Important Information concerning the
 Common Final Exam in
 CALCULUS II 15-MATH-252
 The 99
 J.M.Osterburg

1 What are The 99?

We are trying something new for the Common Final Exam in Calculus II that will be given in March, 2010. We have created a collection of 99 problems, known as The 99. Approximately two-thirds of the questions on the common final will be a modification of one of these. There is more to Calculus II than is covered in The 99, but if you master these questions you will have a solid foundation in Calculus II, which will be of great help in Calculus II,III, IV and Differential Equations.

2 What is the Point of The 99?

The purpose is to give you a place to start studying for the Common Final; remember the bulk of the common final will consist of questions taken from The 99.

3 Can I Ignore everything else?

Probably not a good idea. The questions from The $\boldsymbol{9 9}$ cover $2 / 3^{\text {rd }}$ of $1 / 2$ of the final exam.

4 Where Can You Find The 99 ?

- Most instructors have put 10 problem sets of 10 problems each ${ }^{1}$ on your CalcPortal. \& you can repeatedly practice the problems. Also you will discover what we mean by 'modify.' ${ }^{2}$ The questions on the final will have the same sort of parameter changes.
- Your instructor may have put a version on Bb.
- On the door of office 606 B Old Chem. there will be an Errata sheet, answers and copies of The 99. There will be copies in the MLC and in the Mathematics Department Office 839 C OC.

[^0]
The 99 Problems

Chapter 5:The Integral

§ 5.2: The Definite Integral

1. (§5.2,\# 29) Calculate the Riemann sum $R(f, P, C)$ for

$$
f(x)=x-1, P=\{-2,-1.8,-1.5,0\}, C=\{-1.9,-1.5,-0.75\} .
$$

2. (§5.2,\# 33)Calculate $\int_{0}^{7}(5 x+5) \mathrm{dx}$.
3. (§5.2,\#35) Calculate $\int_{0}^{10}\left(u^{2}+3 u\right)$ du.
4. (§5.2,\#37) Calculate $\int_{-a}^{6}\left(x^{2}+x\right) \mathrm{dx}$.
5. (§5.2,\#57) Assuming that $\int_{0}^{1} f(x) d x=1, \int_{0}^{2} f(x) d x=4$ and $\int_{1}^{4} f(x) d x=7$. Now calculate $\int_{2}^{4} f(x) \mathrm{dx}$.
§5.3: The Fundamental Theorem of Calculus: Part 1
6. (§5.3,\#37) Find $\int_{0}^{\pi / 4} \sec ^{2} t \mathrm{dt}$.
7. (§5.3,\#45) Find $\int_{\pi / 3}^{\pi}|\cos t| d t$.
8. (§5.3,\#51) Evaluate the integral in terms of the constant $a . \int_{a}^{9 a} \frac{1}{x} \mathrm{dx}$.

§5.4: The Fundamental Theorem of Calculus: Part 2

9. $(\S 5.4, \# 17)$ The antiderivative $F(x)$ of $f(x)=\sec x$ satisfying the initial condition $F(-2)=0$ is given by $\int_{a}^{b} \sec t \mathrm{dt}$. Find a and b.
10. (§5.4,\#19) Calculate the derivative. $\frac{\mathrm{d}}{\mathrm{dx}} \int_{0}^{x}\left(8 t^{2}-4 t\right) \mathrm{dt}$.
11. (§5.4, \#21) Find $\frac{\mathrm{d}}{\mathrm{dt}} \int_{60}^{t} \cos (7 x) \mathrm{dx}$.
12. (§5.4,\#27) Find $G^{\prime}(x)$ where $G(x)=\int_{11^{4}}^{x^{4}} \tan t \mathrm{dt}$.
13. (§5.4,\#31) Calculate the derivative. $\frac{\mathrm{d}}{\mathrm{ds}} \int_{0}^{\cos s}\left(3 u^{6}-3 u\right) \mathrm{du}$.
14. (§5.4,\#33) Find $G^{\prime}(x)$ where $G(x)=\int_{x^{7}}^{0} \sin ^{2} t \mathrm{dt}$.

§5.5: The Integral as Rate

15. ($\S 5.5, \# 3$) A population of insects increases at a rate of $280+8 t+.0 .6 t^{2}$ insects/day. Find the insect population after 6 days assuming that there are 40 insects at $t=0$
16. $(\S 5.5, \# 13)$ The rate in liters per minute $(1 / \mathrm{min})$ at which water drains from a tank is recorded at half minute intervals in the table below. Use the average of the left and the right hand-endpoint approximations to estimate the total amount of water drained during the first 3 minutes.

t min	0	0.5	1	1.5	2	2.5	3
$\mathrm{l} / \mathrm{min}$	52	48	40	36	32	28	44

17. ($\S 5.5, \# 33$) The traffic flow rate past a certain point on a highway is $q(t)=1200+2000 t-$ $420 t^{2}$ where t is in hours and $t=0$ is 8 AM . How many cars pass by during the time interval from 8 to 10 AM ?

§5.6: Substitution Method

18. (§5.6,\#33) Evaluate the indefinite integral. $\int(2 x-1)^{5} \mathrm{dx}$.
19. (§5.6,\#35) Evaluate the indefinite integral. $\int \frac{1}{\sqrt{8 x-3}} \mathrm{dx}$.
20. (§5.6,\#37) Evaluate the indefinite integral. $\int x \sqrt{x^{2}-5} \mathrm{dx}$.

This is Problem Set 2.

21. (§5.6,\#39) Evaluate the indefinite integral. $\int \frac{1}{(x+5)^{2}} \mathrm{dx}$.
22. (§5.6, \#43) Evaluate the indefinite integral. $\int \frac{6 x^{5}+4 x^{3}}{\left(x^{6}+x^{4}\right)^{3}} \mathrm{dx}$.
23. (§5.6, \#47) Evaluate the indefinite integral. $\int x(x+1)^{1 / 5} \mathrm{dx}$.
24. (§5.6,\#51) Evaluate the indefinite integral. $\int(\sin x)^{5} \cos x \mathrm{dx}$.
25. (§5.6,\#67) Evaluate the indefinite integral. $\int \frac{(\ln x)^{5}}{x} \mathrm{dx}$.
26. (§5.6,\#69) Evaluate the indefinite integral. $\int \frac{\mathrm{dx}}{x \ln (5 x)} \mathrm{dx}$.
27. $(\S 5.6, \# 91)$ Evaluate the indefinite integral. $\int \tan ^{7} x \sec ^{2} x \mathrm{dx}$

§5.7: Further Transcendental Functions

28. (§5.7,\#3) Evaluate the definite integral. $\int_{1}^{3} \frac{\mathrm{dx}}{x}$.
29. (§5.7,\#7) Evaluate the definite integral. $\int_{0}^{1 / 3} \frac{1}{\sqrt{1-x^{2}}} \mathrm{dx}$.
30. (§5.7,\#13) Evaluate the definite integral. $\int_{0}^{8} \frac{\mathrm{dx}}{x^{2}+16}$.
31. (§5.7,\#17) Evaluate the indefinite integral. $\int \frac{1}{\sqrt{25-9 x^{2}}} \mathrm{dx}$.
32. (§5.7,\#25) Evaluate the indefinite integral. $\int \frac{(\arctan x)^{6}}{1+x^{2}} \mathrm{dx}$.
33. (§5.7,\#43) Evaluate the indefinite integral. $\int e^{t} \sqrt{e^{t}+3} \mathrm{dt}$.
34. $(\S 5.7, \# 57)$ Evaluate the indefinite integral. $\int \tan (6 x+1) d x$.
§5.8: Exponential Growth and Decay
35. ($\S 5.8, \# 9$) Find the solution to $y^{\prime}=2 y$ satisfying $y(3)=7$, where $y=y(t)$.

Chapter 6:Applications of the Integral

§6.1: Area Between Two Curves

36. (§6.1,\#5) Find the area between $y=\sin x$ and $y=\cos x$ over the interval $[0, \pi / 4]$.
37. (§6.1,\#11) Find the area between $y=e^{x}$ and $y=e^{4 x}$ over the interval $[0,1]$.
38. (§6.1,\#19) Find the area between $y=x^{3}-6 x+3$ and $y=11-3 x^{2}$.
39. (§6.1,\#41) Sketch the region enclosed by the curves $x-3=2 y$ and $x-2=(y-1)^{2}$, and compute its area.

This is Problem Set 4.

40. (§6.1,\#45) Sketch the region enclosed by the curves $y=3 \sin x, y=3 \csc ^{2} x, x=\pi / 4, x=$ $(3 \pi) / 4$ and compute its area.

§6.2: Setting Up Integrals: Volume, Density and Average Value

41. $(\S 6.2, \# 5)$ Find the volume of liquid needed to fill a sphere of radius R to height $R / 3$.
42. ($(\$ 6.2, \# 9)$ Find the volume of a solid whose base is the circle $x^{2}+y^{2}=9$ and the cross sections perpendicular to the x-axis are triangles whose height and base are equal.
43. ($\S 6.2, \# 25)$ Find the total mass of a 5 -meter rod whose linear density function is $\rho(x)=$ $1+0.5 \sin (\pi x) \mathrm{kg} / \mathrm{m}$ for $0 \leq x \leq 5$.

§6.3: Volumes of Revolution

44. ($(\$ 6.3, \# 5)$ Find the volume of the solid obtained by rotating the region under the graph of the function $f(x)=x^{2}-3 x$ about the x-axis over the interval $[0,4]$.
45. (§6.3,\#9) Find the volume of the solid obtained by rotating the region under the graph of the function $f(x)=\frac{2}{x+1}$ about the x-axis over the interval $[0,5]$.
46. ($(\$ 6.3, \# 11)$ Find the volume of the solid obtained by rotating the region under the graph of the function $f(x)=e^{x}$ about the x-axis over the interval $[0,4]$.
47. ($(66.3, \# 21)$ Find the volume of the solid obtained by rotating the region enclosed by the graphs of the functions $y=x^{4}$ and $y=\sqrt[4]{x}$ over the interval $[0,1]$.
48. ($(66.3, \# 39)$ Find the volume of the solid obtained by rotating the region enclosed by the graphs of the functions $y=\frac{9}{x^{2}}$ and $y=10-x^{2}$ about $y=-1$.

§6.4: The Method of Cylindrical Shells

49. ($\$ 6.4, \# 11$) Use the Shell Method to compute the volume of the solids obtained by rotating the region enclosed by the graphs of the functions $y=x^{2}, y=8-x^{2} \& x=1$ about the y-axis .

This is Problem Set 5.

50. (§6.4, \#13) Use the Shell Method to compute the volume of the solids obtained by rotating the region enclosed by the graphs of the functions $y=x^{6}, y=\sqrt[6]{x}$ about the y-axis .
51. ($\S 6.4, \# 23$) Use the Shell Method to compute the volume of rotation about the x-axis for the region underneath the graph of $y=x$ where $0 \leq x \leq 3$.
52. ($(66.4, \# 39)$ Use the Shell Method to compute the volume of the solids obtained by rotating the region below the graph of the functions $f(x)=x^{2}$, and above $y=0$ about the y-axis.
53. ($\$ 6.4, \# 45$) Find the volume of the solid obtained by rotating the region enclosed by the graphs of $y=e^{-x}$ and $y=1-e^{-x}$ and $x=0$ about $y=2.5$.

§6.5: Work and Energy

54. ($(86.5, \# 3)$ Compute the work required to stretch a spring from equilibrium to 7 cm past equilibrium, assuming the spring constant is $k=130 \mathrm{~kg} / \mathrm{s}^{2}$.
55. (§6.5,\#7) If 5 J of work are needed to stretch a spring t 010 cm beyond equilibrium, how much work is required to stretch it 19 cm beyond equilibrium?
56. ($\S 6.5, \# 11$) Calculate the work against gravity required to build tower of height 16 ft and square base of side 10 ft out of brick. Assume the density of brick is $70 \mathrm{lbs} / \mathrm{ft}^{3}$.

Chapter 7:Techniques of Integration

§7.2: Integration by Parts

57. $(\S 7.2, \# 1)$ Evaluate the integral using the Integration by Parts formula with the given choice of u and $v^{\prime} . \int 4 x \sin (5 x) \mathrm{dx}, u=x$ and $v^{\prime}=\sin 5 x$.
58. ($(\$ 7.2, \# 3)$ Evaluate the integral using the Integration by Parts formula with the given choice of u and $v^{\prime} . \int(4 x+7) e^{5 x} \mathrm{dx}, u=4 x+7$ and $v^{\prime}=e^{5 x}$.
59. ($(\$ 7.2, \# 5)$ Evaluate the integral using the Integration by Parts formula with the given choice of u and $v^{\prime} . \int x^{13} \ln x \mathrm{dx}, u=\ln x$ and $v^{\prime}=x^{13}$.

This is Problem Set 6.

The 99 Problems

60. (§7.2,\#11) Use Integration by Parts to evaluate the integral. $\int 7 x \cos (5 x) \mathrm{dx}$.
61. (§7.2,\#15) Use Integration by Parts to evaluate the integral. $\int 4 x^{2} \ln x \mathrm{dx}$.
62. (§7.2,\#21) Use Integration by Parts to evaluate the integral. $\int 3 x 6^{x} \mathrm{dx}$.
63. (§7.2,\#45) Compute the definite integral. $\int_{0}^{3} x e^{5 x} \mathrm{dx}$.
64. (§7.2,\#47) Compute the definite integral. $\int_{0}^{13} x \sqrt{13-x} \mathrm{dx}$.
65. (§7.2,\#49) Compute the definite integral. $\int_{1}^{21} \sqrt{x} \ln x \mathrm{dx}$.

§7.3: Trigonometric Integrals

66. (§7.3,\#3) Use the method of odd powers to evaluate the integral. $\int \sin ^{3} x \cos ^{8} x \mathrm{dx}$.
67. (§7.3,\#5) Use the method of odd powers to evaluate the integral. $\int \sin ^{3} x \cos ^{8} x \mathrm{dx}$.
68. (§7.3,\#15) Evaluate the integral using reduction formulas as necessary. $\int \tan ^{5} x \sec ^{2} x \mathrm{dx}$.

§7.4: Trigonometric Substitution

69. (§7.4,\#5) Use the indicated substitution to evaluate the integral. $\int \sqrt{49-x^{2}} \mathrm{dx}, \mathrm{x}=$ $7 \sin \mathrm{t}$.

This is Problem Set 7.

70. (§7.4,\#7) Use the indicated substitution to evaluate the integral. $\int \frac{1}{x \sqrt{x^{2}-36}} \mathrm{dx}, \mathrm{x}=$ 6 sect.
71. $(\S 7.4, \# 13)$ Evaluate the integral using trigonometric substitution. $\int \frac{x^{2} \mathrm{dx}}{\sqrt{36-x^{2}}}$.
72. (§7.4,\#15) Evaluate the integral using trigonometric substitution. $\int \sqrt{99+9 x^{2}} \mathrm{dx}$.
73. (§7.4,\#19) Evaluate the integral using trigonometric substitution. $\int \frac{1}{x^{2} \sqrt{7-x^{2}}} \mathrm{dx}$.
74. (§7.4,\#29) Evaluate the integral using trigonometric subsitution. $\int x^{3} \sqrt{4-x^{2}} \mathrm{dx}$.

§7.6: The Method of Partial Fractions

75. $(\S 7.6, \# 1)$ Find the partial fraction decomposition for the rational function: $\frac{8 x^{2}-7 x+344}{\left(x^{2}+36\right)(x-8)}$.
76. $(\S 7.6, \# 9)$ Evaluate the integral. $\int \frac{\mathrm{dx}}{(x-2)(x-11)}$.
77. (§7.6,\#17) Evaluate the integral. $\int \frac{3 x-7}{(x-1)(x-1)^{2}} \mathrm{dx}$.
78. (§7.6,\#21) Evaluate the integral. $\int \frac{4 x^{2}+31 x+48}{x(x+4)^{2}} \mathrm{dx}$.
79. (§7.6,\#31) Evaluate the integral. $\int \frac{x^{2} \mathrm{dx}}{81 x^{2}+36}$.

The 99 Problems

§7.7: Improper Integrals

80. (§7.7,\#15) Determine whether the improper integral converges and, if so, evaluate it. $\int_{\infty}^{-2} \frac{1}{(x+3)^{3 / 2}} \mathrm{dx}$.
81. (§7.7,\#21) Determine whether the improper integral converges and, if so, evaluate it. $\int_{-\infty}^{0} e^{3 x} d x$.
82. (§7.7,\#27) Determine whether the improper integral converges and, if so, evaluate it. $\int_{0}^{\infty} \frac{7 \mathrm{dx}}{1+x} \mathrm{dx}$.
83. ($\S 7.7, \# 43$) Determine whether the improper integral converges and, if so, evaluate it. $\int_{1}^{0} 4 x \ln x \mathrm{dx}$.
84. ($\$ 7.7, \# 65$) Use the comparison test to determine weather the improper integral converges or not. $\int_{0}^{\infty} \frac{\mathrm{dx}}{\sqrt[3]{x^{4}+4}}$.

Chapter 8:Further Applications of the Integral and Taylor Polynomials

§8.1: Arc Length and Surface Area

85. (§8.1,\#5) Calculate the arc length of $y=3 x+1$ over the interval $[0,8]$.
86. ($\S 8.1, \# 7)$ Calculate the arc length of $y=x^{3 / 2}$ over the interval $[2,3]$.
87. (§8.1,\#9) Calculate the arc length of $y=\frac{x^{2}}{4}-\frac{\ln x}{2}$ over the interval $[1,3 e]$.
88. (§8.1,\#33) Compute the surface area of revolution of $y=4 x+3$ about the x-axis over the interval $[3,4]$.
89. (§8.1,\#37) Compute the surface area of revolution of $y=e^{x}$ about the x-axis over the interval [2,3].

This is Problem Set 9.

90. (§8.1,\#39) Compute the surface area of revolution of $y=\sin x$ about the x-axis over the interval $[0,3 \pi]$.

§8.3: Center of Mass

91. $(\S 8.3, \# 11)$ Find the centroid of the region lying underneath the graph of the function $f(x)=\sqrt{x}$ over the interval $[0,14]$.
92. (§8.3,\#13) Find the centroid of the region lying underneath the graph of the function $f(x)=9-x^{2}$ over the interval $[0,3]$.
93. (§8.3,\#15) Find the centroid of the region lying underneath the graph of the function $f(x)=e^{-x}$ over the interval $[0,3]$.
94. (§8.3,\#17) Find the centroid of the region lying underneath the graph of the function $f(x)=\sin x$ over the interval $[0, \pi / 5]$.

§8.4: Taylor Polynomials

95. (§8.4,\#1) Calculate the Taylor polynomials $T_{2}(x)$ and $T_{3}(x)$ centered at $a=0$ if $f(x)=$ $\sin x$.
96. (§8.4,\#5) Calculate the Taylor polynomials $T_{2}(x)$ and $T_{3}(x)$ centered at $a=0$ if $f(x)=$ $\tan x$.
97. (§8.4,\#7) Calculate the Taylor polynomials $T_{2}(x)$ and $T_{3}(x)$ centered at $a=0$ if $f(x)=$ $\frac{1}{x^{2}+1}$.
98. (§8.4,\#23) Calculate the Taylor polynomials $T_{2}(x)$ and $T_{3}(x)$ centered at $a=1$ if $f(x)=$ e^{x}.
99. (§8.4,\#23) Calculate the Taylor polynomials $T_{2}(x)$ and $T_{3}(x)$ centered at $a=1$ if $f(x)=$ \sqrt{x}.

This is Problem Set 10.

[^0]: ${ }^{1}$ More precisely, put 9 problem sets of 10 problems each, and 1 problem set of 9 problems.
 ${ }^{2}$ The ultimate judge of what is an OK modification versus a non-0K modification is solely up to the Calculus committee.

