrap procedure are

relegated to Appendix B.

Following Ang and Kristensen (2012), we define the long-run alpha as the average of

conditional alphas:

αLR ≡ lim
n→∞

1

n

n∑
t=1

α(ztγ). (9)

The long-run alpha measures the part of the value premium that is unaccounted by the

conditional CAPM. We calculate the long-run alpha and its standard errors from the condi-

tional alpha estimates and the wild bootstrap resamples. Note that the hypothesis of zero

long-run alpha, i.e., H0 : αLR = 0, is not the same as the hypothesis that conditional alpha

is zero over any values of single index. Zero conditional alpha implies zero long-run alpha;

the opposite, however, is not true.

3 Data

We obtain the monthly risk-free rate, excess stock market return, and value premium data

from Ken French at Dartmouth College. Following earlier studies, e.g., Ferson and Harvey

(1999) and Petkova and Zhang (2005), we use standard stock market return predictors as

conditioning variables. The default premium (DEF) is the yield spread between Baa- and

Aaa-rated corporate bonds. The term premium (TERM) is the yield spread between 10-
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year Treasury bonds and 3-month Treasury bills. The stochastically de-trended risk-free rate

(RREL) is the difference between the risk-free rate and its average in the previous 12 months.

The dividend-price ratio (DP) is the dividend paid in the most recent 12 months divided

by the end-of-month stock market price. The price-earnings ratio (PE) is the end-of-month

stock market price divided by the earnings in the most recent 10 years. The realized stock

market volatility (VOL) is the sum of squared daily excess stock market returns in a month.

We obtain these data up to 2008 from Amit Goyal at Emory University and update them

to 2012 using the data obtained from Ken French at Dartmouth College, Robert Shiller at

Yale University, and the St. Louis Fed.

We also consider several major economic indicators as additional candidate conditioning

variables. The unemployment (UE) and inflation (INF) are arguably the most important

gauges of aggregate economic activity because by legal mandates, the Federal Reserve is

required to maintain full employment and price stability.5 We obtain the civilian unemploy-

ment rate and the consumer price index for all urban consumers (all items) from the St.

Louis Fed. We use the year-over-year log changes in the consumer price index to measure

the inflation rate and use the year-over-year log changes in the unemployment rate to mea-

sure the job market condition.6 Chen, Roll, and Ross (1986) and others find that industrial

production (IP) is a priced state variable in the cross-section of stock returns. We include

its year-over-year log change obtained from the St. Louis Fed as a conditioning variable.

5Several recent studies, e.g., Chen and Zhang (2011), Petrosky-Nadeau, Zhang, and Kuehn (2013), and
Belo, Lin, and Bazdresch (2014), have noted the important effect of labor market conditions on asset prices.

6In the Taylor (1993) rule, the federal funds rate adjusts with the inflation rate and the deviation of
the unemployment rate from its natural rate. Because there is substantial uncertainty about the natural
rate of unemployment, Staiger, Stock, and Watson (1997) and Orphanides and Williams (2002), however,
argue that the Fed should target changes in the unemployment rate instead of the level. In addition, Berger,
Dew-Becker, Schmidt, and Takahashi (2015) suggest that the Fed targets changes in the unemployment
rate because layoffs lead to substantial social welfare losses. Consistent with these arguments, Berger, Dew-
Becker, Schmidt, and Takahashi find that the federal funds rate correlates more closely with changes in the
unemployment rate than with the level of the unemployment rate. That is, changes in the unemployment
rate appear to be a better measure of business conditions than does the level of the unemployment rate.
Similarly, when we include both changes and level of the unemployment rate as candidate conditioning
variables, changes are always selected but the level is not.
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Lewellen and Nagel (2006) use the realized beta, BETAR, as a proxy for the conditional

beta. Boguth, Carlson, Fisher, and Simutin (2011) illustrate via simulation that under some

mild conditions, the lagged realized beta is a good instrumental variable for the conditional

beta and can substantially reduce the underconditioning bias. As a robustness check, we

include the lagged realized beta as a candidate conditioning variable. Following Lewellen

and Nagel (2006), we estimate the realized beta of a month by regressing the daily value

premium on a constant and the daily excess market return in that month using the ordinary

least squares (OLS) regression.

Table 1 provides summary statistics of the state variables. Consistent with the conjec-

ture that the value premium’s conditional beta is countercyclical, we find that the realized

beta, BETAR, a proxy for the conditional beta, correlates positively with UE and correlates

negatively with IP and INF. On the other hand, except for PE and TERM, the correla-

tion of BETAR with stock market return predictors is rather weak. Similarly, correlations

between macroeconomic variables and stock market return predictors are not particularly

strong. These results highlight the importance of including macroeconomic variables as can-

didate conditioning variables because they may provide additional information about the

conditional beta beyond financial variables.

4 Empirical Findings

Campbell and Vuolteenaho (2004), Fama and French (2006), Ang and Chen (2007), and

others find that the value premium poses a challenge to the unconditional CAPM in the

post-1963 sample but not in the pre-1963 sample. Following Ang and Kristensen (2012)

and others, we focus mainly on the post-1963 sample in our empirical test of the condi-

tional CAPM. Nevertheless, we show that the value premium’s conditional beta changes

countercyclically in both post- and pre-1963 samples.
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4.1 Conditional Beta as a Function of Macroeconomic and Finan-
cial Variables

For the July 1963 to December 2012 period, we select the model with PE, INF, and UE as

the conditioning variables via an exhaustive variable selection procedure. The scaled stock

price such as PE plays a prominent role in the stock market return predictability literature

because of its mechanical relation with the conditional equity premium (e.g., Campbell and

Shiller (1988)), as highlighted in leading asset pricing models by Campbell and Cochrane

(1999) and Bansal and Yaron (2004). Lettau and Ludvigson (2001) emphasize using the

scaled stock price (i.e., the consumption-wealth ratio) in estimating the conditional CAPM

for the value premium, and Zhang (2005) formalizes the argument using an equilibrium

model in which the value premium’s conditional market beta comoves closely with the scaled

stock price. By identifying PE as a significant state variable, we confirm that the scaled

stock price indeed has important effects on the dynamic of the value premium’s conditional

market beta. Moreover, because the unemployment and inflation are the two most closely

watched gauges of aggregate economic activity by the Federal Reserve, our results confirm a

key implication of the aforementioned investment-based asset pricing models that the value

premium’s conditional market beta changes with business conditions. To the best of our

knowledge, this important empirical evidence for investment-based models is novel. 7

Unlike the scaled stock price, the existing literature does not provide a fully fledged theo-

retical explanation for the relation between the other financial variables and the conditional

equity premium. Financial economists, e.g., Fama and French (1989), usually justify the pre-

dictive power of these financial variables for stock market returns with the arguments that

(1) the conditional equity premium is countercyclical and (2) these financial variables have

strong cyclical variation across time. For example, Stock and Watson (2003) and others show

7In Zhang’s (2005) model, the value premium’s conditional market beta depends only on the scaled stock
price because of the simplifying assumption that productivity shocks correlate perfectly with pricing kernel
shocks. In general cases where the assumption is relaxed, the conditional market beta should comove with
both the aggregate productivity and the scaled stock price, as we document in this paper.
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that TERM, a commonly used stock market return predictor, has strong predictive power

for aggregate output and inflation. Interestingly, while TERM is a standard conditioning

variable in the extant empirical studies, it is not selected into the conditional CAPM model.

This is because, as we show later, UE subsumes the information content of TERM about

the value premium’s conditional beta: The selected model has PE, INF, and TERM as the

conditioning variables when we exclude UE as a candidate state variable. Our variable selec-

tion results suggest that consistent with investment-based models, macroeconomic variables

can be more informative than can financial variables in estimating the conditional CAPM.

We report the main estimation results of the selected single-index model in Table 2.

Panel A shows that the single index correlates positively with the procyclical variables INF

and PE and correlates negatively with the countercyclical variable UE. Because there is a

monotonically negative relation between the conditional beta and the single index (untab-

ulated), our results indicate that the conditional beta of the value premium increases with

UE and decreases with INF and PE and thus changes countercyclically across time. Figure

1 illustrates this point visually. We observe a sharp spike in the value premium’s conditional

beta for each of seven business recessions over the July 1963 to December 2012 period. More-

over, the conditional beta tends to decrease during business expansions. Our results reveal

a strong countercyclical variation in the conditional beta of the value premium.8

Table 3 shows that the selected conditional variables forecast excess market returns. One-

month-ahead excess market returns correlate positively with UE and negatively with INF

and PE; both INF and PE are statistically significant at the 5% level. Similarly, for three-

month-ahead excess market returns, their positive correlation with UE is significant at the

10% level, while their negative correlations with INF and PE are significant at the 1% level

8In Zhang’s (2005) model, value stocks are riskier than growth stocks during business recessions. Consis-
tent with this theoretical prediction, we find that betas of value stocks correlate negatively with INF and PE
and correlate positively with UE. By contrast, betas of growth stocks correlate positively with INF and PE
and correlate negatively UE. As a result, betas of value stocks increase sharply during business recessions,
while betas of growth stocks decrease during economic downturns. For brevity, we do not report these results
here but they are available on request.
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(row 5). Moreover, the estimated single index (SI) that is a linear function of UE, INF, and

PE has significant predictive power for one-month-ahead market returns at 5% level (row 2)

and for three-month-ahead market returns at 1% level (row 7). The single index correlates

closely with the first principle component of the nine candidate conditioning variables, PC1,

with a correlation coefficient of 84% (untabulated); nevertheless, the predictive power for

market returns is noticeably stronger for the former (rows 4 and 8). Our results indicate

that the value premium’s market beta correlates closely with conditional equity premium.

In panel B of Table 2, we test the hypotheses about the variation in the conditional

beta across time. We reject the null hypothesis that the beta is zero at the 1% significance

level. Moreover, we find strong evidence against the null hypothesis that the conditional

beta is constant. We fail to reject the null hypothesis that the conditional beta is a linear

function of the state variables INF, PE, and UE at the conventional significance level, and

untabulated results show that the relationship between the conditional beta and the single

index is essentially linear. This novel finding, which is in contrast with that reported by

Wang (2003) who uses a fully nonparametric model, provides first empirical justification for

the linear specification of the conditional beta adopted in the extant studies.

Panel C of Table 2 investigates cyclical variation in the conditional alpha. We overwhelm-

ingly reject the null hypothesis that the conditional alpha is zero. Interestingly, our evidence

reveals a significant nonlinear dependence of the conditional alpha on the single index: We

reject the null hypothesis that the conditional alpha is a linear function of the single index

at the 10% significance level. Specifically, untabulated results indicate that the conditional

alpha is more sensitive to the single index during business recessions (when the single index

is low) than during business expansions (when the single index is high). As a result, Figure

3 shows that the conditional alpha falls sharply and becomes negative during severe business

downturns such as the Great Recession but is significantly positive and essentially flat oth-

erwise. The novel evidence from Figure 3 lends empirical support to the rare disaster risk
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model analyzed by Bai, Hou, Kung, and Zhang (2015). These authors show using simulated

data that the conditional alpha is positive and flat in normal times but becomes insignificant

or negative when disaster risk materializes. Their model also implies that disaster risk leads

to a spike in the conditional beta, as we document in Figure 1.

The value premium has a significantly positive alpha of 0.47% per month at the 1%

significance level when we use the unconditional CAPM (untabulated). Panel D of Table 2

shows that the alpha decreases noticeably to 0.38% per month in the conditional CAPM.

Untabulated results show that the 20% reduction in the alpha is also statistically significant.

These findings are consistent with the notion that the conditional CAPM helps explain the

value premium because its risk exposure is larger during business recessions when conditional

equity premium is high than during business expansions when conditional equity premium

is low. Nevertheless, we find that the alpha remains significantly positive at the 1% sig-

nificance level even when we control for time-varying conditional beta. Again, this finding

is consistent with the rare disaster model by Bai, Hou, Kung, and Zhang (2015). Like the

peso problem, we observe a positive alpha in finite samples because it is a compensation

for expected but unrealized rare disasters. That is, as we document in Figure 3, the condi-

tional alpha is significantly positive during normal times when the economy is spared from

catastrophic shocks. Moreover, consistent with their model implication that value stocks are

more vulnerable to rare disasters than are growth stocks because of their higher investment

adjustment costs, untabulated results show that the conditional alpha is positive for value

stocks but is negligible for growth stocks.

4.2 Realized Beta as a Conditioning Variable

In the previous section, we find that the conditional CAPM fails to explain fully the value

premium. One possible explanation is that our specification has an underconditioning bias

because we omit some important state variables. Boguth, Carlson, Fisher, and Simutin
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(2011) suggest that the lagged realized beta, BETAR, is a good instrumental variable for

the conditional beta. Nevertheless, because it is not necessarily an efficient measure of

the conditional beta, the macroeconomic and financial variables may provide additional

information about the conditional beta beyond BETAR. To address these issues, we include

BETAR as an additional candidate conditioning variable in the variable selection procedure.

Over the July 1963 to December 2012 period, we select the model with BETAR, INF, and

PE as the conditioning variables.

Table 4 reports the main estimation results of the single-index varying-coefficient model

with BETAR, INF, and PE as the conditioning variables. Panel A shows that the single

index correlates positively with BETAR. Because the conditional beta increases monotoni-

cally with the single index (untabulated), our results indicate that the lagged realized beta

correlates positively with the conditional beta. The single index also correlates negatively

with INF and PE, again supporting the notion that the conditional beta changes coun-

tercyclically across time. Panel B shows that we reject at the 1% significance level the null

hypothesis that the conditional beta is zero and the null hypothesis that the conditional beta

is constant. However, we fail to reject the null hypothesis at the 10% significance level that

the conditional beta is a linear function of the conditioning variables. Panel C shows that we

reject the null hypothesis that the conditional alpha is constant at the 5% significance level,

and reject the null hypothesis that the conditional alpha is linear in the single index at the

15% significance level. Overall, panel D shows that the long-run alpha remains significantly

positive at the 1% level. Therefore, including the realized beta in the conditional CAPM

does not change our main findings in any qualitative manner.

4.3 Ang and Kristensen’s (2012) Time-Varying Beta

Ang and Kristensen (2012) use a nonparametric approach to model the value premium’s con-

ditional beta as a flexible function of the calendar time. In contrast with our findings, these
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authors document a rather weak relation between their beta estimates and business cycles.

For comparison, in this section, we adopt their specification to estimate the time-varying

beta and then use it as an additional candidate conditioning variable in our variable selec-

tion procedure. Ang and Kristensen (2012) use daily return data and the local polynomial

smoothing algorithm in their estimation, and then construct the monthly beta using some

bandwidth controlling criterion. In this paper, we estimate the monthly beta using monthly

return data, and find qualitatively similar results using both the penalized spline smoothing

algorithm and the local polynomial smoothing algorithm. For brevity, we report the results

only for the former; and the results for the latter are available up request.

Figure 4 plots the estimated value premium’s time-varying beta based on Ang and Kris-

tensen’s (2012) model over the post-1963 sample period. Interestingly, it appears to increase

during business recessions and to decrease during business expansions. To investigate for-

mally whether the estimated time-varying beta changes countercyclically across time, we

regress it on the three most important conditioning variables (i.e., PE, INF, and UE) that

we identify via the exhaustive variable selection procedure. Panel E of Table 5 shows that

the estimated time-varying beta (BETAAK) correlates negatively and significantly with PE

and INF at the 1% level. It also correlates positively with UE albeit the correlation is statis-

tically insignificant at the 10% level. Therefore, we again find countercyclical variation in the

alternative measure of the value premium’s conditional beta. Our results differ from those

in Ang and Kristensen (2012) possibly because of bandwidths that these authors choose

when constructing monthly conditional beta from nonparametric estimation based on the

daily data. Moreover, we extend Ang and Kristensen’s (2012) sample from December 2006

to December 2012 and thus include the 2008 subprime loan crisis, during which the value

premium’s conditional beta has a big spike (Figure 4).

Like the realized beta, Ang and Kristensen’s (2012) time-varying beta may provide im-

portant information about the conditional beta. We address this issue in Table 5. Panel
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A shows that we select the time-varying beta estimated using Ang and Kristensen’s (2012)

specification, BETAAK , along with DEF, TERM, and INF as the conditioning variables.

Because the conditional beta increases monotonically with the single index (untabulated),

the results reported in panel A suggest that BETAAK correlates positively with the con-

ditional beta. Moreover, we find that the conditional beta correlates positively with DEF

and correlates negatively with TERM and INF, revealing its countercyclical variation. In

panel B, we reject the null hypothesis that the conditional beta is zero or constant but fail to

reject the null hypothesis that the conditional beta is a linear function of the selected state

variables. In panel C, we reject the null hypothesis that the conditional alpha is zero but do

not reject the null hypothesis that the conditional alpha is constant. Overall, panel D shows

that the conditional CAPM fails to explain fully the value premium, despite countercycli-

cal variation in the value premium’s conditional beta. Therefore, controlling for Ang and

Kristensen’s (2012) conditional beta does not change our main findings qualitatively either.

4.4 Different Samples

While many authors, e.g., Ang and Kristensen (2012), focus on the post-1963 sample, as a

robustness check, we estimate the conditional CAPM using a longer sample spanning the

January 1949 to December 2012 period over which we have observations for all the variables.

Results are qualitatively similar to those obtained from the post-1963 sample. We identify

INF, PE, and UE as the most relevant state variables. The conditional beta is countercyclical

because it correlates positively with INF and PE and correlates negatively with UE. We reject

the null hypothesis that the conditional beta is zero or constant but fail to reject the null

hypothesis that the conditional beta is a linear function of the selected state variables. In

addition, the conditional alpha drops steeply toward zero during severe recessions but is

significantly positive and essentially flat otherwise. Overall, the conditional CAPM has a

long-run alpha of about 0.33% per month, a noticeable reduction from the 0.46% for the
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unconditional CAPM. For brevity, we do not report these results here but they are available

on request.

As we mention above, several studies show that the value premium poses a challenge

to the unconditional CAPM for the post-1963 sample but not for the pre-1963 sample.

To address this issue, we estimate the conditional CAPM using the full sample (January

1927 to December 2012) and two subsamples (January 1927 to June 1963 and July 1963

to December 2012). Because the unemployment rate is available only from January 1949,

for direct comparison of all three samples, we exclude UE from our set of candidate state

variables. We summarize our main results in Table 6. For the full sample, we find that

both macroeconomic variables (INF and IP) and financial variables (DEF, PE, and TERM)

are significant conditioning variables for the value premium’s conditional beta. The results

are qualitatively similar when we include BETAR as an additional conditioning variable.

More importantly, similar to the results obtained from the post-1963 sample, Figure 2 shows

that the value premium’s conditional beta exhibits strong countercyclical variation in the

full sample as well. Nevertheless, the conditional CAPM fails to explain the value premium

over the full sample. The variable selection results are similar for the pre-1963 sample. Both

the macroeconomic variable (IP) and the financial variables (DEF, PE, and TERM) are

significant conditioning variables for the value premium’s conditional CAPM, although we

confirm that the unconditional CAPM explains the value premium for the January 1927 to

June 1963 period. For the post-1963 sample, when we exclude UE as a conditioning variable,

TERM becomes a significant conditioning variable along with INF and PE. To summarize,

the result that the value premium’s conditional beta changes countercyclically across time

is robust to the full sample and the pre-1963 sample.
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5 Conclusion

We revisit whether the conditional CAPM helps explain the value premium using a general

framework that has two novel features. First, it allows for a nonlinear dependence of the con-

ditional alpha, beta, and volatility on the state variables and nest the linear specification as

a special case. Second, we adopt an exhaustive variable selection method to choose the most

relevant conditioning variables from a large set of candidate state variables. Furthermore,

we consider key aggregate economic activity gauges as candidate conditioning variables, in

addition to the stock market return and variance predictors and realized beta measures that

are commonly used in previous studies.

We find strong countercyclical variation in the value premium’s market beta. We also

uncover a novel nonlinear dependence of the conditional alpha on business conditions: It

decreases sharply and becomes even negative during severe economic downturns and is sig-

nificantly positive and essentially flat otherwise. The conditional CAPM performs better

than the unconditional CAPM; however, it does not fully explain the value premium either.

Moreover, the value premium puzzle comes mainly from value stocks: The unconditional al-

pha is significantly positive for value stocks but is negligible for growth stocks. These findings

are broadly consistent with the investment-based model proposed by Bai, Hou, Kung, and

Zhang (2015), in which rare disasters generate a nonlinear dependence of alpha on business

cycles and are responsible for the failure of CAPM in finite samples.

In this paper, we focus on the value premium to illustrate empirical applications of our

novel statistical specification for three reasons. First, it is arguably the most prominent asset

pricing anomaly. Second, previous empirical studies have investigated intensively whether

it is explained by the conditional CAPM. Last, various theoretical explanations have been

proposed for it, and they provide important guidance for our empirical analysis. In fu-

ture studies, it will be interesting to apply the single-index model systematically to other

important CAPM-related anomalies to shed light on their theoretical explanations.
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Appendices

A Reparameterization and Fixed Point Algorithm

In this Appendix, we provide the technical details for the reparameterization of the single-

index parameters and the estimation using the fixed point algorithm.

In statistical literature on single-index and related models, to ensure the identifiability of

single-index parameters, we commonly impose the constraints of unit norm and positive first

component, i.e., ‖γ‖ = 1 and γ1 > 0 (see e.g. Carroll, Fan, Gijbels, and Wand (1997), Yu and

Ruppert (2002)). Let γ1 =
√

1− (γ22 + . . .+ γ2d), where
∑d

j=2 γ
2
j < 1, thus the unconstrained

single-index parameters are ϕ = (γ2, γ3, . . . , γd)
T.9 Denote θ = (γT, δTa , δ

T
b , δ

T
2 )T and θ̃ =

(ϕT, δTa , δ
T
b , δ

T
2 )T as the parameter vector before and after parameterization. The Jacobian

matrix of this transformation is

J(θ̃) =

−(1− ‖ϕ‖2)−1/2ϕT 0
Id−1 0
0 Idim(δa)+dim(δb)+dim(δ2)

 . (A.1)

All inference results in Section 2.5 are for the reparameterized θ̃. We can formulate

test statistics concerning the original parameters θ by the inverse transformation using

the Jacobian matrix. For example, the Fisher Information in Theorem 1 will become

J(θ̃)I−1(θ̃)J(θ̃)T, and sandwich estimator of the covariance matrix will become J(θ̃)Ωn(θ̃(λ))J(θ̃)T.

We adapt the fixed point algorithm (Cui, Härdle, and Zhu (2011)) to penalized spline es-

timation in our single-index varying-coefficient models and find computationally promising

results. Specifically, given δ1, to obtain the single-index parameter estimates γ in equa-

tion (3), we let the first derivatives of the squared loss with respect to γs be zeros. Note that

the roughness penalty terms vanish as the penalty is only on the spline coefficients. Define

Ms =
n∑
t=1

(Rt+1 −Ba,tδa −Bb,tδbRm,t+1)(B
′
a,tδa + B′b,tδbRm,t+1)zs,t, s = 1, . . . , d, (A.2)

9An alternative way of reparameterization is letting γ1 = 1, and the new parameter ϕ =

(1, γ2, γ3, . . . , γd)/
√

1 +
∑d

j=2 γ
2
j . However, this reparametrization may not be suitable for the fixed point

algorithm proposed here.

25



where B′ξ,t(ξ = a, b) is the first derivative of the spline basis evaluated at zt, and define

M = (M1, . . . ,Md). Setting M = 0 and by the chain rule, we obtain d− 1 equations
γ2M1 = γ1M2

...
γdM1 = γ1Md,

which have the solution 
γ1 = ||M1||

||M||

γ2s = ||Ms||2
||M||2 , 2 ≤ s ≤ d

sign(γsM1) = sign(Ms), 2 ≤ s ≤ d.

The above system equals γ M1

||M|| = |M1|
||M|| ·

M
||M|| , which automatically handles the constraints

||γ|| = 1 and γ1 > 0. For fast convergence and robustness of the fixed point algorithm, we

add some constant C to ||M|| to avoid dividing by a small value. To achieve this, add Cγ

to both sides and after transformation we obtain

γ =
C

M1/||M||+ C
γ +

M1/||M||2

M1/||M||+ C
M. (A.3)

We choose the constant C properly to avoid dividing by zero and refer further discussions to

Cui, Härdle, and Zhu (2011).

We describe the two-phase iterative algorithm for iteratively estimating the mean and

volatility functions as the following.

Step 0: Initialization. Initialize single-index parameter γ. For example, we can use the

usual ordinary linear squares (OLS) estimates for linear regression Rt+1 = (zt+ztRm,t+1)γ+

εt+1. Alternatively, we can use random initial points from unit sphere. Normalize γ such

that γ = sign(γ1)γ/||γ||.

Step 1: Mean Estimation.

1a) Given γ̂, compute spline coefficients of α(·) and β(·), or δ̂1 and the estimated value pre-

mium R̂t+1. We calculate spline coefficients using δ̂1 = (XTX+nλ1D1)
−1XTR and estimate

value premium using R̂ = Xδ̂1, where X is the design matrix.

1b) Fixed Point Algorithm. Given δ̂1 and R̂, calculate the first derivatives by (A.2).
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Use the fixed point algorithm to update single-index parameters γ by (A.3) and normalize

γ such that γ = sign(γ1)γ/||γ||.

Repeat 1a) & 1b) until max1≤s≤d|γs,new − γs,old| ≤ tol, where tol is the prescribed tolerance

level.

Step 2: Volatility Estimation and Reweighting.

Given γ̂ and δ̂1, estimate δ2 by minimizing the penalized negative log-likelihood function in

(4). Use the updated squared volatility estimates σ̂2(ztγ̂) to re-estimate the mean spline coef-

ficients by the (penalized) weighted least square estimator δ̂1 = (XTWX+nλ1D)−1XTWR,

where W = diag{1/σ̂2(ztγ̂)} is the diagonal weight matrix.

In our implementation, we find that two or three iterations of Step 1 and Step 2 are sufficient

as Carroll, Wu, and Ruppert (1988).

B Wild Bootstrap Procedure

In this Appendix, we describe in detail the wild bootstrap procedure for obtaining the

covariance matrix.

(1) Fit the single-index varying-coefficient model, obtain R̂t+1 = Ba(ztγ̂)δ̂a+Bb(ztγ̂)δ̂bRm,t+1,

and residual ε̂t+1 = Rt+1 − R̂t+1 (t = 1, . . . , n).

(2) Center the residual ε∗t+1 = ε̂t+1−¯̂εt+1 (t = 1, . . . , n), where ¯̂εt+1 is the mean of residuals.

(3) Create the bootstrap sample using R̂t+1+vt+1ε
∗
t+1 (t = 1, . . . , n), where vt+1 is a random

variable of standard normal distribution.10

Repeat (3) to create N resamples. Sample covariance matrix and standard errors of long-run

alpha can be calculated based on the N estimates.

10We have also implemented the wild bootstrap weighting scheme of Mammen (1993) where the random
weight takes the form:

vt+1 =

{
−(
√

5− 1)/2 with probability (
√

5 + 1)/(2
√

5)

(
√

5 + 1)/2 with probability (
√

5− 1)/(2
√

5).

The testing results agree with that of using standard normal weight as in Wu (1986).
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Table 2: Estimation of the Single-Index Varying-Coefficient Model
Table 2 reports the estimation results of the single-index varying-coefficient model in which we iden-

tify the conditioning variables via the exhaustive variable selection from standard macroeconomic and

financial variables. Panel A reports the single-index parameter estimates of the selected condition-

ing variables. INF is inflation. PE is the price-earnings ratio. UE is unemployment. Panels B

to D report statistical tests on conditional beta, conditional alpha, and long-run alpha, respectively.

Tests on conditional betas and alphas are based on the Wald statistics in equation (8). Tests on

long-run alpha are based on equation (9). All covariance matrices and standard errors are calcu-

lated using the wild bootstrap. The monthly sample spans the July 1963 to December 2012 period.

Panel A: Single-Index Parameter Estimates
Estimate(s.e.)

γ1(INF ) 0.9574(0.0994)
γ2(PE) 0.2524(0.1305)
γ3(UE) -0.1402(0.0872)

Panel B: Tests on Beta
Hypothesis Wald Statistic p-Value
Ho : β = 0 89.12 0.0000
Ho : β = Constant 70.10 0.0000
Ho : β = Linear 7.31 0.2926

Panel C: Tests on Alpha
Hypothesis Wald Statistic p-Value
Ho : α = zero 27.22 0.0006
Ho : α = Constant 12.76 0.0781
Ho : α = Linear 11.09 0.0857

Panel D: Test on Long-Run Alpha
Hypothesis Estimate(s.e.)
Ho : αLR = 0 0.0038(0.0011)
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Table 3: Forecasting Excess Market Returns
Table 3 reports the OLS regression results of forecasting excess stock market returns. INF is inflation. PE is

the price-earnings ratio. UE is unemployment. SI is the single index estimated using the post-1963 sample.

PC1 is the first principle component of the nine candidate macroeconomic and financial variables. The

monthly sample spans the August 1963 to December 2012 period. Heteroskedasticity-corrected t-value is

reported in parentheses. *, **, *** denote significance at the 10%, 5%, and 1% levels, respectively.

UE INF PE SI PC1 Adjusted R2

Panel A: One-Month ahead Excess Market Returns
(1) 0.015 -0.252** -0.066** 0.014

(1.235) (-2.463) (-2.175)
(2) -0.159**

0.011
(-2.388)

(3) -0.002
0.003

(-1.451)
(4) -0.156* -0.001

0.009
(-1.922) (-0.071)

Panel B: Three-Month ahead Excess Market Returns
(5) 0.044* -0.675*** -0.190*** 0.039

(1.868) (-3.991) (-3.804)
(6) -0.490***

0.034
(-4.530)

(7) -0.005***
0.014

(-2.668)
(8) -0.460*** -0.009 0.033

(-3.492) (-0.358)

35



Table 4: Controlling for Realized Beta
Table 4 reports the estimation results of the single-index varying-coefficient model with the value pre-

mium’s realized beta, BETAR, as a candidate conditioning variable, in addition to standard macroeco-

nomic and financial variables. Panel A reports the single-index parameter estimates of the selected con-

ditioning variables via the exhaustive variable selection. INF is inflation. PE is the price-earnings ra-

tio. Panels B to D report statistical tests on conditional beta, conditional alpha, and long-run alpha,

respectively. Tests on conditional betas and alphas are based on the Wald statistics in equation (8).

Tests on long-run alpha are based on equation (9). All covariance matrices and standard errors are cal-

culated using the wild bootstrap. The monthly sample spans the July 1963 to December 2012 period.

Panel A: Single-Index Parameter Estimates
Estimate(s.e.)

γ1(BETA R) 0.3352(0.1583)
γ2(INF ) -0.8533(0.2866)
γ3(PE) -0.3994(0.1424)

Panel B: Tests on Beta
Hypothesis Wald Statistic p-Value
Ho : β = 0 140.30 0.0000
Ho : β = Constant 85.69 0.0000
Ho : β = Linear 10.64 0.4165

Panel C: Tests on Alpha
Hypothesis Wald Statistic p-Value
Ho : α = zero 28.83 0.0003
Ho : α = Constant 16.18 0.0235
Ho : α = Linear 9.58 0.1436

Panel D: Tests on Long-Run Alpha
Hypothesis Estimate(s.e.)
Ho : αLR = 0 0.0041(0.0011)
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Table 5: Controlling for Ang and Kristensen’s (2012) Conditional Beta
Table 5 reports the estimation results of the single-index varying-coefficient model with Ang and Kristensen’s

(2012) conditional beta of the value premium, BETAAK , as a candidate conditioning variable, in addition to

standard macroeconomic and financial variables. Panel A reports the single-index parameter estimates of the

selected conditioning variables via the exhaustive variable selection. DEF is the default premium. TERM is

the term premium. INF is inflation. Panels B to D report statistical tests on conditional beta, conditional

alpha, and long-run alpha, respectively. Tests on conditional betas and alphas are based on the Wald statistics

in equation (8). Tests on long-run alpha are based on equation (9). All covariance matrices and standard

errors are calculated using the wild bootstrap. Panel E reports the OLS regression results of regressing the

estimated time-varying beta based on Ang and Kristensen (2012) onto the three most important conditioning

variables (i.e., PE, INF, and UE). The monthly sample spans the July 1963 to December 2012 period.

Panel A: Single-Index Parameter Estimates
Estimate(s.e.)

γ1(BETAAK) 0.1506(0.0896)
γ2(DEF ) 0.8490(0.3425)
γ3(TERM) -0.4281(0.1682)
γ4(INF ) -0.2707(0.1445)

Panel B: Tests on Beta
Hypothesis Wald Statistic p-Value
Ho : β = 0 167.28 0.0000
Ho : β = Constant 93.60 0.0000
Ho : β = Linear 0.47 0.9981

Panel C: Tests on Alpha
Hypothesis Wald Statistic p-Value
Ho : α = zero 29.82 0.0002
Ho : α = Constant 6.97 0.4325
Ho : α = Linear 0.35 0.9992

Panel D: Tests on Long-Run Alpha
Hypothesis Estimate(s.e.)
Ho : αLR = 0 0.0042(0.0010)

Panel E: OLS Regression of BETAAK onto INF, PE and UE
Estimate(s.e.) t Value p-Value

Intercept 0.17(0.05) 3.57 0.0004
INF -3.04(0.52) -5.88 0.0000
PE -1.47(0.15) -9.50 0.0000
UE 0.05(0.07) 0.65 0.5149
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Table 6: Variable Selection Results and Long-Run Alpha Estimates in Different Samples
Table 6 summarizes the variable selection results and long-run alpha estimates in different samples.

Full sample spans the January 1927 to December 2012 period. Pre-1963 sample spans the January

1927 to June 1963 period. Post-1963 sample spans the July 1963 to December 2012 period. αLR is

the long-run alpha defined in (9). BETAR is the value premium’s realized beta. DEF is the de-

fault premium. INF is inflation. IP is industrial production. PE is the price-earnings ratio. TERM

is the term premium. *, **, *** denote significance at the 10%, 5%, and 1% levels, respectively.

Sample Variable Pool Best Variable Set αLR

Full Sample
No BETAR DEF, INF, IP, PE, TERM 0.0031***
Include BETAR DEF, INF, IP, PE, BETAR 0.0025***

Pre-1963 Sample
No BETAR DEF, IP, PE, TERM 0.0014
Include BETAR DEF, IP, PE, TERM 0.0014

Post-1963 Sample
No BETAR INF, PE, TERM 0.0043***
Include BETAR INF, PE, BETAR 0.0040***
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Figure 1: Conditional Beta over the July 1963 to December 2012 Period
Figure 1 plots monthly estimates of the value premium’s conditional beta in solid line

along with its 95% confidence bands in dashed lines. The conditioning variables are in-

flation (INF), the price-earning ratio (PE), and unemployment (UE) that we identify via

the exhaustive variable selection. Shaded areas indicate the NBER recession periods.
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Figure 2: Conditional Beta over the January 1927 to December 2012 Period
Figure 2 plots monthly estimates of the value premium’s conditional beta in solid line along with its 95%

confidence bands in dashed lines. The conditioning variables are the default premium (DEF), industrial

production (IP), inflation (INF), the price-earning ratio (PE), and the term premium (TERM) that

we identify via the exhaustive variable selection. Shaded areas indicate the NBER recession periods.
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Figure 3: Conditional Alpha over the July 1963 to December 2012 Period
Figure 3 plots monthly estimates of the value premium’s conditional alpha in solid line

along with its 95% confidence bands in dashed lines. The conditioning variables are in-

flation (INF), the price-earning ratio (PE), and unemployment (UE) that we identify via

the exhaustive variable selection. Shaded areas indicate the NBER recession periods.
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Figure 4: Ang and Kristensen’s (2012) Conditional Beta
Figure 4 plots monthly estimates of Ang and Kristensen’s (2012) conditional beta of the value

premium, BETAAK , in solid line along with its 95% confidence bands in dashed lines. The sam-

ple spans the July 1963 to December 2012 period. Shaded areas indicate the NBER recession periods.
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