Wave Propagation on Periodic Planar Graphs

VITA BOROVYK AND MICHAEL GOLDBERG

IMACS Conference on Nonlinear Evolution Equations and Wave Phenomena: Computation and Theory

Athens, Georgia March 27, 2013.

Support provided by NSF grant DMS-1002515

Motivated by Quantum Harmonic Lattice:

Put a harmonic oscillator at each vertex of a graph, with position q_x and momenutum p_x .

The local Hamiltonian is $H_x = p_x^2 + \omega^2 q_x^2$.

Introduce nearest-neighbor interactions to produce a global Hamiltonian

$$H = \sum_{x \in \Lambda} \left(p_x^2 + \omega^2 q_x^2 + \sum_{y \in \Lambda} \lambda_{xy} (q_y - q_x)^2 \right)$$

where $\omega > 0$ and $\lambda_{xy} \begin{cases} > 0 \text{ if } x, y \text{ are adjacent.} \\ = 0 \text{ otherwise.} \end{cases}$

The classical system has a discrete Klein-Gordon equation as its equation of motion:

$$u_{tt}(x,t) = -\omega^2 u(x,t) + \sum_{y \in \Lambda} \lambda_{xy} \left(u(y,t) - u(x,t) \right)$$

If (Λ, λ) is a periodic weighted graph in \mathbb{R}^d , eigenfunctions of the discrete Laplacian are built out of plane waves $e^{ik \cdot x}$, $k \in \mathbb{T}^d$.

Main Example: If $\Lambda = \mathbf{Z}^d$, and $\lambda_{x,x+e_j} = \lambda_j$, the discrete Klein-Gordon equation has plane-wave solutions

$$u_k(x,t) = e^{i(k \cdot x - \varphi(k)t)}$$

where
$$\varphi(k) = \sqrt{\omega^2 + 4 \sum_{j=1}^d \lambda_j \sin^2\left(\frac{k_j}{2}\right)}$$
.

Soultions to K-G equation on \mathbb{Z}^d :

The fundamental solution for

$$\begin{cases} u_{tt} = -\omega^2 u(x,t) + \sum_{j=1}^d \lambda_j (u(x+e_j,t) + u(x-e_j,t) - 2u(x,t)) \\ u(x,0) = \delta_0 \\ u_t(x,0) = 0 \end{cases}$$

is
$$\Phi_1(x,t) = \int_{\mathbb{T}^d} \cos(t\varphi(k)) e^{ik \cdot x} dk$$

and the fundamental solution for

$$\begin{cases} u_{tt} = -\omega^2 u(x,t) + \sum_{j=1}^d \lambda_j (u(x+e_j,t) + u(x-e_j,t) - 2u(x,t)) \\ u(x,0) = 0 \\ u_t(x,0) = \delta_0 \end{cases}$$

is
$$\Phi_2(x,t) = \int_{\mathbb{T}^d} \frac{\sin(t\varphi(k))}{\varphi(k)} e^{ik \cdot x} dk$$

Lieb-Robinson bounds (finite propagation speed): $\Phi(x,t)$ decays exponentially for large $x \gg t$.

For the classical system, this follows from analyticity of $\varphi(k)$.

Dispersive estimates: How does $\sup_{x} |\Phi(x,t)|$ decay with t?

This requires control of oscillatory integrals like

 $\int_{\mathbb{T}^d} e^{\pm it\varphi(k)} e^{ik \cdot x} \, dk \quad \text{as } t \to \infty$

If $x_0 = t \nabla \varphi(k_0)$ for some $k_0 \in \mathbb{T}^d$, there is stationary phase at k_0 .

Non-degenerate stationary phase estimate:

$$|\Phi(x_0,t)| \lesssim rac{1}{t^{d/2}\sqrt{\det D^2 arphi(k_0)}}$$

If det $D^2\varphi(k_0) = 0$, asymptotic decay depends on Taylor series of $\varphi(k)$ centered at k_0 .

When d = 1, van der Corput Lemma implies $|\Phi_1(x,t)| \lesssim t^{-1/3}$.

Similarly, $|\Phi_2(x,t)| \lesssim t^{-1/3}$, with a constant depending on ω (comes from factor of $1/\varphi(k)$).

Degenerate stationary phase is difficult in d > 1.

Asymptotic decay depends on Taylor series expansion with respect to "adapted" coordinates (Varchenko, 1976).

Detailed analysis for d = 2:

$$\varphi(k) = \sqrt{\omega^2 + 2\lambda_1(1 - \cos k_1) + 2\lambda_2(1 - \cos k_2)}$$

$$\det D^2 \varphi(k) = \varphi^{-4}(k) \left(\omega^2 a b - \lambda_1 b (1-a)^2 - \lambda_2 a (1-b)^2 \right)$$

where $a = \cos k_1$ and $b = \cos k_2$.

Where is det $D^2\varphi(k) = 0$?

- A closed curve Γ₁ around origin, corresponding to extremal propagation velocity.
- A closed curve Γ_2 around $(\pi, \pi) \in \mathbb{T}^2$ corresponding to ???

At all $k \in \mathbb{T}^2$, $D^2\varphi(k)$ has rank ≥ 1 .

Among $k \in \Gamma_1$, the second and third-order directional derivatives of $\varphi(k)$ never vanish at the same time.

This leads to an estimate $|\Phi(x,t)| \lesssim t^{-5/6}$ when $\frac{x}{t}$ is near an extremal velocity. Peculiar Results:

Among $k \in \Gamma_2$, there is a unique point (up to mirror symmetries) where both the second and third-order directional derivatives of $\varphi(k)$ vanish, but a relevant fourth-order quantity is nonzero.

Thus there is a unique velocity (again up to symmetry) where fundamental solutions of the discerete Klein-Gordon equation decay at the rate $t^{-3/4}$.

This region of least dispersion occurs in middle of the propagation pattern, not at its leading edge.

Example: Triangular lattice in \mathbb{R}^2 .

The Schrödinger equation has plane-wave solutions

$$u_k(x,t) = e^{i(k \cdot x - \varphi(k)t)}$$

with the phase function

$$\varphi(k) = 4 \left[\lambda_1 \sin^2 \left(\frac{k_1}{2} \right) + \lambda_2 \sin^2 \left(\frac{-k_1 + \sqrt{3}k_2}{2} \right) + \lambda_3 \sin^2 \left(\frac{k_1 + \sqrt{3}k_2}{2} \right) \right]$$

Observations:

The number and type of critical points of $\varphi(k)$ is variable, and depends on the parameters λ_j .

Bifurcations involving the number of caustics (e.g. $\lambda_1 = \lambda_2 = 1, \lambda_3 = \frac{1}{2}$) do not affect the power-law decay $|\Phi(x,t)| \leq C|t|^{-3/4}$.

Several cusps interact when $\lambda_1 = \lambda_2 = 1, \lambda_3 = \frac{1}{\sqrt{8}}$ in what is known as a "butterfly singularity." For this choice of λ_j the dispersive bound is only $|\Phi(x,t)| \leq C|t|^{-2/3}$.

Other time-decay exponents may be possible.

