A Limiting Absorption Principle for Dirac Operators in Two and Higher Dimensions

MICHAEL GOLDBERG, University of Cincinnati joint work with Burak Erdogan, University of Illinois and William Green, Rose-Hulman

AMS Northeastern Sectional Meeting Buffalo, NY September 17, 2017

Support provided by Simons Foundation grant #281057.

Background: The linear Schrödinger equation $iu_t = -\Delta u$ does not respect special relativity. Relationships between velocity, momentum, and energy follow Newtonian mechanics.

The Klein-Gordon equation $-u_{tt} = (-\Delta + m^2)u$ has the right relationship between these quantities, but it doesn't have a unitary evolution.

The equation $iu_t = \left(\sqrt{-\Delta + m^2}\right)u$ is unitary and encodes special relativity, but the operator is nonlocal. This makes it unclear how to add electromagnetic fields.

The Dirac System in \mathbb{R}^n : Let $\alpha_1, \ldots, \alpha_n$ and β be anti-commuting matrices with $\alpha_j^2 = I = \beta^2$.

When n=2 it is convenient to use the Pauli spin matrices.

Define the Dirac operator $D_m := -\left(i\sum_{j=1}^n \alpha_j \partial_j\right) + m\beta$.

Thanks to the anti-commutation properties, $D_m^2 = -\Delta + m^2$.

Then the free Dirac equation is $i\mathbf{u}_t = D_m\mathbf{u}$

Not too surprisingly, solutions of the free Dirac equation satisfy the same Strichartz inequalities as the Klein-Gordon equation,

$$\|\langle \nabla \rangle^{-\theta} e^{-itD_m} \mathbf{u}\|_{L_t^p L_x^q} \lesssim \|\mathbf{u}\|_{L^2}$$

with the admissibility conditions

$$\frac{2}{p} + \frac{n}{q} = \frac{n}{2}, \quad \theta \ge \frac{1}{2} + \frac{1}{p} - \frac{1}{q} \quad \text{when } m > 0.$$

[D'Ancona-Fanelli, Cacciafesta]

Or if m = 0, then the wave equation Strichartz estimates apply:

$$\left\| |\nabla|^{-\theta} e^{-itD_m} \mathbf{u} \right\|_{L_t^p L_x^q} \lesssim \|\mathbf{u}\|_{L^2}$$

with the admissibility conditions

$$\frac{2}{p} + \frac{n-1}{q} = \frac{n-1}{2}, \quad \theta = \frac{n}{2} - \frac{1}{p} - \frac{n}{q}.$$

We'd like to know if a perturbed Dirac operator $D_m + V(x)$ yields the same bounds. Here V is a Hermitian matrix with each entry bounded pointwise by $\langle x \rangle^{-2-\epsilon}$ ($\langle x \rangle^{-1-\epsilon}$ if m=0).

Spectral properties: The essential spectrum of D_m is $(-\infty, -m] \cup [m, \infty)$. The spectrum of $D_m + V$ has no singular continuous part, or embedded eigenvalues or resonances [Georgescu-Mantoiu].

Threshold resonances and eigenvalues are possible, along with a finite point spectrum inside (-m, m).

Theorem (Erdogan-G-Green): If V(x) is continuous and has the specified pointwise decay, and there are no threshold resonances or eigenvalues, then the semigroup

$$e^{-i(D_m+V)t}P_{ac}\mathbf{u}$$

satisfies the same Strichartz bounds as the corresponding free Dirac equation.

Short proof: First establish uniform bounds on the resolvent $(D_m + V - (\lambda \pm i\varepsilon))^{-1}$ for all $|\lambda| \in [m, \infty)$.

In particular, show that $\||V|^{1/2}(D_m + V - (\lambda \pm i\varepsilon))^{-1}|V|^{1/2}\|_{2\to 2}$ has a uniform bound.

Kato smoothing arguments lead to a weighted bound in $L_{t,x}^2$ for both the free and perturbed Dirac evolution.

Then an argument due to Rodnianski-Schlag parlays these into Strichartz estimates for the perturbed equation.

Remark: Only the first part is new, and it turns out most of the work has been done before.

In fact, Georgescu-Mantoiu already proved uniform resolvent bounds on any compact interval inside of $|\lambda| \in (m, \lambda_1]$. That leaves one big task.

Theorem(E-G-G): If V(x) has continuous entries bounded by $\langle x \rangle^{-1-\epsilon}$, then there exist constants $\lambda_1 < \infty$ and $\delta > 0$ so that the operator norm

$$||V|^{1/2}(D_m + V - (\lambda \pm i\varepsilon))^{-1}|V|^{1/2}||_{2\to 2}$$

is bounded uniformly over $|\lambda| > \lambda_1$ and $0 < \epsilon < \delta |\lambda|$.

It is not necessary for V(x) to be Hermitian for this result.

And a smaller task to do the same in a neighborhood of $\lambda = \pm m$.

The uniform bound for $(D_m - \lambda)^{-1}$ is well known.

The perturbation identity

$$(D_m + V - \lambda)^{-1} = (D_m - \lambda)^{-1} (I + V(D_m - \lambda)^{-1})^{-1}$$

would be immediately useful if the operator norm of $(D_m - \lambda)^{-1}$ decayed as $\lambda \to \infty$. It doesn't.

Using the fact that $D_m^2 = -\Delta + m^2$, we can rewrite the last factor as

$$(I + \underbrace{V(D_m + \lambda)}_{1^{\text{st-order}}} (\underbrace{-\Delta - (\lambda^2 - m^2))^{-1}}_{1^{\text{schrödinger resolvent}}})^{-1}.$$

This has a lot in common with magnetic Schrödinger operators! (with magnetic potential $V \cdot \nabla$)

Uniform resolvent bounds for magnetic Schrödinger operators:

Positive commutator methods [Robert, D'Ancona-Fanelli-Cacciafesta]. Straightforward integration by parts.

Needs some differentiabilty of V(x).

Also need $n-3 \ge 0$.

Directional decomposition of the resolvent [E-G-G].

Constructs the operator inverse via convergent power series.

Complicated estimates of iterated integrals.

May sometimes need differentiability of V(x) when n=2 (but not this time).

Remarks about the $\lambda = m$ threshold:

If m > 0, this regime is identical a Schrödinger operator near $\lambda = 0$. Resolvent expansions [Jensen, Kato, Nenciu] are known.

The m=0 case is quite different. For example, the resolvent of $(-\Delta)$ in \mathbb{R}^2 has a resonance at $\lambda=0$. The resolvent of a massless Dirac operator D_0 doesn't.

For future study:

- Low-energy resolvent expansions when m = 0.
- Classification of threshold obstructions.
- Pointwise dispersive estimates.
- L^p -boundedness of the wave operators?