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Abstract

This paper develops and estimates a heteroskedastic variant of Campbell’s [Campbell, J.,
1993. Intertemporal asset pricing without consumption data. American Economic Review
83, 487-512]1 ICAPM, in which risk factors include a stock market return and variables fore-
casting stock market returns or variance. Our main innovation is the use of a new set of pre-
dictive variables, which not only have superior forecasting abilities for stock returns and
variance, but also are theoretically motivated. In contrast with the early authors, we find that
Campbell’s ICAPM performs significantly better than the CAPM. That is, the additional fac-
tors account for a substantial portion of the two CAPM-related anomalies, namely, the value
premium and the momentum profit.
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1. Introduction

In the past two decades, financial economists have challenged the capital asset
pricing model (CAPM) developed by Sharpe (1964) and Lintner (1965). In particu-
lar, there are three well-established CAPM-related anomalies: (1) the size premium
(e.g., Basu, 1977; Banz, 1981); (2) the value premium (e.g., Fama and French,
1992); and (3) the momentum profit (e.g., Jegadeesh and Titman, 1993). Some
authors, e.g., Fama and French (1996) and Carhart (1997), argue that these anom-
alies reflect systematic risk and include them as additional risk factors in the empir-
ical asset pricing models; others, however, attribute them to data mining or irrational
pricing.

This paper attempts to provide some insight on this debate by investigating
whether, as first pointed out by Merton (1973), the CAPM-related anomalies reflect
a hedge demand for changes in investment opportunities. We first develop a discrete-
time heteroskedastic intertemporal CAPM (ICAPM), which is a simple extension of
Campbell’s (1993) model. In our model, risk factors include a stock market return
and variables forecasting stock market returns or variance. Another innovation of
the paper is the use of a new set of forecasting variables — the consumption—-wealth
ratio (e.g., Lettau and Ludvigson, 2001), realized stock market variance, and the
stochastically detrended risk-free rate — as proxy for time-varying investment oppor-
tunities. These variables have important advantages. First, they have significant out-
of-sample predictive power for stock market returns and subsume the information
content of the variables commonly used by the early authors (e.g., Guo, in press).'
Second, these variables are also strong predictors of stock market volatility — an
important measure of investment opportunities in our ICAPM (e.g., Lettau and
Ludvigson, 2002). Third, they are theoretically motivated (e.g., Guo, 2004; Bernanke
and Gertler, 1989).

We estimate Campbell’s ICAPM using portfolios formed according to (1) the size
of market capitalization, (2) the book-to-market value ratio, and (3) the past returns,
respectively. For example, at the beginning of each period, we sort stocks into 10
portfolios by each of these criteria and rebalance the portfolios in the next period
and so forth. The size premium is the difference between the return on the decile with
smallest capitalization and the return on the decile with largest capitalization, and
the value premium and the momentum profit are defined in a similar manner. Our
results indicate that the heteroskedastic ICAPM is a statistically significant improve-
ment over the CAPM, which fails to explain the value premium and the momentum
profit.? In particular, unlike the CAPM, the heteroskedastic ICAPM is not rejected
by data at the conventional significance level in either conditional or unconditional
specifications. More importantly, the difference between the two models is econom-
ically important. For example, loadings on stock market risk account for a momen-

! Bossaerts and Hillion (1999) and Goyal and Welch (2003) show that the variables used by the early
authors, e.g., the dividend yield, the term premium, and the default premium, have negligible out-of-
sample predictive power.

2 The size premium seems to have disappeared in our post-World War II sample from 1952 to 2000.
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tum profit of only 0.08% per quarter, while the heteroskedastic ICAPM implies an
expected momentum profit of 2.54%, which is close to the sample average of
3.49%. Moreover, the momentum strategy is found to be closely related to the
dynamic of stock market volatility. These results, to our best knowledge, are
innovative.

Similarly, while loadings on stock market risk imply a negative value premium of
—0.75% per quarter, the contribution from loadings on the consumption-wealth
ratio is 0.95%. Overall, Campbell’s ICAPM implies a value premium of 0.18% per
quarter, which is a dramatic improvement over the CAPM; nevertheless, it is notice-
ably smaller than the sample average of 1.06%. This discrepancy should not be too
surprising because many authors, e.g., Lakonishok et al. (1994) and Conrad et al.
(2003), suggest that, for various reasons, we cannot fully attribute the value premium
to rational pricing. That said, we want to emphasize that a significant portion of it
reflects loadings on the hedging factors of the ICAPM proposed in this paper.

Our results are consistent with the concurrent papers by Campbell and Vuoltee-
naho (2004) and Brennan et al. (2004); however, they are in contrast with the early
authors, e.g., Campbell (1996), Li (1997), and Chen (2002). The conflicting results
reflect the fact that Campbell’s ICAPM is not a general equilibrium model and thus
its empirical performance is sensitive to poor instrumental variables used by the early
authors.

The remainder of the paper is organized as follows. We discuss a variant of Camp-
bell’s ICAPM in Section 2 and explain data in Section 3. The empirical results are
presented in Section 4, and some concluding remarks are provided in Section 5.

2. The heteroskedastic Campbell ICAPM

As in Campbell (1993), an agent maximizes his Epstein and Zin (1989) objective
function

(Lo (1 Y MV1=(1/0)]
U, = {(1 — p)CHWo 4 g(E,U -0l ,>}
= [(1=pC "+ pEU ), (1)
subject to the intertemporal budget constraint
Wt+1 = Rmﬁt+1 (Wz - Ct)v (2)

where C, is consumption, W, is aggregate wealth, R, .+ is the return on aggregate
wealth, f is the time discount factor, y is the relative risk aversion coefficient, ¢ is
the elasticity of intertemporal substitution, and 0 = (1 — 9)/[1 — (1/0)].

Assuming a joint log-normal distribution or using a second-order Taylor approxi-
mation, we can write the Euler equations in the log-linear form:

ElAcii1 = W+ OE T i1, (3)

Vi, Vie,
Erig — Tl + —==0 o ! + (1 - 9) Vimis (4)

2
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where yu, = olog(f) +%3V,[AC,+1 — OFmes1)s Tigr1 1S the return on asset i; ry,yp is
the risk-free rate; and V is variance or covariance, e€.g., Vi,,= E[(ri1 —
Ei 1) (Pm 1 — Edrn 1)) Throughout the paper, we use lower case letters to denote
logs. We log-linearize Eq. (2), the intertemporal budget constraint, around the mean
log consumption-wealth ratio, ¢ — w, and obtain

1
AVvt+l P41 +kw+ (1 _;) (C[ _Wt)7 (5)

where p =1 — exp(c — w) and k,, are constants. If the consumption—-wealth ratio,
¢; — w, 1s stationary, Eq. (5) implies

o0 o0

1 — Ewcrn = (Ez+1 - Et) Z p/rm,t+1+j - (Et+1 - Et) ZPiACt+l+j~ (6)

Jj=0 J=1

After substituting Eq. (3) into Eq. (6), we obtain

1 — Eicp = Fmg4+1 — El”m,t+1 + (1 - U)(Et+1 - El) Z Pj’”m,t+l+j

J=1

— (Ei1 — E)) Z pjul+j' (7)
=1
We assume that there are (K — 1) state variables, x,41 = [X1 /41, ..,Xk—1,,+1), lags of

which forecast the return on aggregate wealth or its volatility. As in Campbell
(1996), we also assume that r,, 1 and x,4; follow a first-order vector autoregressive
(VAR) process:

Sip1 = Ao + As; + €41, (8)
where S,41 = [Fpr+1,X1.4+15- - -» Xk—1.4+1) Ao 1S @ KX 1 vector of constants, 4 is a
K x K matrix, and &1 = [&1,1+1,&2.0+1,- - - »Ek+1] 1S @ K X 1 vector of error terms with

a variance—covariance matrix Q. The revision to expected returns is then equal to

Yheyl = (Et+1 - E,) Zp/rm,t+1+j = ellpA(I - pA)718t+l = ;v;,gtﬂa (9)
=1
where el’ =[1,0,...,0] is a 1 x K vector with the first cohort equal to one and
the other cohorts equal to zero; I is a Kx K identity matrix; and 1, =
el'pA(I — ,oA)*1 = [Zn1, a2y - - - 2] is @ 1 X K vector.

Proposition 1. If conditional variance and covariance terms of ¢+, in Eq. (8) are a
linear function of lagged state variables

) ) _ / - s —
Viie =COV(&i111,8j041) = Wijo + @S, L = 1,...,K, (10)

. ! . .
where wy; is a scalar and w;j = (w1, W0, ...,0;k] is a 1 X K vector, then y, is a
linear function of conditional state variables:
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W= plo + Y1 Edp i Y Esy i -+ l//KEtSK,r+l =l + W/Erstﬂa (1 1)
where ' = [ Yo - Yl is a 1 X K vector.

Proof. Available upon request. [

Eq. (10) can be motivated from Merton’s ICAPM, in which the expected stock
market return is determined by its own variance and its covariances with other risk
factors. We also assume that restrictions have been imposed on parameters w;;o and
w;j in Eq. (10) so that the variance—covariance matrix is well defined.

Proposition 2. Equilibrium return on asset i is determined by its covariance with the
state variables:

Vi K 0
Et’”zl,t+1 — I+l JF? = VVim,t + <Z ( V- 1 )thj +— iq) ij, t)v (12)

where ) = (A1, 22, - -5 k] = pY' AL pA)f1 is a 1 x K vector; Vi, j=1,...,K, is
the condmonal covariance between r; 1 and the kth cohort of vector [rm 41X, +1]
and Vtm,t— th,)‘

Proof. Available upon request. [

Eq. (12) nests two interesting specifications in Campbell (1993), who imposes
some restrictions on parameters in Eq. (11). In the first case, g, is a linear function
of only the expected stock market return (u; = uo + 1 E:,,.+1) and the associated
asset pricing equation is

Vi 0 .
Eri —rr +— *VVzmz+Z [(V_ 1 - 4 >:|/thVijAt- (13)

In the second case, y, is a constant (u, = o) and the associated asset pricing equation
is

Vi K .
Etri,t+l Vel + = 2 VVzmz + <Z(V - I)Athij,t> . (14)

J=1

Moreover, if the hedging factors have zero prices in Eq. (12), we obtain the familiar
CAPM:

Vii
Erigr —rpn + 5 = YWims- (15)
We estimate variants of Campbell’'s ICAPM using the generalized method of

moments (GMM) by Hansen (1982). In particular, to mitigate the small sample
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problem, we follow the advice of Ferson and Forester (1994) and use the iterative
GMM.’

Suppose that there are N portfolio returns, 7; 41, i = 1,..., N. Our identifying sys-
tem includes three blocks, as in Campbell (1996). First, there are K(K + 1) orthogo-
nality conditions to identify K(K + 1) parameters in the VAR system of Eq. (8):

1
Vm Um
[ "Hl} —AO—A{ "l} =& L | Ty | (16)
X1 Xt X
t

where x, | y, denotes Z,T: - "x,y, = 0. Second, there are N(K + 1) orthogonality con-
ditions to identify N(K + 1) parameters in conditional asset return equations:

1
V', .
r,-‘,+1—r/7,+1—Bi0—Bi{xf’] :ni,l+1 iR Fimg | s l:l,...7N. (17)
t
X

The last block is the asset pricing equation, and we consider the four specifications
mentioned above, respectively. First is the general heteroskedastic ICAPM in Eq.
(12). Under the null hypothesis of the test, the pricing error is orthogonal to a con-
stant and to lagged state variables. Because risk prices are complicated functions of
the underlying structural parameters, we focus only on its unrestricted implication,
i.e., risk prices are parameters to be estimated. For this specification, the system is
over-identified with N(K + 1) — K degrees of freedom. The second specification is
the simplified heteroskedastic ICAPM in Eq. (13). There are N(K + 1) orthogonality
conditions to identify two structural parameters, y and 0y,/¢.* The system is over-
identified with N(K + 1) — 2 degrees of freedom. Eq. (13) has some restrictions on
asset prices:

0
p=7+ K“/—l—%)})uhh
g
(-1-"2)|an s=2k
. .

The third specification is the homoskedastic ICAPM in Eq. (14), in which y is the
only parameter to be estimated. For this specification, the system is over-identified

(18)

Dj

3 Some authors have suggested that the identity matrix is more reliable than the optimal weighting
matrix when the number of time-series observations is small relative to the number of orthogonality
conditions. However, as argued by Hodrick and Zhang (2001), the increase in the standard errors
associated with the identity matrix severely affects the inference about the validity of asset pricing models.
Interestingly, they find that results obtained from using the optimal weighting matrix are similar to those
using the weighting matrix advocated by Hansen and Jagannathan (1997).

4 As in Campbell (1996), we treat p as a constant: It is set to be equal to 0.98 in our quarterly data.
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with N(K+ 1) — 1 degrees of freedom. The restrictions on asset prices imposed by
Eq. (14) are

Pr=y+[(y = D], (19)
Pr=1(r— Dy, j=2....K.

The last specification is the CAPM in Eq. (15), in which y is the only parameter to be
estimated. The conditional CAPM has the same number of orthogonality conditions
and of the over-identified restrictions as the homoskedastic ICAPM.

For the unconditional specification, we use only a constant as the instrumental
variable for Eq. (17) and Egs. (12)—(15). Given the orthogonality conditions, we ob-
tain the parameter estimates by minimizing the quadratic form J = g’wg, where g is
the sample average of orthogonality conditions and w is the optimal weighting ma-
trix. Under the null hypothesis that the pricing model is correctly specified, the min-
imized value of the quadratic form J has a y? distribution with degrees of freedom
equal to the number of over-identifying restrictions; it provides a goodness-of-fit test
to the pricing model. Since the specifications of asset pricing Egs. (12)—(15) are
nested, we also use the D-test proposed by Newey and West (1987) to test the restric-
tions across these specifications:

ging, — gLugy ~ 1 (20)

where g, is the sample average orthogonality conditions of the restricted model, g, is
the sample average orthogonality conditions of the unrestricted model, and w, is the
optimal weighting matrix usually estimated using the unrestricted model. The D-test
has degrees of freedom equal to the number of restrictions.

3. Data

We use the consumption-wealth ratio, cay, realized stock market variance, o2,
and the stochastically detrended risk-free rate, rrel, as forecasting variables for stock
returns and variance. It is worth noting that the cointegrating vector used in comput-
ing cay is estimated over the full sample. This methodology has been questioned be-
cause it might introduce a look-ahead bias, especially in the context of out-of-sample
predictability. However, we see no apparent reason why it should spuriously affect
our results. If cay has no economic content, it follows immediately that investors
do not care about shocks to cay and thus the shocks should not help explain the
cross section of stock returns. Therefore, our analysis provides additional insight
on this debate.

Because cay is available on a quarterly basis, we analyze a quarterly sample
spanning from 1952:Q4 to 2000:Q4, with a total of 193 observations. Following
Merton (1980) and many others, realized stock market variance is the sum of the
squared deviation of the daily excess stock return from its quarterly average in a
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given quarter.’ The stochastically detrended risk-free rate is the difference between
the risk-free rate and its average over the previous four quarters: The quarterly
risk-free rate is approximated by the sum of the monthly risk-free rate in a given
quarter. We obtain cay from Martin Lettau at New York University. We use the dai-
ly stock market return data constructed by Schwert (1990) before July 1962 and use
the value-weighted daily stock market return data from the Center of Research for
Security Prices (CRSP) at the University of Chicago thereafter. The daily risk-free
rate is not directly available, but we assume that it is constant within a given month.
The monthly risk-free rate is also obtained from CRSP.

We assume that the return on aggregate wealth is equal to the value-weighted
stock market return from CRSP. As stipulated by Campbell’s ICAPM, we use real
stock market returns instead of excess returns as in the CAPM. Given that the
two variables have a correlation coefficient of 0.997 in our sample, our results are
not sensitive to the particular choice of stock market returns.

We focus on only three sets of stock portfolios formed according to size, book-to-
market value ratio, and past returns, although we find very similar results using port-
folios formed according to many other criteria. We obtain the momentum portfolio
data, which span the period 1965:Q1 to 1998:Q4, from Narasimhan Jegadeesh at the
University of Illinois and obtain all the other portfolio data spanning the period
1952:Q4 to 2000:Q4 from Kenneth French at Dartmouth College. See Jegadeesh
and Titman (2001) and Fama and French (1992) for details about the portfolio data.

We estimate the unconditional specification using decile portfolios of each char-
acteristic, respectively, which yield a total of 40 orthogonality conditions given that
K is equal to 4 in this paper, compared with a total of 193 time-series observations
(136 for momentum portfolios). For the conditional Campbell ICAPM, we use three
portfolios — the bottom 30 percentile, the next 40 percentile, and the top 30 percentile
— for each characteristic, respectively, which yield a total of 50 orthogonality
conditions.

Table 1 provides summary statistics for the four state variables and a size
premium, rg,;, a value premium, ry,,;, and a momentum profit, r,,,,. The size
premium is the return on a portfolio that is short in the decile with largest market
capitalization and is long in the decile with smallest market capitalization, and the
value premium and the momentum profit are defined in a similar manner. As shown
in panel A, all the forecasting variables are moderately correlated with each other
and with the portfolio returns. They are also correlated with a business cycle indica-
tor, BCI, which is equal to 1 during economic recessions and equal to zero during
expansions. Panel B shows that the size premium appears to have disappeared in
our sample, with an average of only 0.2% per quarter. In contrast, there is a substan-
tial value premium of 1.1% and a striking momentum profit of 3.7%. Given that the
value premium and the momentum profit are negatively related to stock market

3 Because of the October 1987 stock market crash, realized stock market variance in that quarter is much
higher than the sample average. Following Guo (in press) and many others, we replace it with the next
highest observation.
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Table 1
Summary statistics of risk factors and portfolio returns

o

Fsmb Tt Fyomi T'm O cay rrel

Panel A: Correlation matrix

Fsmb 1.00 0.38 —0.25 0.30 -0.27 0.12 —0.12
Phumi 1.00 —0.18 —0.17 0.02 0.01 —0.04
Fyomi 1.00 —0.16 0.05 -0.23 0.02
T 1.00 —0.40 0.30 —0.30
a 1.00 -0.34 —-0.02
cay 1.00 —0.16
rrel 1.00
BCI —0.08 —0.04 —0.01 —0.08 0.19 0.12 —0.28
Panel B: Univariate summary statistics

Mean 0.002 0.011 0.037 0.019 0.004 0.613 0.000
Standard error 0.089 0.085 0.074 0.083 0.004 0.012 0.003
Autocorrelation —-0.03 0.04 —0.15 0.07 0.43 0.83 0.71

Panel C: Forecasting quarterly stock returns
Fomb 0.186 3.408 0.655 —2.166
(1.811) (1.564) (1.029) (—0.969)

R =003
P 0.168 1.177 0.114 3.534
, (1.884) (0.592) (0.214) (1.594)

R =0.00
Fami 0.177 ~6.907 ~1.292 1.390
(L617)  (=2.307)  (—1.827) (0.556)

R =015
T 0.031 7312 2.458 ~5.852
(0.466) (4.877) (5.199)  (—3.020)

R =020
o2 0.005 0.393 ~0.085 0.070
(1.290) (4.162)  (=3.361) (0.953)

R =024

The table reports summary statistics of portfolio returns and the risk factors in Campbell’s ICAPM. ry,,,, is
the return on a portfolio short in stocks from the top capitalization decile and long in stocks from the
bottom capitalization decile. r,, is the return on a portfolio short in stocks from the bottom book-to-
market decile and long in stocks from the top book-to-market decile. r,,,, is the return on a portfolio short
in stocks from the decile of lowest past returns and long in stocks from the decile of highest past returns.
Also, r,, is the real stock market return; aﬁl is realized stock market variance; cay is the consumption—
wealth ratio; and rrel is the stochastically detrended risk-free rate. BCI is a business cycle indicator: It is
equal to 1 for economic recessions and equal to zero for expansions. We use a quarterly sample from
1952:Q4 to 2000:Q4 for all the variables except r,,,, which is available over the period 1965:Q1 to
1998:Q4. In the forecasting regression reported in panel C, the White (1980) heteroskedastic-consistent
t-statistics are reported in parentheses.

returns (panel A), their positive average returns cannot be explained by the
CAPM.

Panel C of Table 1 reports the regression results of forecasting one-quarter-ahead
returns and variance, with the White (1980) corrected z-statistics in parentheses. We
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find negligible predictability in the size premium and the value premium; in contrast,
our forecasting variables explain over 15% of variations in the momentum profit.°
To our best knowledge, this result is innovative. Consistent with Lettau and Ludvig-
son (2001) and Guo (in press), 62, cay, and rrel are all significant predictors and
jointly account for 20% of variations of stock market returns. We also replicate
the results by Lettau and Ludvigson (2002) that ¢% and cay are strong predictors
of stock market variance. Although the latter specification does not guarantee a po-
sitive expected volatility, the fitted value is always positive in our sample. For robust-
ness, we also assume that stock market variance is a linear function of only its own
lag in Eq. (16) and find qualitatively the same results, which are available upon re-
quest. Lastly, we want to emphasize that our forecasting variables subsume the
information content of those used by Campbell (1996), Li (1997), and Chen
(2002). Therefore, the strong support for Campbell’s ICAPM documented in this

paper is mainly due to our superior forecasting variables.’

4. Empirical results
4.1. The conditional Campbell ICAPM

Table 2 reports four nested specifications of Campbell’s ICAPM for each set of
portfolios. Model I is the homoskedastic ICAPM in Eq. (14); model II is the simpli-
fied heteroskedastic ICAPM in Eq. (13); model III is the general heteroskedastic
ICAPM in Eq. (12); and model IV is the CAPM in Eq. (15). In models I and II,
we estimate the structural parameters and then use Eqgs. (19) and (18), respectively,
to calculate the price of risk for each factor and obtain the standard deviation using
the delta method outlined by Campbell et al. (1997). In contrast, we estimate the
price of risk directly for models III and IV.

Following Campbell (1996), we orthogonalize and normalize the shocks to state
variables so that they have the same unconditional variance as that of stock market
returns, with Sims’s (1980) ordering r,,, cay, 6> and rrel. We assume that the stock
market return is the most important risk factor so that our results can be directly
compared with the CAPM. The ordering is somewhat ad hoc; however, it is impor-
tant to note that our main result, that the ICAPM outperforms the CAPM, does not
depend on any particular choice of Sims’ ordering. For example, in Tables 2 and 3,
Sims’ ordering affects only the magnitude of the price of risk but not the inference
about the statistical significance and the specification tests. Similarly, in Table 4, it
affects the relative contribution of each risk factor but not the pricing error.

® The relation between stock market volatility and the momentum profit is not sample-specific: We find
very similar results over various subsamples from 1926 to 2000, which are available upon request.

7 The early authors estimate the Campbell ICAPM using monthly data. However, data frequencies do
not explain the difference between their results and ours since we confirm their results using quarterly data.
Cochrane (1996) and many others also test asset pricing models using quarterly data over a similar sample
period.
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Table 2
Conditional Campbell ICAPM
Model y /o Risk prices for OIR
Fin cay o',zn rrel
Panel A: Three size portfolios
I 11.507 6.441 9.424 9.633 —20.506 x2(14):17.710
(2.608) (4.284) (2.040) (3.573) (—3.990) (0.220)
II 14.149 -9.723 3.677 12.406 12.500 —10.456 12(13) = 15.830
(2.862) (—2.041) (2.352) (2.241) (3.646) (—3.159) (0.258)
III 3418 5.198 14.915 —6.847 xz(ll) = 14.001
(2.448) (0.726) (3.933) (—1.332) (0.233)
v 4918 7A(14) = 34.667
(4.015) (0.002)

I vs. II: £%(1) = 6.170 (0.013)
II vs. IIT: %(2) = 3.259 (0.196)
IV vs. 11 7%(1) = 16.586 (0.000)

Panel B: Three book-to-market portfolios

I 11.984 4216 10.315 7.479 —~11.904 7X(14) = 28.817
(3.138) (3.306)  (2.361)  (3.358)  (=3.262)  (0.011)

11 13.852 —8.430 3.638 11.934 10.650 —9.018 74(13) = 19.879
(3.205)  (—2.043)  (2.514)  (2.485)  (3.494)  (=2.737)  (0.098)

111 3.781 13.563 12.206 —5.849 7A(11) = 18.034
(2.436)  (1.945)  (3.081)  (—1.078)  (0.081)

v 5.339 2A(14) = 45.376
(4.380) (0.000)

I vs. IL: %(1) = 5.244 (0.022)
IT vs. IIL: %(2) = 0.356 (0.837)
IV vs. II: %%(1) = 24.097 (0.000)

Panel C: Three momentum portfolios

P 8.978 3.020 4917 8.577  —18.770  4X(14)=40.143
(2.614) (2.323)  (1.584)  (3.233)  (=5.512)  (0.000)

i 11578  —15.375 1.664  11.588  18.516  —18.898  4X(13)=18.180
(2.039)  (=2.307)  (0.667)  (1.701)  (3.178)  (=3.598)  (0.151)

r 3828 11364  39.179 3308 yX(11)=21.468
(1.132)  (1.276)  (5.529)  (=0.549)  (0.029)

v 3.568 7(14) = 60.562
(2.659) (0.000)

I vs. II: 7%(1) = 6.684 (0.010)
IT vs. TIT %(2) = 0.924 (0.630)°
IV vs. II: %%(1) = 14.364 (0.000)

The table reports the iterative GMM estimation results of four nested specifications of Campbell’s ICAPM
using three sets of portfolios formed according to (i) size, (ii) book-to-market, and (iii) past returns. Each
set has three portfolios: the top 30 percentile, the next 40 percentile, and the bottom 30 percentile of the
corresponding characteristic. Egs. (16) and (17) are the common blocks for all specifications. Model 111
uses Eq. (12), a general case of Campbell’s ICAPM with heteroskedastic stock returns. Model II is Eq.
(13), a simplified heteroskedastic ICAPM. Model I is Eq. (14), the homoskedastic ICAPM. Model IV is
Eq. (15) or the CAPM, in which we restrict the price of risk to zero for factors other than stock market
risk. These specifications are nested and we show in the lower part of each panel the Newey and West

(continued on next page)
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Table 2 (continued)
(1987) D-test, as specified in Eq. (20). The White (1980) corrected z-statistics are reported in parentheses.
The price of risk is directly estimated for models III and IV; it is calculated using Eqs. (19) and (18) for
models I and II, respectively, with the z-statistics from the delta method outlined by Campbell et al.
(1997). The OIR column reports the J-test by Hansen (1982). The instrument variables include a
constant; the real stock market return, r,,; realized stock market variance, 051 the consumption-wealth
ratio, cay; and the stochastically detrended risk-free rate, rrel. We use a quarterly sample from 1952:Q4
to 2000:Q4 for the size and book-to-market portfolios, and from 1965:Q1 to 1998:Q4 for the momentum
portfolios.

# Tterative GMM is not converged after 1000 iterations. We use the point estimates from model II as the
initial parameters and use five iterations.

® Jterative GMM is not converged after 1000 iterations. We use the point estimates and the implied risk
price from model II as the initial parameters, and we use five iterations.

¢ Given that iterative GMM is not converged for model III, we use the optimal weighting matrix from
model II to calculate the D-test.

We find strong support for the heteroskedastic ICAPM (models IT and III) rela-
tive to the CAPM (model IV) and the homoskedastic ICAPM (model I) using three
size portfolios, as shown in panel A of Table 2. First, the CAPM is overwhelmingly
rejected by Hansen’s J-test. We also strongly reject the CAPM relative to the simpli-
fied heteroskedastic ICAPM (model II) using the Newey and West (1987) D-test.
Second, while the J-test does not reject the homoskedastic ICAPM at the conven-
tional significance level, it is rejected relative to the simplified heteroskedastic
ICAPM at the 5% significance level. Third, the J-test fails to reject both heterosked-
astic specifications at the conventional significance level. Moreover, the parameter
for heteroskedasticity in model II, 0y,/c, is statistically significant, indicating that
time-varying volatility has an important effect on asset prices. Lastly, we cannot
reject model II relative to model III — the general heteroskedastic specification — at
almost the 20% significance level. Therefore, despite its parsimonious specification,
the simplified heteroskedastic ICAPM advocated by Campbell (1993) provides a
good description for the effect of time-varying volatility on asset prices.

The point estimate of the structural parameter is plausible in panel A of Table 2.
The relative risk aversion coefficient, y, is found to be significantly positive in all
specifications and its point estimate is, for example, 14.1 in model II, the preferred
specification. We note that y is much larger than the price of stock market risk, which
is only 3.7 in model II. This pattern is consistent with Campbell (1996), who suggests
that the mean reversion in stock prices reduces the price associated with stock mar-
ket risk. While our results provide support for a positive risk—return tradeoff in the
stock market, it is important to note that the prices of the other factors are all sta-
tistically significant and their absolute values are as big as that of stock market risk.

We find very similar results from the book-to-market portfolios and the momen-
tum portfolios, as shown in panels B and C of Table 2, respectively. First, the J-test
does not reject model II at the 9% significance level for the book-to-market portfo-
lios and at the 15% level for the momentum portfolios. Also, we cannot reject model
II relative to model III at the conventional significance level. Second, in contrast, the
J-test overwhelmingly rejects the conditional CAPM and the D-test overwhelmingly
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Table 3
Unconditional Campbell ICAPM
Model y /o Risk prices for OIR
' cay a2 rrel
Panel A: Ten size portfolios
I 6.529 3.341 3.693 2.273 —1.869 72(9) =3.719
(2.416) (3.106) (1.685) (1.791) (—1.388) (0.929)
II 3.382 2.994 3.755 —0.427 —0.273 0.238 2(8) = 2.646
(1.011) (1.175) (2.685) (—0.118) (—0.118) (0.118) (0.955)
v 3.750 12(9) = 2.684
(2.736) (0.976)
I vs. IT: %(1) = 1.195 (0.274)
IV vs. II 7%(1) = 0.014 (0.906)
Panel B: Ten book-to-market portfolios
I 20.462 6.931 16.772 5.453 —6.179 2(9) = 7.837
(3.314) (4.191) (2.601) (1.870) (—1.777) (0.551)
II 22.273 -2.907 6.568 19.234 7.174 —17.720 7(8) = 6.401
(2.634) (0.420) (3.628) (1.947) (1.347) (—1.435) (0.602)
v 6.463 %2(9) = 25.500
(3.868) (0.002)
I vs. II: 74(1) = 0.251 (0.616)
IV vs. II: 2%(1) = 3.109 (0.078)
Panel C: Ten momentum portfolios
I 20.148 6.667 8.794 19.525 —13.305 %2(9) = 10.012
(3.127) (2.974) (1.381) (4.007) (—2.612) (0.350)
II 18.981 —1.763 6.250 7.759 19.229 —13.212 2(8) = 10.307
(2.909) (—0.412) (2.619) (1.221) (3.925) (—2.554) (0.244)
v 6.459 72(9) = 49.822
(3.520) (0.000)
Ivs. II: 74(1) =0.173 (0.677)
IV vs. II: 2%(1) = 6.885 (0.009)
Panel D: Nine mixed portfolios
I 19.412 5.804 14.092 15.358 —20.665 7(8) = (9.154)
(1.895) (1.947) (1.453) (2.030) (—2.049) (0.329)
11 16.008 —3.949 4.135 11.807 12.857 —16.631 22(7) = 10.132
(1.881) (0.781) (1.737) (1.446) (1.925) (—1.907) (0.181)
v 4.417 2(8) =27.170
(2.693) (0.001)

I vs. IT: X(1)=0.677 (0.411)
IV vs. II: (1) = 1.398 (0.237)

The table reports the estimation results of the unconditional Campbell ICAPM. That is, we use only a
constant as the instrumental variable for Eq. (17), Eq. (14) for model I, Eq. (13) for model II, and Eq. (15)
for model IV. Panels A-C use decile portfolios formed according to the corresponding characteristic, and
panel D use three portfolios from each characteristic as discussed in the note on Table 2. Momentum data
span the period 1965:Q1 to 1998:04, and the other portfolio data span the period 1952:Q4 to 2000:Q4. See

the note on Table 2 for other details.



2100 H. Guo | Journal of Banking & Finance 30 (2006) 2087-2107

Table 4
Factor contributions to expected returns
Portfolios er; eri+ (Vi/2) Fon cay ,2,, rrel Error
(1) (2) (3) (4) (5) (6) (7)
Panel A: Ten size portfolios
1 (smallest) 1.71 2.50 2.45 —0.03 0.04 0.00 0.05
2 1.75 2.44 2.47 —0.02 0.02 —0.01 —0.02
3 1.86 2.48 241 —0.02 0.02 0.00 0.07
4 1.79 2.38 2.39 —0.02 0.02 0.00 —0.01
5 1.91 2.44 2.29 —0.01 0.01 0.00 0.16
6 1.77 224 2.19 —0.01 0.01 0.00 0.06
7 1.78 2.24 2.21 —0.01 0.00 0.00 0.04
8 1.77 2.19 2.11 0.00 0.00 0.00 0.07
9 1.68 2.03 1.95 0.00 0.00 0.00 0.08
10 (largest) 1.51 1.80 1.83 0.01 0.00 0.00 —0.04
SMB 0.20 0.70 0.62 —0.04 0.04 0.00 0.09
Panel B: Ten book-to-market portfolios
1 (lowest) 2.56 3.05 4.06 -0.43 0.15 —0.14 —0.59
2 2.84 3.21 3.55 —0.19 0.09 0.03 —0.28
3 2.86 3.22 3.37 0.20 0.13 0.02 —0.50
4 2.71 3.05 3.16 0.52 —0.04 —0.20 —0.38
5 3.14 3.42 2.76 0.72 —0.10 —0.08 0.12
6 3.23 3.51 2.89 0.62 —0.13 —0.14 0.27
7 3.19 3.49 2.79 0.32 0.11 0.06 0.21
8 3.64 3.97 2.95 0.54 —0.20 —0.01 0.70
9 3.71 4.06 3.01 0.77 —0.09 0.03 0.34
10 (highest) 3.62 4.11 3.31 0.52 —0.15 0.13 0.29
HML 1.06 1.06 —0.75 0.95 —0.30 -0.27 0.88
Panel C: Ten momentum portfolios
1 (loser) —0.38 0.60 4.50 0.32 —3.34 —0.30 —0.57
2 1.07 1.77 3.97 0.34 —2.48 -0.25 0.19
3 1.52 2.10 3.76 0.24 -2.01 —0.15 0.26
4 1.72 2.23 3.60 0.23 -1.72 0.01 0.10
5 1.78 2.23 3.48 0.18 —1.54 0.10 0.02
6 1.89 2.33 3.49 0.17 —1.53 0.15 0.04
7 1.97 2.40 3.51 0.08 —1.69 0.19 0.31
8 2.21 2.66 3.64 0.06 —1.58 0.20 0.34
9 2.54 3.06 3.87 —0.03 -1.39 0.22 0.39
10 (winner) 3.33 4.09 4.58 -0.17 —0.84 0.15 0.38
WML 3.71 3.49 0.08 —0.49 2.50 0.45 0.95
Panel D: Nine mixed portfolios
M1 (loser) 0.22 0.96 2.82 0.86 —1.46 —0.33 —0.94
M2 1.48 1.95 2.42 0.51 —0.90 0.10 —-0.18
M3 (winner) 2.18 2.77 2.77 0.16 —0.84 0.25 0.42
B1 (lowest) 1.09 1.55 2.54 —0.37 0.15 —0.52 —0.26
B2 1.32 1.63 1.98 0.22 —0.31 —0.40 0.15
B3 (highest) 2.12 2.48 2.10 0.22 —0.76 0.13 0.78
S1 (smallest) 1.34 2.14 2.95 0.92 -2.01 0.22 0.05
S3 1.47 2.04 2.69 0.41 —0.92 —0.04 —0.10
S3 (largest) 1.24 1.57 2.17 -0.23 0.06 —0.47 0.05
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Table 4 (continued)

The table decomposes the average realized return according to their loadings on the four risk factors. The
decomposition is based on the estimation results of model II reported in Table 3. Momentum data span
the period 1965:Q1 to 1998:Q4, and the other portfolio data span the period 1952:Q4 to 2000:Q4.

rejects the conditional CAPM relative to model 11, the preferred specification. Third,
the D-test shows that the heteroskedastic specification (model II) also performs sig-
nificantly better than the homoskedastic specification (model I). Similarly, the
parameter for the heteroskedasticity, Oy, /o, is significantly negative in both panels.
Lastly, the structural parameter y as well as the risk prices are almost always statis-
tically significant, and their point estimates are strikingly similar to those reported in
panel A of Table 2.

To summarize, the heteroskedastic ICAPM provides a statistically significant
improvement over the CAPM in explaining the cross section of stock returns,
indicating that time-varying stock market return and variance both have important
effects on asset prices.

4.2. The unconditional Campbell ICAPM

We report the estimation results of the unconditional Campbell ICAPM in Table
3. In addition to the three sets of decile portfolios, we also analyze a set of nine mixed
portfolios, including the bottom 30 percentile, the next 40 percentile, and the top 30
percentile of momentum, book-to-market, and size, respectively. Since we find no
statistical difference between models II and III using the D-test, to conserve space,
we report only the results from models I, II, and IV.

Again, Table 3 shows that Campbell’s ICAPM fits data well and provides a sta-
tistically significant improvement over the CAPM in many cases. First, the J-test
indicates that we cannot reject Campbell’s ICAPM at the conventional significance
level for all sets of portfolios. Second, in contrast, we overwhelmingly reject the
CAPM using the J-test in all cases except for the size portfolios. Third, we reject
the CAPM in favor of the heteroskedastic ICAPM (model II) using the D-test at
the 1% significance level for the momentum portfolios and at the 10% significance
level for the book-to-market portfolios. Lastly, the point estimates of the structural
parameters and the risk prices are very similar to those reported in Table 2.

However, there are two noticeable differences between Tables 2 and 3. First, the
D-test indicates that we cannot reject model I relative to model II at the 20% signif-
icance level in all panels of Table 3. Similarly, 0y,/c is always insignificant, although
it is negative in three of four panels. Second, while we cannot reject the model at a
significance level much higher than that in Table 2, the price of risk is imprecisely
estimated in some cases of Table 3. One possible explanation for the difference is
that, as explained by Cochrane (1996), in the conditional model, we also implicitly
include a set of managed portfolios that exploit the predictability of stock returns.
The managed portfolios usually have a large dispersion in average returns and,
therefore, pose a more stringent test to the asset pricing model than portfolios
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formed simply according to size, industry, or beta.® Therefore, we usually find stron-
ger support for an asset pricing model when using the unconditional model than
when using the conditional model (also see Hodrick and Zhang, 2001). However, be-
cause of a large dispersion in loadings on the risk factors, the managed portfolios
allow us to precisely identify the underlying risk prices.

4.3. The cross section of stock returns

As shown in Tables 2 and 3, Campbell’s ICAPM appears to provide a reasonably
good explanation for data. However, as pointed out by Cochrane (1996) and others,
we might fail to reject an asset pricing model simply because it has large pricing
errors. In this section, we show that this is not the case in our estimation.

Table 4 provides a decomposition of volatility-adjusted average return,
er; + (V;/2), into loadings on the four risk factors, based on the corresponding esti-
mation results of model II reported in Table 3. Panel A presents the decomposition
for the size deciles. Consistent with Campbell (1996), almost all the variations of the
cross-sectional returns are explained by loadings on stock market risk. This result
should not be a surprise because we have shown in panel A of Table 3 that the
CAPM (model IV) provides a good explanation for the returns on the size portfolios.
Of course, our evidence reflects the fact that the dispersion of loadings on the hedg-
ing factors is small among the size portfolios rather than that the hedging demand in
the ICAPM is economically unimportant. This result highlights that it is important
to test the asset pricing model using portfolios with a large dispersion in conditional
returns such as the book-to-market and momentum portfolios, which we discuss
below. As shown in the upper left panel of Fig. 1, realized and expected volatility-
adjusted returns lineup along the 45-degree line, indicating that pricing errors are
very small.

Panel B of Table 4 presents the decomposition for the 10 book-to-market portfo-
lios. Again, loadings on stock market risk are the most important determinant of the
return on each portfolio. However, the compensation for stock market risk implies a
value premium of —0.75% per quarter, compared with the sample average of 1.06%.
That is, consistent with the early literature, the CAPM leaves a substantial value pre-
mium of 1.81% per quarter unexplained. This result explains why the J-test rejects
the CAPM overwhelmingly in panel B of Table 3. In contrast, the value premium
is not so puzzling for Campbell’s ICAPM because loadings on the other risk factors
make significant contributions to it. Especially, loadings on the consumption-wealth
ratio account for a value premium of 0.95% per quarter.” Overall, Campbell’s
ICAPM implies a value premium of 0.18% per quarter, a dramatic increase from
—0.75% implied by the CAPM. Therefore, a substantial portion of the value pre-
mium reflects intertemporal pricing. This result also confirms the specification tests
in panel B of Table 3 that we cannot reject Campbell’s ICAPM at the conventional

8 The book-to-market and the momentum portfolios are also the managed portfolios.
® This result is not sensitive to Sims’ ordering. For example, loadings on the consumption-wealth ratio
account for a value premium of 0.91% if we use the ordering r,,, rrel, o2, and cay.
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Fig. 1. Realized (horizontal axis) vs. expected (vertical axis) returns.

significance level and that the heteroskedastic ICAPM performs significantly better
than the CAPM at the 10% level.

However, the explained value premium is still somewhat smaller than the sample
average of 1.06%. This discrepancy should not be too surprising because the value
premium cannot be fully explained by rational pricing for at least two reasons. First,
Lakonishok et al. (1994) argue that the value premium reflects irrational pricing be-
cause investors tend to be more risk averse toward value stocks than growth or glam-
our stocks.'® Second, Conrad et al. (2003) attribute half of the observed value
premium to data snooping. Moreover, we have not taken into account transaction
costs associated with the value strategy, which could substantially reduce its profit-
ability and prevent investors from exploiting the value premium. These rationales are
consistent with recent evidence by Schwert (2003) that the value premium has sub-
stantially attenuated in the past decade.

The upper right panel of Fig. 1 provides some clue about the source of pricing
errors for the book-to-market portfolios. The four bottom book-to-market deciles
are consistently overpriced relative to the six top deciles, possibly indicating that
investors might have been more risk averse toward value stocks than growth stocks,
as argued by Lakonishok et al. (1994). However, while the irrational pricing expla-
nation is potentially interesting, it is important to stress again that we cannot fully
attribute the value premium to pricing errors either. That is, as discussed above,
our results indicate that a significant portion of the value premium cannot be

1% In an early version of this paper, we allow y to vary across the book-to-market portfolios. We find that
value stocks have significantly higher y than growth stocks and find similar results using portfolios formed
according to various characteristics such as the dividend—price ratio, the earning—price ratio, and the cash
flow—market capitalization ratio.



2104 H. Guo | Journal of Banking & Finance 30 (2006) 2087-2107

explained by the CAPM because it reflects loadings on the hedging factors in the
ICAPM proposed in this paper.

Results in panel C of Table 4 for the momentum portfolios are qualitatively sim-
ilar to those in panel B. Stock market risk is again the most important determinant
of the return on each portfolio. However, the other factors, especially realized stock
market variance, explain most variations of the cross section of stock returns. In par-
ticular, loadings on stock market risk contribute only 0.08% to the average momen-
tum profit of 3.49%, compared with 2.50% from o2, 0.45% from rrel, and —0.49%
from cay.!" Again, these results confirm the specification test in panel C of Table
3 that Campbell’s ICAPM performs significantly better than the CAPM. It is inter-
esting to note that stock market volatility is important to explaining the momentum
profit.'? This result should not be very surprising since, as shown in Table 1, realized
stock market variance is a strong predictor of the momentum profit.

Similar to the value premium, Campbell’s ICAPM does not fully account for the
momentum profit either. Especially, the first decile (past losers) is severely over-
priced, with a pricing error of —0.57% per quarter. This result is consistent with
enormous evidence that the momentum profit might have been exaggerated if we
take into account factors such as transactional costs and tax-motivated trading strat-
egies (e.g., Grinblatt and Moskowitz, 2002). Nevertheless, our estimation shows that
Campbell’s ICAPM accounts for a substantial momentum profit of 2.54%, suggest-
ing an important role for rational pricing. The lower left panel of Fig. 1 confirms that
Campbell’s ICAPM provides a good explanation for the momentum portfolios: The
realized and expected returns lineup around the 45-degree line nicely.

Lastly, panel D reports the decomposition of the returns on nine mixed portfolios,
which are consistent with those discussed above. In particular, loadings on cay de-
crease from past losers to past winners, from value to growth, and from small to
big market capitalization. Also, loadings on ¢ increase from past losers to past win-
ners, from value to growth, and from small to big market capitalization; loadings on
rrel increase from past losers to past winners, from growth to value, and from big to
small capitalization. In general, the lower right panel of Fig. 1 shows that the realized
and expected returns lineup well around the 45-degree line, except that past losers
(M1) and value stocks (B3) exhibit some sizable pricing errors (also see Table 4).

Overall, the decomposition indicates that, consistent with the specification tests
reported in Table 3, the heteroskedastic ICAPM provides a better explanation for
the cross section of stock return, i.c., has substantially smaller pricing errors, than
the CAPM does.

1" Again, this result is not sensitive to alterative Sims’ orderings. For example, we find 1.80% from a2,
1.15% from rrel, and —0.49% from cay if we use the ordering r,,, cay, rrel, and J,zn.

12 This result appears to be consistent with some recent authors, who find that momentum is related to
some measures closely related to stock market volatility. For example, Harvey and Siddique (2000) find
that momentum is related to co-skewness; Pastor and Stambaugh (2003) find that momentum is related to
some measure of liquidity; Lee and Swaminathan (2000) document a link between momentum and trading

volume.
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5. Conclusions

In this paper, we evaluate the empirical performance of a heteroskedastic variant
of Campbell’'s ICAPM using a new set of conditioning variables. The heteroskedastic
ICAPM explains the cross section of stock returns significantly better than the
CAPM does. In particular, it accounts for a substantial portion of two CAPM-
related anomalies, namely, the value premium and the momentum profit.

Our results also shed light on the on-going debate about the risk—return relation
by showing that there is a distinction between a positive risk aversion coefficient and
a positive risk-return relation. In this paper, we find that both the relative risk aver-
sion coefficient and the price of stock market risk are significantly positive. Given
that a hedge for time-varying investment opportunities is a significant determinant
of stock market returns, it is possible to find a negative risk-return relation if the
hedge and risk components are negatively related, even though the relative risk aver-
sion coefficient is positive (also see Guo and Whitelaw, in press).

Campbell’s ICAPM is not a general equilibrium model: Campbell (1993) takes
stock return predictability as given and derives a set of non-arbitrage restrictions
across asset returns based on sharcholders’ optimization. Therefore, any test of
Campbell’s ICAPM is related to a specific asset pricing model through the choices
of the forecasting variables. In this sense, our results provide direct support for
the limited stock market participation model by Guo (2004), who explains why
the consumption-wealth ratio and realized stock market variance forecast stock
returns. Limited stock market participation is a relatively new literature, and our
results highlight its promising role in explaining the asset price movement, which
warrants attention in future research.

Lastly, our paper does not provide an explicitly explanation for the mechanism of
the momentum profit. Given that our state variables forecast the momentum profit,
we suspect that, as argued by Chordia and Shivakumar (2002), the momentum profit
reflects the cross-sectional dispersion of expected stock returns. That is, past winners
(losers) continue to perform well (poorly) because their expected returns are persis-
tent. A further investigation along this line should provide a direct explanation to the
momentum profit and we leave it for future research.

Acknowledgments

I appreciate helpful suggestions from Bill Emmons, two anonymous referees, and
participants at the 2002 Washington Area Finance Association Meeting, the 2002
Kansas—Missouri Joint Seminar on Stochastic Theory and Applications, the 2003
Midwest Finance Association Meeting, the 2003 Eastern Finance Association Meet-
ing, and the 2003 FMA European Meeting. I also thank Narasimhan Jegadeesh and
Kenneth French for providing data. Jason Higbee provided excellent research assis-
tance. The views expressed in this paper are those of the author and do not necessar-
ily reflect the official positions of the Federal Reserve Bank of St. Louis or the
Federal Reserve System.



2106 H. Guo | Journal of Banking & Finance 30 (2006) 2087-2107

References

Banz, R., 1981. The relationship between return and market value of common stocks. Journal of Financial
Economics 9, 3-18.

Basu, S., 1977. The investment performance of common stocks in relation to their price-earnings ratios:
A test of the efficient market hypothesis. Journal of Finance 32, 663-682.

Bernanke, B., Gertler, M., 1989. Agency costs, net worth, and business fluctuations. American Economic
Review 79, 14-31.

Bossaerts, P., Hillion, P., 1999. Implementing statistical criteria to select return forecasting models: What
do we learn? Review of Financial Studies 12, 405-428.

Brennan, M., Wang, A., Xia, Y., 2004. Estimation and test of a simple model of intertemporal asset
pricing. Journal of Finance 59, 1743-1775.

Campbell, J., 1993. Intertemporal asset pricing without consumption data. American Economic Review
83, 487-512.

Campbell, J., 1996. Understanding risk and return. Journal of Political Economy 104, 298-345.

Campbell, J., Vuolteenaho, T., 2004. Bad beta, good beta. American Economic Review 94, 1249-—
1275.

Campbell, J., Lo, A., MacKinlay, C., 1997. The Econometrics of Financial Markets. Princeton University
Press, Princeton, NJ.

Carhart, M., 1997. On persistence in mutual fund performance. Journal of Finance 52, 57-82.

Chen, J., 2002. Intertemporal CAPM and the cross-section of stock returns. Unpublished Working Paper,
University of Southern California.

Chordia, T., Shivakumar, L., 2002. Momentum, business cycle, and time-varying expected returns.
Journal of Finance 57, 985-1019.

Cochrane, J., 1996. A cross-sectional test of an investment-based asset pricing model. Journal of Political
Economy 104, 572-621.

Conrad, J., Cooper, M., Kaul, G., 2003. Value versus glamour. Journal of Finance 58, 1969-1995.

Epstein, L., Zin, S., 1989. Substitution, risk aversion and the temporal behavior of asset returns. Journal of
Political Economy 99, 263-286.

Fama, E., French, K., 1992. The cross-section of expected stock returns. Journal of Finance 47, 427-465.

Fama, E., French, K., 1996. Multifactor explanations of asset pricing anomalies. Journal of Finance 51,
55-84.

Ferson, W., Forester, S., 1994. Finite sample properties of the generalized method of moments in tests of
conditional asset pricing models. Journal of Financial Economics 36, 29-55.
Grinblatt, M., Moskowitz, T., 2002. What do we really know about the cross-sectional relation between
past and expected returns? Unpublished Working Paper, University of California at Los Angeles.
Goyal, A., Welch, 1., 2003. Predicting the equity premium with dividend ratios. Management Science 49,
639-654.

Guo, H., 2004. Limited stock market participation and asset prices in a dynamic economy. Journal of
Financial and Quantitative Analysis 39, 495-516.

Guo, H., in press. On the out-of-sample predictability of stock market returns, Journal of Business 79.

Guo, H., Whitelaw, R., in press. Uncovering the risk-return relation in the stock market. Journal of
Finance.

Hansen, L., 1982. Large sample properties of generalized method of moments estimators. Econometrica
50, 1029-1054.

Hansen, L., Jagannathan, R., 1997. Assessing specification errors in stochastic discount factor models.
Journal of Finance 52, 557-590.

Harvey, C., Siddique, A., 2000. Conditional skewness in asset pricing tests. Journal of Finance 55, 1263—
1295.

Hodrick, R., Zhang, X., 2001. Evaluating the specification errors of asset pricing models. Journal of
Financial Economics 62, 327-376.

Jegadeesh, N., Titman, S., 1993. Returns to buying winners and selling losers: Implications for stock
market efficiency. Journal of Finance 48, 65-91.



H. Guo | Journal of Banking & Finance 30 (2006) 2087-2107 2107

Jegadeesh, N., Titman, S., 2001. Profitability of momentum strategies: An evaluation of alternative
explanations. Journal of Finance 56, 699-720.

Lakonishok, J., Shleifer, A., Vishny, R., 1994. Contrarian investment, extrapolation, and risk. Journal of
Finance 49, 1541-1578.

Lee, C., Swaminathan, B., 2000. Price momentum and trading volume. Journal of Finance 55, 1217-1269.

Lettau, M., Ludvigson, S., 2001. Consumption, aggregate wealth, and expected stock returns. Journal of
Finance 56, 815-849.

Lettau, M., Ludvigson, S., 2002. Measuring and modeling variation in the risk-return tradeoff.
Unpublished Working Paper, New York University.

Li, Y., 1997. Intertemporal asset pricing without consumption data: Empirical tests. Journal of Financial
Research 20, 53-69.

Lintner, J., 1965. Security prices, risk and maximal gains from diversification. Journal of Finance 20, 587—
615.

Merton, R., 1973. An intertemporal capital asset pricing model. Econometrica 41, 867-887.

Merton, R., 1980. On estimating the expected return on the market: An exploratory investigation. Journal
of Financial Economics 8, 323-361.

Newey, W., West, K., 1987. Hypothesis testing with efficient method of moments estimation. International
Economic Review 28, 777-787.

Pastor, L., Stambaugh, R., 2003. Liquidity risk and expected stock returns. Journal of Political Economy
111, 642-685.

Schwert, G., 1990. Indexes of stock prices from 1802 to 1987. Journal of Business 63, 399-426.

Schwert, G., 2003. Anomalies and market efficiency. In: Constantinides, G., Harris, M., Stulz, R. (Eds.),
Handbook of the Economics of Finance, vol. 1B. North-Holland, Amsterdam, pp. 937-972.

Sharpe, W., 1964. Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of
Finance 19, 425-442.

Sims, C., 1980. Macroeconomics and reality. Econometrica 48, 1-48.

White, H., 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for
heteroskedasticity. Econometrica 48, 817-838.



	Time-varying risk premia and the cross section of stock returns
	Introduction
	The heteroskedastic Campbell ICAPM
	Data
	Empirical results
	The conditional Campbell ICAPM
	The unconditional Campbell ICAPM
	The cross section of stock returns

	Conclusions
	Acknowledgments
	References


