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Linear Schrodinger Equation in R3.

—tur = (—-A+i(A-V4+V -A)+V)u
=(-A+ L)u
= Hu

If A,V =0, some properties of Hpy include:

e Spectrum of Hp is absolutely continuous,
supported on [0, c0).

e Kato Smoothing bound:
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e Strichartz Inequalities:
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where ¢q € [2,00)




These statements are not generally true for e?H.

If A or V is large, there may exist bound states
which have no time-decay.

Questions:

e Are bound states the only problem?

e \What happens if we remove them with the
orthogonal projection Pu.(H)?



Theorem 1 (Erdogan, G, Schlag) Suppose A,
divA, andV have rapid polynomial decay, meaning

A(2)], |divA(z)], [V(z)] <Cz)7".

Then the spectrum of H is absolutely continuous
on (0, 00).

Furthermore, the propagator eitHP[O,OO)(H )

satisfies the same Kato smoothing and Strichartz
estimates (except for ¢ = 2) as in the free case,
provided there is no eigenvalue or resonance at

Z€ero.



About the conditions:

e The potentials can be very large and/or
negative.

e Our current value for 38 is near 8.

e \We expect the theorem to be true for 8 > 2.

e The case f = 3 includes all bounded magnetic
fields with compact support.

e Results about spectrum depend only on
A and V, but not on (divA).



Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Outline of Proof

Absence of Embedded Eigenvalues.

Limiting Absoprtion Principle for H.

Resolvent Estimates at Zero Energy.

Resolvent Estimates at High Energy.
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Step 1: Absence of Embedded Eigenvalues.
First show that any eigenfunction must have
exponential decay.

Use Carleman inequalities to conclude that
the eigenfunction is everywhere zero.

Best result due to Koch-Tataru ('05).

Applicable whenever A(z),V(z) = o((1 + |z|)~1).
Some local singularities are also acceptable.



Step 2: Limiting Absorption Principle.

This is an operator estimate for the resolvent

R(\?) = (H- (O +i0)%) L

Important examples:
On any compact set K C (0, c0),

@) RO f],s < Efle o>

Cr(N)
A

IA
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The proof follows an argument by Agmon ('75),
and is based on the perturbation identity

R(A2) = (I + Ro(\?)L) " 1Ro(A?)



Facts about the free resolvent

Ro(A?) = (—A — (A +i0)?)~1

The free resolvent can be seen in two ways:

e Multiplication of the Fourier transform by

1 e
g2z TN

This is well-behaved except when |&]| ~ ).

oAz

e Convolution with the kernel K(x) = :
47| x|

This is easy to control in the limit A — 0.




Overview of Agmon’'s method:

R(\%) = (I+ Ro(W?)L) 1Ro(N?)

Prove the desired mapping bounds for the free
resolvent Rp(A\?2), using the Fourier transform
description.

The operator (I + Rg(M\2)L) is a compact
perturbation of the identity. Apply the Fredholm
Alternative theorem to find its inverse.

Show that any eigenfunction with (z)~°f € L?
is a true L2-eigenfunction.

There are no embedded eigenvalues, so the inverse
must exist.
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Step 3: Resolvent estimates at zero energy.

The method is essentially the same as before.

This time the desired mapping properties for the
free resolvent are obtained by comparison to a con-

1
volution with —.
||

Stronger weights are required in this case. For
example, when |A| < 1, the estimate

[ =" RO2) @) f| ., < CoAllfll 2

is only valid for o > 1.

To apply the Fredholm alternative at zero energy,
one must assume that there is no eigenvalue or
resonance here.
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Step 4: Resolvent estimates at high energy.

Theorem 2 The estimates in the Limiting Ab-
sorption Principle continue to be valid as A — oo.
Most importantly,

|2 "RO2) (@) f| ., < Colifll

for all |[A\| > 1 and o > %

The Fredholm alternative shows that R(\?) exists
pointwise in A. More delicate estimates are needed
to obatain a uniform bound.

The minimum decay and regularity requirements
appear to be that |[A(z)|,|V(z)| < C(z)~17¢ and
that A is continuous.

Remark 3 D. Robert ('92) proved a similar result
for C°° perturbations with symbol-like decay, using
the method of Mourre commutators.
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If A and V are small, then (I + Rog(\2)L)~1 can
be written explicitly as

S (D (RoOL)"

k=0
because ||Rg(A\2)L|| < 1.

Remark 4 Many strong results exist for small
magnetic potentials.

Example: Georgiev, Stefanov, and Tarulli ('06)
have proved Strichartz inequalties (including the
endpoint) for small, rough, and time-dependent
perturbations.

13



If A and V are large, the power series
- k 25 7\ %
> (=1)*(Ro(W)L)
k=0

is still convergent for all A > A4 because of the
following fact.

Lemma 5 There exists a constant C < oo so that

“&njolip H(RO(AQ)L)mH < (m1)e/2

The quantity C; is defined as sup, |(z)1T¢A(z)|.
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How Lemma 5 implies Theorem 2:

If we choose m > Cf/s), then
[(RoO)L)"| <3

for all A\ sufficiently large.

This makes it possible to sum the power series

[(14+ RoOHL) |

oo m—1 _

< XY ||(RoOP) L)y HE|
7=0 k=0

< omey

for a fixed m > C'%/¥) and all A > A4
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Inspiration for Lemma 5.
Consider the operator Rg(A\2)V Rp(A\2).

This is an integral operator with kernel
A (Jz—yl+|y—=])

|z —ylly — 2|

K(x,z) = / V(y)dy

The phase function (|z — y| 4+ |y — 2|) has critical
points only where z, y, and z are collinear, and in
order.

If Zxyz is bounded away from zero, we can use
integration by parts to gain a factor of A1
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More detailed inspiration for proof of Lemma 5

If we expand (Rg(A2)L)™ in the same way, it will
be an integral over m — 1 variables. There are two
main regions to consider:

e The region where every angle Zxy_1xpxi41 IS
smaller than % There is no oscillation here.

Instead, there is a specific direction of motion.

By treating this like a Volterra integral, one
gains a factor involving ml.

e The complement of this region. If any angle
Zxp_1xKTK41 1S large, then the integral over
dxj, has nonstationary phase with gradient at
least 2.

Such an integral goes to zero as A\ — oo, by
applying a suitable Riemann-Lebesgue lemma.
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Step 5: Dynamical Consequences

It is time to extract results from our understanding
of the spectrum of H.

Theorem 6 (Rodnianski, Schlag '04) Consider
H=-A+4+L with L =%, Yj*Zj. Suppose each of
the operators Y; is A-smooth and each Z;Pq(H)
iIs H-smooth. Then the semigroup associated to
H, projected onto the spectral set 2, satisfies the
following bounds:

e Kato Smoothing bound:

[(z) 1o - D) P(EYE| oy S 12

e Strichartz Inequalities:

tH 2 1 1
MPQUDY| gy, S 102 5=3G - D),

where q € (2,00)
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Verifying that L = i(A-V 4V -A) 4V satisfies the
hypotheses:

Observe that L is self-adjoint, and is a bounded
operator from (z)°H1 to L2

Using the functional calculus and interpolation, it
1 B 1
follows that |L|2 is bounded from (z)2H2 to LZ.

1
The same is true for the operator sgn(L)|L|2.
These will be our decomposition L =Y Z.
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We will use the criteria: An operator ZPo(H) is
H-smooth if

sup || ZR(A*) Z*||lr—2 < oo.
AEQ

For the resolvents, our estimates imply that both
Ro(A\2) and R()\2) are bounded as operators from

B 1 B .1
(x)"2H 2 to (x)2H2, with norm independent of \.

1 1
Meanwhile, the operators |L|2 and sgn(L)|L|2 are
B 1
both bounded from (z)2H2 to L2. Their adjoints
B 1
must map L? into (z)"2H 2, by duality.

1 1
It follows immediately that |L|2 and sgn(L)|L|2 are
A-smooth, and also H-smooth over the spectral
set 2 = [0, 0).
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Summary of Results

e Understanding the spectrum of a Schrodinger
operator with large magnetic potential.

For this, we only assume pointwise decay of A
and V, and also that A is continuous.

e Kato Smoothing and Strichartz estimates for
the absolutely continuous portion of H.

Stronger regularity conditions are required. For
example we may need to assume that (z)PA is

1
a bounded multiplier on H2.

Parting Questions:
1) What are the ideal assumptions for A and V7
2) Is the endpoint Strichartz estimate true?

3) Are these results valid in other dimensions?
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