

J.M.Osterburg

1 What are The 99?

We are trying something new for the Common Final Exam in Calculus II that will be given in March, 2010. We have created a collection of 99 problems, known as **The 99**. Approximately two-thirds of the questions on the common final will be a modification of one of these. There is more to Calculus II than is covered in **The 99**, but if you master these questions you will have a solid foundation in Calculus II, which will be of great help in Calculus II, IV and Differential Equations.

2 What is the Point of The 99?

The purpose is to give you a place to start studying for the Common Final; remember the bulk of the common final will consist of questions taken from $The \ 99$.

3 Can I Ignore everything else?

Probably not a good idea. The questions from $The \ 99$ cover $2/3^{rd}$ of 1/2 of the final exam.

4 Where Can You Find *The 99*?

- Most instructors have put 10 problem sets of 10 problems each¹ on your *CalcPortal*.
 & you can repeatedly practice the problems. Also you will discover what we mean by 'modify.' ² The questions on the final will have the same sort of parameter changes.
- Your instructor may have put a version on Bb.
- On the door of office 606 B Old Chem. there will be an Errata sheet, answers and copies of **The 99**. There will be copies in the MLC and in the Mathematics Department Office 839 C OC.

¹More precisely, put 9 problem sets of 10 problems each, and 1 problem set of 9 problems.

 $^{^2{\}rm The}$ ultimate judge of what is an OK modification versus a non-0K modification is solely up to the Calculus committee.

Chapter 5: The Integral

§ 5.2: The Definite Integral

1. (§5.2,# 29) Calculate the Riemann sum R(f, P, C) for

$$f(x) = x - 1, P = \{-2, -1.8, -1.5, 0\}, C = \{-1.9, -1.5, -0.75\}.$$

2. (§5.2,# 33)Calculate $\int_0^7 (5x+5) \, dx$.

3. (§5.2,# 35) Calculate
$$\int_0^{10} (u^2 + 3u) du$$
.

4. (§5.2,# 37) Calculate
$$\int_{-a}^{6} (x^2 + x) dx$$
.

- 5. (§5.2,#57) Assuming that $\int_0^1 f(x) dx = 1$, $\int_0^2 f(x) dx = 4$ and $\int_1^4 f(x) dx = 7$. Now calculate $\int_2^4 f(x) dx$.
- §5.3: The Fundamental Theorem of Calculus: Part 1
- 6. (§5.3,#37) Find $\int_0^{\pi/4} \sec^2 t \, \mathrm{dt}$.
- 7. (§5.3,#45) Find $\int_{\pi/3}^{\pi} |\cos t| dt$.
- 8. (§5.3,#51) Evaluate the integral in terms of the constant a. $\int_{a}^{9a} \frac{1}{x} dx$.

§5.4: The Fundamental Theorem of Calculus: Part 2

- 9. (§5.4,#17) The antiderivative F(x) of $f(x) = \sec x$ satisfying the initial condition F(-2) = 0 is given by $\int_{a}^{b} \sec t \, dt$. Find a and b.
- 10. (§5.4,#19) Calculate the derivative. $\frac{\mathrm{d}}{\mathrm{dx}} \int_0^x (8t^2 4t) \,\mathrm{dt}.$

This is Problem Set 1.

- 11. (§5.4,#21) Find $\frac{\mathrm{d}}{\mathrm{dt}} \int_{60}^{t} \cos(7x) \,\mathrm{dx}.$
- 12. (§5.4,#27) Find G'(x) where $G(x) = \int_{11^4}^{x^4} \tan t \, dt$.

13. (§5.4,#31) Calculate the derivative. $\frac{\mathrm{d}}{\mathrm{ds}} \int_0^{\cos s} (3u^6 - 3u) \mathrm{du}.$

14. (§5.4,#33) Find G'(x) where $G(x) = \int_{x^7}^0 \sin^2 t \, dt$.

§5.5: The Integral as Rate

- 15. (§5.5,#3) A population of insects increases at a rate of $280 + 8t + .0.6t^2$ insects/day. Find the insect population after 6 days assuming that there are 40 insects at t = 0
- 16. (§5.5,#13) The rate in liters per minute (l/min) at which water drains from a tank is recorded at half minute intervals in the table below. Use the average of the left and the right hand-endpoint approximations to estimate the total amount of water drained during the first 3 minutes.

t min	0	0.5	1	1.5	2	2.5	3
l/min	52	48	40	36	32	28	44

17. (§5.5,#33) The traffic flow rate past a certain point on a highway is $q(t) = 1200 + 2000t - 420t^2$ where t is in hours and t = 0 is 8 AM. How many cars pass by during the time interval from 8 to 10 AM?

§5.6: Substitution Method

- 18. (§5.6,#33) Evaluate the indefinite integral. $\int (2x-1)^5 dx$.
- 19. (§5.6,#35) Evaluate the indefinite integral. $\int \frac{1}{\sqrt{8x-3}} dx$.
- 20. (§5.6,#37) Evaluate the indefinite integral. $\int x\sqrt{x^2-5} \, \mathrm{dx}$.

This is Problem Set 2.

21. (§5.6,#39) Evaluate the indefinite integral. $\int \frac{1}{(x+5)^2} dx$. 22. (§5.6,#43) Evaluate the indefinite integral. $\int \frac{6x^5 + 4x^3}{(x^6 + x^4)^3} dx$. 23. (§5.6,#47) Evaluate the indefinite integral. $\int x(x+1)^{1/5} dx$. 24. (§5.6,#51) Evaluate the indefinite integral. $\int (\sin x)^5 \cos x dx$. 25. (§5.6,#67) Evaluate the indefinite integral. $\int \frac{(\ln x)^5}{x} dx$. 26. (§5.6,#69) Evaluate the indefinite integral. $\int \frac{dx}{x \ln(5x)} dx$. 27. (§5.6,#91) Evaluate the indefinite integral. $\int \tan^7 x \sec^2 x dx$ §5.7: Further Transcendental Functions 28. (§5.7,#3) Evaluate the definite integral. $\int_0^3 \frac{dx}{x}$. 29. (§5.7,#7) Evaluate the definite integral. $\int_0^{1/3} \frac{1}{\sqrt{1-x^2}} dx$.

30. (§5.7,#13) Evaluate the definite integral. $\int_0^8 \frac{\mathrm{dx}}{x^2 + 16}$.

This is Problem Set 3.

- 31. (§5.7,#17) Evaluate the indefinite integral. $\int \frac{1}{\sqrt{25-9x^2}} dx$.
- 32. (§5.7,#25) Evaluate the indefinite integral. $\int \frac{(\arctan x)^6}{1+x^2} dx$.
- 33. (§5.7,#43) Evaluate the indefinite integral. $\int e^t \sqrt{e^t + 3} \, dt$.
- 34. (§5.7,#57) Evaluate the indefinite integral. $\int \tan(6x+1) \, \mathrm{dx}$.

§5.8: Exponential Growth and Decay

35. (§5.8,#9) Find the solution to y' = 2y satisfying y(3) = 7, where y = y(t).

Chapter 6: Applications of the Integral

§6.1: Area Between Two Curves

- 36. (§6.1,#5) Find the area between $y = \sin x$ and $y = \cos x$ over the interval $[0, \pi/4]$.
- 37. (§6.1,#11) Find the area between $y = e^x$ and $y = e^{4x}$ over the interval [0, 1].
- 38. (§6.1,#19) Find the area between $y = x^3 6x + 3$ and $y = 11 3x^2$.
- 39. (§6.1,#41) Sketch the region enclosed by the curves x 3 = 2y and $x 2 = (y 1)^2$, and compute its area.

This is Problem Set 4.

40. (§6.1,#45) Sketch the region enclosed by the curves $y = 3 \sin x$, $y = 3 \csc^2 x$, $x = \pi/4$, $x = (3\pi)/4$ and compute its area.

§6.2: Setting Up Integrals: Volume, Density and Average Value

- 41. (§6.2,#5) Find the volume of liquid needed to fill a sphere of radius R to height R/3.
- 42. (§6.2,#9) Find the volume of a solid whose base is the circle $x^2 + y^2 = 9$ and the cross sections perpendicular to the x-axis are triangles whose height and base are equal.
- 43. (§6.2,#25) Find the total mass of a 5-meter rod whose linear density function is $\rho(x) = 1 + 0.5 \sin(\pi x) \text{ kg/m}$ for $0 \le x \le 5$.

§6.3: Volumes of Revolution

- 44. (§6.3,#5) Find the volume of the solid obtained by rotating the region under the graph of the function $f(x) = x^2 3x$ about the x-axis over the interval [0,4].
- 45. (§6.3,#9) Find the volume of the solid obtained by rotating the region under the graph of the function $f(x) = \frac{2}{x+1}$ about the x-axis over the interval [0,5].
- 46. (§6.3,#11) Find the volume of the solid obtained by rotating the region under the graph of the function $f(x) = e^x$ about the x-axis over the interval [0, 4].
- 47. (§6.3,#21) Find the volume of the solid obtained by rotating the region enclosed by the graphs of the functions $y = x^4$ and $y = \sqrt[4]{x}$ over the interval [0, 1].
- 48. (§6.3,#39) Find the volume of the solid obtained by rotating the region enclosed by the graphs of the functions $y = \frac{9}{r^2}$ and $y = 10 x^2$ about y = -1.

§6.4: The Method of Cylindrical Shells

49. (§6.4,#11) Use the Shell Method to compute the volume of the solids obtained by rotating the region enclosed by the graphs of the functions $y = x^2$, $y = 8 - x^2$ & x = 1 about the *y*-axis.

This is Problem Set 5.

- 50. (§6.4,#13) Use the Shell Method to compute the volume of the solids obtained by rotating the region enclosed by the graphs of the functions $y = x^6$, $y = \sqrt[6]{x}$ about the y-axis.
- 51. (§6.4,#23) Use the Shell Method to compute the volume of rotation about the x-axis for the region underneath the graph of y = x where $0 \le x \le 3$.
- 52. (§6.4,#39) Use the Shell Method to compute the volume of the solids obtained by rotating the region below the graph of the functions $f(x) = x^2$, and above y = 0 about the y-axis.
- 53. (§6.4,#45) Find the volume of the solid obtained by rotating the region enclosed by the graphs of $y = e^{-x}$ and $y = 1 e^{-x}$ and x = 0 about y = 2.5.

§6.5: Work and Energy

- 54. (§6.5,#3) Compute the work required to stretch a spring from equilibrium to 7 cm past equilibrium, assuming the spring constant is $k = 130 \text{ kg/s}^2$.
- 55. (\$6.5,#7) If 5 J of work are needed to stretch a spring t0 10 cm beyond equilibrium, how much work is required to stretch it 19 cm beyond equilibrium?
- 56. (6.5,#11) Calculate the work against gravity required to build tower of height 16 ft and square base of side 10 ft out of brick . Assume the density of brick is 70 lbs/ft³.

Chapter 7: Techniques of Integration

§7.2: Integration by Parts

- 57. (§7.2,#1) Evaluate the integral using the Integration by Parts formula with the given choice of u and v'. $\int 4x \sin(5x) dx$, u = x and $v' = \sin 5x$.
- 58. (§7.2,#3) Evaluate the integral using the Integration by Parts formula with the given choice of u and v'. $\int (4x+7)e^{5x} dx$, u = 4x+7 and $v' = e^{5x}$.
- 59. (§7.2,#5) Evaluate the integral using the Integration by Parts formula with the given choice of u and v'. $\int x^{13} \ln x \, dx$, $u = \ln x$ and $v' = x^{13}$.

This is Problem Set 6.

60. (§7.2,#11) Use Integration by Parts to evaluate the integral. $\int 7x \cos(5x) dx$.

- 61. (§7.2,#15) Use Integration by Parts to evaluate the integral. $\int 4x^2 \ln x \, dx$.
- 62. (§7.2,#21) Use Integration by Parts to evaluate the integral. $\int 3x 6^x dx$.
- 63. (§7.2,#45) Compute the definite integral. $\int_{0}^{3} x e^{5x} dx$.
- 64. (§7.2,#47) Compute the definite integral. $\int_0^{13} x \sqrt{13 x} \, \mathrm{dx}.$
- 65. (§7.2,#49) Compute the definite integral. $\int_{1}^{21} \sqrt{x} \ln x \, dx$.

§7.3: Trigonometric Integrals

- 66. (§7.3,#3) Use the method of odd powers to evaluate the integral. $\int \sin^3 x \cos^8 x \, dx$.
- 67. (§7.3,#5) Use the method of odd powers to evaluate the integral. $\int \sin^3 x \cos^8 x \, dx$.
- 68. (§7.3,#15) Evaluate the integral using reduction formulas as necessary. $\int \tan^5 x \sec^2 x \, dx$.

§7.4: Trigonometric Substitution

69. (§7.4,#5) Use the indicated substitution to evaluate the integral. $\int \sqrt{49 - x^2} \, dx, x = 7 \sin t.$

This is Problem Set 7.

- 70. (§7.4,#7) Use the indicated substitution to evaluate the integral. $\int \frac{1}{x\sqrt{x^2-36}} dx, x = 6 \sec t.$
- 71. (§7.4,#13) Evaluate the integral using trigonometric substitution. $\int \frac{x^2 \, dx}{\sqrt{36 x^2}}$.
- 72. (§7.4,#15) Evaluate the integral using trigonometric substitution. $\int \sqrt{99 + 9x^2} \, dx$.
- 73. (§7.4,#19) Evaluate the integral using trigonometric substitution. $\int \frac{1}{r^2\sqrt{7-r^2}} dx$.
- 74. (§7.4,#29) Evaluate the integral using trigonometric substitution. $\int x^3 \sqrt{4-x^2} \, \mathrm{dx}$.

§7.6: The Method of Partial Fractions

75. (§7.6,#1) Find the partial fraction decomposition for the rational function: $\frac{8x^2 - 7x + 344}{(x^2 + 36)(x - 8)}$. 76. (§7.6,#9) Evaluate the integral. $\int \frac{dx}{(x - 2)(x - 11)}$. 77. (§7.6,#17) Evaluate the integral. $\int \frac{3x - 7}{(x - 1)(x - 1)^2} dx$. 78. (§7.6,#21) Evaluate the integral. $\int \frac{4x^2 + 31x + 48}{x(x + 4)^2} dx$. 79. (§7.6,#31) Evaluate the integral. $\int \frac{x^2 dx}{81x^2 + 36}$.

This is Problem Set 8.

§7.7: Improper Integrals

- 80. (§7.7,#15) Determine whether the improper integral converges and, if so, evaluate it. $\int_{\infty}^{-2} \frac{1}{(x+3)^{3/2}} \, \mathrm{dx}.$
- 81. (§7.7,#21) Determine whether the improper integral converges and, if so, evaluate it. $\int_{-\infty}^{0} e^{3x} dx$.
- 82. (§7.7,#27) Determine whether the improper integral converges and, if so, evaluate it. $\int_0^\infty \frac{7 \, dx}{1+x} \, dx$.
- 83. (§7.7,#43) Determine whether the improper integral converges and, if so, evaluate it. $\int_{1}^{0} 4x \ln x \, dx$.
- 84. (§7.7,#65) Use the comparison test to determine weather the improper integral converges or not. $\int_0^\infty \frac{dx}{\sqrt[3]{x^4+4}}$.

Chapter 8: Further Applications of the Integral and Taylor Polynomials

§8.1: Arc Length and Surface Area

- 85. (§8.1,#5) Calculate the arc length of y = 3x + 1 over the interval [0, 8].
- 86. (§8.1,#7) Calculate the arc length of $y = x^{3/2}$ over the interval [2,3].
- 87. (§8.1,#9) Calculate the arc length of $y = \frac{x^2}{4} \frac{\ln x}{2}$ over the interval [1, 3e].
- 88. (§8.1,#33) Compute the surface area of revolution of y = 4x + 3 about the x-axis over the interval [3, 4].
- 89. (§8.1,#37) Compute the surface area of revolution of $y = e^x$ about the x-axis over the interval [2, 3].

This is Problem Set 9.

90. (§8.1,#39) Compute the surface area of revolution of $y = \sin x$ about the x-axis over the interval $[0, 3\pi]$.

§8.3: Center of Mass

- 91. (§8.3,#11) Find the centroid of the region lying underneath the graph of the function $f(x) = \sqrt{x}$ over the interval [0, 14].
- 92. (§8.3,#13) Find the centroid of the region lying underneath the graph of the function $f(x) = 9 x^2$ over the interval [0, 3].
- 93. (§8.3,#15) Find the centroid of the region lying underneath the graph of the function $f(x) = e^{-x}$ over the interval [0,3].
- 94. (§8.3,#17) Find the centroid of the region lying underneath the graph of the function $f(x) = \sin x$ over the interval $[0, \pi/5]$.

§8.4: Taylor Polynomials

- 95. (§8.4,#1) Calculate the Taylor polynomials $T_2(x)$ and $T_3(x)$ centered at a = 0 if $f(x) = \sin x$.
- 96. (§8.4,#5) Calculate the Taylor polynomials $T_2(x)$ and $T_3(x)$ centered at a = 0 if $f(x) = \tan x$.
- 97. (§8.4,#7) Calculate the Taylor polynomials $T_2(x)$ and $T_3(x)$ centered at a = 0 if $f(x) = \frac{1}{x^2 + 1}$.
- 98. (§8.4,#23) Calculate the Taylor polynomials $T_2(x)$ and $T_3(x)$ centered at a = 1 if $f(x) = e^x$.
- 99. (§8.4,#23) Calculate the Taylor polynomials $T_2(x)$ and $T_3(x)$ centered at a = 1 if $f(x) = \sqrt{x}$.

This is Problem Set 10.