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Motivated by Quantum Harmonic Lattice:

Put a harmonic oscillator at each vertex of Zd,

with position qx and momenutum px.

The local Hamiltonian is Hx = p2
x + ω2q2

x.

Introduce nearest-neighbor interactions to produce

a global Hamiltonian

H =
∑
x∈Zd

(
p2
x + ω2q2

x +
d∑

j=1

λj(qx+ej − qx)2
)

where ω > 0 and each λj > 0.
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The classical system has a discrete wave

(Klein-Gordon) equation as its equation of motion:

utt(x, t) = −ω2u(x, t)

+
d∑

j=1

λj
(
u(x+ ej, t) + u(x− ej, t)− 2u(x, t)

)

This has a convenient basis of plane-wave

solutions. For each k ∈ Td,

uk(x, t) = ei(k·x−ϕ(k)t)

where ϕ(k) =
√
ω2 + 4

∑
j λj sin2(kj/2).
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The fundamental solution for
utt = −ω2u(x, t) +

d∑
j=1

λj
(
u(x+ ej, t) + u(x− ej, t)− 2u(x, t)

)
u(x,0) = δ0

ut(x,0) = 0

is Φ1(x, t) =
∫
Td

cos(tϕ(k))eik·x dk

and the fundamental solution for
utt = −ω2u(x, t) +

d∑
j=1

λj
(
u(x+ ej, t) + u(x− ej, t)− 2u(x, t)

)
u(x,0) = 0

ut(x,0) = δ0

is Φ2(x, t) =
∫
Td

sin(tϕ(k))

ϕ(k)
eik·x dk
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Lieb-Robinson bounds (finite propagation speed):

Φ(x, t) decays exponentially for large x� t.

For the classical system, this follows from

analyticity of φ(k).

Dispersive estimates: How does supx |Φ(x, t)|
decay with t?

This requires control of oscillatory integrals like∫
Td
e±itϕ(k)eik·x dk as t→∞
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If x0 = t∇ϕ(k0) for some k0 ∈ Td,
there is stationary phase at k0.

Non-degenerate stationary phase estimate:

|Φ(x0, t)| .
1

td/2
√

detD2ϕ(k0)

If detD2ϕ(k0) = 0, asymptotic decay depends on

Taylor series of ϕ(k) centered at k0.

When d = 1, van der Corput Lemma implies

|Φ1(x, t)| . t−1/3.

Similarly, |Φ2(x, t)| . t−1/3, with a constant

depending on ω (thanks to factor of 1/ϕ(k)).
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Degenerate stationary phase is difficult in d > 1.

Asymptotic decay depends on Taylor series

expansion with respect to ”adapted” coordinates

(Varchenko, 1976).

Detailed analysis for d = 2:

ϕ(k) =
√
ω2 + 2λ1(1− cos k1) + 2λ2(1− cos k2)

detD2ϕ(k)

= ϕ−4(k)
(
ω2ab− λ1b(1− a)2 − λ2a(1− b)2

)

where a = cos k1 and b = cos k2.
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Where is detD2ϕ(k) = 0?

• A closed curve Γ1 around origin, corresponding

to extremal propagation velocity.

• A closed curve Γ2 around (π, π) ∈ T2

corresponding to ???

At all k ∈ T2, D2ϕ(k) has rank ≥ 1.

Among k ∈ Γ1, the second and third-order

directional derivatives of ϕ(k) never vanish

at the same time.

This leads to an estimate |Φ(x, t)| . t−5/6

when x
t is near an extremal velocity.
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Peculiar Results:

Among k ∈ Γ2, there is a unique point

(up to mirror symmetries) where both

the second and third-order directional

derivatives of ϕ(k) vanish, but a relevant

fourth-order quantity is nonzero.

Thus there is a unique velocity (again up

to symmetry) where fundamental solutions

of the discerete Klein-Gordon equation decay

at the rate t−3/4.

This region of least dispersion occurs in middle of

the propagation pattern, not at its leading edge.

9


