Bochner-Riesz Estimates for Functions with Vanishing Fourier Transform

MICHAEL GOLDBERG University of Cincinnati

AMS National Meeting, Baltimore, MD. January 18, 2014.

Support provided by Simons Foundation grant #281057.

Motivation: When does Helmholtz equation $(-\Delta - 1)u = f$ have a solution $u \in L^2(\mathbb{R}^n)$?

> (It must be unique, because $(-\Delta - 1)u = 0$ only has the trivial solution in L^2 .)

The formal requirement is:

''f is orthogonal to the nullspace of $(-\Delta-1).''$

or perhaps:

" $\hat{f} = 0$ on the unit sphere."

But that ignores problems with unbounded operators, existence of Fourier restriction, etc.

What function space should f belong to?

It should permit a meaningful L^2 -restriction of \hat{f} to spheres.

Specifically, with $F(r) = \|\widehat{f}\|_{L^2(r\mathbf{S}^{n-1})}$ we need to have $\frac{F(r)}{|r^2-1|} \in L^2([0,\infty)).$

Theorem (Agmon): Given f with $xf \in L^2(\mathbb{R}^n)$ and $\hat{f} = 0$ in $L^2(\mathbb{S}^{n-1})$, then $(\Delta + 1)u = f$ has a solution in $L^2(\mathbb{R}^n)$. Moreover $||u||_{L^2} \leq ||xf||_{L^2}$.

Method: Locally flatten S^{n-1} and shift to plane $\{\xi_n = 0\}$. Now the problem reduces to 1-dimensional Hardy inequality $\|\int_x^{\infty} f\|_2 \lesssim \|xf\|_2$.

Why $f \in L^p(\mathbf{R}^n)$ shouldn't work:

If $f \in L^p(\mathbf{R}^n)$, that doesn't give \hat{f} any Sobolev regularity. For $1 \leq p \leq \frac{2n+2}{n+3}$, the restrictions $\hat{f}|_{r\mathbf{S}^{n-1}}$ are continuous in r but not necessarily Hölder continuous of any positive order. Why $f \in L^p(\mathbf{R}^n)$ shouldn't work:

If $f \in L^p(\mathbf{R}^n)$, that doesn't give \hat{f} any Sobolev regularity. For $1 \leq p \leq \frac{2n+2}{n+3}$, the restrictions $\hat{f}\Big|_{r\mathbf{S}^{n-1}}$ are continuous in r but not necessarily Hölder continuous of any positive order.

Why $f \in L^p(\mathbf{R}^n)$ might work anyway:

 $F(r) = \|\widehat{f}\|_{L^2(r\mathbf{S}^{n-1})}$ can be smooth even when \widehat{f} isn't.

Theorem 1. Let $n \ge 3$ and $\max(1, \frac{2n}{n+4}) \le p \le \frac{2n+2}{n+5}$. Suppose $f \in L^p(\mathbb{R}^n)$ and $\widehat{f}|_{\mathbb{S}^{n-1}} = 0$.

Then there exists a unique $u \in L^2(\mathbb{R}^n)$ such that $-\Delta u - u = f$.

The result is also true for a range of Bochner-Riesz multipliers

$$S^{\alpha}f := \mathcal{F}^{-1}\left[(1-|\xi|^2)^{\alpha}_+\widehat{f}\right].$$

Theorem 2. Let $n \ge 2$ and $\frac{1}{2} < \alpha < \frac{3}{2}$, and $1 \le p \le \frac{2n+2}{n+1+4\alpha}$. Suppose $f \in L^p(\mathbb{R}^n)$ and $\hat{f}|_{\mathbb{S}^{n-1}} = 0$. Then $\|S^{-\alpha}f\|_2 \le C(n, \alpha, p)\|f\|_p$. Application: embedded resonances of $-\Delta + V$

Let
$$V \in L^{n/2}(\mathbb{R}^n)$$
, and set $v = |V|^{1/2}$ and $w = |V|^{1/2} \operatorname{sgn}(V)$.

Suppose $(I + v(-\Delta - z)^{-1}w)^{-1} \in \mathcal{B}(L^2)$ has a pole at $z = \lambda + i0$ for some $\lambda > 0$. Then $I + v(-\Delta - (\lambda + i0))^{-1}w$ has eigenfunction $\phi \in L^2$.

 $\psi = (-\Delta - (\lambda + i0))^{-1} w \phi$ is an eigenfunction of $-\Delta + V$ but it isn't obviously in L^2 .

However if V is real-valued, then $\mathcal{F}(w\phi)$ is required to vanish on the sphere radius $\sqrt{\lambda}$. Bootstrapping with Theorem 1 shows that in fact $\psi \in L^2(\mathbb{R}^n)$. **Sketch of proofs:** The main case is $p = \frac{2n+2}{n+1+4\alpha}$. [The lower bound on p in Theorem 1 is due to Sobolev embedding.]

By Plancherel's identity and monotone convergence,

$$\|S^{-\alpha}f\|_2^2 \le \left\||1-|\xi|^2|^{-\alpha}\widehat{f}\right\|_2^2 = \lim_{\epsilon \to 0} \langle A_{\epsilon}\widehat{f}, \widehat{f} \rangle$$

where $A_{\epsilon}(\xi) = ((1 - |\xi|^2)^2 + \epsilon^2)^{-\alpha}$.

Let σ_r denote the surface measure of $r\mathbf{S}^{n-1} \subset \mathbf{R}^n$. By assumption $\langle \sigma_1 \hat{f}, \hat{f} \rangle = 0$, so it suffices to estimate

$$\lim_{\epsilon \to 0} \langle (A_{\epsilon} - c_{\epsilon} \sigma_1) \hat{f}, \hat{f} \rangle$$

for a well-chosen constant c_{ϵ} .

We'll use
$$c_{\epsilon} = \int_0^{\infty} A_{\epsilon}(r) dr$$
.

Now we'd like to show that the multiplier $A_{\epsilon}(\xi) - c_{\epsilon}\sigma_1$ produces a bounded operator from $L^{\frac{2n+2}{n+1+4\alpha}}(\mathbf{R}^n)$ to its dual, uniformly in ϵ . It helps to write out

$$A_{\epsilon}(\xi) - c_{\epsilon}\sigma_1 = \int_0^\infty A_{\epsilon}(r)(\sigma_r - \sigma_1) dr.$$

Recall that $A_{\epsilon}(r) \leq |r-1|^{-2\alpha}$ over the range $0 \leq r \leq 2$.

So if $\alpha < 1$, then $(r-1)A_{\epsilon}(r)$ is uniformly integrable at r = 1. And if $\alpha = 1$, then the integral of $(r-1)A_{\epsilon}(r)$ remains bounded due to cancellations. Using well-known properties of $\check{\sigma_r}$, one can show that the convolution kernel associated to $A_{\epsilon}(\xi) - c_{\epsilon}\sigma_1$ is bounded by:

$$|K_{\epsilon}(x)| \leq \frac{C}{|x|^{\frac{n+1-4\alpha}{2}}}$$

Thus $|x|^{\frac{n+1-4\alpha}{2}}K_{\epsilon}$ defines a bounded operator from L^1 to L^{∞} .

One can also show that the Fourier transform of $\frac{K_{\epsilon}}{|x|^{2\alpha+i\mu}}$ is bounded pointwise by $\log |\mu|$, so these define bounded operators from L^2 to itself (except if $\mu = 0$).

Both of the above estimates are independent of $\epsilon > 0$. Complex interpolation (imitating the sharp Stein-Tomas theorem) completes the proof.

What about $\alpha > 1$?

Basic idea: Continue Taylor expansion around r = 1. We started out by assuming that $\langle \sigma_1 \hat{f}, \hat{f} \rangle = 0$. Let σ' be the distribution $\left(\frac{d}{dr}\sigma_r\right)\Big|_{r=1}$.

It turns out that $\langle \sigma' \hat{f}, \hat{f} \rangle = 0$ as well, for a reason that is either deep, or completely trivial – I can't decide which.

What about $\alpha > 1$?

Basic idea: Continue Taylor expansion around r = 1. We started out by assuming that $\langle \sigma_1 \hat{f}, \hat{f} \rangle = 0$. Let σ' be the distribution $\left(\frac{d}{dr}\sigma_r\right)\Big|_{r=1}$.

It turns out that $\langle \sigma' \hat{f}, \hat{f} \rangle = 0$ as well, for a reason that is either deep, or completely trivial – I can't decide which.

Back on slide 2 we introduced $F(r) = \|\widehat{f}\|_{L^2(r\mathbf{S}^{n-1})}$.

Then $\langle \sigma_r \hat{f}, \hat{f} \rangle = [F(r)]^2 \ge 0$, so any point where $\langle \sigma_r \hat{f}, \hat{f} \rangle = 0$ must be a local minimum. That forces $\frac{d}{dr} \langle \sigma_r \hat{f}, \hat{f} \rangle = 0$ as well. To extend the Theorems to $1 < \alpha < \frac{3}{2}$, one establishes a uniform bound on the multipliers $\left[A_{\epsilon}(\xi) - c_{\epsilon}\sigma_1 - d_{\epsilon}\sigma'\right]$, again using the operator norm from $L^{\frac{2n+2}{n+1+4\alpha}}(\mathbf{R}^n)$ to its dual.

We choose the new constant to be $d_{\epsilon} = \int_0^{\infty} (r-1) A_{\epsilon}(r) dr$.

Thus
$$A_{\epsilon}(\xi) - c_{\epsilon}\sigma_1 - d_{\epsilon}\sigma' = \int_0^\infty A_{\epsilon}(r)(\sigma_r - \sigma_1 - (r-1)\sigma') dr.$$

So long as $\alpha < \frac{3}{2}$, the functions $(r-1)^2 A_{\epsilon}(r)$ are uniformly integrable at r = 1. There is logarithmic divergence if $\alpha = \frac{3}{2}$, with no mitigating cancellation.

Corollaries via Interpolation:

The spaces $\{f \in L^p(\mathbb{R}^n), \hat{f} = 0 \text{ on } \mathbb{S}^{n-1}\}$ are not well suited for interpolation because the vanishing-restriction property is not preserved by most actions. The dual space is also an awkward quotient of $L^{p'}$.

One can at least use complex interpolation of operators. For example: given a general function $f \in L^1(\mathbb{R}^2)$, one knows that $\|S^0 f\|_q \lesssim \|f\|_1$ provided $q > \frac{4}{3}$.

However if $\widehat{f} = 0$ on the unit circle, one can interpolate between $\|S^{-\frac{3}{4}+i\mu}f\|_2 \lesssim \|f\|_1$ $\|S^{\alpha+i\mu}f\|_1 \lesssim \|f\|_1, \alpha > \frac{1}{2}$ to get that $\|S^0f\|_q \lesssim \|f\|_1, q > \frac{5}{4}$.

The
$$\alpha = \frac{1}{2}$$
 endpoint:
When $\alpha = \frac{1}{2}$, $p = \frac{2n+2}{n+1+4\alpha}$ is the Stein-Tomas exponent.
Of course $|1 - |\xi|^2|^{-1/2}$ fails to be square-integrable.
Does setting $\hat{f}(\xi) = 0$ on the unit sphere allow $|1 - |\xi|^2|^{-\frac{1}{2}}\hat{f} \in L^2$?

In n=1, the answer is no. Take $f(x) = \eta(x + N\pi) - \eta(x - N\pi)$ for some bump function η . Then $S^{-1/2}f(x) \sim \frac{1}{\sqrt{|x-N\pi|}}$ over most of the interval $x \in [0, 2N\pi]$.

Cancellation of f is needed on more length scales, similar to what occurs in a Hardy space.

[In fact, The correct condition may be $e^{\pm ix} f(x) \in H^1(\mathbf{R})$.]

The n = 1 counterexample doesn't work in higher dimensions. It is much harder to force \hat{f} to vanish on the entire unit sphere. Which brings us to...

Proposition: I don't know how to resolve the statement

$$\left\{ f \in L^{\frac{2n+2}{n+3}}(\mathbf{R}^n), \, \widehat{f} \, \Big|_{S^{n-1}} = \mathbf{0} \right\} \stackrel{??}{\Longrightarrow} S^{-1/2} f \in L^2(\mathbf{R}^n).$$

except in one dimension. But it would be really nifty if something in Fourier Analysis was true when $n \ge 2$ but not n = 1.