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On the Relation between EGARCH Idiosyncratic 

Volatility and Expected Stock Returns 

Abstract 

A spurious positive relation between EGARCH estimates of expected month t idiosyncratic 

volatility and month t stock returns arises when the month t return is included in estimation of 

model parameters.  We illustrate via simulations that this look-ahead bias is problematic for 

empirically observed degrees of stock return skewness and typical monthly return time series 

lengths.  Moreover, the empirical idiosyncratic risk-return relation becomes negligible when 

expected month t idiosyncratic volatility is estimated using returns only up to month t-1. 
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I. Introduction 

 A positive tradeoff between systematic risk and return is the cornerstone of standard 

rational expectations asset pricing models with a representative agent.  However, financial 

economists have long recognized that idiosyncratic risk is potentially an important determinant 

of expected stock returns because the portfolio held by a typical U.S. household can only loosely 

be characterized as diversified (see, e.g., Blume and Friend (1975) and Goetzmann and Kumar 

(2008)).  In particular, many authors, e.g., Levy (1978), Merton (1987), and Malkiel and Xu 

(2002), argue that these investors—with their poorly diversified portfolios—require extra 

compensation for holding stocks that expose them to greater idiosyncratic volatility.  The 

empirical evidence for this prediction, however, has been elusive.  In fact, Ang, Hodrick, Xing, 

and Zhang (2006, 2009; hereafter AHXZ) report that the cross-sectional relation between lagged 

realized idiosyncratic risk and returns is negative.  In contrast, Fu (2009) has uncovered a strong 

positive relation between conditional idiosyncratic volatility estimated using EGARCH models 

and expected stock returns.  Fu’s (2009) results are theoretically appealing as well.  Consistent 

with Merton’s (1987) conjecture, Fu (2009) documents a positive relation between market 

capitalization and conditional stock returns when controlling for EGARCH idiosyncratic 

volatility in cross-sectional regressions.  Because of its potentially significant contribution to the 

idiosyncratic risk literature, the EGARCH approach has been widely adopted in related empirical 

studies (e.g., Spiegel and Wang (2005) and Hwang, Liu, Rhee, and Zhang (2010)). 

 We must alert researchers, however, that they need to be especially careful when 

implementing the EGARCH idiosyncratic volatility methodology.  A common estimation 

strategy accidentally introduces a look-ahead bias into recursive volatility forecasts by including 

the month t return in the estimation of EGARCH parameters that are used to construct the 
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expected month t idiosyncratic volatility.  We show analytically that the in-sample EGARCH 

idiosyncratic volatility can have a strong dependence on the contemporaneous stock return in 

relatively small samples event though the expected month t idiosyncratic volatility depends on 

volatility data only through t-1.  In particular, when we include the month t return in the 

estimation of EGARCH model parameters, the month t EGARCH idiosyncratic volatility has an 

upward bias when the month t return is large in magnitude.1  This bias correlates positively with 

the month t return if the latter is positive, and the correlation is negative if the latter is negative.  

Significantly, the cross-section of stock returns is positively skewed (e.g., Duffee (1995)), i.e., 

there are more stocks with extreme positive returns than stocks with extreme negative returns.  

Thus, the positive intertemporal correlation between the bias in in-sample EGARCH 

idiosyncratic volatility and one-period-ahead stock returns dominates in stock return data.  As a 

result, the look-ahead bias may generate a spurious predictability of cross-sectional stock returns. 

 Of course, just because it exists, that does not necessarily imply that the look-ahead bias 

is so large that it affects statistical inference.  This is especially true considering that the ‘look 

ahead’ in this case consists of a single monthly return.  Therefore, we conduct Monte Carlo 

simulations to evaluate the impact of the look-ahead bias.  The simulation results show that at 

skewness levels similar to, or even smaller than, those exhibited by monthly CRSP data the look-

ahead bias is significant.  In addition, the bias is monotonically increasing in skewness.  

Moreover, despite the fact that the simulations show that the bias is monotonically decreasing in 

                                                            
1 This result is quite intuitive.  We estimate EGARCH models using the maximum likelihood method.  An extreme 

return in month t leads to a particularly low likelihood for this observation.  To improve the likelihood of all 

observations, the month t conditional volatility should increase. 
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the length of the return series used in estimation, the bias is still significant for return series 

equivalent to the entire length of the monthly CRSP stock return series. 

 Having established analytically and via simulations the existence of a potentially 

significant look-ahead bias in in-sample EGARCH idiosyncratic volatility estimates, we turn to 

the empirical relation between idiosyncratic risk and the cross-section of stock returns.  In one of 

the best known papers in this literature, Fu (2009) reports three major findings.  First, 

idiosyncratic risk and returns are positively related in the cross-section.  Second, after controlling 

for idiosyncratic risk, there is a positive size effect.  Third, he argues that EGARCH idiosyncratic 

volatility is a better measure of conditional idiosyncratic volatility than the lagged realized 

idiosyncratic volatility used in AHXZ (2006).  We will show that these results are driven by the 

look-ahead bias introduced by incorporating the month t return into the estimate of the month t 

EGARCH idiosyncratic volatility. 

  We should point out that although we will show that the positive EGARCH idiosyncratic 

risk-return relation reflects a look-ahead bias, this does not mean that our paper represents an 

unqualified confirmation of AHXZ (2006).2  It may well be that the true relationship between 

idiosyncratic risk and the cross-section of stock returns is positive, as Fu (2009) maintains (or 

even zero as implied by traditional asset pricing models); but, this particular evidence is 

                                                            
2 Bali and Cakici (2008) argue that the AHXZ (2006) result is sensitive to different weighting schemes and the 

estimation of idiosyncratic risk with daily versus monthly return data.  Huang, Liu, Rhee, and Zhang (2010) suggest 

that it relates to the short‐horizon return reversal anomaly.  Bali, Cakici, and Whitelaw (2011) find that the negative 

effect of idiosyncratic volatility is driven by its close relation with the maximum daily return in a month, proxying 

for demand for lottery‐like stocks.  Jiang, Xu, and Yao (2009) hypothesize that firms with high price volatility tend 

to be opaque in their earnings disclosures.  Han and Lesmond (2011) argue that microstructure noise factors have 

substantial effects on the realized variance measure. 
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unreliable due to the look-ahead bias.  Therefore, it is premature to conclude that there is strong 

evidence of a positive relation between idiosyncratic volatility and returns. 

 To ensure that our results are directly comparable to those reported in existing studies, we 

use Fu’s (2009) monthly estimates of EGARCH idiosyncratic volatility obtained through his 

website.  As a baseline we replicate the result that idiosyncratic risk is positively related to 

returns.  We then show that this is due to the look-ahead bias in two ways.  First, we document a 

strong positive cross-sectional relation between our proxies for the look-ahead bias (e.g., 

unexpected changes in in-sample EGARCH idiosyncratic volatility) and expected returns.  

Moreover, including unexpected changes in in-sample EGARCH idiosyncratic volatility in 

cross-sectional regressions substantially attenuates the explanatory power of the level of in-

sample EGARCH idiosyncratic volatility.  This result is especially strong when we use log 

returns instead of simple returns as the dependent variable because log returns have a smaller 

skewness than do simple returns and, thus, should reduce the magnitude of the look-ahead bias. 

The second way that we show that the positive EGARCH idiosyncratic risk and return 

relation is due to the look-ahead bias is more direct.  We simply replace the in-sample EGARCH 

idiosyncratic risk estimates with our own truly out-of-sample forecast of EGARCH idiosyncratic 

volatility.  In particular, to obtain month t conditional idiosyncratic volatility, we estimate 

EGARCH model parameters using stock return data up to month t-1.  We find that while out-of-

sample EGARCH idiosyncratic volatility has strong predictive power for one-month-ahead 

realized idiosyncratic volatility, it does not forecast cross-sectional stock returns.3  That is, the 

                                                            
3 Bali, Scherbina, and Tang (2010) have independently verified our main finding that out-of-sample EGARCH 

idiosyncratic volatility estimates have negligible predictive power for the cross-section of stock returns.  After the 

first draft of this paper was circulated, Fink, Fink, and He (2012) confirmed the weak relation between out-of-

sample EGARCH idiosyncratic volatility and the cross-section of stock returns. 
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positive relation between idiosyncratic risk and returns goes away when we estimate the risk 

without the look-ahead bias. 

In the CRSP data, small capitalization stocks tend to have higher expected returns than 

large capitalization stocks.  Fu (2009), however, shows that this size effect becomes significantly 

positive after controlling for EGARCH idiosyncratic volatility in cross-sectional regressions.  He 

highlights this finding as direct support for Merton (1987).  As with the idiosyncratic risk and 

return result, we initially illustrate the nature of the bias in in-sample estimates with his own 

data.  We first replicate the result and then we show that the positive effect of market 

capitalization on expected returns disappears when we control for the look-ahead bias in cross-

sectional regressions.4  When we control for out-of-sample idiosyncratic risk we find the 

traditional size effect.  Namely, size is significantly, negatively related to expected returns.  

Thus, as with the positive idiosyncratic risk and return relationship, we find that when we 

employ out-of-sample idiosyncratic risk estimates the reported results disappear. 

AHXZ (2009) show that lagged realized idiosyncratic volatility has strong explanatory 

power for one-month-ahead realized idiosyncratic volatility.  Fu (2009) suggests that his findings 

differ qualitatively from AHXZ (2006) because EGARCH idiosyncratic volatility is a better 

                                                            
4 In Fu’s (2009) data, the difference between months t and t-1 EGARCH idiosyncratic volatilities is a proxy for the 

look-head bias.  Specifically, when including both variables in the cross-sectional regression, we show that the 

former correlates positively with month t stock returns, while the relation is negative for the latter.  There is a strong 

negative correlation of month t-1 EGARCH idiosyncratic volatility with month t-1 market capitalization.  Therefore, 

a positive relation between month t-1 market capitalization and month t stock returns is found in conjunction with 

month t EGARCH idiosyncratic volatility because the former serves as an instrumental variable for month t-1 

EGARCH idiosyncratic volatility.  As expected, the positive size effect goes away when we control for the 

(unexpected) change in EGARCH idiosyncratic volatility as a proxy for the look-ahead bias. 
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measure of conditional idiosyncratic volatility than is lagged realized idiosyncratic volatility, for 

example, as used in AHXZ (2006).  We corroborate the AHXZ (2009) finding by showing that 

the explanatory power of lagged realized idiosyncratic volatility remains statistically significant 

after controlling for in-sample EGARCH idiosyncratic volatility.  In addition, it remains 

statistically significant after controlling for our out-of-sample EGARCH idiosyncratic volatility 

estimates.  Therefore, lagged realized idiosyncratic volatility provides important information 

about one-month-ahead realized idiosyncratic volatility beyond EGARCH idiosyncratic 

volatility.  These results cast doubt on the argument that the difference between Fu (2009) and 

AHXZ’s (2006) findings reflects mainly the fact that EGARCH idiosyncratic volatility is a better 

measure of conditional idiosyncratic volatility than is lagged realized idiosyncratic volatility. 

The remainder of the paper proceeds as follows.  In Section II, we discuss the look-ahead 

bias introduced by including the month t return in the estimation of month t EGARCH model 

parameters.  We illustrate the significance of the bias on inference by conducting Monte Carlo 

simulations.  In Section III, we show that the positive cross-sectional relation between EGARCH 

idiosyncratic volatility and expected stock returns reflects mainly this look-ahead bias.  We then 

show that truly out-of-sample EGARCH idiosyncratic volatility has negligible explanatory 

power for the cross-section of stock returns.  We also revisit Merton’s (1987) conjecture that 

after controlling for idiosyncratic volatility the size effect is positive.  In Section IV we conduct 

robustness tests.  In Section V, we discuss the look-ahead bias in EGARCH idiosyncratic 

volatility estimated using the full sample.  In Section VI, we offer some concluding remarks. 

 

II. Look-ahead Bias in In-Sample EGARCH Idiosyncratic Volatility 

A. EGARCH Models 
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 Many authors estimate idiosyncratic risk using the Fama and French (1996) three factors 

as proxies for systematic risk, 

(1) , , , , ,( )i t f t i i m t f t i t i t i tR r R r s SMB h HMLa b e- = + - + + + , 

where ,i tR  is stock i’ return, ,f tr  is the risk-free rate, , ,m t f tR r- , tSMB , and tHML  are the excess 

market return, the size premium, and the value premium, respectively, as in the Fama and French 

(1996) three-factor model.  The idiosyncratic return, ,i te , is assumed to have a serially 

independent normal distribution 

(2) 2
, ,(0, )i t i tNe s , 

and its conditional variance, 2
,i ts , follows an EGARCH process 

(3) , ,2 2 1/2
, , , ,

1 1 , ,

ln ln (2 / )
p q

i t k i t k
i t i i l i t l i k

l k i t k i t k

a b c
e e

s s q g p
s s

- -
-

= = - -

ì üé ùæ öï ïï ï÷çï ïê ú÷ç= + + + -í ý÷ ê úç ÷ï ï÷çè ø ê úï ïë ûï ïî þ
å å . 

Under these assumptions, the log likelihood of the month t return, ,i tR , is 

(4) 
2
,2

, , 2
,

1 1
( ) log(2 ) log( )

2 2 2
i t

i t i t
i t

L R
e

p s
s

=- - - . 

Researchers commonly use the maximum likelihood (or quasi-maximum likelihood if the error 

term in equation (1) has a nonnormal distribution) method to estimate EGARCH model 

parameters.  That is, the parameter values in equations (1)-(3) are selected to maximize the sum 

of the log likelihood of stock returns in a given sample period. 

 

B. The Problem with In-Sample Estimates of EGARCH Idiosyncratic Volatility 

 Many authors rely on the maximum likelihood method to estimate EGARCH model 

parameters.  They refer to the resulting recursive EGARCH idiosyncratic volatility estimates as 

out-of-sample forecasts.  Because equation (3) shows that the month t EGARCH idiosyncratic 
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volatility, 2
,i ts , depends on its own lags and lagged idiosyncratic returns, it is plausible that these 

estimates do in fact provide an out-of-sample forecast of the month t EGARCH idiosyncratic 

volatility.  However, it is important to note that, if specified inappropriately, this estimation 

strategy can actually result in an in-sample estimate of EGARCH idiosyncratic volatility.  

Specifically, if we set the sample period to be from month 1 to month t, we will include the 

month t stock return in the calculation of the sum of the log likelihood 

(5) 
2
,2

, , 2
1 1 1 ,

1
( ) log(2 ) log( )

2 2 2

t t t
i

i i
i

t
L R t

t t
t t t t

e
p s

s= = =

=- - -å å å . 

Typically, the next step would be to estimate the EGARCH model by choosing values of the 

parameters in equations (1)-(3) to maximize the sum of the log likelihood of returns over the 

period from month 1 to month t in equation (5).  The problem with this approach is that, via 

equation (5), the parameter estimates depend (to an asymptotically vanishing degree) on the 

month t return.  In particular, the conditional month t EGARCH idiosyncratic volatility, 

( )tE IVOL , has a look-ahead bias because it depends on EGARCH model parameters that are 

estimated using the month t return 

(6) 

2
,

, ,2 1/2
, , , , , ,

1 1 , ,

( ) exp(ln )

exp ln (2 / )

t i t

p q
i t k i t k

i t i l t i t l i k t
l k i t k i t k

E IVOL

a b c

s

e e
s q g p

s s
- -

-
= = - -

=

é ùì üé ùæ öï ïï ï÷ê úçï ïê ú÷ç= + + + -í ýê ú÷ ê úç ÷ï ï÷çê úè ø ê úï ïë ûï ïî þë û
å å

. 

In equation (6), we use the subscript t on the EGARCH model parameter estimates, ,i ta , , ,i l tb , 

and , ,i k tc  to highlight their dependence on the month t return.  Because of its inclusion of the 

information from month t, the conditional idiosyncratic volatility in equation (6), ( )tE IVOL , is 

actually an in-sample EGARCH idiosyncratic volatility estimate.  To obtain one-month-ahead 

forecasts of EGARCH idiosyncratic volatility that are truly out-of-sample, we must restrict 
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equation (5) to include only the returns up to month t-1 in the calculation of the sum of the log 

likelihood, 

(7) 
21 1 1
,2

, , 2
1 1 1 ,

1 1
( ) log(2 ) log( )

2 2 2

t t t
i

i i
i

t
L R t

t t
t t t t

e
p s

s

- - -

= = =

-
=- - -å å å . 

Obviously equation (7) is obtained from equation (5) by excluding the month t return.  Then, as 

is standard, we can estimate an EGARCH model by searching for values of the parameters in 

equations (1)-(3) that maximize the sum of the log likelihood in equation (7).  We then substitute 

these parameter estimates into equation (3) to obtain the out-of-sample forecast of month t 

EGARCH idiosyncratic volatility, ( _ )tE IVOL O ,  

(8) 

2
,

, ,2 1/2
, 1 , , 1 , , , 1

1 1 , ,

( _ ) exp(ln )

exp ln (2 / )

t i t

p q
i t k i t k

i t i l t i t l i k t
l k i t k i t k

E IVOL O

a b c

s

e e
s q g p

s s
- -

- - - -
= = - -

=

é ùì üé ùæ öï ïï ï÷ê úçï ïê ú÷ç= + + + -í ýê ú÷ ê úç ÷ï ï÷çê úè ø ê úï ïë ûï ïî þë û
å å

. 

In equation (8), we use the subscript t-1 on the parameter estimates, , 1i ta - , , , 1i l tb - , and , , 1i k tc - to 

emphasize the fact that we obtain them using information available at month t-1. 

The month t in-sample EGARCH idiosyncratic volatility from equation (6) has a look-

ahead bias because it depends on the month t return.  This relation is quite intuitive.  Suppose 

that there is an extreme return in month t due to an extreme month t idiosyncratic return, ,i te .  As 

a result, equation (4) shows that, ceteris paribus, the log likelihood of the month t return is likely 

to be particularly low.  One way to improve the in-sample fit, as illustrated in equation (4), is to 

raise the month t idiosyncratic volatility, 2
,i ts , by, for example, increasing the constant term, ,i ta , 
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in conditional volatility of equation (6).5  That is, the look-ahead bias in the in-sample month t 

EGARCH idiosyncratic volatility correlates positively with the magnitude of the month t return.   

 The magnitude of the look-ahead bias depends on the length of the return series used.  

For example, if we have a large number of stock return observations, the estimates of the 

EGARCH model parameters in equations (1)-(3) converge asymptotically to their population 

values.  Intuitively, when we have millions of return observations, an extreme return in month t 

should have a negligible effect on the sum of the log likelihood in equation (5); therefore, the 

EGARCH parameter estimates do not have to change much to accommodate this extreme 

observation.  In this case, the look-ahead bias in in-sample EGARCH idiosyncratic volatility 

converges asymptotically to zero.  On the other hand, if the number of observations is relatively 

small, the look-ahead bias can have a substantial impact on the in-sample estimate of EGARCH 

idiosyncratic volatility.  What qualifies as ‘relatively small’ is an empirical issue that we will 

investigate in Monte Carlo simulations in sub-section II.D and in an examination of Fu’s (2009) 

major findings in section III. 

At this point, the reader may be persuaded that the distortion from including month t 

returns imparts noise to our volatility estimates but still question whether there is any bias.   To 

see that there often will be, note that when the stock return, ,i tR+ , is positive, it correlates 

positively with the bias of its in-sample EGARCH idiosyncratic volatility, ,
B
i tEIVOL , 

(9) , ,
B

i t i tR EIVOLa+ = , 

                                                            
5 Consider equation (4).  When conditional idiosyncratic volatility increases, the second term on the right-hand-side 

(RHS) implies that the log likelihood decreases with log(σ) while the third RHS term implies that the log likelihood 

increases with σ2.  The more extreme the return, the more the latter dominates the former; hence, the log likelihood 

increases with conditional idiosyncratic volatility. 
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where a  is a positive parameter.  Likewise, when the stock return, ,j tR- , is negative, it correlates 

negatively with the bias of its in-sample EGARCH idiosyncratic volatility, ,
B
j tEIVOL , 

(10) , ,
B

j t j tR EIVOLa- =- . 

If cross-sectional stock returns are symmetrically distributed, then the positive relation in 

equation (9) and the negative relation in equation (10) should approximately cancel each other 

out in the cross-sectional regression and our idiosyncratic volatility estimates will be noisy but 

unbiased.  However, untabulated results show that cross-sectional stock returns are not 

symmetrically distributed; but, rather have a strong positive realized skewness in most months, 

indicating that there are substantially more stocks with extreme positive returns than stocks with 

extreme negative returns (see also Duffee (1995)).  Thus, for the empirical distribution, the 

positive relation in equation (9) will dominate the negative relation in equation (10) in cross-

sectional regressions.  That is, there will be a look-ahead bias; a positive cross-sectional relation 

between in-sample EGARCH idiosyncratic volatility and expected stock returns.6 

 In sub-section II.D, we illustrate the dependence of the EGARCH parameter estimates in 

equation (6) on the month t return via Monte Carlo simulations.  They verify the existence of a 

look-ahead bias that is due to a dependence of the month t in-sample EGARCH idiosyncratic 

                                                            
6 The fact that the EGARCH methodology could not truly be making ex ante predictions is illustrated by the results 

of a preliminary experiment of forecasting market returns.  Specifically, when we aggregate equations (9) and (10) 

across all stocks, the equal-weighted market return should correlate positively with the average look-ahead bias if 

stock returns are positively skewed.  As conjectured, we find that changes in average monthly EGARCH 

idiosyncratic volatility, a proxy for the look-ahead bias, forecast one-month-ahead market returns.  A simple 

switching strategy between a market index and a risk-free Treasury bond based on the information content of 

EGARCH idiosyncratic volatility generates a Sharp ratio twice as high as buying-and-holding the market index. 



12 
 

volatility on the month t return.  As the foregoing discussion suggests, the bias is increasing in 

the skewness of the cross-section of returns and is decreasing in the length of the return series. 

 

C. Estimating Out-of-Sample EGARCH Idiosyncratic Volatility 

We use SAS to construct the one-month-ahead out-of-sample forecast of month t 

EGARCH idiosyncratic volatility.  That is, we set the sample over the period from month 1 to 

month t-1 when estimating EGARCH model parameters.  We then substitute the parameter 

estimates into equation (8) to calculate the month t EGARCH idiosyncratic volatility.7  As in 

Spiegel and Wang (2005), we require at least sixty monthly return observations to estimate 

EGARCH models.  In contrast, other authors, e.g., Fu (2009), utilizes only thirty monthly return 

observations.  We adopt Spiegel and Wang’s (2005) specification because many authors, e.g., 

Scruggs (1998) and Lundblad (2007), emphasize the need for a large number of observations to 

obtain precise parameter estimates of GARCH-type nonlinear models.  We do not impose a 

larger minimum because we want our estimates to be comparable to Fu (2009).  To further 

alleviate concerns about the small sample bias, we use an expanding sample starting from July 

                                                            
7 In an alternative approach, we set the sample over the period from month 1 to month t and arbitrarily set the month 

t return to be a missing observation.  This effectively ‘tricks’ SAS into computing an ‘in-sample’ month t EGARCH 

idiosyncratic volatility that does not depend on information from month t.  That is, because we have intentionally set 

the month t return to be a missing observation, the EGARCH parameter estimates in equation (6) depend on returns 

up to month t-1 and thus have no look-ahead bias.  We have confirmed that the EGARCH idiosyncratic volatilities 

obtained from these two approaches are identical.  David Manzler deserves special thanks for suggesting this 

alternative approach to us. 
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1926 in the recursive estimations.8  As in Fu (2009), we consider nine EGARCH specifications, 

i.e., EGARCH (p,q), where 1 ≤ p ≤3 and 1 ≤ q ≤ 3, and choose the one that converges with the 

lowest Akaike Information Criterion. 

 The minimum requirement of sixty monthly return observations is at best a partial 

solution to the small sample problem.  For example, the EGARCH (3,3) model has over ten 

parameters, and we would not expect to obtain a sensible estimation of these parameters using 

only sixty observations.  Due to the small sample sizes involved, the EGARCH estimates in 

these studies can be quite sensitive to tuning parameters such as the initial parameter values, the 

number of iterations, and the convergence criteria.  These technical issues highlight the 

potentially serious problems associated with using EGARCH idiosyncratic volatility estimates.  

The potential sensitivity of our results raises the possibility that we are accidentally generating 

the look-ahead bias that we detect below because we are using different convergence criteria, etc.  

We address this concern in three ways.  First, we rely on Fu’s (2009) estimates to illustrate the 

look-ahead bias.  Second, when generating our own estimates we select the tuning parameters in 

such a way that our in-sample EGARCH results closely match those reported in Fu (2009).  We 

then use the same tuning parameters to estimate out-of-sample EGARCH idiosyncratic volatility.  

In this way, we ensure that the different results obtained from in-sample and out-of-sample 

EGARCH idiosyncratic volatility estimates reflect only the look-ahead bias.  Third, in Section 

IV, we estimate out-of-sample EGARCH idiosyncratic volatility using a two-year rolling 

window of daily return data with a minimum of 252 daily returns.  The EGARCH estimation is 

less sensitive to tuning parameters for daily return data because they allow for substantially more 

                                                            
8 While CRSP monthly stock return data begin in January 1926, the Fama and French three factor data, which we 

use as a proxy for systematic risk, are available from July 1926. 
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observations.  Again, we find that the EGARCH idiosyncratic volatility has negligible predictive 

power for the cross-section of stock returns.  

 

D. Look-ahead Bias: Monte Carlo Simulations  

 We have clearly demonstrated that incorporating the month t return into the EGARCH 

estimates induces a bias.  On the other hand, we are talking about one observation.  It is not at all 

obvious that one observation could have such a statistically meaningful impact on our inferences 

to account for the positive EGARCH idiosyncratic risk and return relation reported in the 

previous studies.  In this sub-section we examine this very point.  We employ Monte Carlo 

simulation to gauge the effect of the look-ahead bias on statistical inference about the relation 

between EGARCH idiosyncratic volatility and future stock returns.  For simplicity, we generate 

simulated monthly return data using the EGARCH (1,1) specification.  We set the unconditional 

volatility to 0.06, which is smaller than the median stock return volatility of 0.14 for CRSP 

common stocks with at least 60 monthly return observations.  This conservative calibration 

ensures that our results are not driven mainly by extreme returns.  We set the conditional mean 

return to zero.  Therefore, the simulated data can be interpreted as idiosyncratic returns and by 

construction, there is no relation between EGARCH idiosyncratic volatility and future stock 

returns.  We generate the i.i.d. error term of the EGARCH model using Ramberg and 

Schmeiser’s (1974) Generalized Lambda Distribution (GLD) algorithm.9  Specifically, we set the 

kurtosis of the simulated error term to 3.2, the median kurtosis of CRSP stock returns.  In the 

benchmark case, we set the skewness to 1.1, the median skewness of CRSP common stocks.  In 

simulated data, each stock has 260 return observations, which is slightly more than the median of 

                                                            
9 We also used Fleishman’s (1978) power transformation and found similar results. 
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230 monthly stock returns for CRSP common stocks.  For illustration, we investigate cross-

sectional implications using 120 stocks; more stocks should not affect our results in any 

qualitative manner.  Overall, the benchmark case is a reasonably good proxy for the actual data. 

As we noted in sub-section II.B, the look-ahead bias increases with skewness.  Therefore, 

we will first attempt to get a feel for the degree of cross-sectional skewness required to affect our 

inferences by considering different parameterizations of the skewness.  Table 1 reports the Fama 

and MacBeth (1973) estimation results of regressing stock returns on conditional EGARCH 

volatility obtained using simulated data.  For comparison, we consider three specifications.  First, 

under the column “Out of Sample”, we estimate the time t EGARCH volatility recursively using 

the information available up to time t-1.  Second, under the column “In Sample”, we estimate the 

time t EGARCH volatility recursively using the information available up to time t.  Last, under 

the column “Full Sample”, we estimate the EGARCH volatility using the full 260 month sample.  

In the first two cases, we require a minimum of 60 observations for EGARCH model 

estimations.  Because the simulated data were generated with the EGARCH (1,1) model, we use 

the same specification to estimate the conditional volatility of the simulated data.  We set the 

maximum iterations to 1,000 and adopt the default SAS convergence tolerance criterion of 0.001.  

In the cross-sectional regression, we include only stocks that converged in the EGARCH 

estimations. 

[Insert Table 1 here] 

Panel D of Table 1 is the benchmark case, in which we set the skewness equal to 1.1.  

The in-sample EGARCH idiosyncratic volatility correlates positively with future stock returns, 
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and the relation is statistically significant at the 1% level.10  Note that the presence of a relatively 

high degree of skewness can facilitate the spurious correlation between expected idiosyncratic 

volatility and returns.  For example, the relation is significantly positive when the skewness is 

0.8 (Panel C).  For comparison the mean (median) cross-sectional skewness of CRSP common 

stock returns is 0.8 (1.1).  Similarly, we find a positive and significant relation between the full-

sample EGARCH idiosyncratic volatility and future stock returns.  Moreover, as conjectured, 

Table 1 shows that the look-ahead bias increases monotonically with the skewness for both the 

in-sample and full-sample estimates.   The out-of-sample results stand in sharp contrast.  There is 

a negligible relation between out-of-sample EGARCH idiosyncratic volatility and future stock 

returns even for skewness as high as 1.6 (Panel E).  These results indicate that, in fact, it is 

possible for the look-ahead bias to fully account for the positive EGARCH idiosyncratic risk and 

return relation reported in the literature.11 

[Insert Table 2 here] 

It is a common practice to estimate specifications of the EGARCH model and choose the 

one that fits the data best according to the Akaike Information Criterion.  This specification-

selection approach generates an even stronger look-ahead bias than the approach we adopted in 

Table 1 by using a fixed EGARCH(1,1) specification.  Intuitively, when there is an extreme 

return at time t, the specification that produces the largest time t conditional volatility is most 

likely to be selected as the best model because it will generally have the highest likelihood.  In 

light of this possibility, we re-run the cross-sectional regression using nine specifications 

                                                            
10 Interestingly, the coefficient on the EGARCH idiosyncratic volatility in the simulation is 0.118, which is 

comparable in magnitude to 0.138 obtained using Fu’s (2009) data, as reported below in row 1 of Table 4. 

11 For example, Fu (2009) reports a skewness of 2.35 for his data of pooled CRSP common stocks with at least 30 

monthly return observations.  
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(mimicking Fu’s (2009) approach) and report the results in Table 2.  As expected, the look-ahead 

bias in Table 2 is noticeably larger than its counterpart in Table 1.  For example, in the 

benchmark case (Panel D), the coefficient on the in-sample EGARCH idiosyncratic volatility is 

0.153, compared with 0.118 reported in Table 1.  Moreover, a significant positive relation is 

present at even lower degrees of skewness; a positive relation is present for both the in-sample 

and full-sample estimates when skewness is 0.4.  This is only half (about 1/3rd) the mean 

(median) cross-sectional skewness of monthly CRSP stock returns. 

[Insert Table 3 here] 

Lastly, in Table 3, we investigate the effect of the sample size on the look-ahead bias.  

We consider only the case of the full-sample EGARCH estimation because computation 

becomes forbiddingly intensive for the recursive in-sample EGARCH estimation when the 

sample size is large.  We set the skewness equal to 0.8 and choose the best model from the nine 

EGARCH specifications.  As conjectured, the look-ahead bias decreases monotonically with the 

length of the return series; however, it remains statistically significant even when the sample size 

grows to 5,000 observations.  Considering that the entire history of CRSP is roughly 1000 

months, this indicates that in practice the monthly return series is never long enough to eliminate 

the look-ahead bias.  For example, in Table 3, when T=1000, the coefficient on the full-sample 

idiosyncratic volatility is 0.132 with a t-statistic of 6.556.  For shorter series, the bias is 

substantially larger. 

Note that, because the look-ahead bias is likely to decrease with the sample size, as we 

confirm in Table 3, the look-ahead bias of the full-sample EGARCH estimation should be 

weaker than that of the in-sample EGARCH estimation.  In practice, however, we have reason to 

suspect that full-sample EGARCH idiosyncratic volatility estimates may be prone to even larger 
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measured look-ahead biases than in-sample estimates.  For a given length return series, say 260 

months, the in-sample estimate requires an initial estimation period, say 60 months; therefore 

there are only 200 months available for the cross-sectional regressions.  The full-sample 

estimates for the same 260 month return series has 60 (or 30%) more months in the cross-

sectional regression.  As indicated by the simulation results reported in Table 3, the look-ahead 

bias should be decreasing with the length of the return series.  Therefore, we would expect less 

look-ahead bias in the full-sample.  On the other hand, in-sample EGARCH idiosyncratic 

volatility is estimated over far fewer months and is, hence, noisier.  Thus, when we conduct the 

second stage regression, there will be a more serious error-in-variables problem for the in-sample 

estimates than for the full-sample estimates.  Therefore, the second stage regression coefficients 

will be more downward biased (the ‘attenuation effect’) for the in-sample estimates than for the 

full-sample estimates.  It is not clear which one of these effects should dominate; but, in the 

Monte Carlo simulations reported in Tables 1 and 2 we found the spuriously (yet, frequently, 

significantly) correlated E[IVOL] coefficients were consistently greater for the full-sample 

estimates than for the in-sample estimates.  So, it appears that the attenuation effect may offset 

the shorter return series available for the cross-sectional regressions when using in-sample 

EGARCH estimates. 

   

III. How Important is Look-ahead Bias  in Practice?                

 In Section II we showed analytically and via Monte Carlo simulation that it is possible 

for EGARCH estimates of idiosyncratic volatility to contain a significant look-ahead bias.  In 

this section we will show that an example of this in practice is Fu’s (2009) study of the relation 

between idiosyncratic risk and the cross-section of stock returns.  He reports three major results.  
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First, he finds a positive cross-sectional relationship between his measure of expected 

idiosyncratic volatility and returns.  Second, he finds a positive relation between firm size and 

returns (as predicted in Merton (1987)).  Third, he suggests that his EGARCH measure of 

expected idiosyncratic volatility provides a superior forecast of future realized idiosyncratic 

volatility than the lagged values of realized idiosyncratic volatility advocated in AHXZ (2006). 

We will first use Fu’s (2009) own estimates of idiosyncratic risk to replicate the positive 

idiosyncratic risk-return relation he reports.  We will then show that this result is attenuated or 

even eliminated when we control for proxies for the look-ahead bias.  More directly, we will then 

show that there is no relation between EGARCH idiosyncratic volatility and returns when we 

eliminate the look-ahead bias from the idiosyncratic risk estimates.  Additionally, we will show 

that the positive size effect disappears when we control for the influence of the look-ahead bias.  

Finally, we will show that the in-sample EGARCH measure of idiosyncratic volatility is superior 

to lagged realized volatility is also due to the look-ahead bias. 

 

A. In-Sample EGARCH Idiosyncratic Volatility and the Cross-Section of Stock Returns  

 We begin with monthly estimates of stock-level EGARCH idiosyncratic volatility over 

the July 1963 to December 2007 period obtained from Fangjian Fu at Singapore Management 

University.  We denote this measure E(IVOL) and will frequently refer to it as an in-sample 

estimate for the reasons outlined in Section II.  In row 1 of Table 4, we replicate Fu’s (2009) 

main finding of a strong positive cross-sectional relation between ( )tE IVOL  and expected stock 

returns in the univariate Fama and MacBeth (1973) cross-sectional regression.  The point 

estimate is 0.138 and the adjusted R2 is 3%, compared with 0.11 and 3%, respectively, as 

reported in Fu’s (2009) Table 5. 
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[Insert Table 4 here] 

 Fu (2009) emphasizes that EGARCH idiosyncratic volatility is a good measure of 

conditional idiosyncratic volatility because it is quite persistent.12  This finding suggests that 

1( )tE IVOL -  should have explanatory power similar to that of ( )tE IVOL  for the cross-section of 

stock returns.  This conjecture has also been proposed in a similar context by AHXZ (2006), who 

show that two-month lagged realized idiosyncratic volatility has explanatory power for the cross-

section of stock returns qualitatively similar to that of one-month lagged realized idiosyncratic 

volatility.  Contrary to this conjecture, Table 4 reports that 1( )tE IVOL -  does not correlate with 

expected stock returns in the univariate cross-sectional regression, with a t-statistic close to zero 

(row 2).  More surprisingly, when we include both ( )tE IVOL  and 1( )tE IVOL -  as the explanatory 

variables in the cross-sectional regression, the effect on expected returns remains significantly 

positive for the former, while it becomes negative and highly significant for the latter (row 3).  

Because of the strong correlation between ( )tE IVOL  and 1( )tE IVOL - , it is tempting to believe 

that this result reflects a multicollinearity problem.  This interpretation, however, does not 

account for the fact that the t-statistics in row 3 are substantially larger in magnitudes than are 

their univariate counterparts, as reported in rows 1 and 2, respectively. 

 The result in row 3 of Table 4 may reflect the fact that (unexpected) changes in 

EGARCH idiosyncratic volatility (which are shocks and, thus, a proxy for the look-ahead bias) 

have a strong positive correlation with one-month-ahead stock returns.  To account for this 

possibility, we measure unexpected changes in EGARCH idiosyncratic volatility in two ways.  

                                                            
12 In row 3 of Table 7 below, we confirm this point by showing that one-month lagged EGARCH idiosyncratic 

volatility, 1( )tE IVOL - , has strong predictive power for realized idiosyncratic volatility, albeit with an adjusted R2 

about 2/3rds that of ( )tE IVOL .   
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First, we consider the difference between ( )tE IVOL  and 1( )tE IVOL - , which we dub 1 ( )tE IVOLD .  

Row 4 of Table 4 confirms our conjecture—the first difference, 1 ( )tE IVOLD , has a significantly 

positive correlation with one-month-ahead stock returns even when we control for ( )tE IVOL .  

Because EGARCH idiosyncratic volatility is quite persistent, we also control for the difference 

between ( )tE IVOL  and 2( )tE IVOL- , which we dub 2 ( )tE IVOLD .  Row 5 of Table 4 reports that 

2 ( )tE IVOLD  has strong incremental explanatory power as well.  In contrast, the explanatory 

power of ( )tE IVOL  attenuates substantially after we control for its changes.  For example, in row 

5 of Table 4, the parameter estimate and the t-statistic of ( )tE IVOL  are 0.065 and 2.641, 

respectively, which are substantially smaller than are their univariate counterparts, as reported in 

row 1 of Table 4. 

 As a second proxy for the look-ahead bias, for each stock, we regress its EGARCH 

idiosyncratic volatility on the two lags, and use the residual from the time-series regression, 

( )tUE IVOL , as a measure of unexpected changes in ( )tE IVOL .  In row 6 of Table 4 we see that 

( )tUE IVOL  has a strong positive correlation with one-month-ahead stock returns in the cross-

sectional regression even when we control for ( )tE IVOL .  Again, the explanatory power of 

( )tE IVOL  attenuates substantially, as compared with the univariate regression results reported in 

row 1 of Table 4. 

 The analysis of Section II, particularly the Monte Carlo simulations, clearly demonstrated 

that the look-ahead bias in in-sample EGARCH idiosyncratic volatility increases with the 

skewness of returns.  An interesting way to see this in Fu’s (2009) data is to use log returns 

instead of simple returns as the dependent variable in cross-sectional regressions.  Naturally, 

using log returns will alter the distribution of returns, making it more ‘Normal’ and, thus, reduce 
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the skewness in the data.  Moreover, Asparouhova, Bessembinder, and Kalcheva (2011) show 

that, unlike simple returns, log returns are not subject to biases resulting from microstructure 

noises.  These estimation results are reported in Panel B of Table 4.  As expected, when using 

log returns, we find that the relation between ( )tE IVOL  and one-month-ahead stock returns 

becomes statistically insignificant in the univariate regression at conventional significance levels 

(row 7).  When we control for unexpected changes in ( )tE IVOL in the cross-sectional regression, 

the relation becomes even negative, and statistically significant in some cases, as shown in rows 

10 to 12.  Note that in both Panels A and B, unexpected changes in ( )tE IVOL are always 

significantly positively correlated with expected stock returns.  This result reflects the same 

underlying phenomenon; returns are positively correlated with E(IVOLt) estimates because the 

estimates are contaminated by a look-ahead bias.13 

 

B. Out-of-Sample EGARCH Idiosyncratic Volatility and the Cross-Section of Stock Returns 

[Insert Table 5 here] 

We have shown that Fu’s (2009) E(IVOLt) estimates are not positively associated with 

expected returns when we control for a variety of measures that proxy for the look-ahead bias.  

We now turn to the most direct demonstration that Fu’s (2009) result is due to the look-ahead 

bias.  Table 5 reports on the relation between out-of-sample EGARCH idiosyncratic volatility 

and expected stock returns.  In Panel A, we report the cross-sectional regression results for the 

July 1963 to December 2006 period, mirroring the sample period in Fu (2009).  We also consider 

                                                            
13 As a robustness check, Fu (2009) also uses log returns in cross-sectional regressions but only tabulates the results 

for multivariate regressions that include both ( )tE IVOL and market capitalization as independent variables.  As we 

explain in sub-section III.C, this specification strengthens the look-ahead bias and generates a positive size effect.    
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his three empirical specifications: univariate regression (row 1); controlling for market 

capitalization and the book-to-market equity ratio (row 2); and, also controlling for past returns, 

the turnover, and the coefficient of variation of the turnover (row 3).  As in Fu (2009), we use the 

log transformations of firm characteristics except for past stock returns.  We find that out-of-

sample EGARCH idiosyncratic volatility, ( _ )tE IVOL O , has a positive correlation with expected 

stock returns in all three specifications; however, the correlation is always statistically 

insignificant at conventional significance levels.  Simply put, the positive relation between 

idiosyncratic risk and returns goes away when we estimate the risk without the look-ahead bias. 

 As a robustness check, we also consider two different samples, both beginning in 

September 1931.  Because book equity data are unavailable for this early period, we cannot 

control for the book-to-market equity ratio in cross-sectional regressions for these two samples.  

Panel B of Table 5 reports the results for the early sample spanning the September 1931 to June 

1963 period.  We again find a positive, albeit insignificant, relation between ( _ )tE IVOL O  and 

expected stock returns.  Second, Panel C reports the results for the full sample spanning the 

September 1931 to December 2009 period.  Row 7 shows that the relation is significantly 

positive at the 5% level in the univariate regression.  It, however, becomes statistically 

insignificant when we control for market capitalization (row 8).  Because small stocks have 

higher expected returns than do big stocks partly because the former are less liquid (Amihud and 

Mendelson (1980)), our findings are consistent with those reported by Spiegel and Wang (2005), 

who document a strong positive relation between EGARCH idiosyncratic volatility and various 

measures of illiquidity.  Row 9 shows that ( _ )tE IVOL O  remains statistically insignificant when 

we control for other commonly used determinants of expected stock returns. 
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C. The Positive Size Effect Revisited 

 In the CRSP data, there is a pervasive negative relation between market capitalization and 

expected stock returns.  That is, small stocks tend to have higher expected returns than do big 

stocks.  Fu (2009), however, shows that the size effect becomes significantly positive after 

controlling for EGARCH idiosyncratic volatility in cross-sectional regressions.  He highlights 

this finding as direct support for a novel prediction of Merton’s (1987) model—the relation 

between market capitalization and expected stock returns should be positive when we control for 

the effect of conditional idiosyncratic volatility on expected stock returns. 

 In Table 5 we control for out-of-sample idiosyncratic risk and find that size (column 1) is 

significantly, negatively related to returns in the 1963-2006 period that Fu (2009) analyzes.  

Furthermore, this holds as well in the 1931-1963 and 1931-2009 periods.  Thus, as with the 

positive idiosyncratic risk and return relationship, we find that when we employ out-of-sample 

idiosyncratic risk estimates the results disappear. 

[Insert Table 6 here] 

 To further illustrate the nature of the bias in in-sample estimates we again use ( )tE IVOL .  

In Table 6, we first confirm that there is a positive size effect after controlling for ( )tE IVOL .  

Following Fu (2009), we consider two specifications.  First, in row 1, we include market 

capitalization, the book-to-market equity ratio, and ( )tE IVOL  as the explanatory variables.  

Second, in row 3, we add the stock return over the past six months, the turnover, and the 

coefficient of variation of the turnover to the cross-sectional regression.  For both specifications, 

we replicate the finding of a significantly positive relation between market capitalization and 

expected stock returns when controlling for ( )tE IVOL . 
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 As we did in analyzing the relation between idiosyncratic risk and return in Table 4, we 

re-run the regressions while controlling for the look ahead-bias.  To this end, we include both 

1 ( )tE IVOLD  and 2 ( )tE IVOLD  as proxies for the look-ahead bias, and find that the positive effect 

of market capitalization on expected stock returns disappears for both specifications (rows 2 and 

4).14  The results reported in row 5 show that controlling for market beta does not qualitatively 

change our results.  In Panel B, we show that the results are qualitatively similar when using log 

returns as the dependent variable.  Our results are quite intuitive.  In row 3 of Table 4, we show 

that while ( )tE IVOL  correlates positively with future stock returns, the relation is negative for 

1( )tE IVOL - .  Because of their strong negative correlation, market capitalization serves as an 

instrumental variable for 1( )tE IVOL - when deployed in conjunction with ( )tE IVOL .  Therefore, 

its predictive power disappears when we  control for the look-ahead bias. 

 

D. Forecasting One-Month-ahead Realized Idiosyncratic Volatility 

 Fu (2009) suggests that his findings differ qualitatively from those in earlier studies, e.g., 

AHXZ (2006), because EGARCH idiosyncratic volatility is a better measure of conditional 

idiosyncratic volatility than is lagged realized idiosyncratic volatility, for example, as used in 

AHXZ (2006).  We investigate this conjecture in Table 7.  As in AHXZ (2009), we use the Fama 

and MacBeth (1973) cross-sectional regression method to investigate the relation between 

EGARCH idiosyncratic volatility and one-month-ahead realized idiosyncratic volatility.15  This 

                                                            
14 We find qualitatively similar results using ( )tUE IVOL  as a proxy for the look-ahead bias; for brevity, we do not 

report these results here but they are available upon request. 

15 Realized volatility is a proxy for a latent variable—the ‘true’ one-month-ahead volatility—and is estimated with 

measurement error that is sensitive to methodology, estimation frequency, and estimation window, etc.  Therefore, 
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approach is appropriate because our purpose is to understand the cross-sectional relation between 

conditional idiosyncratic volatility and stock returns. 

[Insert Table 7 here] 

 As illustrated in Section II, in-sample EGARCH idiosyncratic volatility tends to be high 

when the one-month-ahead return takes an extreme value, which in turn implies a high realized 

idiosyncratic volatility.  Therefore, the look-ahead bias tends to strengthen the positive relation 

between ( )tE IVOL and one-month-ahead realized idiosyncratic volatility.  To illustrate this point, 

we report univariate cross-sectional regression results using both in-sample estimate, ( )tE IVOL , 

and out-of-sample estimate, ( _ )tE IVOL O , in rows 1 and 2, respectively, of Table 7.  While both 

variables have a strong positive correlation with one-month-ahead realized idiosyncratic 

volatility, the adjusted R2 is substantially larger for the former.  With this caveat in mind, we 

discuss below the relative predictive power of EGARCH idiosyncratic volatility versus lagged 

realized idiosyncratic volatility for one-month-ahead realized idiosyncratic volatility. 

 In Table 7, we show that, consistent with the results reported in AHXZ (2009), lagged 

realized idiosyncratic volatility, 1tIVOL- , has significant predictive power for one-month-ahead 

realized idiosyncratic volatility (row 4).  Noticeably, the adjusted R2 is 45%, which is 

substantially higher than the adjusted R2 of 28% for ( )tE IVOL , as reported in row 1.  Moreover,  

row 5 shows that when we include both variables in the cross-sectional regression, lagged 

realized idiosyncratic volatility remains highly significant, and the adjusted R2 increases only 

                                                                                                                                                                                                
as a robustness check, we employ future options-implied volatility rather than future realized idiosyncratic volatility 

as the benchmark.  Options-implied volatility is the market’s estimate of future volatility.  Moreover, it should 

contain relatively little measurement error because it is available mainly for large optionable stocks.  We find 

qualitatively similar results (untabulated) using the future options-implied volatility as the benchmark. 
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moderately from 45% in the univariate regression (row 4) to 50% in the multivariate regression.  

We find qualitatively similar results when controlling for other firm characteristics, including 

market capitalization, ME, the book-to-market equity ratio, BE/ME, the return over the past six 

months, RET(-2,-7), the turnover, TURN, and the coefficient of variation of the turnover, 

CVTURN, in the cross-sectional regression (row 10).  Therefore, lagged realized idiosyncratic 

volatility provides important information about one-month-ahead realized idiosyncratic volatility 

beyond EGARCH idiosyncratic volatility.  These results cast doubt on the argument that the 

difference between Fu (2009) and AHXZ’s (2006) findings reflects mainly the fact that 

EGARCH idiosyncratic volatility is a better measure of conditional idiosyncratic volatility than 

is lagged realized idiosyncratic volatility.  

 

IV. Additional Robustness Tests 

A. Daily Data 

[Insert Table 8 here] 

For monthly data, we have to use a relatively small number of return observations to 

estimate EGARCH idiosyncratic volatility.  To address the concern that the EGARCH estimation 

can be quite sensitive to tuning parameters due to the small sample sizes involved, we estimate 

the EGARCH idiosyncratic volatility using a two-year rolling window of daily returns with a 

minimum of 252 observations over the period July 1964 to December 2009.16  Specifically, we 

estimate the nine EGARCH specifications using a two-year rolling window of daily stock returns 

through the last business day of month t, and use the specification with the lowest Akaike 

Information Criterion to make an out-of-sample idiosyncratic volatility forecast for (1) the next 

day or (2) the next d days, where d is the number of trading days in month t+1.  For the first 
                                                            
16 We thank an anonymous referee for suggesting this alternative measure of EGARCH idiosyncratic volatility. 
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measure, we multiply the daily idiosyncratic volatility estimate by 22  to obtain the expected 

idiosyncratic volatility of month t+1, ( _ 1)E IVOL D .  For the second measure, we aggregate d 

conditional daily volatility estimates to get a monthly measure, ( _ 2)E IVOL D .  While both 

alternative EGARCH idiosyncratic volatilities have highly significant predictive power for 

realized idiosyncratic volatility or options-implied volatility (untabulated),  in Table 8, we again 

find that neither measure forecasts the cross-section of stock returns in either univariate or 

multivariate regressions.  These results cast further doubt on the existing evidence of a positive 

relation between EGARCH idiosyncratic volatility and future stock returns. 

 

B. Size, Liquidity, and Price Screens 

 Bali, Cakici, Yan, and Zhang (2005) and Bali and Cakici (2008) show that AHXZ’s 

(2006) finding of a negative relation between realized idiosyncratic volatility and future stock 

returns is sensitive to a screen for size, price, and illiquidity.  As a robustness check, following 

Bali and Cakici (2008), we exclude (1) the smallest decile stocks by NYSE breakpoints, (2) the 

most illiquid decile stocks, and (3) stocks with a price below $10.  After screening for size, price, 

and illiquidity, we sort stocks into two portfolios by market capitalization.  Interestingly, we find 

that in-sample EGARCH idiosyncratic volatility measure forecasts returns only for small stocks 

but has negligible predictive power for large stocks.  This result is not too surprising in light of 

the Monte Carlo simulation results reported in sub-section II.D above.  Small stocks tend to have 

larger skewness than do large stocks and, thus, are more susceptible to the look-ahead bias in in-

sample EGARCH idiosyncratic volatility measure.  In contrast, the out-of-sample EGARCH 

idiosyncratic volatility estimated using either monthly or daily return data always has negligible 
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predictive power for both small and large stocks.  For brevity, we do not tabulate these results 

but they are available on request. 

 

C. Illiquidity and Idiosyncratic Skewness 

 We have shown via simulations that the look‐ahead bias in in-sample EGARCH 

idiosyncratic volatility increases monotonically with skewness.  Consistent with this prediction, 

in Panel B of Table 6, we show that the predictive power of in-sample EGARCH idiosyncratic 

volatility attenuates substantially when we use log returns.  Recent studies, e.g., Boyer, Mitton, 

and Vorkink (2010), document a strong negative relation between idiosyncratic skewness and 

future stock returns.  Moreover, Bali and Cakici (2008) provide strong evidence for the 

interaction of illiquidity and idiosyncratic volatility and the effect of this interaction on future 

stock returns.  As a robustness check, we include both idiosyncratic skewness and the Amihud 

(2002) illiquidity measures as additional control variables and redo the empirical analyses 

reported in Tables 5 to 7.  We find qualitatively similar results (untabulated). 

 

D. Instrumental Variables 

In Table 5, we reported that out-of-sample EGARCH idiosyncratic volatility has a 

positive, albeit weak, correlation with expected stock returns.  On the other hand, we reported in 

Table 4 that the correlation with expected returns is significantly positive for in-sample 

EGARCH idiosyncratic volatility.  Some may argue that the latter is a better measure of 

conditional idiosyncratic volatility than is the former because we need a large number of return 

observations to obtain precise estimates of EGARCH model parameters.  Although investors 

cannot exploit its correlation with expected stock returns for their portfolio choices, in-sample 
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EGARCH idiosyncratic volatility is nevertheless useful because it provides a powerful test of 

economic theories such as Merton’s (1987) under-diversification hypothesis.  We tested this idea 

formally using several instrumental variables specifications (available upon request). None of the 

instrumental variable specifications generated a significantly positive relation between 

idiosyncratic volatility and expected stock returns.   

 

V. EGARCH Idiosyncratic Volatility Estimated Using the Full Sample 

While Fu (2009) estimates EGARCH idiosyncratic volatility recursively, he indicates in 

his footnote 10 that he finds the same results using the full period data to estimate EGARCH 

model parameters.  Because full-sample EGARCH estimation is computationally less intensive 

than is recursive EGARCH estimation, many authors, e.g., Brockman and Schutte (2007) and 

Peterson and Smedema (2011), have subsequently relied upon only the full-sample EGARCH 

estimates in their studies.  The simulation results reported in sub-section II.D suggest that full-

sample estimates are subject to a similar look-ahead bias.  Therefore, it is not surprising that (in 

results that, for brevity, are not reported here) we find that the full-sample EGARCH estimates 

also have the look-ahead bias we documented for Fu’s (2009) recursively estimated EGARCH 

estimates.  As we noted in sub-section II.D, full-sample estimates may actually yield even larger 

cross-sectional coefficients in the second stage regression than recursive in-sample estimates. 

 

VI. Conclusion 

We contribute to the empirical literature on the relation between expected idiosyncratic 

volatility and the cross-section of stock returns by reconsidering findings that EGARCH 

idiosyncratic volatility is positively related to returns in the cross-section.  We show both 
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analytically and empirically that the positive idiosyncratic risk-return relation is driven by a 

look-ahead bias accidentally introduced by standard methods of estimating month t EGARCH 

idiosyncratic volatility.  We show that when month t EGARCH idiosyncratic volatility is 

forecasted using returns only up through month t-1, there is no significant cross-sectional relation 

between EGARCH idiosyncratic volatility and returns.  EGARCH estimates can be quite 

sensitive to the tuning parameters in small samples.  To allay fears that this may account for our 

conclusions, we document that our results continue to hold when we estimate EGARCH 

volatility from large samples of daily returns. 

More generally, we demonstrate that, somewhat counter intuitively, the look-ahead bias 

introduced by incorporating one extra monthly return is so large that it affects statistical 

inference.  To aid our intuition, we conduct Monte Carlo simulations to evaluate the impact of 

the look-ahead bias.  The simulation results show that at skewness levels similar to, or even 

smaller than, those exhibited by monthly CRSP data the look-ahead bias is significant.  In 

addition, the bias is monotonically increasing in skewness.  Therefore, the bias will be more 

pronounced in samples that exhibit greater return skewness (e.g., notably, small stocks).  

Moreover, despite the fact that the simulations show that the bias is monotonically decreasing in 

the length of the return series used in estimation, the bias is still significant for return series 

equivalent to the entire length of the monthly CRSP stock return series. 
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Table 1 

The Impact of Skewness on the Look-ahead Bias: Monte Carlo Simulation Using 

EGARCH (1,1) Estimation 

Out of Sample In Sample Full Sample 
Panel A SKEW = 0.0 

Intercept -0.000 0.000 0.001 
(-0.099) (0.007) (0.665) 

E(IVOL) -0.005 -0.007 -0.023 
(-0.134) (-0.223) (-0.732) 

Adj. R2 0.003 0.004 0.006 
Panel B SKEW = 0.4 

Intercept 0.001 -0.001 -0.004* 
(0.670) (-0.510) (-2.109) 

E(IVOL) -0.021 0.022 0.069* 
(-0.580) (0.617) (2.133) 

Adj. R2 0.004 0.003 0.004 
Panel C SKEW = 0.8 

Intercept 0.002 -0.005* -0.012** 
(1.217) (-2.581) (-6.454) 

E(IVOL) -0.039 0.076* 0.216** 
(-1.418) (2.362) (6.203) 

Adj. R2 0.001 0.003 0.007 
Panel D SKEW = 1.1 

Intercept -0.000 -0.007** -0.021** 
(-0.012) (-3.774) (-11.715) 

E(IVOL) -0.005 0.118** 0.365** 
(-0.167) (3.609) (10.722) 

Adj. R2 0.002 0.003 0.007 
Panel E SKEW = 1.6 

Intercept -0.002 -0.007** -0.024** 
(-1.464) (-4.331) (-14.869) 

E(IVOL) 0.043 0.135** 0.450** 
(1.452) (4.294) (14.057) 

Adj. R2 -0.000 0.001 0.009 
 

Notes:  The table reports the OLS results of the cross-sectional regression of returns on EGARCH estimated 

idiosyncratic volatility in simulated data.  For each of the iterations, 120 artificial stock returns are simulated for 260 

months. The unconditional volatility is 0.06 and the conditional mean is set equal to 0.  For each of these 120 stock 



37 
 

return series, we run out-of-sample, in-sample, and full-sample EGARCH (1,1) to estimate idiosyncratic volatility 

which we denote by E(IVOL).  The default SAS convergence criterion of 0.001 is used, and we set the maximum 

iterations to 1,000.  We require 60 months to start the expanding window volatility estimation for the out-of-sample 

and in-sample estimates.  The two samples differ only in the last return.  For each panel, we generate the i.i.d. error 

term of the EGARCH model using the Generalized Lambda Distribution algorithm of Ramberg and Schmeiser 

(1974) with kurtosis of 3.2 and the stated skewness.  Newey-West corrected t-statistics are reported in parentheses.  

Asterisks * or ** indicate significance at the 5% and 1% levels, respectively. 
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Table 2 

The Impact of Skewness on the Look-ahead Bias: Monte Carlo Simulation Using Nine 

EGARCH Combinations 

Out of Sample In Sample Full Sample 
Panel A SKEW = 0.0 

Intercept -0.000 -0.000 0.002 
(-0.152) (-0.344) (1.695) 

E(IVOL) 0.005 0.008 -0.036 
(0.272) (0.495) (-1.356) 

Adj. R2 0.005 0.006 0.009 
Panel B SKEW = 0.4 

Intercept 0.001 -0.004* -0.008** 
(0.877) (-2.593) (-5.684) 

E(IVOL) -0.019 0.078* 0.138** 
(-0.734) (2.568) (5.574) 

Adj. R2 0.002 0.005 0.006 
Panel C SKEW = 0.8 

Intercept -0.001 -0.007** -0.025** 
(-0.476) (-6.653) (-18.642) 

E(IVOL) 0.003 0.117** 0.435** 
(0.138) (6.693) (16.679) 

Adj. R2 -0.000 0.003 0.020 
Panel D SKEW = 1.1 

Intercept 0.001 -0.009** -0.034** 
(0.623) (-7.008) (-28.440) 

E(IVOL) -0.018 0.153** 0.612** 
(-0.871) (6.611) (26.195) 

Adj. R2 0.001 0.007 0.037 
Panel E SKEW = 1.6 

Intercept -0.001 -0.009** -0.036** 
(-1.621) (-6.312) (-25.895) 

E(IVOL) 0.025 0.186** 0.689** 
(1.496) (6.440) (24.401) 

Adj. R2 -0.001 0.010 0.050 
 

Notes:  The table reports the OLS results of the cross-sectional regression of returns on EGARCH estimated 

idiosyncratic volatility in simulated data.  For each of the iterations, 120 artificial stock returns are simulated for 260 

months. The unconditional volatility is 0.06 and the conditional mean is set equal to 0.  For each these return series, 

we run out-of-sample, in-sample, and full-sample EGARCH (p,q) for 1 ≤ (p or q) ≤3 to estimate its idiosyncratic 
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volatility which we denote by E(IVOL).  The default SAS convergence criterion of 0.001 is used for each of the nine 

EGARCH combinations, and we set the maximum iterations to 1,000.  We select the one that converges with the 

lowest AIC.  We require 60 months to start the expanding window volatility estimation for the out-of-sample and in-

sample estimates.  The two samples differ only in the last return.  For each panel, we generate the i.i.d. error term of 

the EGARCH model using the Generalized Lambda Distribution algorithm of Ramberg and Schmeiser (1974) with 

kurtosis of 3.2 and the stated skewness.  Newey-West corrected t-statistics are reported in parentheses.  Asterisks * 

or ** indicate significance at the 5% and 1% levels, respectively. 
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Table 3 

The Impact of the Length of the Estimation Period on the Look-Ahead Bias: Monte Carlo 

Simulation Using Nine EGARCH Combinations over the Full Sample with SKEW = 0.8 

  T = 100   T = 200  T = 300   T = 400 
Intercept -0.032** -0.027** -0.023** -0.018** 

(-17.860) (-13.489) (-11.898) (-9.436) 
E(IVOL) 0.599** 0.482** 0.399** 0.321** 

(17.191) (12.805) (11.327) (8.953) 

Adj. R2 0.053 0.022 0.014 0.011 

  T = 500   T = 600  T = 700   T = 800 
Intercept -0.016** -0.012** -0.010** -0.009** 

(-9.381) (-7.801) (-7.522) (-7.994) 
E(IVOL) 0.274** 0.202** 0.176** 0.157** 

(8.873) (7.383) (7.052) (7.441) 

Adj. R2 0.008 0.006 0.005 0.004 

  T = 900   T = 1000  T = 2000   T = 5000 
Intercept -0.008** -0.008** -0.005** -0.002** 

(-6.788) (-6.842) (-6.250) (-3.208) 
E(IVOL) 0.135** 0.132** 0.083** 0.045** 

(6.444) (6.556) (6.119) (3.337) 

Adj. R2 0.004 0.004 0.003 0.006 
Notes:  The table reports the OLS results of the cross-sectional regression of returns on EGARCH estimated 

volatility in simulated data.  The unconditional volatility is 0.06 and the conditional mean is set equal to 0.  For each 

of the iterations, 120 artificial stock returns are simulated over a sample of T months.  For each of these 120 stock 

returns series, we run full-sample EGARCH (p,q) for 1 ≤ p ≤3 and 1 ≤ q ≤ 3 to estimate its idiosyncratic volatility 

which we denote by E(IVOL).  The default SAS convergence criterion of 0.001 is used for each of the nine 

EGARCH combinations, and we set the maximum iterations to 1,000.  We select the one that converges with the 

lowest AIC.  For each simulation, we generate the i.i.d. error term of the EGARCH model using the Generalized 

Lambda Distribution algorithm of Ramberg and Schmeiser (1974) with skewness of 0.8 and kurtosis of 3.2.  Newey-

West corrected t-statistics are reported in parentheses.  Asterisks * or ** indicate significance at the 5% and 1% 

levels, respectively. 
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Table 4 

In-Sample EGARCH Idiosyncratic Volatility and Expected Stock Returns 

 ( )tE IVOL  1( )tE IVOL -  1 ( )tE IVOLD  2 ( )tE IVOLD  ( )tUE IVOL  Adj. R2 

Panel A Simple Returns 
1 
 

0.138** 
(6.607)    

 0.030 
 

2 
  

0.000 
(0.019)   

 0.019 
 

3 
 

0.211** 
(11.746) 

-0.125** 
(-13.040)   

 0.037 
 

4 
 

0.086** 
(3.685)  

0.125** 
(13.040)  

 0.037 
 

5 
 

0.065** 
(2.641)  

0.097** 
(11.854) 

0.078** 
(9.946) 

 0.040 
 

6 
 

0.074** 
(2.990)    

0.228** 
(11.471) 

0.039 
 

 
Panel B Log Returns 

7 
 

0.019 
(0.983)    

 0.026 
 

8 
  

-0.070** 
(-4.068)   

 0.021 
 

9 
 

0.094** 
(5.881) 

-0.129** 
(-13.258)   

 0.033 
 

10 
 

-0.035 
(-1.553)  

0.129** 
(13.258)  

 0.033 
 

11 
 

-0.057* 
(-2.365)  

0.100** 
(12.376) 

0.083** 
(10.580) 

 0.037 
 

12 
 

-0.050* 
(-2.066)    

0.238** 
(12.005) 

0.035 
 

Notes: The table reports Fama and MacBeth (1973) cross-sectional regressions of forecasting one-month-ahead 

stock returns.  ( )tE IVOL  is EGARCH idiosyncratic volatility that we obtain from Fangjian Fu at Singapore 

Management University.  1( )tE IVOL -  is one-month lag of ( )tE IVOL .  1 ( )tE IVOLD  is the difference between 

( )tE IVOL  and 1( )tE IVOL - .  2 ( )tE IVOLD  is the difference between ( )tE IVOL  and its two-month lag, 

2( )tE IVOL - .  ( )tUE IVOL  is the residual from the time-series regression of ( )tE IVOL on a constant and its one-

month and two-month lags.  We report Newey-West corrected t-statistics in parentheses.  The data span the July 

1963 to December 2006 period.  Asterisks * or ** indicate significance at the 5% and 1% levels, respectively. 
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Table 5 

Out-of-Sample EGARCH Idiosyncratic Volatility and Expected Stock Returns 

 ( )Ln ME  ( / )Ln BE ME

 
(-2, -7)RET ( )Ln TURN ( )Ln CVTURN

 
( _ )tE IVOL O

 
Adj. R2

Panel A July 1963 to December 2006 
1      0.015 

(0.995) 
0.014 

2 -0.089* 
(-2.296) 

0.211** 
(3.714) 

   0.006 
(0.475) 

0.033 

3 -0.145** 
(-3.693) 

0.171** 
(3.224) 

0.702** 
(3.987) 

-0.059 
(-0.794) 

-0.453** 
(-6.077) 

0.003 
(0.460) 

0.054 

 
Panel B September 1931 to June 1963 

4      0.028 
(1.523) 

0.015 

5 -0.260** 
(-3.021) 

    0.002 
(0.130) 

0.035 

6 -0.309** 
(-3.912) 

 0.745 
(1.760) 

-0.121 
(-1.844) 

-0.300** 
(-2.614) 

0.004 
(0.373) 

0.070 

 
Panel C September 1931 to December 2009 

7      0.024* 
(2.185) 

0.015 

8 -0.208** 
(-5.010) 

    0.002 
(0.247) 

0.030 

9 -0.264** 
(-6.727) 

 0.700** 
(3.307) 

-0.089 
(-1.808) 

-0.384** 
(-6.259) 

0.004 
(0.703) 

0.056 

Notes: The table reports Fama and MacBeth (1973) cross-sectional regressions of forecasting one-month-ahead 

stock returns.  ( )Ln ME  is log market capitalization.  ( / )Ln BE ME  is log book-to-market equity ratio.  (-2, -7)RET  

is the return over the previous 7th to 2nd months.  ( )Ln TURN  is log turnover.  ( )Ln CVTURN  is log coefficient of 

variation of the turnover.  ( _ )tE IVOL O  is out-of-sample EGARCH idiosyncratic volatility.  We report Newey-

West corrected t-statistics in parentheses.  Asterisks * or ** indicate significance at the 5% and 1% levels, 

respectively. 
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Table 6 

Size, In-Sample EGARCH Idiosyncratic Volatility, and the Cross-Section of Stock Returns 

 Beta  ( )Ln ME  ( / )Ln BE ME

 
(-2, -7)RET ( )Ln TURN ( )Ln CVTURN

 
( )tE IVOL  1 ( )tE IVOLD 2 ( )tE IVOLD

 
Adj. R2

Panel A Simple Returns 
1  0.204** 

(5.504) 
0.444** 
(8.379) 

   0.164** 
(9.002) 

  0.045 

2  0.049 
(1.437) 

0.308** 
(6.191) 

   0.070** 
(3.205) 

0.095** 
(12.422) 

0.076** 
(10.942) 

0.053 

3  0.127** 
(3.453) 

0.392** 
(8.151) 

0.910** 
(5.503) 

-0.360** 
(-5.506) 

-0.730** 
(-9.040) 

0.184** 
(11.782) 

  0.065 

4  -0.003 
(-0.096) 

0.281** 
(6.011) 

0.891** 
(5.530) 

-0.218** 
(-3.489) 

-0.579** 
(-7.845) 

0.088** 
(4.917) 

0.089** 
(12.583) 

0.072** 
(11.922) 

0.070 

5 -0.087 
(-0.534) 

-0.011 
(-0.351) 

0.275** 
(6.102) 

0.907** 
(6.828) 

-0.208** 
(-4.053) 

-0.585** 
(-8.120) 

0.090** 
(5.455) 

0.088** 
(12.787) 

0.071** 
(12.168) 

0.076 

 
Panel B Log Returns 

6  0.223** 
(5.976) 

0.476** 
(8.685) 

   0.049** 
(2.983) 

  0.043 

7  0.065 
(1.923) 

0.412** 
(8.502) 

   -0.047* 
(-2.221) 

0.096** 
(12.832) 

0.079** 
(11.548) 

0.051 

8  0.146** 
(3.930) 

0.412** 
(8.502) 

1.044** 
(6.497) 

-0.406** 
(-5.760) 

-0.698** 
(-8.370) 

0.074** 
(5.468) 

  0.063 

9  0.017 
(0.499) 

0.301** 
(6.446) 

1.025** 
(6.673) 

-0.264** 
(-3.975) 

-0.547** 
(-7.244) 

-0.023 
(-1.378) 

0.088** 
(13.023) 

0.073** 
(12.766) 

0.068 

10 -0.112 
(-0.673) 

0.007 
(0.223) 

0.295** 
(6.549) 

1.037** 
(6.983) 

-0.248** 
(-4.581) 

-0.551** 
(-7.483) 

-0.020 
(-1.310) 

0.087** 
(13.320) 

0.071** 
(13.203) 

0.073 

Notes: The table reports Fama and MacBeth (1973) cross-sectional regressions of forecasting one-month-ahead stock returns.  Beta  is the loading on the market 

risk.  ( )Ln ME  is log market capitalization.  ( / )Ln BE ME  is log book-to-market equity ratio.  (-2, -7)RET  is the return over the previous 7th to 2nd months.  
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( )Ln TURN  is log turnover.  ( )Ln CVTURN  is log coefficient of variation of the turnover.  ( )tE IVOL  is EGARCH idiosyncratic volatility that we obtain from 

Fangjian Fu at Singapore Management University.  1 ( )tE IVOLD  is the difference between ( )tE IVOL  and its one-month lag, 1( )tE IVOL - .  2 ( )tE IVOLD  is the 

difference between ( )tE IVOL  and its two-month lag, 2( )tE IVOL - .  We report Newey-West corrected t-statistics in parentheses.  Asterisks * or ** indicate 

significance at the 5% and 1% levels, respectively.  The data span the July 1963 to December 2006 period.   
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Table 7 

The Cross-Section of Expected Idiosyncratic Volatility 

 
( )Ln ME  ( / )Ln BE ME

 
(-2, -7)RET

 
( )Ln TURN

 
( )Ln CVTURN

 
( )tE IVOL

 
( _ )tE IVOL O

 
1( )tE IVOL -

 
1tIVOL - Adj. R2

1 
      

0.631** 
(45.683) 

 
  

0.277 
 

2 
       

0.507** 
(40.069)   

0.163 
 

3 
       

 0.579** 
(41.139)  

0.234 
 

4 
       

 
 

0.678** 
(85.633) 

0.454 
 

5       0.172**  0.618** 0.482 
       (46.470)  (65.690)  
6 
      

0.294** 
(57.239) 

 
 

0.550** 
(56.495) 

0.502 
 

7 
      

0.445** 
(48.480) 

 0.322** 
(39.679)  

0.325 
 

8 
       

 0.211** 
(33.346) 

0.582** 
(57.931) 

0.480 
 

9 
      

0.250** 
(62.876) 

 0.104** 
(20.691) 

0.522** 
(48.539) 

0.508 
 

10 
 

-0.823** 
(-20.357) 

-0.343** 
(-11.912) 

-1.241** 
(-9.745) 

0.376** 
(10.452) 

0.214** 
(4.005) 

0.130** 
(25.895) 

 
 

0.482** 
(42.507) 

0.517 
 

11 
 

-0.702** 
(-19.536) 

-0.216** 
(-8.604) 

-1.259** 
(-10.627) 

0.212** 
(6.341) 

0.041 
(0.849) 

0.204** 
(54.381) 

 0.063** 
(14.096) 

0.448** 
(39.265) 

0.535 
 

Notes: The table reports the Fama and MacBeth (1973) cross-sectional regressions of forecasting one-month-ahead realized idiosyncratic volatility.  ( )Ln ME  is 

log market capitalization.  ( / )Ln BE ME  is log book-to-market equity ratio.  (-2, -7)RET  is the return over the previous 7th to 2nd months.  ( )Ln TURN  is log 

turnover.  ( )Ln CVTURN  is log coefficient of variation of the turnover.  ( )tE IVOL  is EGARCH idiosyncratic volatility that we obtain from Fangjian Fu at 
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Singapore Management University.  1( )tE IVOL -  is one-month lag of ( )tE IVOL .  ( _ )tE IVOL O  is out-of-sample EGARCH idiosyncratic volatility.  1tIVOL -  is 

one-month lagged realized idiosyncratic volatility.  We report Newey-West corrected t-statistics in parentheses.  Asterisks * or ** indicate significance at the 5% 

and 1% levels, respectively.  The data span the July 1963 to December 2006 period.   
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Table 8 

Out-of-Sample EGARCH Idiosyncratic Volatility Estimated Using Daily Return Data 

 ( )Ln ME  ( / )Ln BE ME

 
(-2, -7)RET ( )Ln TURN ( )Ln CVTURN  ( _ 1)E IVOL D ( _ 2)E IVOL D

 
Adj. R2 

Panel A: July 1964  to December 2006  
1      0.017 

(1.230) 
 0.022 

2 -0.153** 
(-3.980) 

0.157* 
(2.530) 

   -0.003 
(-0.300) 

 0.037 

3 -0.232** 
(-5.840) 

0.117* 
(2.090) 

0.822** 
(5.140) 

-0.077 
(-1.030) 

-0.005** 
(-6.550) 

-0.001 
(-0.080) 

 0.055 

4       0.019 
(1.130) 

0.027 

5 -0.165** 
(-4.810) 

0.144* 
(2.420) 

    -0.009 
(-0.600) 

0.040 

6 -0.238** 
(-6.600) 

0.112* 
(2.050) 

0.811** 
(5.110) 

-0.070 
(-0.970) 

-0.005** 
(-6.890) 

 -0.004 
(-0.340) 

0.057 

Panel B: July 1964  to December 2009 
7      0.016 

(1.170) 
 0.021 

8 -0.169** 
(-3.600) 

0.135* 
(2.220) 

   -0.005 
(-0.480) 

 0.036 

9 -0.237** 
(-5.180) 

0.092 
(1.640) 

0.652** 
(2.730) 

-0.056 
(-0.710) 

-0.004** 
(-4.120) 

-0.003 
(-0.410) 

 0.054 

10       0.014 
(0.860) 

0.027 

11 -0.191** 
(-4.120) 

0.123* 
(2.110) 

    -0.014 
(-1.010) 

0.039 

12 -0.255** 
(-5.640) 

0.087 
(1.600) 

0.610* 
(2.380) 

-0.043 
(-0.560) 

-0.004** 
(-4.090) 

 -0.012 
(-0.950) 

0.056 
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Notes: The table reports Fama and MacBeth (1973) cross-sectional regressions of forecasting one-month-ahead stock returns.  ( )Ln ME  is log market 

capitalization.  ( / )Ln BE ME  is log book-to-market equity ratio.  (-2, -7)RET  is the return over the previous 7th to 2nd months.  ( )Ln TURN  is log turnover.  

( )Ln CVTURN  is log coefficient of variation of the turnover.  ( _ 1)E IVOL D  and ( _ 2)E IVOL D  are out-of-sample EGARCH idiosyncratic volatilities estimated 

using daily return data.  We report Newey-West corrected t-statistics in parentheses.  Asterisks * or ** indicate significance at the 5% and 1% levels, 

respectively. 

 

 

 

 
 


