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Motivated by Quantum Harmonic Lattice:

Put a harmonic oscillator at each vertex of a graph,

with position qx and momenutum px.

The local Hamiltonian is Hx = p2
x + ω2q2

x.

Introduce nearest-neighbor interactions to produce

a global Hamiltonian

H =
∑
x∈Λ

(
p2
x + ω2q2

x +
∑
y∈Λ

λxy(qy − qx)2
)

where ω > 0 and λxy

 > 0 if x, y are adjacent.

= 0 otherwise.



The classical system has a discrete Klein-Gordon

equation as its equation of motion:

utt(x, t) = −ω2u(x, t) +
∑
y∈Λ

λxy
(
u(y, t)− u(x, t)

)

If (Λ, λ) is a periodic weighted graph in Rd,

eigenfunctions of the discrete Laplacian are

built out of plane waves eik·x, k ∈ Td.

Main Example: If Λ = Zd, and λx,x+ej = λj,

the discrete Klein-Gordon equation has plane-wave

solutions

uk(x, t) = ei(k·x−ϕ(k)t)

where ϕ(k) =

√√√√√ω2 + 4
d∑

j=1

λj sin2
(
kj

2

)
.



Soultions to K-G equation on Zd:

The fundamental solution for
utt = −ω2u(x, t) +

d∑
j=1

λj
(
u(x+ ej, t) + u(x− ej, t)− 2u(x, t)

)
u(x,0) = δ0

ut(x,0) = 0

is Φ1(x, t) =
∫
Td

cos(tϕ(k))eik·x dk

and the fundamental solution for
utt = −ω2u(x, t) +

d∑
j=1

λj
(
u(x+ ej, t) + u(x− ej, t)− 2u(x, t)

)
u(x,0) = 0

ut(x,0) = δ0

is Φ2(x, t) =
∫
Td

sin(tϕ(k))

ϕ(k)
eik·x dk



Lieb-Robinson bounds (finite propagation speed):

Φ(x, t) decays exponentially for large x� t.

For the classical system, this follows from

analyticity of ϕ(k).

Dispersive estimates: How does supx |Φ(x, t)|
decay with t?

This requires control of oscillatory integrals like∫
Td
e±itϕ(k)eik·x dk as t→∞



If x0 = t∇ϕ(k0) for some k0 ∈ Td,
there is stationary phase at k0.

Non-degenerate stationary phase estimate:

|Φ(x0, t)| .
1

td/2
√

detD2ϕ(k0)

If detD2ϕ(k0) = 0, asymptotic decay depends on

Taylor series of ϕ(k) centered at k0.

When d = 1, van der Corput Lemma implies

|Φ1(x, t)| . t−1/3.

Similarly, |Φ2(x, t)| . t−1/3, with a constant

depending on ω (comes from factor of 1/ϕ(k)).



Degenerate stationary phase is difficult in d > 1.

Asymptotic decay depends on Taylor series

expansion with respect to ”adapted” coordinates

(Varchenko, 1976).

Detailed analysis for d = 2:

ϕ(k) =
√
ω2 + 2λ1(1− cos k1) + 2λ2(1− cos k2)

detD2ϕ(k)

= ϕ−4(k)
(
ω2ab− λ1b(1− a)2 − λ2a(1− b)2

)

where a = cos k1 and b = cos k2.



Where is detD2ϕ(k) = 0?

• A closed curve Γ1 around origin, corresponding

to extremal propagation velocity.

• A closed curve Γ2 around (π, π) ∈ T2

corresponding to ???

At all k ∈ T2, D2ϕ(k) has rank ≥ 1.

Among k ∈ Γ1, the second and third-order

directional derivatives of ϕ(k) never vanish

at the same time.

This leads to an estimate |Φ(x, t)| . t−5/6

when x
t is near an extremal velocity.



Peculiar Results:

Among k ∈ Γ2, there is a unique point

(up to mirror symmetries) where both

the second and third-order directional

derivatives of ϕ(k) vanish, but a relevant

fourth-order quantity is nonzero.

Thus there is a unique velocity (again up

to symmetry) where fundamental solutions

of the discerete Klein-Gordon equation decay

at the rate t−3/4.

This region of least dispersion occurs in middle of

the propagation pattern, not at its leading edge.
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Example: Triangular lattice in R2.

xx x

x x

x x

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
TT

T
T
T
T
T
T
T
T
T
T
T
T
T
TT

�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�

T
T
T
T
T

λ1 λ1

λ3

λ3 λ2

λ2

The Schrödinger equation has plane-wave
solutions

uk(x, t) = ei(k·x−ϕ(k)t)

with the phase function

ϕ(k) = 4
[
λ1 sin2

(
k1

2

)
+ λ2 sin2

(−k1 +
√

3k2

2

)
+ λ3 sin2

(
k1 +

√
3k2

2

)]



Observations:

The number and type of critical points of ϕ(k)

is variable, and depends on the parameters λj.

Bifurcations involving the number of caustics

(e.g. λ1 = λ2 = 1, λ3 = 1
2) do not affect

the power-law decay |Φ(x, t)| ≤ C|t|−3/4.

Several cusps interact when λ1 = λ2 = 1, λ3 = 1√
8

in what is known as a ”butterfly singularity.”

For this choice of λj the dispersive bound is only

|Φ(x, t)| ≤ C|t|−2/3.

Other time-decay exponents may be possible.
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