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Wave operators for H = —A + V(x)

Dynamical definition: Wiy = 1im eitH it Dy,
— =00

Time-independent definition: Wy (e’%) = %% 4 (scattered wave).
— N ’

eigenfunction eigenﬂrnction
of —A of H

where the eigenfunction of H satisfies outgoing(4)/incoming(-)
radiation condition.

W4 is an isometry on L2(R™).
range(Wy) = absolutely continuous subspace of H,
so WoWi = Pu(H).



Intertwining relations for wave operators:

For any measurable f : [0,00] — C ,

fH)WL =Wif(—A)
f(H)Puc(H) = f(H)WL(WL)* = Wef(—A)WE

Thus if W is bounded on both LP (R™) and Li(R"),
then every estimate f(—A) : LP — L9 is also true
(up to a constant) for the operator f(H)P,.(H).

|o—itA n(:—3)
Example: |le Yllp < Clt[ P 279,y for all 2 < p < oco.

We'd like same bounds for e'*Y P,.(H) over a wide range of p.



Theorems in dimensions n > 5:

General assumptions on V are that |V (z)| < C(1 + |z|) 7,

n—1

and the Fourier transform of (1 + |z|2)°V belongs to Ln—2.
[for some large enough 5 and o]

Yajima ('95) — if H doesn’'t have an eigenvalue at zero, then
W4 are bounded on all LP(R™), 1 <p < 0.

Yajima ('05), Finco-Yajima ('06), Yajima ('15) — if H does
have an eigenvalue to zero, then W4, are bounded on LP(R™) for
1<p<35.

Even and odd dimensions are treated separately.
The exponent range p € (1,-"5]| is more recent; the original
theorems only cover the range p € (-"5,75).



Theorem (Green-G): With the same assumptions on V(x),

If H has an eigenvalue at zero,
then W4 are bounded on LP(R") for 1 <p < 7.

If the zero-energy eigenfunctions are orthogonal to V(xz),
then W4, are bounded on LP(R") for 1 <p < n.

If the zero-energy eigenfunctions are orthogonal to all (a+bz;)V (x),
then W4 are bounded on LP(R"™) for 1 < p < co.



Spectral representation of wave operators.

Resolvent notation: R¥(\2) = (H — (A +i0)2)1
RE(2) = (A - (A +i0)2)1

Waw = [* 1+ REODV) RS 02) — Ry 02w d(3?)

211 JO
converts to projects onto
eigenfunctions plane waves
of H frequency ||

Rewrite the operator inverse as
(I+REOAHV) I =1 — REO)v(I +wRE(O2)v) 1w
where vw = V. Both v and w can decay as fast as /V(x).



This gives the integral formula

Wo=1-— Qim /Ooo REO2)o(I + wRE(O2)0) L
[Rd(A2) — Rg (A2)] d(A?)

Steps toward our proof:
1) Break into high-energy and low-energy cases.

2) Use existing results (by Yajima and Jensen) when these are
already strong enough.

3) Isolate a leading-order contributor to W4, describe it as an
integral operator, and control its kernel K(xz,y) pointwise.



Borrowed results:

Yajima ('95) — If one inserts high-energy cutoff [1 — n(\)],
the contribution W!'9" is bounded on all LP(R™), p € [1, co].

Jensen ('80) — Asymptotic series expansions for (I4+wRZ (A2)v)~1.
If zero is an eigenvalue, then the leading term is A= 2(wPyv).

Yajima ('05, '15) — Control of most higher-order (in \) terms.
In dimensions n = 5,6,8,10 some extra steps are required.
Especially when n = 6.



That leaves us to compute

o V(z)Py(z,2)V(Z _ _
///O 77O‘)R(_)'_()‘Q)(3572) &) 0;2 AL )[R(_)FO‘Q)_RO (>\2)](5,y) d()\Q)dz dz

Tackle the X integral first. The free resolvent Rj ()\2)(:1: z) has

an exact formula in terms of Hankel function H( )2(|az— z|N\).

Its complex conjugate is Ra(AQ).

So we have power-law behavior when |z — z|A, |2 — y|A < 1,
and oscillation when |z — z|A, |2 — y|A > 1.



After integrating by parts in A many times, one is left to bound

// V(2)Po(2,2)V (%) Tod3
lx — 2" 2|z — 2| + |2 —y[)(jlz — 2| — |Z —y|)"—3

We assumed |V (2)| < C(1 4+ |z])~P for a large 3.
Py projects onto eigenfunctions, which also decay for large z.

Since z,z are localized near the origin, the integral above is not
bigger than

C

K w) = =2l F ([l = )3




Finally, an integral operator whose kernel is controlled by
C

K w) 3= =2l Tl (] = )3

is bounded on LP(R™) over the range 1 <p < 3.

The bottleneck occurs where |y| > 2|x|, because
2|~ ("=2)|y|=("=2) only belongs to L (dy) for p < 2.



Extra cancellation conditions: Suppose we know that

/Po(z, V() dz =0

Then the integral below vanishes:

> V(2)Py(z,2)V (Z B 3
///O U(A)RS_(AQ)(“”Z) < 0;2 AL )[R(_)F(AQ)_RO (>\2)](0,y) d()\Q)dzdz

Which allows us to work with differences

[RT(A2) — Ry (AD)](zw) — [RT (M%) — Ry (A2)](0.)

If |Z| < %|y|, this gains a factor of % in the estimates.



After splicing together regions {|z| < %|y|} and {|z]| > %Iyl},
we can show that the estimates when |x| 2 |y| are unaffected,
but now

K(z,y) ~ ()" 2(y) """ when |y| > 2||.

The faster decay in y means it will be a bounded operator on
LP(R™) for 1 <p < n.



If [ Po(z2)(a + bZ;)V(3)dz = 0, then we can introduce second-
12|

order differences to gain another factor of m

Ultimately that allows an upper bound of the form

K(z,y) ~ ()" *(y)"™ when |y| > 2[z|.

which is almost integrable in y, so this operator is bounded on
LP(R™) for p € [1, 00).

It is reasonable to expect that p = oo can also be obtained with
more cancellation conditions...



All sort of new issues arise if n < 4:

e Possibility of resonances instead of eigenvalues.

e Even —A has a resonance if n < 2.

e (z)~(27=%) isn't integrable for large z.

o (|| — |y[)"~3 doesn't integrate well over {|z| ~ |y|}.
e More |leading-order terms to consider.

There are results in n =1 (D'Ancona-Fanelli), 3 (Yajima),
and 4 (Jensen-Yajima).

[What about n = 27]



