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Wave operators for H = −∆ + V (x)

Dynamical definition: W±ψ = lim
t→±∞

eitHeit∆ψ.

Time-independent definition: W± (eiξ·x)︸ ︷︷ ︸ = eiξ·x + (scattered wave)︸ ︷︷ ︸.
eigenfunction

of −∆
eigenfunction

of H

where the eigenfunction of H satisfies outgoing(+)/incoming(-)

radiation condition.

W± is an isometry on L2(Rn).

range(W±) = absolutely continuous subspace of H,

so W±W ∗± = Pac(H).



Intertwining relations for wave operators:

For any measurable f : [0,∞]→ C ,

f(H)W± = W±f(−∆)

f(H)Pac(H) = f(H)W±(W±)∗ = W±f(−∆)W ∗±

Thus if W± is bounded on both Lp
′
(Rn) and Lq(Rn),

then every estimate f(−∆) : Lp → Lq is also true

(up to a constant) for the operator f(H)Pac(H).

Example: ‖e−it∆ψ‖p ≤ C|t|
n(1

p−
1
2)‖ψ‖p′ for all 2 ≤ p ≤ ∞.

We’d like same bounds for eitHPac(H) over a wide range of p.



Theorems in dimensions n ≥ 5:

General assumptions on V are that |V (x)| ≤ C(1 + |x|)−β,

and the Fourier transform of (1 + |x|2)σV belongs to L
n−1
n−2.

[for some large enough β and σ]

Yajima (’95) – if H doesn’t have an eigenvalue at zero, then
W± are bounded on all Lp(Rn), 1 ≤ p ≤ ∞.

Yajima (’05), Finco-Yajima (’06), Yajima (’15) – if H does
have an eigenvalue to zero, then W± are bounded on Lp(Rn) for
1 < p < n

2.

Even and odd dimensions are treated separately.
The exponent range p ∈ (1, n

n−2] is more recent; the original
theorems only cover the range p ∈ ( n

n−2,
n
2).



Theorem (Green-G): With the same assumptions on V (x),

If H has an eigenvalue at zero,

then W± are bounded on Lp(Rn) for 1 ≤ p < n
2.

If the zero-energy eigenfunctions are orthogonal to V (x),

then W± are bounded on Lp(Rn) for 1 ≤ p < n.

If the zero-energy eigenfunctions are orthogonal to all (a+bxj)V (x),

then W± are bounded on Lp(Rn) for 1 ≤ p <∞.



Spectral representation of wave operators.

Resolvent notation: R±(λ2) = (H − (λ± i0)2)−1

R±0 (λ2) = (−∆− (λ± i0)2)−1

W±ψ =
1

2πi

∫ ∞
0

(I +R±0 (λ2)V )︸ ︷︷ ︸−1
[R+

0 (λ2)−R−0 (λ2)︸ ︷︷ ︸]ψ d(λ2)

converts to
eigenfunctions

of H

projects onto
plane waves
frequency |λ|

Rewrite the operator inverse as

(I +R±0 (λ2)V )−1 = I − R±0 (λ2)v(I + wR±0 (λ2)v)−1w

where vw = V . Both v and w can decay as fast as
√
V (x).



This gives the integral formula

W± = I −
1

2πi

∫ ∞
0

R±0 (λ2)v(I + wR±0 (λ2)v)−1w

[R+
0 (λ2)−R−0 (λ2)] d(λ2)

Steps toward our proof:

1) Break into high-energy and low-energy cases.

2) Use existing results (by Yajima and Jensen) when these are

already strong enough.

3) Isolate a leading-order contributor to W±, describe it as an

integral operator, and control its kernel K(x, y) pointwise.



Borrowed results:

Yajima (’95) – If one inserts high-energy cutoff [1− η(λ)],

the contribution Whigh
± is bounded on all Lp(Rn), p ∈ [1,∞].

Jensen (’80) – Asymptotic series expansions for (I+wR±0 (λ2)v)−1.

If zero is an eigenvalue, then the leading term is λ−2(wP0v).

Yajima (’05, ’15) – Control of most higher-order (in λ) terms.

In dimensions n = 5,6,8,10 some extra steps are required.

Especially when n = 6.



That leaves us to compute∫∫ ∫ ∞
0

η(λ)R+
0 (λ2)(x,z)

V (z)P0(z,z̃)V (z̃)

λ2
[R+

0 (λ2)−R−0 (λ2)](z̃,y) d(λ2)dz dz̃

Tackle the λ integral first. The free resolvent R+
0 (λ2)(x, z) has

an exact formula in terms of Hankel function H
(1)
n−2

2
(|x− z|λ).

Its complex conjugate is R−0 (λ2).

So we have power-law behavior when |x− z|λ, |z̃ − y|λ < 1,

and oscillation when |x− z|λ, |z̃ − y|λ > 1.



After integrating by parts in λ many times, one is left to bound∫∫
V (z)P0(z,z̃)V (z̃)

|x− z|n−2〈|x− z|+ |z̃ − y|〉〈|x− z| − |z̃ − y|〉n−3
dzdz̃

We assumed |V (z)| ≤ C(1 + |z|)−β for a large β.

P0 projects onto eigenfunctions, which also decay for large z.

Since z, z̃ are localized near the origin, the integral above is not

bigger than

K(x, y) :=
C

〈x〉n−2〈|x|+ |y|〉〈|x| − |y|〉n−3



Finally, an integral operator whose kernel is controlled by

K(x, y) :=
C

〈x〉n−2〈|x|+ |y|〉〈|x| − |y|〉n−3

is bounded on Lp(Rn) over the range 1 ≤ p < n
2.

The bottleneck occurs where |y| > 2|x|, because

|x|−(n−2)|y|−(n−2) only belongs to Lp
′
(dy) for p < n

2.



Extra cancellation conditions: Suppose we know that∫
P0(z, z̃)V (z̃) dz̃ = 0

Then the integral below vanishes:∫∫ ∫ ∞
0

η(λ)R+
0 (λ2)(x,z)

V (z)P0(z,z̃)V (z̃)

λ2
[R+

0 (λ2)−R−0 (λ2)](0,y) d(λ2)dz dz̃

Which allows us to work with differences

[R+
0 (λ2)−R−0 (λ2)](z̃,y)− [R+

0 (λ2)−R−0 (λ2)](0,y)

If |z̃| < 1
2|y|, this gains a factor of |z̃||y| in the estimates.



After splicing together regions {|z̃| < 1
2|y|} and {|z̃| > 1

2|y|},
we can show that the estimates when |x| & |y| are unaffected,

but now

K(x, y) ∼ 〈x〉n−2〈y〉−(n−1) when |y| > 2|x|.

The faster decay in y means it will be a bounded operator on

Lp(Rn) for 1 ≤ p < n.



If
∫
P0(z,z̃)(a + bz̃j)V (z̃) dz̃ = 0, then we can introduce second-

order differences to gain another factor of |z̃||y|.

Ultimately that allows an upper bound of the form

K(x, y) ∼ 〈x〉n−2〈y〉−n when |y| > 2|x|.

which is almost integrable in y, so this operator is bounded on

Lp(Rn) for p ∈ [1,∞).

It is reasonable to expect that p =∞ can also be obtained with

more cancellation conditions...



All sort of new issues arise if n ≤ 4:

• Possibility of resonances instead of eigenvalues.

• Even −∆ has a resonance if n ≤ 2.

• 〈x〉−(2n−4) isn’t integrable for large x.

• 〈|x| − |y|〉n−3 doesn’t integrate well over {|x| ∼ |y|}.
• More leading-order terms to consider.

There are results in n = 1 (D’Ancona-Fanelli), 3 (Yajima),

and 4 (Jensen-Yajima).

[What about n = 2?]


