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Perturbed wave equation in R3: ¢ u(0,2) =0 (%)
\ ut(0,z) = g(x)

Potential V(x) has finite Kato norm

|V (2)]

dx
R3 |z — y|

Vi = sup
Y

and belongs to the norm-closure of C.(R3).

This has same scaling as & or L3/2(R3), and is (just barely)

sufficient to ensure that V is compact relative to —A.
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If V(x) =0, the fundamental solution of ¢{ u(0,z) =0
| w(0,z) = g(x)

is given by Kirchoff’'s formula :

So(t — |z —y|) £ 6ot + |z —y|)

Ko(t,xz,y) =
o y) 47(t or |x — y|)

Y

00 1

[Ko(t,z,y)|dt =
oo

which satisfies /

27|z —y|

Question: Does the fundamental solution of (*) also satisfy

o0 C
[ IK )l dt = ?
00 |z —y|



Answer: Not always. If V(x) has large negative part, then
H = —-A +YV may have finitely many negative eigenvalues —MJQ-.

Then (*) has solutions of the form

u(t,z) = SN o,

oy

where ¢,(z) solves (—A+ V)yp; = —u]?goj.

©.@)
Integrating / sinh(u;t)dt will go badly. ..
— OO



Theorem (Beceanu - G.): If X = 0 is not an eigenvalue or
resonance of H, then

/_OO )K(t,az,y} — Z Sinh('ujt)Pj(x,y)) dt <

Ty |z —yl

Also, K(t,x,y) is supported inside the light cones [t| > |z — y|.

Corollary: The resolvents Ry (z) := (H — z)~! are integral

operators whose kernels are bounded pointwise by ﬁ

for all z in a neighborhood of RT.



Sketch of Proof: Like many linear dispersive bounds, it starts
with the Stone formula for spectral measure of H.

sin(tvVH) > Siﬂh(ﬂjt)P. 1 yeosin(vA) (RF(A) — Ry (A)) dA
_ J

vH ; 1 2711 JO VvV
1 oo
= = | sin(tA)RF(A2) dA
mwt J—00

1 00 : :
ZLm(e—ZtA . €Zt>\)R{/I_(>\2) d)\

Here Rﬂ}()?) = &[i_%(H — (A4 i)?)~1 has a meromorphic
extension into the upper halfplane, with poles at A = quy

All we need is an L1 estimate on the Fourier transform of R{/"(AQ)(x,y).
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If V =0, there is an exact formula: RE')'(AQ)(a;,y) =

Then F(RS’(A%)(@WJ) = 50&;51_?43('),

4r|c—yl|

whose integral (in t) is bounded by m. So far, so good.

Now Ri-(A2) = [I + RZ (\?)V]"1RT (12)

G(\) Rd (\2).

On the Fourier side, F(R{(A\2))(t) = F(G(N)) = F(RF (A2)) ().

o0
It suffices to show that I(z,w) = / ‘]—“(G(A))(t,x,w)| dt
— 00

L>®(R3)

IS a bounded operator on the space | | :
Y

uniformly in y.



N. Wiener (1932): Suppose g()\) € C(T) has Fg € ¢1(2),
and g(\) #= O pointwise over X € T.

1 1
Then ]—“(g(/\)> c i+ (Z).
Beceanu (2010): Similar theorems for operator-valued functions
G ()\) on the real line. In this case it's operators in B(%)

One condition is that G(\) = I + R} (A2)V should be invertible
for each A € R. This corresponds to the fact/our assumption
that H has no eigenvalues in [0, 0c0).

A secondary issue is to get continuity with respect to y € R3 and
some sort of limit as |y| — oo.



Brief Summary: The Fourier transform of R{/"(AQ) is [almost]
the “forward solution” of wave equation (*).

It satisfies an integrability condition

/_O; F(RF () z,y)|dt < ¢

|z — y|

and a support condition

elit
F(REOD)) (t ) = Zgjpj(x,y) for all t < |z — y|.
J



Fourier Multipliers: Given a function m : [0,0c0) — C, one can
define m(v/—A) to be the Fourier multiplier with symbol m(|£]).

Operators of this type are well studied. In particular, we note the
Hormander-Mikhlin condition: Choose a smooth bump function
¢ supported on [5,2]. Then if

S N ICEDN [
klégﬂcb( )m( N s (w)

for some s > % then m(|¢]) is a Calderon-Zygmund operator.

If the condition holds for s > 2 then the integral kernel of m(|£])
is bounded pointwise by |z — y| 3.



Given the same function m : [0,c0) — C, one can also define the
spectral multiplier m(v/H) in the functional calculus of H.

Theorem (Beceanu - G.): If m satisfies the Hormander-Mikhlin
condition with s > % then m(v/H) is bounded on LP(R3) for
1 <p<oo.

If the condition holds for s > 2 then the integral kernel of m(v H)
is bounded pointwise by |z — y| 3.

In particular H* is well behaved, which is enough to deduce
endpoint Strichartz estimates for (*).

It is not clear that the integral kernel of m(+/H) satisfies

/ K (z,y) — K(z,y)|dz < C
lz—y|>2|y—y/|

SO our results do not include weak (1,1) bounds for now.



Why these theorems are closely related:
The Stone formula for spectral measure gives us

m(VH) = % [T mOADERE Q) — Ry()) dx
= = / Am(IAD R (A2) d
_ % FL(am(AD) (0 F(BF (A (1) dt.

If we assume s > 2, then the Fourier transform of Am(\) decays
like [t|72. And F(R; (A\2)) is [mostly] supported where t > |z —y|.

When t < |z — y| there is an explicit description of ]—“(R‘J/F(AQ)) as
a sum of exponential functions. This makes it easier to handle
the |¢t|~2 singularity near t = 0.



Questions for further study:

e Can you integrate the solution of (*) along time-like paths
(t,z(t)) and still get a bound in terms of m?

e Does m(v/ H) satisfy a weak (1,1) bound, even for really nice
multipliers m?

e Is there a Hardy space theory of these multipliers?

e What happens for s < %? Is there a robust LP theory for
Bochner-Riesz spectral multipliers?

e Do you have any good questions to contribute?



