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Perturbed wave equation in R3:


utt −∆u+ V u = 0

u(0, x) = 0 (∗)
ut(0, x) = g(x)

Potential V (x) has finite Kato norm

‖V ‖K := sup
y

∫
R3

|V (x)|
|x− y|

dx

and belongs to the norm-closure of Cc(R3).

This has same scaling as C
|x|2 or L3/2(R3), and is (just barely)

sufficient to ensure that V is compact relative to −∆.



If V (x) ≡ 0, the fundamental solution of


utt −∆u = 0

u(0, x) = 0

ut(0, x) = g(x)
is given by Kirchoff’s formula :

K0(t, x, y) =
δ0(t− |x− y|)± δ0(t+ |x− y|)

4π(t or |x− y|)
,

which satisfies
∫ ∞
−∞
|K0(t, x, y)| dt =

1

2π|x− y|
.

Question: Does the fundamental solution of (*) also satisfy∫ ∞
−∞
|K(t, x, y)| dt =

C

|x− y|
?



Answer: Not always. If V (x) has large negative part, then

H = −∆ + V may have finitely many negative eigenvalues −µ2
j .

Then (*) has solutions of the form

u(t, x) =
sinh(µjt)

µj
ϕj(x),

where ϕj(x) solves (−∆ + V )ϕj = −µ2
jϕj.

Integrating
∫ ∞
−∞

sinh(µjt)dt will go badly...



Theorem (Beceanu - G.): If λ = 0 is not an eigenvalue or

resonance of H, then∫ ∞
−∞

∣∣∣K(t, x, y)−
∑
j

sinh(µjt)

µj
Pj(x, y)

∣∣∣ dt < C

|x− y|
.

Also, K(t, x, y) is supported inside the light cones |t| ≥ |x− y|.

Corollary: The resolvents RV (z) := (H − z)−1 are integral

operators whose kernels are bounded pointwise by C
|x−y|

for all z in a neighborhood of R+.



Sketch of Proof: Like many linear dispersive bounds, it starts

with the Stone formula for spectral measure of H.

sin(t
√
H)√

H
−
∑
j

sinh(µjt)

µj
Pj =

1

2πi

∫ ∞
0

sin(t
√
λ)√

λ
(R+

V (λ)−R−V (λ)) dλ

=
1

πi

∫ ∞
−∞

sin(tλ)R+
V (λ2) dλ

=
1

2π

∫ ∞
−∞

(e−itλ − eitλ)R+
V (λ2) dλ.

Here R+
V (λ2) := lim

ε→0
(H − (λ+ iε)2)−1 has a meromorphic

extension into the upper halfplane, with poles at λ = iµj.

All we need is an L1 estimate on the Fourier transform of R+
V (λ2)(x,y).



If V ≡ 0, there is an exact formula: R+
0 (λ2)(x,y) = eiλ|x−y|

4π|x−y|.

Then F
(
R+

0 (λ2)
)

(t,x,y) = δ0(t−|x−y|)
4π|x−y| ,

whose integral (in t) is bounded by 1
4π|x−y|. So far, so good.

Now R+
V (λ2) = [I +R+

0 (λ2)V ]−1R+
0 (λ2)

= G(λ) R+
0 (λ2).

On the Fourier side, F
(
R+
V (λ2)

)
(t) = F

(
G(λ)

)
∗ F

(
R+

0 (λ2)
)
(t).

It suffices to show that I(x,w) =
∫ ∞
−∞

∣∣∣F(G(λ)
)
(t, x, w)

∣∣∣ dt
is a bounded operator on the space

L∞(R3)

| · − y|
, uniformly in y.



N. Wiener (1932): Suppose g(λ) ∈ C(T) has Fg ∈ `1(Z),

and g(λ) 6= 0 pointwise over λ ∈ T.

Then F
(

1
g(λ)

)
∈ `1(Z).

Beceanu (2010): Similar theorems for operator-valued functions

G(λ) on the real line. In this case it’s operators in B
(
L∞
| · − y|

)
.

One condition is that G(λ) = I + R+
0 (λ2)V should be invertible

for each λ ∈ R. This corresponds to the fact/our assumption

that H has no eigenvalues in [0,∞).

A secondary issue is to get continuity with respect to y ∈ R3 and

some sort of limit as |y| → ∞.



Brief Summary: The Fourier transform of R+
V (λ2) is [almost]

the “forward solution” of wave equation (*).

It satisfies an integrability condition∫ ∞
−∞

∣∣∣F(R+
V (λ2)

)
(t, x, y)

∣∣∣ dt ≤ C

|x− y|

and a support condition

F
(
R+
V (λ2)

)
(t, x, y) =

∑
j

eµjt

2µj
Pj(x, y) for all t < |x− y|.



Fourier Multipliers: Given a function m : [0,∞) → C, one can

define m(
√
−∆) to be the Fourier multiplier with symbol m(|ξ|).

Operators of this type are well studied. In particular, we note the

Hörmander-Mikhlin condition: Choose a smooth bump function

φ supported on [1
2,2]. Then if

sup
k∈Z
‖φ(λ)m(2−kλ)‖Hs(R)

for some s > 3
2, then m(|ξ|) is a Calderón-Zygmund operator.

If the condition holds for s > 2 then the integral kernel of m(|ξ|)
is bounded pointwise by |x− y|−3.



Given the same function m : [0,∞)→ C, one can also define the
spectral multiplier m(

√
H) in the functional calculus of H.

Theorem (Beceanu - G.): If m satisfies the Hörmander-Mikhlin
condition with s > 3

2, then m(
√
H) is bounded on Lp(R3) for

1 < p <∞.

If the condition holds for s > 2 then the integral kernel of m(
√
H)

is bounded pointwise by |x− y|−3.

In particular Hiσ is well behaved, which is enough to deduce
endpoint Strichartz estimates for (*).

It is not clear that the integral kernel of m(
√
H) satisfies∫

|x−y|>2|y−y′|
|K(x, y)−K(x, y′)| dx < C

so our results do not include weak (1,1) bounds for now.



Why these theorems are closely related:

The Stone formula for spectral measure gives us

m(
√
H) =

1

2πi

∫ ∞
0

m(
√
λ)(R+

V (λ)−R−V (λ)) dλ

=
1

πi

∫ ∞
−∞

λm(|λ|)R+
V (λ2) dλ

=
1

πi

∫ ∞
−∞
F−1

(
λm(|λ|)

)
(t) F

(
R+
V (λ2)

)
(t) dt.

If we assume s > 2, then the Fourier transform of λm(λ) decays

like |t|−2. And F(R+
V (λ2)) is [mostly] supported where t > |x−y|.

When t < |x− y| there is an explicit description of F(R+
V (λ2)) as

a sum of exponential functions. This makes it easier to handle

the |t|−2 singularity near t = 0.



Questions for further study:

• Can you integrate the solution of (*) along time-like paths

(t, x(t)) and still get a bound in terms of 1
|x(0)−y|?

• Does m(
√
H) satisfy a weak (1,1) bound, even for really nice

multipliers m?

• Is there a Hardy space theory of these multipliers?

• What happens for s ≤ 3
2? Is there a robust Lp theory for

Bochner-Riesz spectral multipliers?

• Do you have any good questions to contribute?


