## Differentiability of Fourier Restrictions

Michael Goldberg

University of Cincinnati

University of Dayton mathematics colloquium February 13, 2025

#### **Basic Facts**

Support from Simons Foundation grant #635369. Collaboration with Dmitriy Stolyarov (St. Petersburg) and Chun Ho Lau (Cincinnati)

#### Basic Facts

Support from Simons Foundation grant #635369. Collaboration with Dmitriy Stolyarov (St. Petersburg) and Chun Ho Lau (Cincinnati)

Fourier transform  $\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\xi \cdot x} f(x) dx$ ,  $x, \xi \in \mathbb{R}^n$ .

#### **Basic Facts**

Support from Simons Foundation grant #635369. Collaboration with Dmitriy Stolyarov (St. Petersburg) and Chun Ho Lau (Cincinnati)

Fourier transform 
$$\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\xi \cdot x} f(x) dx$$
,  $x, \xi \in \mathbb{R}^n$ .

Notation: 
$$\xi' = (\xi_1, \xi_2, \dots, \xi_{n-1}) \in \mathbb{R}^{n-1}$$

Work with paraboloid 
$$\{\xi_n = |\xi'|^2 = \xi_1^2 + \xi_2^2 + \ldots + \xi_{n-1}^2\}$$
.

Let  $\Sigma$  be a bounded region of the paraboloid.

Identify  $\xi \in \Sigma$  with the corresponding  $\xi' \in \mathbb{R}^{n-1}$ .

#### Lebesgue Spaces:

$$f \in L^{1}(\mathbb{R}^{n}) \Leftrightarrow \int_{\mathbb{R}^{n}} |f(x)| dx < \infty$$
  
 $f \in L^{p}(\mathbb{R}^{n}) \Leftrightarrow \int_{\mathbb{R}^{n}} |f(x)|^{p} dx < \infty$ 

Lebesgue Spaces:

$$f \in L^{1}(\mathbb{R}^{n}) \iff \int_{\mathbb{R}^{n}} |f(x)| dx < \infty$$
  
 $f \in L^{p}(\mathbb{R}^{n}) \iff \int_{\mathbb{R}^{n}} |f(x)|^{p} dx < \infty$ 

L<sup>2</sup>-based Sobolev Spaces:

$$\hat{f} \in H^s(\Sigma)$$
 or  $H^s(\mathbb{R}^{n-1}) \Leftrightarrow \left\{ egin{array}{l} ext{Derivatives of order } s \ ext{exist as a function in } L^2(\mathbb{R}^{n-1}). \end{array} 
ight\}$ 

Lebesgue Spaces:

$$f \in L^{1}(\mathbb{R}^{n}) \iff \int_{\mathbb{R}^{n}} |f(x)| dx < \infty$$
  
 $f \in L^{p}(\mathbb{R}^{n}) \iff \int_{\mathbb{R}^{n}} |f(x)|^{p} dx < \infty$ 

L<sup>2</sup>-based Sobolev Spaces:

$$\hat{f} \in H^s(\Sigma)$$
 or  $H^s(\mathbb{R}^{n-1}) \Leftrightarrow \left\{ egin{array}{l} ext{Derivatives of order } s \ ext{exist as a function in } L^2(\mathbb{R}^{n-1}). \end{array} 
ight\}$ 

$$\hat{f} \in H^{-s}(\Sigma)$$
 or  $H^{-s}(\mathbb{R}^{n-1}) \Leftrightarrow \begin{cases} \text{``$\hat{f}$ is the derivative order $s$} \\ \text{of a function in $L^2(\mathbb{R}^{n-1})$."} \end{cases}$ 

Most elements of  $H^{-s}(\mathbb{R}^{n-1})$  are not functions. But smooth functions form a dense subspace.

If 
$$f(x) \in L^1(\mathbb{R}^n)$$
, then  $\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\xi \cdot x} f(x) dx$  is continuous.

The restriction to a surface  $|\hat{f}|_{\Sigma}$  is also continuous.

If  $f(x) \in L^1(\mathbb{R}^n)$ , then  $\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\xi \cdot x} f(x) dx$  is continuous.

The restriction to a surface  $\hat{f}|_{\Sigma}$  is also continuous.

 $\hat{f}(\xi)$  isn't differentiable because  $\frac{\partial}{\partial \xi_j}\hat{f}(\xi)$ 

is the Fourier transform of  $(-ix_j)f(x)$ .

and we aren't assuming that xf(x) is integrable.

If  $f(x) \in L^1(\mathbb{R}^n)$ , then  $\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\xi \cdot x} f(x) dx$  is continuous.

The restriction to a surface  $|\hat{f}|_{\Sigma}$  is also continuous.

 $\hat{f}(\xi)$  isn't differentiable because  $\frac{\partial}{\partial \xi_j} \hat{f}(\xi)$  is the Fourier transform of  $(-i x_i) f(x)$ .

and we aren't assuming that xf(x) is integrable.

If 
$$f(x) \in L^p(\mathbb{R}^n)$$
,  $1 \le p \le 2$ , then  $\hat{f}(\xi)$  exists as an element of  $L^{\frac{p}{p-1}}(\mathbb{R}^n)$ .

It's not clear if  $\hat{f}|_{\Sigma}$  makes sense.  $\Sigma$  is a measure-zero set.

It's really not clear if  $\frac{\partial \hat{f}}{\partial \xi_n} \big|_{\Sigma}$  makes sense.

## Nothing good happens on flat surfaces

The plane  $P = \{ \xi \in \mathbb{R}^n : \ \xi_n = 0 \}$  is flat.

## Nothing good happens on flat surfaces

The plane  $P = \{ \xi \in \mathbb{R}^n : \xi_n = 0 \}$  is flat.

There are many examples of  $f(x) \in L^p(\mathbb{R}^n)$ ,  $1 , where <math>\hat{f}|_P$  is undefined. It's easy to build examples because the Fourier transform respects the separation of variables. That is,

The Fourier transform of  $f_1(x')f_2(x_n)$  is  $\hat{f}_1(\xi')\hat{f}_2(\xi_n)$ .

and a typical function  $f_2(x_n) \in L^p(\mathbb{R})$  only has  $\hat{f}_2(\xi_n)$  defined for almost every  $\xi_n$ . Create one where  $\hat{f}_2(0) = \int_{\mathbb{R}} f_2(x_n) \, dx_n$  is infinite.

Even though the paraboloid  $\Sigma$  is a measure-zero set, just like P, the fact that it is curved makes Fourier restrictions possible.

Even though the paraboloid  $\Sigma$  is a measure-zero set, just like P, the fact that it is curved makes Fourier restrictions possible.

#### Theorem (Stein-Tomas Restriction Theorem)

If 
$$f \in L^p(\mathbb{R}^n)$$
 for any  $1 \le p \le \frac{2n+2}{n+3}$ , then  $\hat{f}|_{\Sigma}$  exists as an element of  $L^2(\Sigma)$ .

More specifically, there is a bound

$$\left\|\hat{f}\right\|_{\Sigma}\right\|_{L^{2}(\Sigma)} \leq C \|f\|_{L^{p}(\mathbb{R}^{n})}$$

#### Theorem (Stein-Tomas Restriction Theorem)

If  $f \in L^p(\mathbb{R}^n)$  for any  $1 \le p \le \frac{2n+2}{n+3}$ , then  $\hat{f}|_{\Sigma}$  exists as an element of  $L^2(\Sigma)$ .

#### Theorem (Stein-Tomas Restriction Theorem)

If 
$$f \in L^p(\mathbb{R}^n)$$
 for any  $1 \le p \le \frac{2n+2}{n+3}$ , then  $\hat{f}|_{\Sigma}$  exists as an element of  $L^2(\Sigma)$ .

Let's shift  $\Sigma$  up and down by amount r by defining  $\Sigma_r$  as the corresponding region of the paraboloid  $\{\xi_n = |\xi'|^2 + r\}$ .

#### Theorem (Stein-Tomas Restriction Theorem)

If 
$$f \in L^p(\mathbb{R}^n)$$
 for any  $1 \le p \le \frac{2n+2}{n+3}$ , then  $\hat{f}|_{\Sigma}$  exists as an element of  $L^2(\Sigma)$ .

Let's shift  $\Sigma$  up and down by amount r by defining  $\Sigma_r$  as the corresponding region of the paraboloid  $\{\xi_n = |\xi'|^2 + r\}$ .

You can show the function which maps  $r \in \mathbb{R}$  to the function  $\hat{f}|_{\Sigma_r} \in L^2(\Sigma)$  is continuous.

It isn't differentiable because  $\frac{\partial \hat{f}}{\partial \xi_n}$  is the Fourier transform of  $-ix_n f(x)$ , and we aren't assuming that  $x_n f(x)$  is integrable in any useful way.

To recap:  $\hat{f}(\xi)$  is only defined almost everywhere. It isn't differentiable.

To recap:  $\hat{f}(\xi)$  is only defined almost everywhere. It isn't differentiable.

But there's a Stein-Tomas theorem for derivatives transverse to  $\Sigma$ . This is not well-known.

To recap:  $\hat{f}(\xi)$  is only defined almost everywhere. It isn't differentiable.

But there's a Stein-Tomas theorem for derivatives transverse to  $\Sigma$ . This is not well-known.

#### Theorem

If 
$$f \in L^p(\mathbb{R}^n)$$
,  $1 \le p \le \frac{2n+2}{n+3+2k}$ ,  
then  $\frac{\partial^k \hat{f}}{\partial \xi_n^k}\Big|_{\Sigma}$  exists as an element of  $H^{-k}(\Sigma)$ .

To recap:  $\hat{f}(\xi)$  is only defined almost everywhere. It isn't differentiable.

But there's a Stein-Tomas theorem for derivatives transverse to  $\Sigma$ . This is not well-known.

#### Theorem

If 
$$f \in L^p(\mathbb{R}^n)$$
,  $1 \le p \le \frac{2n+2}{n+3+2k}$ ,  
then  $\left. \frac{\partial^k \hat{f}}{\partial \xi_h^k} \right|_{\Sigma}$  exists as an element of  $H^{-k}(\Sigma)$ .

The case k = 0 is the Stein-Tomas theorem.

The case  $k = \frac{n-1}{2}$  is proved by stationary phase.

[take an oscillatory integral and integrate by parts a lot.]

The in-between cases are proved by interpolation.

If a function u(x) solves Laplace's equation  $-\Delta u=0$  inside a domain, and its values along the boundary happen to be a smooth function, then the transverse derivative  $\frac{\partial u}{\partial \nu}$  along the boundary is also smooth.

The principle that

[smooth values along a surface]  $\Rightarrow$  [smooth values for the normal derivative]

is called a Dirichlet-to-Neumann property.

If a function u(x) solves Laplace's equation  $-\Delta u=0$  inside a domain, and its values along the boundary happen to be a smooth function, then the transverse derivative  $\frac{\partial u}{\partial \nu}$  along the boundary is also smooth.

The principle that

 $[\mathsf{smooth}\ \mathsf{values}\ \mathsf{along}\ \mathsf{a}\ \mathsf{surface}] \Rightarrow [\mathsf{smooth}\ \mathsf{values}\ \mathsf{for}\ \mathsf{the}\ \mathsf{normal}\ \mathsf{derivative}]$ 

is called a Dirichlet-to-Neumann property.

What does this have to do with the function  $\hat{f}(\xi)$ ? Nothing.

If a function u(x) solves Laplace's equation  $-\Delta u=0$  inside a domain, and its values along the boundary happen to be a smooth function, then the transverse derivative  $\frac{\partial u}{\partial \nu}$  along the boundary is also smooth.

The principle that

 $[\mathsf{smooth}\ \mathsf{values}\ \mathsf{along}\ \mathsf{a}\ \mathsf{surface}] \Rightarrow [\mathsf{smooth}\ \mathsf{values}\ \mathsf{for}\ \mathsf{the}\ \mathsf{normal}\ \mathsf{derivative}]$ 

is called a Dirichlet-to-Neumann property.

What does this have to do with the function  $\hat{f}(\xi)$ ? Nothing.

Does  $\hat{f}(\xi)$  have a Dirichlet-to-Neumann property along surfaces? No.

If a function u(x) solves Laplace's equation  $-\Delta u=0$  inside a domain, and its values along the boundary happen to be a smooth function, then the transverse derivative  $\frac{\partial u}{\partial \nu}$  along the boundary is also smooth.

The principle that

 $[\mathsf{smooth}\ \mathsf{values}\ \mathsf{along}\ \mathsf{a}\ \mathsf{surface}] \Rightarrow [\mathsf{smooth}\ \mathsf{values}\ \mathsf{for}\ \mathsf{the}\ \mathsf{normal}\ \mathsf{derivative}]$ 

is called a Dirichlet-to-Neumann property.

What does this have to do with the function  $\hat{f}(\xi)$ ? Nothing.

Does  $\hat{f}(\xi)$  have a Dirichlet-to-Neumann property along surfaces? No.

Does  $\hat{f}(\xi)$  have a Dirichlet-to-Neumann property along <u>curved</u> surfaces? Funny you should ask. . . .

#### Nothing good happens on flat surfaces, Part II

Take the plane  $P = \{ \xi \in \mathbb{R}^n : \xi_n = 0 \}$  again.

Build a function  $f(x) = f_1(x')f_2(x_n)$  again, this time with  $\hat{f}_2(0) = 0$ .

#### Nothing good happens on flat surfaces, Part II

Take the plane  $P = \{ \xi \in \mathbb{R}^n : \xi_n = 0 \}$  again.

Build a function  $f(x) = f_1(x')f_2(x_n)$  again, this time with  $\hat{f}_2(0) = 0$ .

The Fourier transform of f(x) is  $\hat{f}(\xi) = \hat{f}_1(\xi')\hat{f}_2(\xi_n)$ , which gives it a value of zero everywhere along P. A constant zero function is very smooth.

#### Nothing good happens on flat surfaces, Part II

Take the plane  $P = \{ \xi \in \mathbb{R}^n : \xi_n = 0 \}$  again.

Build a function  $f(x) = f_1(x')f_2(x_n)$  again, this time with  $\hat{f}_2(0) = 0$ .

The Fourier transform of f(x) is  $\hat{f}(\xi) = \hat{f}_1(\xi')\hat{f}_2(\xi_n)$ , which gives it a value of zero everywhere along P. A constant zero function is very smooth.

But  $\frac{\partial \hat{f}}{\partial \xi_n}$  is basically the derivative of  $\hat{f}_2(\xi_n)$ , which typically doesn't exist.

The fact that  $\hat{f}|_{P} \equiv 0$  didn't help the last derivative at all.

It turns out there's a Dirichlet-to-Neumann property on  $\boldsymbol{\Sigma}.$ 

It turns out there's a Dirichlet-to-Neumann property on  $\Sigma$ .

#### Theorem (G. - Stolyarov, 2020)

If 
$$f \in L^p(\mathbb{R}^n)$$
, with  $1 \leq p \leq \frac{2n+2}{n+7}$ , and  $\hat{f}\big|_{\Sigma} \equiv 0$ , then  $\frac{\partial \hat{f}}{\partial \xi_n}\big|_{\Sigma}$  exists as an element of  $L^2(\Sigma)$ .

[Note: That's better than being an element of  $H^{-1}(\Sigma)$ .]

It actually suffices for  $\hat{f}|_{\Sigma}$  to belong to  $H^{\ell}(\Sigma)$  for a large enough  $\ell$ .

It turns out there's a Dirichlet-to-Neumann property on  $\Sigma$ .

#### Theorem (G. - Stolyarov, 2020)

If 
$$f \in L^p(\mathbb{R}^n)$$
, with  $1 \leq p \leq \frac{2n+2}{n+7}$ , and  $\hat{f}\big|_{\Sigma} \equiv 0$ , then  $\frac{\partial \hat{f}}{\partial \xi_n}\big|_{\Sigma}$  exists as an element of  $L^2(\Sigma)$ .

[Note: That's better than being an element of  $H^{-1}(\Sigma)$ .]

It actually suffices for  $\hat{f}|_{\Sigma}$  to belong to  $H^{\ell}(\Sigma)$  for a large enough  $\ell$ .

#### Theorem (G. - Lao, 2024)

In the above result, "large enough" means precisely  $\ell \geq \frac{2n+2-(n+3)p}{2n+2-(n+5)p}$ .

# Interpreting $\frac{\partial \hat{f}}{\partial \xi_n}$ in context

The theorem said: If  $f \in L^p(\mathbb{R}^n)$ , with  $1 \leq p \leq \frac{2n+2}{n+7}$ , and  $\hat{f}\big|_{\Sigma} \equiv 0$ , then  $\frac{\partial \hat{f}}{\partial \xi_n}\big|_{\Sigma}$  exists as an element of  $L^2(\Sigma)$ .

For compactly supported functions f(x), the Fourier transform  $\hat{f}(\xi)$  is guaranteed to be smooth, so  $\frac{\partial \hat{f}}{\partial \xi_n}$  is well defined on  $\Sigma$  by any definition.

# Interpreting $\frac{\partial \hat{f}}{\partial \xi_n}$ in context

The theorem said: If  $f \in L^p(\mathbb{R}^n)$ , with  $1 \leq p \leq \frac{2n+2}{n+7}$ , and  $\hat{f}\big|_{\Sigma} \equiv 0$ , then  $\frac{\partial \hat{f}}{\partial \xi_n}\big|_{\Sigma}$  exists as an element of  $L^2(\Sigma)$ .

For compactly supported functions f(x), the Fourier transform  $\hat{f}(\xi)$  is guaranteed to be smooth, so  $\frac{\partial \hat{f}}{\partial \xi_n}$  is well defined on  $\Sigma$  by any definition.

Let's look at our surfaces  $\Sigma_r$ , wheren the  $\xi_n$  coordinate has been shifted up or down by r.

# Interpreting $\frac{\partial \hat{f}}{\partial \xi_n}$ in context

The theorem said: If  $f \in L^p(\mathbb{R}^n)$ , with  $1 \leq p \leq \frac{2n+2}{n+7}$ , and  $\hat{f}\big|_{\Sigma} \equiv 0$ , then  $\frac{\partial \hat{f}}{\partial \xi_n}\big|_{\Sigma}$  exists as an element of  $L^2(\Sigma)$ .

For compactly supported functions f(x), the Fourier transform  $\hat{f}(\xi)$  is guaranteed to be smooth, so  $\frac{\partial \hat{f}}{\partial \xi_n}$  is well defined on  $\Sigma$  by any definition.

Let's look at our surfaces  $\Sigma_r$ , wheren the  $\xi_n$  coordinate has been shifted up or down by r.

We prove that the norm of difference quotients  $\left\|\frac{1}{r}(\hat{f}|_{\Sigma_r}-0)\right\|_{L^2(\Sigma)}$  is bounded as  $r\to 0$ .

# What about the "real" partial derivative $\frac{\partial \hat{f}}{\partial \mathcal{E}_n}$ ?

The definition of a partial derivative is

$$\frac{\partial \hat{f}}{\partial \xi_n}(\xi',\xi_n) = \lim_{r \to 0} \frac{1}{r} \Big( \hat{f}(\xi',\xi_n+r) - \hat{f}(\xi',\xi_n) \Big).$$

# What about the "real" partial derivative $\frac{\partial \hat{f}}{\partial \varepsilon}$ ?

The definition of a partial derivative is

$$\frac{\partial \hat{f}}{\partial \xi_n}(\xi',\xi_n) = \lim_{r \to 0} \frac{1}{r} \left( \hat{f}(\xi',\xi_n+r) - \hat{f}(\xi',\xi_n) \right).$$

Since we're assuming  $\hat{f}(\xi', \xi_n) = 0$  at points on  $\Sigma$ , the main thing we need is for  $\frac{1}{r}(\hat{f}(\xi',|\xi'|^2+r)-0)$  to be bounded as  $r \to 0$ .

Does the theorem on the last slide prove it?

# What about the "real" partial derivative $\frac{\partial \hat{f}}{\partial \varepsilon}$ ?

$$\frac{\partial \hat{f}}{\partial \xi_n}$$
?

The definition of a partial derivative is

$$\frac{\partial \hat{f}}{\partial \xi_n}(\xi',\xi_n) = \lim_{r \to 0} \frac{1}{r} \left( \hat{f}(\xi',\xi_n+r) - \hat{f}(\xi',\xi_n) \right).$$

Since we're assuming  $\hat{f}(\xi', \xi_n) = 0$  at points on  $\Sigma$ , the main thing we need is for  $\frac{1}{r}(\hat{f}(\xi',|\xi'|^2+r)-0)$  to be bounded as  $r \to 0$ .

Does the theorem on the last slide prove it?

In a word: No.

# What about the "real" partial derivative $\frac{\partial \hat{f}}{\partial \varepsilon}$ ?

The theorem on the last slide said we can control

$$\lim_{r\to 0} \left\| \frac{1}{r} (\hat{f}(\xi', |\xi'|^2 + r)) \right\|_{L^2(\Sigma)}.$$

Taking the integral in that  $L^2(\Sigma)$  norm smoothes a lot of things out before we take the  $r \to 0$  limit.

# What about the "real" partial derivative $\frac{\partial f}{\partial \varepsilon}$ ?



The theorem on the last slide said we can control

$$\lim_{r\to 0} \left\| \frac{1}{r} (\hat{f}(\xi', |\xi'|^2 + r)) \right\|_{L^2(\Sigma)}.$$

Taking the integral in that  $L^2(\Sigma)$  norm smoothes a lot of things out before we take the  $r \rightarrow 0$  limit.

That doesn't guarantee the  $r \to 0$  limit exists at any individual point  $(\xi', |\xi'|^2) \in \Sigma$ .

#### Counterexamples

If p > 1, there exists a function  $g(x_n) \in L^p(\mathbb{R})$  where  $\hat{g}(\xi_n)$  is infinite whenever  $\xi_n$  is rational.

There is also a function h(x) which is compactly supported and has  $\hat{h}(\xi) = 0$  along the surface  $\xi \in \Sigma$ .

### Counterexamples

If p > 1, there exists a function  $g(x_n) \in L^p(\mathbb{R})$  where  $\hat{g}(\xi_n)$  is infinite whenever  $\xi_n$  is rational.

There is also a function h(x) which is compactly supported and has  $\hat{h}(\xi) = 0$  along the surface  $\xi \in \Sigma$ .

The convolution  $f(x) = \int_{\mathbb{R}} h(x', x_n - y_n) g(y_n) dy_n$  belongs to  $L^p(\mathbb{R}^n)$  and has the property that  $\hat{f}(\xi) = \hat{h}(\xi) \hat{g}(\xi_n)$ .

### Counterexamples

If p > 1, there exists a function  $g(x_n) \in L^p(\mathbb{R})$  where  $\hat{g}(\xi_n)$  is infinite whenever  $\xi_n$  is rational.

There is also a function h(x) which is compactly supported and has  $\hat{h}(\xi) = 0$  along the surface  $\xi \in \Sigma$ .

The convolution  $f(x) = \int_{\mathbb{R}} h(x', x_n - y_n) g(y_n) dy_n$  belongs to  $L^p(\mathbb{R}^n)$  and has the property that  $\hat{f}(\xi) = \hat{h}(\xi) \hat{g}(\xi_n)$ .

So  $\hat{f}(\xi)$  is zero along the surface  $\Sigma$ , but it's infinite everywhere else that  $\xi_n$  is rational.

That's not even bounded as you move in the  $\xi_n$  direction, much less continuous, much less differentiable.

## A result for $f \in L^1(\mathbb{R}^n)$

The counterexample doesn't work when  $g \in L^1(\mathbb{R})$ , because then  $\hat{g}(\xi_n)$  must be continuous. That still seems pretty far from being differentiable, but it turns out...

## A result for $f \in L^1(\mathbb{R}^n)$

The counterexample doesn't work when  $g \in L^1(\mathbb{R})$ , because then  $\hat{g}(\xi_n)$  must be continuous. That still seems pretty far from being differentiable, but it turns out...

#### Theorem

If n>5 and  $f\in L^1(\mathbb{R}^n)$  has the property  $\hat{f}\big|_{\Sigma}\equiv 0$ , then the partial derivative  $\frac{\partial \hat{f}}{\partial \xi_n}(\xi',|\xi'|^2)$  exists at almost every point  $(\xi',|\xi'|^2)\in \Sigma$ .

# A result for $f \in L^1(\mathbb{R}^n)$

The counterexample doesn't work when  $g \in L^1(\mathbb{R})$ , because then  $\hat{g}(\xi_n)$  must be continuous. That still seems pretty far from being differentiable, but it turns out...

#### Theorem

If n>5 and  $f\in L^1(\mathbb{R}^n)$  has the property  $\hat{f}\big|_{\Sigma}\equiv 0$ , then the partial derivative  $\frac{\partial \hat{f}}{\partial \xi_n}(\xi',|\xi'|^2)$  exists at almost every point  $(\xi',|\xi'|^2)\in \Sigma$ .

We prove that the difference quotients are controlled by a bound

$$\bigg\| \sup_{r \neq 0} \ \frac{1}{r} \Big( \hat{f}(\xi', |\xi'|^2 + r) - 0 \Big) \bigg\|_{L^2(\Sigma)} \leq C \|f\|_{L^1(\mathbb{R}^n)}.$$

### Summary

- The Fourier transform of an integrable function is just continuous. The Fourier transform of  $f \in L^p(\mathbb{R}^n)$  is defined almost everywhere.
- ullet On a curved surface  $\Sigma$ , and for a range of p, we can make sense of
  - The values of  $\hat{f}(\xi)$  along  $\Sigma$ .
  - The transverse partial derivative  $\frac{\partial \hat{f}}{\partial \xi_n}$  along  $\Sigma$ . Usually this is an element of  $H^{-1}(\Sigma)$ , not a function.
- If the values of  $\hat{f}(\xi)$  along  $\Sigma$  are all zero, or are smooth enough, then the things we're calling  $\frac{\partial \hat{f}}{\partial \xi_n}$  gets nicer. In dimensions  $n \geq 5$  it can improve all the way up to becoming a function in  $L^2(\Sigma)$ .
- In the case p=1 and  $n\geq 6$ , we can show that the derivative  $\frac{\partial \hat{f}}{\partial \xi_n}$  literally exists at almost every point on  $\Sigma$ .

**1** Do partial derivatives tangent to  $\Sigma$  exist almost everywhere? If so, they must be zero since we assumed  $\hat{f}(\xi) = 0$  all along  $\Sigma$ .

- **①** Do partial derivatives tangent to  $\Sigma$  exist almost everywhere? If so, they must be zero since we assumed  $\hat{f}(\xi) = 0$  all along  $\Sigma$ .
- ② Is  $\hat{f}(\xi)$  differentiable at almost every point  $\xi \in \Sigma$ ?

- **①** Do partial derivatives tangent to  $\Sigma$  exist almost everywhere? If so, they must be zero since we assumed  $\hat{f}(\xi) = 0$  all along  $\Sigma$ .
- ② Is  $\hat{f}(\xi)$  differentiable at almost every point  $\xi \in \Sigma$ ?
- **3** Can we say anything about the restrictions of  $\hat{f}(\xi)$  and its derivatives in any other function space besides  $L^2(\Sigma)$  and  $H^{-s}(\Sigma)$ ?

- **①** Do partial derivatives tangent to  $\Sigma$  exist almost everywhere? If so, they must be zero since we assumed  $\hat{f}(\xi) = 0$  all along  $\Sigma$ .
- ② Is  $\hat{f}(\xi)$  differentiable at almost every point  $\xi \in \Sigma$ ?
- **3** Can we say anything about the restrictions of  $\hat{f}(\xi)$  and its derivatives in any other function space besides  $L^2(\Sigma)$  and  $H^{-s}(\Sigma)$ ?
- **①** There are counterexamples in n=2 where  $\frac{\partial \ddot{r}}{\partial \xi_2}$  just doesn't exist. What happens in dimensions 3 and 4 (and/or 5)?