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Motivation: When does Helmholtz equation (−∆ − 1)u = f

have a solution u ∈ L2(Rn)?

(It must be unique, because (−∆− 1)u = 0

only has the trivial solution in L2.)

The formal requirement is:

“f is orthogonal to the nullspace of (−∆− 1).”

or perhaps:

“f̂ = 0 on the unit sphere.”

But that ignores problems with unbounded operators, existence

of Fourier restriction, etc.



What function space should f belong to?

It should permit a meaningful L2-restriction of f̂ to spheres.

Specifically, with F (r) = ‖f̂ ‖L2(rSn−1)

we need to have F (r)
|r2−1| ∈ L

2([0,∞)).

Theorem (Agmon): Given f with xf ∈ L2(Rn) and f̂ = 0 in

L2(Sn−1), then (∆ + 1)u = f has a solution in L2(Rn).

Moreover ‖u‖L2 . ‖xf‖L2.

Method: Locally flatten Sn−1 and shift to plane {ξn = 0}. Now

the problem reduces to 1-dimensional Hardy inequality

‖
∫∞
x f‖2 . ‖xf‖2.



Why f ∈ Lp(Rn) shouldn’t work:

If f ∈ Lp(Rn), that doesn’t give f̂ any Sobolev regularity.

For 1 ≤ p ≤ 2n+2
n+3 , the restrictions f̂

∣∣∣
rSn−1 are continuous in r

but not necessarily Hölder continuous of any positive order.

Why f ∈ Lp(Rn) might work anyway:

F (r) = ‖f̂ ‖L2(rSn−1) can be smooth even when f̂ isn’t.
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Theorem 1. Let n ≥ 3 and max(1, 2n
n+4) ≤ p ≤ 2n+2

n+5 .

Suppose f ∈ Lp(Rn) and f̂
∣∣∣
Sn−1 = 0.

Then there exists a unique u ∈ L2(Rn) such that −∆u− u = f .

The result is also true for a range of Bochner-Riesz multipliers

Sαf := F−1
[
(1− |ξ|2)α+f̂

]
.

Theorem 2. Let n ≥ 2 and 1
2 < α < 3

2, and 1 ≤ p ≤ 2n+2
n+1+4α.

Suppose f ∈ Lp(Rn) and f̂
∣∣∣
Sn−1 = 0.

Then ‖S−αf‖2 ≤ C(n, α, p)‖f‖p.



Application: embedded resonances of −∆ + V

Let V ∈ Ln/2(Rn), and set v = |V |1/2 and w = |V |1/2sgn(V ).

Suppose (I + v(−∆− z)−1w)−1 ∈ B(L2) has a pole at z = λ+ i0

for some λ > 0. Then I+v(−∆−(λ+ i0))−1w has eigenfunction

φ ∈ L2.

ψ = (−∆− (λ + i0))−1wφ is an eigenfunction of −∆ + V but it

isn’t obviously in L2.

However if V is real-valued, then F(wφ) is required to vanish on

the sphere radius
√
λ. Bootstrapping with Theorem 1 shows that

in fact ψ ∈ L2(Rn).



Sketch of proofs: The main case is p = 2n+2
n+1+4α.

[The lower bound on p in Theorem 1 is due to Sobolev embedding.]

By Plancherel’s identity and monotone convergence,

‖S−αf‖22 ≤
∥∥∥|1− |ξ|2|−αf̂ ∥∥∥2

2
= lim

ε→0
〈Aεf̂ , f̂〉

where Aε(ξ) =
(
(1− |ξ|2)2 + ε2

)−α
.

Let σr denote the surface measure of rSn−1 ⊂ Rn.
By assumption 〈σ1f̂ , f̂〉 = 0, so it suffices to estimate

lim
ε→0
〈(Aε − cεσ1)f̂ , f̂〉

for a well-chosen constant cε.

We’ll use cε =
∫ ∞

0
Aε(r) dr.



Now we’d like to show that the multiplier Aε(ξ)− cεσ1

produces a bounded operator from L
2n+2

n+1+4α(Rn) to its dual,

uniformly in ε. It helps to write out

Aε(ξ)− cεσ1 =
∫ ∞

0
Aε(r)(σr − σ1) dr.

Recall that Aε(r) . |r − 1|−2α over the range 0 ≤ r ≤ 2.

So if α < 1, then (r − 1)Aε(r) is uniformly integrable at r = 1.

And if α = 1, then the integral of (r − 1)Aε(r) remains bounded

due to cancellations.



Using well-known properties of σ̌r, one can show that the

convolution kernel associated to Aε(ξ)− cεσ1 is bounded by:

|Kε(x)| ≤
C

|x|
n+1−4α

2

Thus |x|
n+1−4α

2 Kε defines a bounded operator from L1 to L∞.

One can also show that the Fourier transform of
Kε

|x|2α+iµ

is bounded pointwise by log |µ|, so these define bounded

operators from L2 to itself (except if µ = 0).

Both of the above estimates are independent of ε > 0.

Complex interpolation (imitating the sharp Stein-Tomas

theorem) completes the proof.



What about α > 1?

Basic idea: Continue Taylor expansion around r = 1.

We started out by assuming that 〈σ1f̂ , f̂〉 = 0.

Let σ′ be the distribution
(
d
drσr

)∣∣∣∣
r=1

.

It turns out that 〈σ′f̂ , f̂〉 = 0 as well, for a reason that is

either deep, or completely trivial – I can’t decide which.

Back on slide 2 we introduced F (r) = ‖f̂ ‖L2(rSn−1).

Then 〈σrf̂ , f̂〉 = [F (r)]2 ≥ 0, so any point where 〈σrf̂ , f̂〉 = 0

must be a local minimum. That forces d
dr〈σrf̂ , f̂〉 = 0 as well.
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To extend the Theorems to 1 < α < 3
2, one establishes a uniform

bound on the multipliers
[
Aε(ξ)− cεσ1 − dεσ′

]
, again using the

operator norm from L
2n+2

n+1+4α(Rn) to its dual.

We choose the new constant to be dε =
∫ ∞

0
(r − 1)Aε(r) dr.

Thus Aε(ξ)− cεσ1 − dεσ′ =
∫ ∞

0
Aε(r)(σr − σ1 − (r − 1)σ′) dr.

So long as α < 3
2, the functions (r − 1)2Aε(r) are uniformly

integrable at r = 1. There is logarithmic divergence if α = 3
2,

with no mitigating cancellation.



Corollaries via Interpolation:

The spaces {f ∈ Lp(Rn), f̂ = 0 on Sn−1} are not well suited for

interpolation because the vanishing-restriction property is not

preserved by most actions. The dual space is also an awkward

quotient of Lp
′
.

One can at least use complex interpolation of operators.

For example: given a general function f ∈ L1(R2), one knows

that ‖S0f‖q . ‖f‖1 provided q > 4
3.

However if f̂ = 0 on the unit circle, one can interpolate between

‖S−
3
4+iµf‖2 . ‖f‖1

‖Sα+iµf‖1 . ‖f‖1, α > 1
2

 to get that ‖S0f‖q . ‖f‖1, q > 5
4.



The α = 1
2 endpoint:

When α = 1
2, p = 2n+2

n+1+4α is the Stein-Tomas exponent.

Of course
∣∣∣1− |ξ|2∣∣∣−1/2

fails to be square-integrable.

Does setting f̂(ξ) = 0 on the unit sphere allow
∣∣∣1−|ξ|2∣∣∣−1

2 f̂ ∈ L2?

In n=1, the answer is no.

Take f(x) = η(x+Nπ)− η(x−Nπ) for some bump function η.

Then S−1/2f(x) ∼ 1√
|x−Nπ|

over most of the interval x ∈ [0,2Nπ].

Cancellation of f is needed on more length scales,

similar to what occurs in a Hardy space.

[In fact, The correct condition may be e±ixf(x) ∈ H1(R).]



The n = 1 counterexample doesn’t work in higher dimensions.

It is much harder to force f̂ to vanish on the entire unit sphere.

Which brings us to...

Proposition: I don’t know how to resolve the statement{
f ∈ L

2n+2
n+3 (Rn), f̂

∣∣∣
Sn−1 = 0

} ??
=⇒ S−1/2f ∈ L2(Rn).

except in one dimension. But it would be really nifty if something

in Fourier Analysis was true when n ≥ 2 but not n = 1.


