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Hamiltonian for Graphene: H = −∆ + V , V (x) =
∑
y∈Λ

V0(x− y)
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Translation symmetry is not quite transitive.
Each fundamental domain has two vertices.



General Properties:

For each k in the Brillouin zone R2/Λ∗, there is a countably

infinite set of real eigenvalues E1(k) ≤ E2(k) ≤ · · ·

Functions Eb(k) give energy bands and dispersion relations of H.

Multiplicities En(k0) = En+1(k0) certainly occur, especially if

you vary V0 over a family of admissible potentials.



Two types of eigenvalue multiplicity:

1. “Incidental” band crossing as V0 is varied.



Two types of eigenvalue multiplicity:

2. “Dirac points” or conical singularity of Enk.

The red graph is forbidden because H is self-adjoint.

So Dirac points appear to be an edge case of spectral behavior. . .



But Fefferman, Weinstein (2012) showed that Dirac points occur

for generic Hamiltonians with honeycomb symmetry.

Energy bands joined at a Dirac point cannot be pulled apart by

small perturbations of the system.

[i.e. the figure ⇐⇒ is misleading.]



Our goal: Examine this phenomenon with a toy model.

Identify symmetries that might/might not be responsible for the

remarkable stability of Dirac points in the honeycomb lattice.

Extrapolate, if possible, to other planar periodic materials.



Vertices of the toy model: 2 copies of a lattice, L and L+ d.
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Weighted edges of the toy model: Edges from x to x+ y in L

have weight λy.

Edges from x+d to x+y+d

in L+ d have weight µy.

Edges from x to x + y + d

have weight νy.

Connections don’t need to

be to closest neighbors.
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This yields a graph Laplacian

∆ψ(x) =



∑
y∈L0

[
1
2
λy
(
ψ(x+ y) + ψ(x− y)− 2ψ(x)

)
+νy

(
ψ(x+ d + y)− ψ(x)

)] if x ∈ L0,

∑
y∈L0

[
1
2
µy
(
ψ(x+ y) + ψ(x− y)− 2ψ(x)

)
+νy

(
ψ(x− d− y)− ψ(x)

)] if x ∈ Ld.

Note that `2(L∪L+d) has a basis of plane wave eigenfunctions.



Characterization of plane waves with frequency k.

φ(x) =

c1eik·x if x ∈ L
c2e

ik·x if x ∈ L+ d

We can represent φ by the vector

[
c1
c2

]
.

Graph Laplacian is linear, preserves frequency of plane waves,

so −∆

[
c1
c2

]
= M(k)

[
c1
c2

]
for some 2× 2 matrix M(k).



The exact formula is

−∆

c1
c2

 =


∑
y∈L

(λy(1− cos(k · y)) + νy)
∑
y∈L

νyeik·(y+d)

∑
y∈L

νye−ik·(y+d)
∑
y∈L

(νy + µy(1− cos(k · y))


︸ ︷︷ ︸

M(k)

c1
c2



and the band dispersion functions are eigenvalues of M(k).

Two energy bands given by E±(k) =

( ∑
y∈L

(λy+µy) sin2(k·y2 )+νy
)
±
√( ∑

y∈L
(λy − µy) sin2(k·y2 )

)2
+
∣∣∣ ∑
y∈L

νyeik·y
∣∣∣2

Discriminant has the form
√

A(k)2 + |B(k)|2

Side note: E±(k) does not depend on d.



Dirac points occur if discriminant goes to zero in nondegenerate

way.

Naive analysis: Need A(k), Re(B(k)), and Im(B(k)) to vanish

for some k in the Brillouin zone R2/L∗.
That’s 3 equations, 2 variables.

Suppose internal connections on L and L+ d are identical.

This is the symmetry condition λy = µy for all y ∈ L.

Then A(k) ≡ 0, so discriminant simplifies to |B(k)|.



Under this assumption, Dirac points occur precisely when B(k)

has a simple root. In other words, when the vector field

B(k) =

[
Re(B(k))
Im(B(k))

]
has a simple zero.

Simple zeros are locally stable under C1 perturbations of B(k).

Conclusion: If Laplacian has a Dirac point for a particular choice

of graph parameters {λy = µy, νy}y∈L, then it continues to do so

for all nearby choices in an open neighborhood.



Example: Regular Graphene

v1 =

[
3
2
√

3
2

]
, v2 =

[
3
2

−
√

3
2

]

d =

[
−1
0

]
λy = µy = 0 for all y ∈ L.

ν0 = νv1 = νv2 = 1.

All other νy = 0.

d

ν0

νv2

νv1

v1
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B(k) = 1 + 2ei(
3
2k1) cos(

√
3

2 k2) has simple zeros at k0 =

[
0
± 4π

3
√

3

]
.



Existence of Dirac points does not require ν0 = νv1 = νv2 exactly

or the absence of interactions between other vertices.

It doesn’t depend on geometry of v1,v2, or d at all.

All toy models sufficiently close also have a pair of Dirac points.

(the frequency k0 where they occur may vary)



Current project (joint work with V. Borovyk):

Toy models with 3 or more copies of L as vertices.

What symmetry condition should take the place of λy = µy?

Algebra becomes a major concern. . . the discriminant of a

characterstic polynomial of even a 3×3 self-adjoint matrix M(k)

is ugly. Sum-of-squares trick is hard to reproduce.

Big question: Do these toy models provide any insight for

Hamiltonians with periodic potentials on R2?


