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Basic Facts

Support from Simons Foundation grant #635369.
Collaboration with Dmitriy Stolyarov.

Fourier transform f̂ (ξ) =
∫
R

e−iξ·x f (x) dx , x , ξ ∈ Rn.

f ∈ L1(Rn) ⇒ f̂ ∈ C0(Rn). [Riemann-Lebesgue]
f ∈ Lp(Rn) ⇒ f̂ ∈ Lp′(Rn), 1 ≤ p ≤ 2. [Hausdorff-Young]

Even when f ∈ L1,there’s no guarantee of Hölder continuity of f̂ ,
either on Rn or when restricted to surfaces.
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An Optimistic Question

What can we say about the derivative of f̂ restricted to a surface?

For simplicity, let Σ ⊂ Rn be a smooth compact subset of the paraboloid
{ξn = |ξ′|2}, where ξ = (ξ′, ξn).

First things first: What can we say about the restriction of f̂ to Σ?

f ∈ Lp(Rn) ⇒ f̂
∣∣
Σ ∈ L2(Σ), 1 ≤ p ≤ 2n+2

n+3 . [Stein-Tomas]
f ∈ Lp(Rn) ⇒ f̂

∣∣
Σ ∈ H−s(Σ), 2n+2

n+3 ≤ p < 2n
n+1 . [Cho-Guo-Lee, ’15]

Loss of regularity in Cho-Guo-Lee is s = n+3
2 −

n+1
p .
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Facts About Derivatives of f̂

Derivatives of f̂ exist as distributions in W−1,p′(Rn). [If p ≤ 2]

Observation about the transverse derivative ∂n f̂ := ∂
∂ξn

f̂ :

f ∈ L1(Rn) ⇒ (∂n)
n−1

2 f̂
∣∣
Σ ∈ H−s(Σ), s > n−1

2

Proof: Consequence of stationary phase.

Proposition
If f ∈ Lp(Rn), 1 ≤ p ≤ 2n+2

n+5 , then ∂n f̂
∣∣
Σ ∈ H−1(Σ).

If f ∈ Lp(Rn), 2n+2
n+5 ≤ p < 2n

n+3 , then ∂n f̂
∣∣
Σ ∈ H−s(Σ).

This time s = n+7
2 −

n+1
p ≥ 1.

Proof: Interpolate between no derivatives (S-T or C-G-L)
and the case of n−1

2 derivatives above.
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Derivative Restrictions in L2(Σ)

It turns out that if f̂
∣∣
Σ has additional smoothness, then so does ∂n f̂

∣∣
Σ.

In some situations ∂n f̂
∣∣
Σ can improve from H−1(Σ) up to L2(Σ).

Theorem (G-Stolyarov, ’20)
Let 1 ≤ p ≤ 2n+2

n+7 . If f̂
∣∣
Σ ∈ H`(Σ) for sufficiently large `, then∥∥∂n f̂
∥∥

L2(Σ) . ‖f ‖p +
∥∥f̂
∥∥

H`(Σ).

The range of p is sharp.

We believe “sufficiently large” means ` > (2n+2)−(n+3)p
(2n+2)−(n+5)p .

This is proved in a few cases when integer arithmetic works out nicely.
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Fine Print about Derivative Restrictions

To be more precise, the theorem gives a norm bound for ∂n f̂
∣∣
Σ for all

Schwartz functions f , then extends it by taking limits.

Regularity of f̂ does not extend to a neighborhood of Σ.

Derivative exists in a functional analysis sense:
Let Σr be the translation Σ + (0, . . . , r). The map

r 7→ f̂
∣∣
Σr
∈ L2(Σ)

is differentiable (in the L2-norm topology) at r = 0.
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Does ∂n f̂ Really Exist?

That leaves a lot of questions about the transverse derivative unanswered:

Does ∂n f̂ (ξ′, |ξ′|2) exist pointwise on Σ?
Almost everywhere on Σ?
Anywhere?

G-St theorem bounds difference quotients in L∞r L2(Σr ).
Pointwise derivatives need a bound with L∞r on the inside.
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Negative Results

Let p > 1. One can construct f ∈ Lp(Rn) so that f̂
∣∣
Σ ≡ 0,

but f̂ (ξ) =∞ on a dense set of parallel planes {ξn = km} everywhere else.

Limits of f̂ (ξ′, |ξ′|2 + r) in the ξn direction do not exist,
so it is not close to being differentiable at r = 0.

This construction doesn’t produce a counterexample when p = 1.(
f̂ can’t be any worse than continuous.

)
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p = 1 Is Different

In fact, (if n ≥ 6) there isn’t a counterexample with f ∈ L1(Rn).

Theorem
Let n ≥ 6 If f ∈ L1(Rn), and f̂

∣∣
Σ ∈ H`(Σ) for some ` > n−1

2 ,
then ∂n f̂ exists almost everywhere in Σ.

This probably isn’t close to the optimal `.

` > n−1
2 lets you reduce to the case f̂

∣∣
Σ ≡ 0

by subtracting away a nice function g ∈ L1(Rn).
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Idea of the Proof

Assume f ∈ L1(Rn) and f̂
∣∣
Σ ≡ 0.

We need to control the difference quotient 1
r
[
f̂
∣∣
Σr
− 0

]
in terms of its L∞(r) norm.

One way to do that: Take its Fourier transform in r
and try to control F

(
1
r f̂
∣∣
Σr

)
in terms of an L1(ρ) norm,

for example in L2(Σ; L1(ρ))

In order to continue using T ∗T methods, we look for a bound in
L1(ρ; L2(Σ)), which is contained inside L2(Σ; L1(ρ)).
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Some Details

For fixed ρ, The T ∗T construction yields an identity

‖Tρf ‖2
L2(Σ) =

∫∫
R2n

∫
Σ

ei(x−y)·(ξ′,|ξ′|2)sgn
(
(ρ−xn)(ρ−yn)

)
f (x)f (y) dξ′ dydx

Use the fact that f̂ vanishes on Σ to substract zero from the integral

‖Tρf ‖2
L2(Σ) =

∫∫
R2n

∫
Σ

ei(x−y)·(ξ′,|ξ′|2)[sgn
(
(ρ− xn)(ρ− yn)

)
− 1

]
f (x)f (y) dξ′ dydx .

Now take the square root and show that
∫
R
‖Tρf ‖L2(Σ) dρ . ‖f ‖1.
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Further Questions

Things I’d still like to know:

1 Is f̂ differentiable at almost every point of Σ,
or can we only control some partial derivatives?

2 Can one prove estimates in Lq(Σ), q 6= 2?

3 Is there a pointwise-a.e. transverse derivative in dimensions
n = 3, 4, 5? [Bochner-Riesz counterexample in n = 2.]

4 Is there a nontrivial L1 → L1 bound for Bochner-Riesz multipliers on
the space of functions with f̂

∣∣
Sn−1 ≡ 0?
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