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Motivated by Quantum Harmonic Lattice:

Put a harmonic oscillator at each vertex of Zd,
with position g and momenutum py.

The local Hamiltonian is H; = p2 4+ w?¢2.

Introduce nearest-neighbor interactions to produce
a global Hamiltonian

H= ) (pa; + w?q Z Aj(Qate; — q$)2)

reZd Jj=1

where w > 0 and each >\j > 0.



T he classical system has a discrete wave
(Klein-Gordon) equation as its equation of motion:

Utt(a?, t) — _w2u(x7 t)

d
+ > A (u(:v +ej,t) +ulz —ej,t) — 2u(z, t))

j=1

This has a convenient basis of plane-wave
solutions. For each k € T¢,

uk(:c,t) — ei(k-x—go(k)t)

where ¢(k) = \/w? + 45 ; A;jsin?(k;/2).



The fundamental solution for

p

d
ur = —w?u(z,t) + > N\ (u(m + e, t) +ulx —ej,t) — 2u(m,t))
j=1

< u(x,0) = dg

\ut(x,O) =0

is dq(z,t) = /T _cos(tp(k))e™® di

and the fundamental solution for

(

d
ur = —w?u(z,t) + > N\ (u(:c + e, t) + u(x —ej,t) — 2u(x,t))
j=1

u(x,0) =0
\ut(w, 0) = do

is do(z,t) = /Td sin;tégk))



Lieb-Robinson bounds (finite propagation speed):
d(x,t) decays exponentially for large = > t.

For the classical system, this follows from
analyticity of ¢(k).
Dispersive estimates: How does sup, |P(x,t)]

decay with t7?

This requires control of oscillatory integrals like

/dejm;tgp(k)eilmj dk ast— oo
T



If 2o = tVe(kg) for some kg € T¢,
there is stationary phase at kq.

Non-degenerate stationary phase estimate:

1

|P(z0,1)| S
t4/2 \/det D2y (ko)

If det D2¢(kg) = 0, asymptotic decay depends on
Taylor series of p(k) centered at k.

When d = 1, van der Corput Lemma implies
[Py (z,t)| < t1/3.

Similarly, |®o5(z,t)| <t~ 1/3, with a constant
depending on w (thanks to factor of 1/p(k)).



Degenerate stationary phase is difficult in d > 1.

Asymptotic decay depends on Taylor series
expansion with respect to "adapted” coordinates
(Varchenko, 1976).

Detailed analysis for d = 2:

p(k) = \Jw? + 221 (1 — cosky) + 2Xa(1 — cos ko)

det D%p(k)
= o~ (k) (w?ab — A1b(1 — a)® — Aza(1 — b))

where a = COS k1 and b = COS k».



Where is det D2p(k) = 07

e A closed curve ['{ around origin, corresponding
to extremal propagation velocity.

e A closed curve N5 around (7, 7) € T2
corresponding to 777

At all k € T2, D2p(k) has rank > 1.

Among k € [ 1, the second and third-order
directional derivatives of p(k) never vanish
at the same time.

This leads to an estimate |®(z,t)| < t—2/6

when % is near an extremal velocity.



Peculiar Results:

Among k € I'5, there is a unique point
(up to mirror symmetries) where both
the second and third-order directional
derivatives of ¢(k) vanish, but a relevant
fourth-order quantity is nonzero.

Thus there is a unique velocity (again up

to symmetry) where fundamental solutions
of the discerete Klein-Gordon equation decay
at the rate +—3/4.

This region of least dispersion occurs in middle of
the propagation pattern, not at its leading edge.



