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Motivation: When does Helmholtz equation (—A — 1)u = f
have a solution v € L2(R")?

(It must be unique, because (—A —1)u =20
only has the trivial solution in L2.)

The formal requirement is:
“f is orthogonal to the nullspace of (—A —1)."”

or perhaps:
“f = 0 on the unit sphere.”

But that ignores problems with unbounded operators, existence
of Fourier restriction, etc.



What function space should f belong to?

It should permit a meaningful L2-restriction of f to spheres.

Specifically, with F(r) = || fllz2¢,gn-1)
we need to have % e L2([0,0)).
Theorem (Agmon): Given f with zf € L2(R™) and f = 0 in

L2(S™" 1), then (A 4 1)u = f has a solution in L2(R").
Moreover |ju||;2 S ||lzf|l ;2.

Method: Locally flatten S”~1 and shift to plane {&, = 0}. Now
the problem reduces to 1-dimensional Hardy inequality

1z fli2 S llzfll2.



Why f € LP(R") shouldn’t work:

If f € LP(R"™), that doesn't give f any Sobolev regularity.

For1<p< % the restrictions f gn1

but not necessarily Holder continuous of any positive order.

are continuous in r



Why f € LP(R") shouldn’t work:

If f € LP(R"™), that doesn't give f any Sobolev regularity.

2n-|_2 . . N . .
For 1 <p< 3 the restrictions f gn—1 are continuous in r

but not necessarily Holder continuous of any positive order.

Why f € LP(R"™) might work anyway:

F(r) = Hf”LQ(rS”—l) can be smooth even when f isn't.



Theorem 1. Letn >3 and max(l,nz—_&) <p< 2n“_|‘_"52.

Suppose f € LP(R™) and f‘Sn_l = 0.

Then there exists a unique u € L?(R") such that —Au —u = f.

The result is also true for a range of Bochner-Riesz multipliers
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Sf = F (A~ 1€ ]|

2n-+2
n+1+4a°

Theorem 2. Letn > 2 and%<a<%, and 1 <p<
Suppose f € LP(R™) and f‘Sn_l = 0.

T hen ||S_af||2 < C(n,a,p)Hpr



Application: embedded resonances of —A +V
Let V € L"/2(R"), and set v = |[V|}/2 and w = |V |1/2sgn(V).

Suppose (I +v(—A —2)"1w)~1 € B(L?) has a pole at z = A +i0
for some A > 0. Then I +v(—A — (\+1:0))~1w has eigenfunction
¢ € L2,

v = (—=A — (A +i0))"Lwe is an eigenfunction of —A + V but it
isn't obviously in L2,

However if V is real-valued, then F(w¢) is required to vanish on
the sphere radius V). Bootstrapping with Theorem 1 shows that
in fact ¥ € L2(R"™).



Sketch of proofs: The main case is p = ni’i‘_ﬁa

[The lower bound on p in Theorem 1 is due to Sobolev embedding.]

By Plancherel’'s identity and monotone convergence,
_ a2 _ .
IS FIZ < |11 = 1€P17F | = lim (A, )
e—0

where Ac(¢) = ((1 — [£1%)% + 62)_a.

Let o, denote the surface measure of rS* 1 c R".
By assumption (o1 f, f) = 0, so it suffices to estimate

lim ((Ae — ceo1) [, 1)
e—0

for a well-chosen constant ce.

©.@)
We'll use ce :/O Ae(r) dr.



Now we'd like to show that the multiplier Ac(§) — ceoq

2n—+2
produces a bounded operator from Ln+I+4a(R"™) to its dual,

uniformly in €. It helps to write out

O
Ac(€) — ceop = /O Ac(r)(or — o1) dr.
Recall that Ac(r) < |r— 1]72% over the range 0 < r < 2.
So if a <1, then (r — 1)Ac(r) is uniformly integrable at »r = 1.

And if « = 1, then the integral of (r — 1)Ac(r) remains bounded
due to cancellations.



Using well-known properties of ¢, one can show that the
convolution kernel associated to Ac(€) — ceoq is bounded by:

C
|K€(m>| S n+1—4«
x| 2
Thus |a:| KE defines a bounded operator from L1 to L.
. Ke
One can also show that the Fourier transform of :
|x|2a—|—z,u

is bounded pointwise by log|u|, so these define bounded
operators from L2 to itself (except if u = 0).

Both of the above estimates are independent of € > 0.
Complex interpolation (imitating the sharp Stein-Tomas
theorem) completes the proof.



What about o > 17

Basic idea: Continue Taylor expansion around r = 1.
We started out by assuming that (oyf, f) = 0.

Let ¢/ be the distribution (d%ar)

r=1

It turns out that (¢'f, f) = 0 as well, for a reason that is
either deep, or completely trivial — I can’t decide which.
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Basic idea: Continue Taylor expansion around r = 1.
We started out by assuming that (oyf, f) = 0.

Let ¢/ be the distribution (d%ar)

r=1

It turns out that (¢'f, f) = 0 as well, for a reason that is
either deep, or completely trivial — I can’t decide which.

Back on slide 2 we introduced F(r) = || £l 2(,gn-1)-

Then (o.f, f) = [F(r)]? > 0, so any point where (o,f, f) =0

must be a local minimum. That forces %(o,f, f) = 0 as well.



To extend the Theoremsto 1 < a < % one establishes a uniform

bound on the multipliers [Ae(g) — Ceoq — dea’}, again using the

2n—+2
operator norm from Ln»+1+4a(R"™) to its dual.

@)
We choose the new constant to be de :/o (r — 1)Ae(r) dr.

Thus A (&) — ceoq — deo’ = /OOO A(r) (o7 — o1 — (r — 1)o”) dr.

So long as a < % the functions (r — 1)2A.(r) are uniformly

integrable at r = 1. There is logarithmic divergence if a = %

with no mitigating cancellation.



Corollaries via Interpolation:

The spaces {f € LP(R"),f = 0 on S 1} are not well suited for
interpolation because the vanishing-restriction property is not
preserved by most actions. The dual space is also an awkward
quotient of Lr

One can at least use complex interpolation of operators.
For example: given a general function f e LY(R?), one knows
that ||SOf|lq < || fll1 provided ¢ > 5

However if f: O on the unit circle, one can interpolate between

3, .

STa T, <

IS < o> }togetthat 192512 S V111- 0> 3
1 1,



The o = % endpoint:

When a = % p = n_f_””{‘_"l_aa is the Stein-Tomas exponent.

~1/2
Of course ‘1 — |§|2‘ / fails to be square-integrable.

_1
Does setting f(¢) = 0 on the unit sphere allow ‘1—|§|2‘ 2f e L?7

In n=1, the answer is no.
Take f(z) =n(x 4+ Nnw) — n(x — N=m) for some bump function 7.
Then S~1/2f(z) ~ —L— over most of the interval = € [0, 2N].

|lx— N

Cancellation of f is needed on more length scales,
similar to what occurs in a Hardy space.

[In fact, The correct condition may be et f(z) € H1(R).]



The n = 1 counterexample doesn’'t work in higher dimensions.
It is much harder to force f to vanish on the entire unit sphere.
Which brings us to...

Proposition: I don't know how to resolve the statement
2n+2 - [P
{feLm 3 ®M), f|,,_, =0} = s 12fe L’(RM).

except in one dimension. But it would be really nifty if something
in Fourier Analysis was true when n > 2 but not n = 1.



