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Motivated by Quantum Harmonic Lattice:

Put a harmonic oscillator at each vertex of a graph,
with position g and momenutum p;.

The local Hamiltonian is H; = p2 4+ w?¢2.

Introduce nearest-neighbor interactions to produce
a global Hamiltonian

H=Y)" <p£ +w?z + Y Aay(ay — Qx)2>

xeN yeN

> 0 if x,y are adjacent.

where w > 0 and Agy { — 0 otherwise



The classical system has a discrete Klein-Gordon
equation as its equation of motion:

up(x,t) = —wzu(:v,t) + Z )\;,;y<u(y,t) — u(x,t))
yeN

If (A,\) is a periodic weighted graph in R¢,
eigenfunctions of the discrete Laplacian are
built out of plane waves ¢t*'* k e T?.

Main Example: If A = Z¢, and Aeate; = Aji
the discrete Klein-Gordon equation has plane-wave
solutions

uk(az,t) — ei(k-m—go(k)t)

d
k..
where p(k) = |w?+4 Y \;sin? (é)

\ j=1




Soultions to K-G equation on Z4:

The fundamental solution for

2

d
uy = —w?u(z,t) + Z Aj (u(:z: +ej,t) + u(x —ej,t) — 2u(:v,t))

1=1
u(x,0) = do
\ut(z,0) =0

is ®q(x,t) = /Td cos(tp(k))e™? dk

and the fundamental solution for

p

d
uy = —wu(z,t) + Z: Aj (u(a: + e, t) + u(x —ej,t) — 2u(ac,t))

. =1

u(x,0) =0

\ut(a:,O) = do
| [ osin(te(k)) ks
s do(z,t) _/Td SRR



Lieb-Robinson bounds (finite propagation speed):
d(x,t) decays exponentially for large = > t.

For the classical system, this follows from
analyticity of (k).
Dispersive estimates: How does sup, |P(x,t)]

decay with t7?

This requires control of oscillatory integrals like

/dejm;tgp(k)eilmj dk ast— oo
T



If 2o = tVe(kg) for some kg € T¢,
there is stationary phase at kq.

Non-degenerate stationary phase estimate:

1

|P(z0,1)| S
t4/2 \/det D2y (ko)

If det D2¢(kg) = 0, asymptotic decay depends on
Taylor series of p(k) centered at k.

When d = 1, van der Corput Lemma implies
[Py (z,t)| < t1/3.

Similarly, |®o5(z,t)| <t~ 1/3, with a constant
depending on w (comes from factor of 1/¢(k)).



Degenerate stationary phase is difficult in d > 1.

Asymptotic decay depends on Taylor series
expansion with respect to "adapted” coordinates
(Varchenko, 1976).

Detailed analysis for d = 2:

p(k) = \Jw? + 221 (1 — cosky) + 2Xa(1 — cos ko)

det D%p(k)
= o~ (k) (w?ab — A1b(1 — a)® — Aza(1 — b))

where a = COS k1 and b = COS k».



Where is det D2p(k) = 07

e A closed curve ['{ around origin, corresponding
to extremal propagation velocity.

e A closed curve N5 around (7, 7) € T2
corresponding to 777

At all k € T2, D2p(k) has rank > 1.

Among k € [ 1, the second and third-order
directional derivatives of p(k) never vanish
at the same time.

This leads to an estimate |®(z,t)| < t—2/6

when % is near an extremal velocity.



Peculiar Results:

Among k € I'5, there is a unique point
(up to mirror symmetries) where both
the second and third-order directional
derivatives of ¢(k) vanish, but a relevant
fourth-order quantity is nonzero.

Thus there is a unique velocity (again up

to symmetry) where fundamental solutions
of the discerete Klein-Gordon equation decay
at the rate +—3/4.

This region of least dispersion occurs in middle of
the propagation pattern, not at its leading edge.
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Example: Triangular lattice in R2.

The Schrodinger equation has plane-wave
solutions

uk(:c,t) — ei(k-a:—go(k)t)

with the phase function

—k1 + \@7@)
2

k1 + \/§/€2>]
2

o(k) = 4[>\1 sin? (%) + Ao sin? (

+ \3sin? (



Observations:

The number and type of critical points of p(k)
IS variable, and depends on the parameters Aj.

Bifurcations involving the number of caustics
(e.g. M1 =X =1,23= %) do not affect
the power-law decay |®(z,t)| < C|t|~3/4.

Several cusps interact when A\ = \p = 1,3 = \/ig
in what is known as a " butterfly singularity.”

For this choice of Aj the dispersive bound is only
D (z,t)| < CJt|2/3.

Other time-decay exponents may be possible.
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