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Warm-up: Fundamental solution of ¢fd on Z2.
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Agu(x) = jgl A (u(az +ej) +u(z —e;) — 2u(az))

The Schrodinger equation has plane-wave
solutions

uk,(a:,t) — ez’(k-x—go(k)t)

with the phase function

p(k) = 4[>\1 sin? (%) 4+ Ao sin? (%)]



The fundamental solution for

2
ur =14y Aj (u(a: + e, t) + u(x —ej,t) — 2u(ac,t))
j=1
u(x,0) = dg

is d(z,t) = % o e~ ie(k) gikex g
iy

The integral separates into variables k1, ko so that

2
®(z,t) = [[ 2N (200)
j=1

where x; are coordinates of £ and J, are Bessel
functions of the first kind.

Asymptotics for Bessel functions:

(C|t|=1/2  if |z] < (2 — €)Mt
Tx(2M)| < L CIETY3 0 if [a] ~ 2A[t]
\C||23;\|§| it |z] > (2 4+ At




As a result, the “light cone” of ®(x,t)
is @ box with side length 4\;lt|,
and the size of ®(x,t) has this profile:
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Outside of the light cone there is rapid decay.



Problem: Fundamental solution of e£d on
triangular lattice in R2.

The Schrodinger equation has plane-wave
solutions

uk(:v,t) — ei(k-x—go(k)t)

with the phase function

—k1 + \/§k2>
2

k1 + \/§k2)]
2

(k) = 4[/\1 sin? (%) + Ao sin? (

+ \3sin? (



Once again we can write out
®(z,t) = ][ e~ te(k) ik g,

averaged over a fundamental domain in k-space.

Dispersive bounds: The decay of sup, |[®P(z,t)]

depends on asymptotics for the oscillatory integral
][e_itw(k)eik'x dk as t — oo.

If 2o = tVe(kg) for some kg € T¢,
the integral defining ®(xzqg,t) has
stationary phase at k.

Non-degenerate stationary phase estimate:
1

t]/det D2 (ko)

If det D290(k0) — 0, asymptotic decay depends on
more terms of Taylor series of p(k) centered at kg.

[P (z0,1)] S

[Varchenko (1976), also Greenblatt and Collins-Greenleaf-
Pramanik]
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The dispersion relation as a function of
in the case where all Aj = 1.
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The picture changes as values of Aj

4

are varied.

Aq==Ap=1,

A3 =051

Ar=2Az=1,

A3 ==0.49




The inner caustic(s) have two types of transition:

1) From a pair of interlocking triangles to a single
closed curve. (eg. Ai=X2=1, A3=13)

2) From a curve with 3-cusped “butterfly turns”
to a simple closed curve. (eg. Ai=Xx =1, A3 = %)
The dispersive estimate is still [t|=3/4

it )\j are chosen at a Type 1 transition.

[Taylor series of ¢ reduces to k?+0k1k3+ k5+ (higher order)]

The dispersive estimate has slower decay
if Aj are chosen at a Type 2 transition.
[Taylor series of ¢ reduces to (ki + k32)? + (higher order)]



Trigonometric relations:

Let 0y = ky, Oy = 1t Y3ho g —ln—VSky

[Note that 6; 4+ 6> + 63 = 0.]

Then Det (D2¢) = 0 when

A1 A2 COS 1 COSOr + A1 A3 COS 01 COSO3 + AoA3COSO>CcOSO3 =0

Cusps occur where, in addition,

A1 COS? 01 sin 01 4+ A> COS? B> sin O + A3 COS? O3 sin 3 = O

Type 1 Transitions occur if J[cos Qj — 1 at a cusp.
[i.e. 6; = 0,£m in some order, SO A1A2 — A1A3z — A2A3 = O,

modulo permutation of indices.]

Type 2 Transitions occur if [[cos 9]- — % at a cusp.
This takes place if ...



P(Ala >\27 )\3) —

A24N24 L BAZAZHN22H BAZAZ2A24 + 260 A2 N20 — 1004 ATA22A22 4+ 2603 A20024
40X0A24\18 — 156A0A22020 — 156A0A20022 + 40A9A18N2% + 1528024016 4
6408A5A22A184+297466A5A200204-6408AAL8N2241508A160A24—48A10N24 14
3664210022)16 —2061504210020018 —2061504A10018)20 3664110010022 —
A8AIONI4N24 — 84NI2)24)012 — 13016A1202201% + 6033644112020016 4
8913328A1°ABA18 + 6033644112 230030 — 13016A12A24N32 — 84A12A12N3% —
48X14A24010 — 13016A14A32012 — 8814408A14A20A1% — 8588000114 A1EN16 —
8588000A14A16A18 — 8814408A14A14N20 — 13016A14A12)022 — 48A14A10N2% 4
15A15A2%08 + 3664116022010 4 6033644115A20012 — 8588000A16A18A14 —
13825990A16A16A16 — 8588000716014 A18 + 6033644116A12)020 4
3664210030022 4 15A10A8A2% + 40A1BA34NS + 6408A18A3208 —
2061504A18A20010 + 8913328A18A18)12 — 8588000A18A10N14 —
858800071814 \1648913328A18A12)18 2061504 A18A10N204-6408A18NEN22 4
A0AIBASAZY + 26A3003% A5 — 156AT0A320S + 2974667903008 —
2061504229018 \10 + 6033644A200\16112 — 8814408220014 1% 4
6033644220012)16 — 2061504 \29010018 + 2974662005120 — 1561200522 4
260700324 + 8AT2A24N3 — 1004M32A3203 — 156A72A300S + 6408AF2A18N8 +
3664222)\16010 — 1301622224212 — 13016A22012A1% 4 3664A22010A16 4
6408222 XEA18—156A22A5A20— 1004222 AIN22+8AZ2AZN24 - A24N244-8A24N22 N2+
262240200% 4 40A24A18NS 4 15A2401608 — 48A24A14A10 — 8424012312 —
48224 N10N1% + 1502408016 + 40A24NSA18 4 261162405020 + 8A24N2N22 4
AZNZ4 = 0.

. )\]2 satisfy a homogenous 24t"-order polynomial.



With A1 = 1, the three regimes are:
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Note: P(1,X>,\3) also vanishes at the three marked points,

but the corresponding values of 6; are imaginary.



Observed: When A\ =1, Ao = A3 = /8,
the dispersive bound is sup, |®(z,t)| < [¢]2/3.

Reasonable suspicion: That is atypical behavior.
For generic (all other?) solutions of
P(\1, X2, A3) = 0, the dispersive bound is

sup | (z, )| < |t 77710,
h

(which comes from 4% =)

Open Questions: Is the wave equation this messy?
What if A, is replaced by another operator?
What about less regular periodic structures?
What happens if there are lattice defects?
Does discrete NLS depend this much on Aj?



