Differentiability of Fourier Restrictions

Michael Goldberg

University of Cincinnati

AMS Virtual Central Section Meeting April 17, 2021

Fourier transform
$$\hat{f}(\xi) = \int_{\mathbb{R}} e^{-i\xi \cdot x} f(x) \, dx$$
, $x, \xi \in \mathbb{R}^n$.

Fourier transform
$$\hat{f}(\xi) = \int_{\mathbb{R}} e^{-i\xi \cdot x} f(x) \, dx$$
, $x, \xi \in \mathbb{R}^n$.

$$\begin{array}{ll} f \in L^{1}(\mathbb{R}^{n}) \ \Rightarrow \ \hat{f} \in C_{0}(\mathbb{R}^{n}). & [{\rm Riemann-Lebesgue}] \\ f \in L^{p}(\mathbb{R}^{n}) \ \Rightarrow \ \hat{f} \in L^{p'}(\mathbb{R}^{n}), \ 1 \leq p \leq 2. & [{\rm Hausdorff-Young}] \end{array}$$

Fourier transform
$$\hat{f}(\xi) = \int_{\mathbb{R}} e^{-i\xi \cdot x} f(x) \, dx$$
, $x, \xi \in \mathbb{R}^n$.

$$\begin{array}{ll} f \in L^{1}(\mathbb{R}^{n}) \ \Rightarrow \ \hat{f} \in C_{0}(\mathbb{R}^{n}). & [{\rm Riemann-Lebesgue}] \\ f \in L^{p}(\mathbb{R}^{n}) \ \Rightarrow \ \hat{f} \in L^{p'}(\mathbb{R}^{n}), \ 1 \leq p \leq 2. & [{\rm Hausdorff-Young}] \end{array}$$

Even when $f \in L^1$, there's no guarantee of Hölder continuity of \hat{f} , either on \mathbb{R}^n or when restricted to surfaces.

For simplicity, let $\Sigma \subset \mathbb{R}^n$ be a smooth compact subset of the paraboloid $\{\xi_n = |\xi'|^2\}$, where $\xi = (\xi', \xi_n)$.

For simplicity, let $\Sigma \subset \mathbb{R}^n$ be a smooth compact subset of the paraboloid $\{\xi_n = |\xi'|^2\}$, where $\xi = (\xi', \xi_n)$.

First things first: What can we say about the restriction of \hat{f} to Σ ?

For simplicity, let $\Sigma \subset \mathbb{R}^n$ be a smooth compact subset of the paraboloid $\{\xi_n = |\xi'|^2\}$, where $\xi = (\xi', \xi_n)$.

First things first: What can we say about the restriction of \hat{f} to Σ ?

 $\begin{array}{ll} f \in L^{p}(\mathbb{R}^{n}) \ \Rightarrow \ \hat{f}\big|_{\Sigma} \in L^{2}(\Sigma), \ 1 \leq p \leq \frac{2n+2}{n+3}. \end{array} \qquad \begin{array}{l} [\texttt{Stein-Tomas}] \\ f \in L^{p}(\mathbb{R}^{n}) \ \Rightarrow \ \hat{f}\big|_{\Sigma} \in H^{-s}(\Sigma), \ \frac{2n+2}{n+3} \leq p < \frac{2n}{n+1}. \end{array} \qquad \begin{array}{l} [\texttt{Cho-Guo-Lee, '15}] \end{array}$

For simplicity, let $\Sigma \subset \mathbb{R}^n$ be a smooth compact subset of the paraboloid $\{\xi_n = |\xi'|^2\}$, where $\xi = (\xi', \xi_n)$.

First things first: What can we say about the restriction of \hat{f} to Σ ?

$$\begin{array}{ll} f \in L^{p}(\mathbb{R}^{n}) \ \Rightarrow \ \hat{f}\big|_{\Sigma} \in L^{2}(\Sigma), \ 1 \leq p \leq \frac{2n+2}{n+3}. \end{array} \qquad \begin{array}{l} [\texttt{Stein-Tomas}] \\ f \in L^{p}(\mathbb{R}^{n}) \ \Rightarrow \ \hat{f}\big|_{\Sigma} \in H^{-s}(\Sigma), \ \frac{2n+2}{n+3} \leq p < \frac{2n}{n+1}. \end{array} \qquad \begin{array}{l} [\texttt{Cho-Guo-Lee, '15}] \end{array}$$

Loss of regularity in Cho-Guo-Lee is $s = \frac{n+3}{2} - \frac{n+1}{p}$.

Derivatives of \hat{f} exist as distributions in $W^{-1,p'}(\mathbb{R}^n)$. [If $p \leq 2$]

Derivatives of \hat{f} exist as distributions in $W^{-1,p'}(\mathbb{R}^n)$. [If $p \leq 2$]

Observation about the transverse derivative $\partial_n \hat{f} := \frac{\partial}{\partial \xi_n} \hat{f}$:

Derivatives of \hat{f} exist as distributions in $W^{-1,p'}(\mathbb{R}^n)$. [If $p \leq 2$]

Observation about the transverse derivative $\partial_n \hat{f} := \frac{\partial}{\partial \xi_n} \hat{f}$:

$$f \in L^1(\mathbb{R}^n) \;\Rightarrow\; (\partial_n)^{\frac{n-1}{2}} \hat{f}\big|_{\Sigma} \in H^{-s}(\Sigma), \quad s > \frac{n-1}{2}$$

Derivatives of \hat{f} exist as distributions in $W^{-1,p'}(\mathbb{R}^n)$. [If $p \leq 2$]

Observation about the transverse derivative $\partial_n \hat{f} := \frac{\partial}{\partial \xi_n} \hat{f}$:

$$f \in L^1(\mathbb{R}^n) \;\Rightarrow\; (\partial_n)^{\frac{n-1}{2}} \hat{f}\big|_{\Sigma} \in H^{-s}(\Sigma), \quad s > \frac{n-1}{2}$$

Proof: Consequence of stationary phase.

Derivatives of \hat{f} exist as distributions in $W^{-1,p'}(\mathbb{R}^n)$. [If $p \leq 2$]

Observation about the transverse derivative $\partial_n \hat{f} := \frac{\partial}{\partial \xi_n} \hat{f}$:

$$f \in L^1(\mathbb{R}^n) \;\Rightarrow\; (\partial_n)^{\frac{n-1}{2}} \hat{f} \big|_{\Sigma} \in H^{-s}(\Sigma), \quad s > \frac{n-1}{2}$$

Proof: Consequence of stationary phase.

Proposition

If
$$f \in L^p(\mathbb{R}^n)$$
, $1 \le p \le \frac{2n+2}{n+5}$, then $\partial_n \hat{f}|_{\Sigma} \in H^{-1}(\Sigma)$.

If
$$f \in L^{p}(\mathbb{R}^{n})$$
, $\frac{2n+2}{n+5} \leq p < \frac{2n}{n+3}$, then $\partial_{n}\hat{f}|_{\Sigma} \in H^{-s}(\Sigma)$.
This time $s = \frac{n+7}{2} - \frac{n+1}{p} \geq 1$.

Derivatives of \hat{f} exist as distributions in $W^{-1,p'}(\mathbb{R}^n)$. [If $p \leq 2$]

Observation about the transverse derivative $\partial_n \hat{f} := \frac{\partial}{\partial \xi_n} \hat{f}$:

$$f \in L^1(\mathbb{R}^n) \;\Rightarrow\; (\partial_n)^{\frac{n-1}{2}} \hat{f}\big|_{\Sigma} \in H^{-s}(\Sigma), \quad s > \frac{n-1}{2}$$

Proof: Consequence of stationary phase.

Proposition

If
$$f \in L^p(\mathbb{R}^n)$$
, $1 \le p \le \frac{2n+2}{n+5}$, then $\partial_n \hat{f}|_{\Sigma} \in H^{-1}(\Sigma)$.

If
$$f \in L^{p}(\mathbb{R}^{n})$$
, $\frac{2n+2}{n+5} \leq p < \frac{2n}{n+3}$, then $\partial_{n}\hat{f}|_{\Sigma} \in H^{-s}(\Sigma)$.
This time $s = \frac{n+7}{2} - \frac{n+1}{p} \geq 1$.

Proof: Interpolate between no derivatives (S-T or C-G-L) and the case of $\frac{n-1}{2}$ derivatives above.

Derivative Restrictions in $L^2(\Sigma)$

It turns out that if $\hat{f}|_{\Sigma}$ has additional smoothness, then so does $\partial_n \hat{f}|_{\Sigma}$.

Theorem (G-Stolyarov, '20)

Let $1 \leq p \leq \frac{2n+2}{n+7}$. If $\hat{f}|_{\Sigma} \in H^{\ell}(\Sigma)$ for sufficiently large ℓ , then $\|\partial_n \hat{f}\|_{L^2(\Sigma)} \lesssim \|f\|_p + \|\hat{f}\|_{H^{\ell}(\Sigma)}.$

Theorem (G-Stolyarov, '20)

Let
$$1 \le p \le \frac{2n+2}{n+7}$$
. If $\hat{f}|_{\Sigma} \in H^{\ell}(\Sigma)$ for sufficiently large ℓ , then
 $\|\partial_n \hat{f}\|_{L^2(\Sigma)} \lesssim \|f\|_p + \|\hat{f}\|_{H^{\ell}(\Sigma)}$.

The range of p is sharp.

Theorem (G-Stolyarov, '20)

Let $1 \leq p \leq \frac{2n+2}{n+7}$. If $\hat{f}|_{\Sigma} \in H^{\ell}(\Sigma)$ for sufficiently large ℓ , then $\|\partial_n \hat{f}\|_{L^2(\Sigma)} \lesssim \|f\|_p + \|\hat{f}\|_{H^{\ell}(\Sigma)}.$

The range of p is sharp.

We believe "sufficiently large" means $\ell > \frac{(2n+2)-(n+3)p}{(2n+2)-(n+5)p}$.

This is proved in a few cases when integer arithmetic works out nicely.

Fine Print about Derivative Restrictions

To be more precise, the theorem gives a norm bound for $\partial_n \hat{f}|_{\Sigma}$ for all Schwartz functions f, then extends it by taking limits.

To be more precise, the theorem gives a norm bound for $\partial_n \hat{f}|_{\Sigma}$ for all Schwartz functions f, then extends it by taking limits.

Regularity of \hat{f} does not extend to a neighborhood of Σ .

To be more precise, the theorem gives a norm bound for $\partial_n \hat{f}|_{\Sigma}$ for all Schwartz functions f, then extends it by taking limits.

Regularity of \hat{f} does not extend to a neighborhood of Σ .

Derivative exists in a functional analysis sense: Let Σ_r be the translation $\Sigma + (0, ..., r)$. The map

$$r\mapsto \hat{f}\big|_{\Sigma_r}\in L^2(\Sigma)$$

is differentiable (in the L^2 -norm topology) at r = 0.

• Does $\partial_n \hat{f}(\xi', |\xi'|^2)$ exist pointwise on Σ ?

- Does $\partial_n \hat{f}(\xi', |\xi'|^2)$ exist pointwise on Σ ?
- Almost everywhere on Σ?

- Does $\partial_n \hat{f}(\xi', |\xi'|^2)$ exist pointwise on Σ ?
- Almost everywhere on Σ?
- Anywhere?

- Does $\partial_n \hat{f}(\xi', |\xi'|^2)$ exist pointwise on Σ ?
- Almost everywhere on Σ?
- Anywhere?

G-St theorem bounds difference quotients in $L_r^{\infty} L^2(\Sigma_r)$.

- Does $\partial_n \hat{f}(\xi', |\xi'|^2)$ exist pointwise on Σ ?
- Almost everywhere on Σ?
- Anywhere?

G-St theorem bounds difference quotients in $L_r^{\infty} L^2(\Sigma_r)$. Pointwise derivatives need a bound with L_r^{∞} on the inside. Let p > 1.

Limits of $\hat{f}(\xi', |\xi'|^2 + r)$ in the ξ_n direction do not exist,

Limits of $\hat{f}(\xi', |\xi'|^2 + r)$ in the ξ_n direction do not exist, so it is not close to being differentiable at r = 0.

Limits of $\hat{f}(\xi', |\xi'|^2 + r)$ in the ξ_n direction do not exist, so it is not close to being differentiable at r = 0.

This construction doesn't produce a counterexample when p = 1. (\hat{f} can't be any worse than continuous.)

Theorem

Let $n \geq 6$ If $f \in L^1(\mathbb{R}^n)$, and $\hat{f}|_{\Sigma} \in H^{\ell}(\Sigma)$ for some $\ell > \frac{n-1}{2}$, then $\partial_n \hat{f}$ exists almost everywhere in Σ .

Theorem

Let $n \geq 6$ If $f \in L^1(\mathbb{R}^n)$, and $\hat{f}|_{\Sigma} \in H^{\ell}(\Sigma)$ for some $\ell > \frac{n-1}{2}$, then $\partial_n \hat{f}$ exists almost everywhere in Σ .

This probably isn't close to the optimal ℓ .

Theorem

Let $n \geq 6$ If $f \in L^1(\mathbb{R}^n)$, and $\hat{f}|_{\Sigma} \in H^{\ell}(\Sigma)$ for some $\ell > \frac{n-1}{2}$, then $\partial_n \hat{f}$ exists almost everywhere in Σ .

This probably isn't close to the optimal ℓ .

 $\ell > \frac{n-1}{2}$ lets you reduce to the case $\hat{f}|_{\Sigma} \equiv 0$ by subtracting away a nice function $g \in L^1(\mathbb{R}^n)$.

Idea of the Proof

Assume $f \in L^1(\mathbb{R}^n)$ and $\hat{f}|_{\Sigma} \equiv 0$.

Assume $f \in L^1(\mathbb{R}^n)$ and $\hat{f}|_{\Sigma} \equiv 0$.

We need to control the difference quotient $\frac{1}{r} [\hat{f}|_{\Sigma_r} - 0]$ in terms of its $L^{\infty}(r)$ norm.

Assume $f \in L^1(\mathbb{R}^n)$ and $\hat{f}|_{\Sigma} \equiv 0$.

We need to control the difference quotient $\frac{1}{r} [\hat{f}|_{\Sigma_r} - 0]$ in terms of its $L^{\infty}(r)$ norm.

One way to do that: Take its Fourier transform in rand try to control $\mathcal{F}\left(\frac{1}{r}\hat{f}\big|_{\Sigma_r}\right)$ in terms of an $L^1(\rho)$ norm, for example in $L^2(\Sigma; L^1(\rho))$ Assume $f \in L^1(\mathbb{R}^n)$ and $\hat{f}\big|_{\Sigma} \equiv 0$.

We need to control the difference quotient $\frac{1}{r} [\hat{f}|_{\Sigma_r} - 0]$ in terms of its $L^{\infty}(r)$ norm.

One way to do that: Take its Fourier transform in rand try to control $\mathcal{F}\left(\frac{1}{r}\hat{f}\Big|_{\Sigma_r}\right)$ in terms of an $L^1(\rho)$ norm, for example in $L^2(\Sigma; L^1(\rho))$

In order to continue using T^*T methods, we look for a bound in $L^1(\rho; L^2(\Sigma))$, which is contained inside $L^2(\Sigma; L^1(\rho))$.

Some Details

For fixed ρ , The T^*T construction yields an identity

$$\|T_{\rho}f\|_{L^{2}(\Sigma)}^{2} = \iint_{\mathbb{R}^{2n}} \int_{\Sigma} e^{i(x-y)\cdot(\xi',|\xi'|^{2})} \operatorname{sgn}\left((\rho-x_{n})(\rho-y_{n})\right) f(x)f(y) \, d\xi' \, dydx$$

Some Details

For fixed ρ , The T^*T construction yields an identity

$$\|T_{\rho}f\|_{L^{2}(\Sigma)}^{2} = \iint_{\mathbb{R}^{2n}} \int_{\Sigma} e^{i(x-y)\cdot(\xi',|\xi'|^{2})} \operatorname{sgn}\left((\rho-x_{n})(\rho-y_{n})\right)f(x)f(y)\,d\xi'\,dydx$$

Use the fact that \hat{f} vanishes on Σ to substract zero from the integral

$$\|T_{\rho}f\|_{L^{2}(\Sigma)}^{2} = \iint_{\mathbb{R}^{2n}} \int_{\Sigma} e^{i(x-y)\cdot(\xi',|\xi'|^{2})} [\operatorname{sgn} ((\rho - x_{n})(\rho - y_{n})) - 1] f(x)f(y) d\xi' dy dx.$$

Some Details

For fixed ρ , The T^*T construction yields an identity

$$\|T_{\rho}f\|_{L^{2}(\Sigma)}^{2} = \iint_{\mathbb{R}^{2n}} \int_{\Sigma} e^{i(x-y)\cdot(\xi',|\xi'|^{2})} \operatorname{sgn}\left((\rho-x_{n})(\rho-y_{n})\right) f(x)f(y) \, d\xi' \, dydx$$

Use the fact that \hat{f} vanishes on Σ to substract zero from the integral

$$\|T_{\rho}f\|_{L^{2}(\Sigma)}^{2} = \iint_{\mathbb{R}^{2n}} \int_{\Sigma} e^{i(x-y)\cdot(\xi',|\xi'|^{2})} [\operatorname{sgn} ((\rho - x_{n})(\rho - y_{n})) - 1] f(x)f(y) \, d\xi' \, dydx.$$

Now take the square root and show that $\int_{\mathbb{R}} \|T_{\rho}f\|_{L^{2}(\Sigma)} d\rho \lesssim \|f\|_{1}.$

Is f̂ differentiable at almost every point of Σ, or can we only control some partial derivatives?

- Is f̂ differentiable at almost every point of Σ, or can we only control some partial derivatives?
- 2 Can one prove estimates in $L^q(\Sigma)$, $q \neq 2$?

- Is f̂ differentiable at almost every point of Σ, or can we only control some partial derivatives?
- **2** Can one prove estimates in $L^q(\Sigma)$, $q \neq 2$?
- So Is there a pointwise-a.e. transverse derivative in dimensions n = 3, 4, 5? [Bochner-Riesz counterexample in n = 2.]

- Is f̂ differentiable at almost every point of Σ, or can we only control some partial derivatives?
- **2** Can one prove estimates in $L^q(\Sigma)$, $q \neq 2$?
- Solution Is there a pointwise-a.e. transverse derivative in dimensions n = 3, 4, 5? [Bochner-Riesz counterexample in n = 2.]
- Solution Is there a nontrivial L¹ → L¹ bound for Bochner-Riesz multipliers on the space of functions with $\hat{f}|_{S^{n-1}} \equiv 0$?