Dirichlet to Neumann Properties for Fourier Restrictions

Michael Goldberg

University of Cincinnati

Talks given for Würzburg University and AMS Central Section Meeting

March 9 and April 16, 2023

Support from Simons Foundation grant #635369. Collaboration with Dmitriy Stolyarov (St. Petersburg) Support from Simons Foundation grant #635369. Collaboration with Dmitriy Stolyarov (St. Petersburg)

Fourier transform
$$\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\xi \cdot x} f(x) \, dx$$
, $x, \xi \in \mathbb{R}^n$.

Support from Simons Foundation grant #635369. Collaboration with Dmitriy Stolyarov (St. Petersburg)

Fourier transform
$$\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\xi\cdot x} f(x) \, dx$$
, $x,\xi\in\mathbb{R}^n$.

Notation: $\xi' = (\xi_1, \xi_2, \dots, \xi_{n-1}) \in \mathbb{R}^{n-1}$ Work with paraboloid $\{\xi_n = |\xi'|^2 = \xi_1^2 + \xi_2^2 + \dots + \xi_{n-1}^2\}.$

Let Σ be a bounded region of the paraboloid. Identify $\xi \in \Sigma$ with the corresponding $\xi' \in \mathbb{R}^{n-1}$. We're going to work with $f \in L^p(\mathbb{R}^n)$ where $\hat{f}|_{\Sigma} \in L^2(\Sigma)$ by the Stein-Tomas theorem.

I'll say there is a Dirichlet-to-Neumann property if additional smoothness of $\hat{f}|_{\Sigma}$ (e.g. belonging to $H^{\ell}(\Sigma)$ for some $\ell > 0$) implies that $\left. \frac{\partial^k \hat{f}}{\partial \xi_n^k} \right|_{\Sigma}$ is smoother than its usual *a priori* estimates.

What are the *a priori* bounds for a restriction of $\frac{\partial^k \hat{f}}{\partial \xi_n^k}$?

Keep in mind that $\frac{\partial^k \hat{f}}{\partial \xi_n^k} \in W^{-k,p'}(\mathbb{R}^n)$ is very bad.

What are the *a priori* bounds for a restriction of $\frac{\partial^k \hat{f}}{\partial \xi_n^k}$?

Keep in mind that $\frac{\partial^k \hat{f}}{\partial \xi_n^k} \in W^{-k,p'}(\mathbb{R}^n)$ is very bad.

Theorem

$$\begin{array}{l} \text{If } f \in L^p(\mathbb{R}^n), \ 1 \leq p \leq \frac{2n+2}{n+3+2k}, \\ \text{then } \left. \frac{\partial^k \hat{f}}{\partial \xi_n^k} \right|_{\Sigma} \text{ exists as an element of } H^{-k}(\Sigma). \end{array}$$

What are the *a priori* bounds for a restriction of $\frac{\partial^k \hat{f}}{\partial \xi_n^k}$?

Keep in mind that $\frac{\partial^k \hat{f}}{\partial \xi_n^k} \in W^{-k,p'}(\mathbb{R}^n)$ is very bad.

Theorem

$$\begin{array}{l} \text{If } f \in L^{p}(\mathbb{R}^{n}), \ 1 \leq p \leq \frac{2n+2}{n+3+2k}, \\ \text{then } \left. \frac{\partial^{k}\hat{f}}{\partial\xi_{n}^{k}} \right|_{\Sigma} \text{ exists as an element of } H^{-k}(\Sigma). \end{array}$$

The case k = 0 is the Stein-Tomas theorem. The case $k = \frac{n-1}{2}$ is proved by stationary phase.

The in-between cases are proved by interpolation.

What are the *a priori* bounds for a restriction of $\frac{\partial^k \hat{f}}{\partial \xi_n^k}$?

Keep in mind that $\frac{\partial^k \hat{f}}{\partial \xi_n^k} \in W^{-k,p'}(\mathbb{R}^n)$ is very bad.

Theorem

$$\begin{array}{l} \text{If } f \in L^{p}(\mathbb{R}^{n}), \ 1 \leq p \leq \frac{2n+2}{n+3+2k}, \\ \text{then } \left. \frac{\partial^{k}\hat{f}}{\partial\xi_{n}^{k}} \right|_{\Sigma} \text{ exists as an element of } H^{-k}(\Sigma). \end{array}$$

The case k = 0 is the Stein-Tomas theorem. The case $k = \frac{n-1}{2}$ is proved by stationary phase.

The in-between cases are proved by interpolation.

In this talk I'll concentrate on the k = 1 case.

If $\hat{f}|_{\Sigma} \equiv 0$, that makes its restriction as smooth as possible. What can we say about $\frac{\partial \hat{f}}{\partial \xi_n}$ in this case? If $\hat{f}|_{\Sigma} \equiv 0$, that makes its restriction as smooth as possible. What can we say about $\frac{\partial \hat{f}}{\partial \xi_n}$ in this case?

Theorem (G-Stolyarov, '20)

If
$$f \in L^p(\mathbb{R}^n)$$
, $1 \le p \le \frac{2n+2}{n+7}$, and $\hat{f}|_{\Sigma} \equiv 0$, then $\left\| \frac{\partial \hat{f}}{\partial \xi_n} \right\|_{L^2(\Sigma)} \lesssim \|f\|_p$.

We need $n \ge 5$ here, so that $\frac{2n+2}{n+7} \ge 1$.

If $\hat{f}|_{\Sigma} \equiv 0$, that makes its restriction as smooth as possible. What can we say about $\frac{\partial \hat{f}}{\partial \xi_n}$ in this case?

Theorem (G-Stolyarov, '20)

If
$$f \in L^p(\mathbb{R}^n)$$
, $1 \le p \le \frac{2n+2}{n+7}$, and $\hat{f}|_{\Sigma} \equiv 0$, then $\left\| \frac{\partial \hat{f}}{\partial \xi_n} \right\|_{L^2(\Sigma)} \lesssim \|f\|_p$.

We need $n \ge 5$ here, so that $\frac{2n+2}{n+7} \ge 1$.

 $\frac{\partial \hat{f}}{\partial \xi_n} \in L^2(\Sigma)$ is much better than the *a priori* bound in $H^{-1}(\Sigma)$.

Look at
$$F(r) = \|\widehat{f}\|_{L^2(\Sigma+r\overline{e}_n)}^2 = \iint_{\mathbb{R}^{2n}} f(x)\overline{f}(y)\widehat{\Sigma}(x-y)e^{ir(x_n-y_n)}dxdy.$$

Look at
$$F(r) = \|\widehat{f}\|_{L^2(\Sigma+r\overline{e}_n)}^2 = \iint_{\mathbb{R}^{2n}} f(x)\overline{f}(y)\widehat{\Sigma}(x-y)e^{ir(x_n-y_n)}dxdy.$$

Basic properties: $F(r) \ge 0$, and F(0) = 0 by assupption.

Show that F''(r) is bounded by $||f||_p^2$. Then $0 \le F(\delta) \lesssim \delta^2 ||f||_p^2$.

Look at
$$F(r) = \|\hat{f}\|_{L^2(\Sigma+r\overline{e}_n)}^2 = \iint_{\mathbb{R}^{2n}} f(x)\overline{f}(y)\widehat{\Sigma}(x-y)e^{ir(x_n-y_n)}dxdy.$$

Basic properties: $F(r) \ge 0$, and F(0) = 0 by assupption. Show that F''(r) is bounded by $||f||_p^2$. Then $0 \le F(\delta) \le \delta^2 ||f||_p^2$.

So
$$\hat{f}|_{\Sigma} \equiv 0$$
, and on a nearby surface, $\|\hat{f}\|_{L^2(\Sigma + r\bar{e}_n)} \lesssim \delta \|f\|_{\rho}$.

Look at
$$F(r) = \|\hat{f}\|_{L^2(\Sigma+r\overline{e}_n)}^2 = \iint_{\mathbb{R}^{2n}} f(x)\overline{f}(y)\widehat{\Sigma}(x-y)e^{ir(x_n-y_n)}dxdy.$$

Basic properties: $F(r) \ge 0$, and F(0) = 0 by assupption. Show that F''(r) is bounded by $||f||_p^2$. Then $0 \le F(\delta) \le \delta^2 ||f||_p^2$.

So
$$\hat{f}|_{\Sigma} \equiv 0$$
, and on a nearby surface, $\|\hat{f}\|_{L^2(\Sigma + r\bar{e}_n)} \lesssim \delta \|f\|_p$.

Summary: $\hat{f}|_{\Sigma+r\bar{e}_n}$ is a continuous $L^2(\Sigma)$ -valued function of $r \in [-1, 1]$. But it is Lipschitz-continuous at r = 0 if \hat{f} vanishes on Σ .

Prior Work

Why the condition $\hat{f}|_{\Sigma} \equiv 0$ is interesting (to me): Spectral theory of Schrödinger operators $H = -\Delta + V(x)$ on \mathbb{R}^n .

Prior Work

Why the condition $\hat{f}|_{\Sigma} \equiv 0$ is interesting (to me): Spectral theory of Schrödinger operators $H = -\Delta + V(x)$ on \mathbb{R}^n .

Free resolvent
$$R_0^+(\lambda^2) = \lim_{\epsilon \to 0^+} (-\Delta - (\lambda + i\epsilon)^2)^{-1}$$
.

 $R_0^+(\lambda^2)$ is a Fourier multiplier with "symbol" $\frac{1}{|\xi|^2-\lambda^2}+\frac{\pi i}{2\lambda}d\sigma_{|\xi|=\lambda}.$

Why the condition $\hat{f}|_{\Sigma} \equiv 0$ is interesting (to me): Spectral theory of Schrödinger operators $H = -\Delta + V(x)$ on \mathbb{R}^n .

Free resolvent
$$R_0^+(\lambda^2) = \lim_{\epsilon \to 0^+} (-\Delta - (\lambda + i\epsilon)^2)^{-1}$$
.

 $R_0^+(\lambda^2)$ is a Fourier multiplier with "symbol" $\frac{1}{|\xi|^2-\lambda^2} + \frac{\pi i}{2\lambda} d\sigma_{|\xi|=\lambda}$.

A resonance is a function ψ "close to L^2 " satisfying $\psi = -R_0^+(\lambda^2)V\psi$. It's a eigenfunction of H if $\psi \in L^2$.

We'd like every resonance to be an eigenfunction.

Agmon: If V is real-valued, then each resonance has $\widehat{V\psi}|_{|\xi|=\lambda} \equiv 0.$

Then $R_0^+(\lambda^2)V\psi$ is better than the *a priori* estimates for the free resolvent, and it is better than the initial assumptions on ψ .

Bootstrap until $\psi \in L^2$.

Agmon: If V is real-valued, then each resonance has $\widehat{V\psi}|_{|\xi|=\lambda}\equiv 0.$

Then $R_0^+(\lambda^2)V\psi$ is better than the *a priori* estimates for the free resolvent, and it is better than the initial assumptions on ψ .

Bootstrap until $\psi \in L^2$.

Agmon worked with ψ and $V\psi$ in weighted $L^2(\mathbb{R}^n)$, so that $\widehat{V\psi} \in H^s(\mathbb{R}^n)$. Then he reduced the special bound on $R_0^+(\lambda^2)V\psi$ to the Hardy inequality. G-Schlag ('04) worked with $V\psi\in L^p(\mathbb{R}^3)$.

Lemma

If
$$\phi \in L^1(\mathbb{R}^3)$$
 and $\left. \hat{\phi} \right|_{|\xi|=\lambda} \equiv 0$, then $R_0(\lambda^2)\phi \in L^2(\mathbb{R}^3)$.

G-Schlag ('04) worked with $V\psi \in L^p(\mathbb{R}^3)$.

Lemma

If
$$\phi \in L^1(\mathbb{R}^3)$$
 and $\left. \hat{\phi} \right|_{|\xi|=\lambda} \equiv 0$, then $R_0(\lambda^2)\phi \in L^2(\mathbb{R}^3)$.

There is an \mathbb{R}^n version of this lemma, with $\phi \in L^p(\mathbb{R}^n)$, $1 \le p \le \frac{2n+2}{n+5}$. (G. '16)

Example:

The ball multiplier in \mathbb{R}^2 typically maps $L^1(\mathbb{R}^2)$ to $L^q(\mathbb{R}^2)$ for any $q > \frac{4}{3}$.

Example:

The ball multiplier in \mathbb{R}^2 typically maps $L^1(\mathbb{R}^2)$ to $L^q(\mathbb{R}^2)$ for any $q > \frac{4}{3}$.

If \hat{f} vanishes on the unit circle, then $M_{ball}f \in L^q(\mathbb{R}^2)$ for any $q > \frac{5}{4}$. (G. '16)

Example:

The ball multiplier in \mathbb{R}^2 typically maps $L^1(\mathbb{R}^2)$ to $L^q(\mathbb{R}^2)$ for any $q > \frac{4}{3}$. If \hat{f} vanishes on the unit circle, then $M_{ball}f \in L^q(\mathbb{R}^2)$ for any $q > \frac{5}{4}$. (G. '16)

Conjecture: This is also true for any q > 1.

Proving Dirichlet-to-Neumann Bounds

Assume $\hat{f}|_{\Sigma} \in H^{\ell}(\Sigma)$.

Assume $\hat{f}|_{\Sigma} \in H^{\ell}(\Sigma)$.

Idea: We can control $rac{\partial \hat{f}}{\partial \xi_n}$ by interpolating between

• k = 0 assumption $\hat{f}|_{\Sigma} \in H^{\ell}(\Sigma)$.

•
$$k = \kappa_p = \frac{n+1}{p} - \frac{n+3}{2}$$
 a priori bound $\frac{\partial^k \hat{f}}{\partial \xi_n^k}\Big|_{\Sigma} \in H^{-k}(\Sigma).$

Note: $k = \kappa_p$ is the same as $p = \frac{2n+2}{n+3+2k}$. It's the maximum number of derivatives allowed in our *a priori* bound.

Assume $\hat{f}|_{\Sigma} \in H^{\ell}(\Sigma)$.

Idea: We can control $\frac{\partial \hat{f}}{\partial \xi_n}$ by interpolating between • k = 0 assumption $\hat{f}|_{\Sigma} \in H^{\ell}(\Sigma)$. • $k = \kappa_p = \frac{n+1}{p} - \frac{n+3}{2}$ a priori bound $\frac{\partial^k \hat{f}}{\partial \xi_n^k}\Big|_{\Sigma} \in H^{-k}(\Sigma)$. Note: $k = \kappa_p$ is the same as $p = \frac{2n+2}{n+3+2k}$. It's the maximum number of derivatives allowed in our a priori bound.

Then we expect to see $\frac{\partial \hat{f}}{\partial \xi_n} \in L^2(\Sigma)$ if $\ell = \frac{\kappa_p}{\kappa_p-1}$.

The idea hints at the right answer despite being badly flawed.

The idea hints at the right answer despite being badly flawed.

• The assumption $\hat{f}|_{\Sigma} \in H^{\ell}(\Sigma)$ is much too fragile for Complex interpolation.

The idea hints at the right answer despite being badly flawed.

- The assumption $\hat{f}|_{\Sigma} \in H^{\ell}(\Sigma)$ is much too fragile for Complex interpolation.
- Standard counterexamples (radial, translated, Knapp) introduce other constraints on ℓ , k, and p.

$$rac{\partial^2}{\partial r^2} \langle \hat{f}, \hat{g}
angle_{L^2(\mathbf{\Sigma} + r ar{\mathbf{e}}_n)} = \langle \hat{f}, rac{\partial^2 \hat{g}}{\partial \xi_n^2}
angle + \langle rac{\partial^2 \hat{f}}{\partial \xi_n^2}, \hat{g}
angle + 2 \langle rac{\partial \hat{f}}{\partial \xi_n}, rac{\partial \hat{g}}{\partial \xi_n}
angle_{n}$$

$$rac{\partial^2}{\partial r^2} \langle \hat{f}, \hat{g}
angle_{L^2(\mathbf{\Sigma} + r ar{\mathbf{e}}_n)} = \langle \hat{f}, rac{\partial^2 \hat{g}}{\partial \xi_n^2}
angle + \langle rac{\partial^2 \hat{f}}{\partial \xi_n^2}, \hat{g}
angle + 2 \langle rac{\partial \hat{f}}{\partial \xi_n}, rac{\partial \hat{g}}{\partial \xi_n}
angle_{\mathbf{z}}
angle_{\mathbf{z}}$$

The left-hand side can be controlled by $||f||_p ||g||_p$, similar to the F''(r) claim earlier.

$$rac{\partial^2}{\partial r^2} \langle \hat{f}, \hat{g}
angle_{L^2(\mathbf{\Sigma} + r ar{\mathbf{e}}_n)} = \langle \hat{f}, rac{\partial^2 \hat{g}}{\partial \xi_n^2}
angle + \langle rac{\partial^2 \hat{f}}{\partial \xi_n^2}, \hat{g}
angle + 2 \langle rac{\partial \hat{f}}{\partial \xi_n}, rac{\partial \hat{g}}{\partial \xi_n}
angle.$$

The left-hand side can be controlled by $||f||_p ||g||_p$, similar to the F''(r) claim earlier.

The first term on the right side is controlled by $\|\hat{f}\|_{H^{\ell}(\Sigma)} \|\frac{\partial^2 \hat{g}}{\partial \xi_n^2}\|_{H^{-\ell}(\Sigma)}$. The second term is similar.

$$rac{\partial^2}{\partial r^2} \langle \hat{f}, \hat{g}
angle_{L^2(\mathbf{\Sigma} + r ar{\mathbf{e}}_n)} = \langle \hat{f}, rac{\partial^2 \hat{g}}{\partial \xi_n^2}
angle + \langle rac{\partial^2 \hat{f}}{\partial \xi_n^2}, \hat{g}
angle + 2 \langle rac{\partial \hat{f}}{\partial \xi_n}, rac{\partial \hat{g}}{\partial \xi_n}
angle_{\mathbf{z}}
angle_{\mathbf{z}}$$

The left-hand side can be controlled by $||f||_p ||g||_p$, similar to the F''(r) claim earlier.

The first term on the right side is controlled by $\|\hat{f}\|_{H^{\ell}(\Sigma)} \|\frac{\partial^2 \hat{g}}{\partial \xi_n^2}\|_{H^{-\ell}(\Sigma)}$. The second term is similar.

The last term on the right is the one we want to control.

The end result is a bound

$$ig\|rac{\partial \hat{f}}{\partial \xi_n}ig\|_{L^2(\Sigma)}^2 \lesssim \ \|f\|_p^2 + \|\hat{f}\|_{H^\ell(\Sigma)} + ig\|rac{\partial^2 \hat{f}}{\partial \xi_n^2}ig\|_{H^{-\ell}(\Sigma)}$$

The end result is a bound

$$ig\|rac{\partial\hat{f}}{\partial\xi_n}ig\|_{L^2(\Sigma)}^2 \lesssim \|f\|_p^2 + \|\hat{f}\|_{H^\ell(\Sigma)} + ig\|rac{\partial^2\hat{f}}{\partial\xi_n^2}ig\|_{H^{-\ell}(\Sigma)}$$

If you use the *a priori* estimate for k = 2, the conclusion is that $\ell = 2$ is sufficient.

Iterating the Leibniz rule gets us to a bound in terms of $\left\|\frac{\partial^k \hat{f}}{\partial \xi_n^k}\right\|_{H^{-(k-1)\ell}(\Sigma)}$. If κ_p is an integer, we can obtain the optimal $\ell = \frac{\kappa_p}{\kappa_p - 1}$ this way.

Let's consider the difference quotients $F(r) = \frac{1}{r} [\hat{f}|_{\Sigma + r\bar{e}_n} - \hat{f}|_{\Sigma}].$

For $r \neq 0$ this is a continuous $L^2(\Sigma)$ -valued function of r. We would like to show it is continuous at r = 0 as well.

Let's consider the difference quotients $F(r) = \frac{1}{r} [\hat{f}|_{\Sigma + r\bar{e}_n} - \hat{f}|_{\Sigma}].$

For $r \neq 0$ this is a continuous $L^2(\Sigma)$ -valued function of r. We would like to show it is continuous at r = 0 as well.

Keeping the Riemann-Lebesgue Lemma in mind, it would suffice to take the Fourier transform in r and then show that

$$\int_{-\infty}^{\infty} \|\hat{F}(\rho)\|_{L^2(\Sigma)} \, d\rho \lesssim \|f\|_p + \|\hat{f}\|_{H^{\ell}(\Sigma)}.$$

Let's consider the difference quotients $F(r) = \frac{1}{r} [\hat{f}|_{\Sigma + r\bar{e}_n} - \hat{f}|_{\Sigma}].$

For $r \neq 0$ this is a continuous $L^2(\Sigma)$ -valued function of r. We would like to show it is continuous at r = 0 as well.

Keeping the Riemann-Lebesgue Lemma in mind, it would suffice to take the Fourier transform in r and then show that

$$\int_{-\infty}^{\infty} \|\hat{F}(
ho)\|_{L^2(\Sigma)} \, d
ho \lesssim \|f\|_{
ho} + \|\hat{f}\|_{H^\ell(\Sigma)}.$$

In fact, that condition would suffice to show that the partial derivative $\frac{\partial f}{\partial \xi_n}$ exists pointwise almost everywhere on Σ . Which is false for $f \in L^p$, p > 1, even if \hat{f} vanishes on Σ .

Let's consider the difference quotients $F(r) = \frac{1}{r} [\hat{f}|_{\Sigma + r\bar{e}_n} - \hat{f}|_{\Sigma}].$

For $r \neq 0$ this is a continuous $L^2(\Sigma)$ -valued function of r. We would like to show it is continuous at r = 0 as well.

Keeping the Riemann-Lebesgue Lemma in mind, it would suffice to take the Fourier transform in r and then show that

$$\int_{-\infty}^{\infty} \|\hat{F}(
ho)\|_{L^2(\Sigma)} \, d
ho \lesssim \|f\|_{
ho} + \|\hat{f}\|_{H^\ell(\Sigma)}.$$

In fact, that condition would suffice to show that the partial derivative $\frac{\partial f}{\partial \xi_n}$ exists pointwise almost everywhere on Σ . Which is false for $f \in L^p$, p > 1, even if \hat{f} vanishes on Σ .

So we need to use a weaker notion of integrability for $\hat{F}(\rho)$ which still implies that F(r) is continuous.

Michael Goldberg (Cincinnati)

Questions for Further Study

• That Ball Multiplier Conjecture.

- That Ball Multiplier Conjecture.
- Differentiability of \hat{f} pointwise a.e. on Σ .

- That Ball Multiplier Conjecture.
- Differentiability of \hat{f} pointwise a.e. on Σ .
- Bounds on $\frac{\partial \hat{f}}{\partial \xi_n}$ in a non-Hilbert space. i.e. not using T^*T methods.

- That Ball Multiplier Conjecture.
- Differentiability of \hat{f} pointwise a.e. on Σ .
- Bounds on $\frac{\partial \hat{f}}{\partial \xi_n}$ in a non-Hilbert space. i.e. not using T^*T methods.
- what happens when n = 4? Or n = 3? (If the derivative of \hat{f} exists, it will be in L^q for some q < 2.)

- S. Agmon, Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 2, 151–218.
- M. Goldberg and W. Schlag, A Limiting absorption principle for the three-dimensional Schrödinger equation with L^p potentials.
 Intl. Math. Res. Not. 2004:75 (2004), 4049–4071.
- M. Goldberg, *The Helmholtz equation with L^p data and Bochner-Riesz multipliers.* Math. Res. Lett. **23** (2016), no. 6, 1665–1679.
- M. Goldberg and D. Stolyarov, *Restrictions of higher derivatives of the Fourier transform.* Trans. Amer. Math. Soc. Ser. B **7** (2020), 46–96.