Name:		
Section	Number/Time	
ТА		

MATH 302, MIDTERM #2

Directions: This is a pencil-and-paper exam. You are asked to put away all books, notes, calculators, cell phones, and other computing and/or telecommunications equipment. The last page of this booklet is blank and is intended for use as scrap paper. Additional sheets of paper are available upon request.

- **Grading:** Each numbered exam question is worth 5 points, for a total of 50 points. There is a two-point extra credit question at the end of Problem 10.
- **Special Note:** Many of the problems in this exam are interrelated. If the answer to one question appears to require the answer to a previous question which you have not solved, you may instead explain how this missing information would be used to solve the problem.
- 1. Find all solutions (i.e. the general solution) to the differential equation y''(t) + y'(t) 6y(t) = 0.

2. Find all solutions to the differential equation $y''(t) + y'(t) - 6y(t) = 10e^{2t}$.

Name ______ Section/TA _____

3. Find the solution to the equation $y''(t) + y'(t) - 6y(t) = 10e^{2t}$ which satisfies the initial conditions $\begin{cases} y(0) = -1 \\ y'(0) = 0 \end{cases}$

4a. [3 pts.] Describe what happens to this solution y(t) in the limit as $t \to \infty$ and in the limit $t \to -\infty$.

4b. [2 pts.] If we had chosen a different set of initial conditions in Problem 3, how could that change the limiting behavior you just described?

Name ______ Section/TA _____

5. A mass hanging on a (damped) spring will move according to the equation $my''(t) + \gamma y'(t) + ky(t) = 0$. Suppose we are given a spring with a fixed elasticity constant k and damping constant γ , and we are allowed to choose what size mass is attached.

For what values of m > 0 will the mass oscillate infinitely many times as it approaches the rest position? [In other words, for which m > 0 is this an under-damped system?]

6. Suppose that the vector functions $\vec{x}^{(1)}(t) = \begin{bmatrix} 1\\\sin(2t)\\0 \end{bmatrix}$, $\vec{x}^{(2)}(t) = \begin{bmatrix} \sin(2t)\\1\\\cos(2t) \end{bmatrix}$, $\vec{x}^{(3)}(t) = \begin{bmatrix} 0\\\cos(2t)\\1 \end{bmatrix}$

are all solutions of a linear system of equations $\vec{x}'(t) = P(t)\vec{x}(t)$, with P(t) being a 3 × 3 matrix of continuous functions $p_{ij}(t)$. What is the Wrenchien $W[\vec{x}(1), \vec{x}(2), \vec{x}(3)](t)$? Is this a fundamental

What is the Wronskian $W[\vec{x}^{(1)}, \vec{x}^{(2)}, \vec{x}^{(3)}](t)$? Is this a fundamental set of solutions?

Name _____ Section/TA _____

Problems 7-9 will all involve the matrix $A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ in some way.

7. Calculate the determinant det(A - rI) and find the eigenvalues of A.

8. The eigenvectors of A are (in no particular order): $\xi^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\xi^{(2)} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Write the general solution for the system of equations $\vec{x}' = A\vec{x}$.

9. Find the solution to the system of equations $\vec{x}' = A\vec{x}$ which satisfies the initial conditions $\vec{x}(0) = \begin{bmatrix} 2\\0 \end{bmatrix}$. What happens to this solution in the limit $t \to \infty$?

10. The linear system of equations $\vec{x}'(t) = \begin{bmatrix} \alpha & -2 \\ 2 & 1 \end{bmatrix} \vec{x}$ can exhibit a wide variety of phase portraits depending on the value of α .

What kind of equilibrium point is there at the origin if $\alpha = 6$? What kind of equilibrium point is there at the origin if $\alpha = -2$?

11. [Extra credit] Is the origin ever a saddle point? If so, for what range of α does this occur? Show your work on the next page.