Dirichlet to Neumann Properties for Fourier Restrictions

Michael Goldberg
University of Cincinnati

Talks given for Würzburg University and AMS Central Section Meeting

March 9 and April 16, 2023

Basic Facts

Support from Simons Foundation grant \#635369.
Collaboration with Dmitriy Stolyarov (St. Petersburg)

Basic Facts

Support from Simons Foundation grant \#635369.
Collaboration with Dmitriy Stolyarov (St. Petersburg)

Fourier transform $\hat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} f(x) d x, \quad x, \xi \in \mathbb{R}^{n}$.

Basic Facts

Support from Simons Foundation grant \#635369.
Collaboration with Dmitriy Stolyarov (St. Petersburg)

Fourier transform $\hat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} f(x) d x, \quad x, \xi \in \mathbb{R}^{n}$.

Notation: $\xi^{\prime}=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n-1}\right) \in \mathbb{R}^{n-1}$
Work with paraboloid $\left\{\xi_{n}=\left|\xi^{\prime}\right|^{2}=\xi_{1}^{2}+\xi_{2}^{2}+\ldots+\xi_{n-1}^{2}\right\}$.
Let Σ be a bounded region of the paraboloid. Identify $\xi \in \Sigma$ with the corresponding $\xi^{\prime} \in \mathbb{R}^{n-1}$.

Dirichlet-to-Neumann Properties

We're going to work with $f \in L^{p}\left(\mathbb{R}^{n}\right)$ where $\left.\hat{f}\right|_{\Sigma} \in L^{2}(\Sigma)$ by the Stein-Tomas theorem.

I'll say there is a Dirichlet-to-Neumann property if additional smoothness of $\left.\hat{f}\right|_{\Sigma}$ (e.g. belonging to $H^{\ell}(\Sigma)$ for some $\left.\ell>0\right)$ implies that $\left.\frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}}\right|_{\Sigma}$ is smoother than its usual a priori estimates.

A priori bounds

What are the a priori bounds for a restriction of $\frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}}$? Keep in mind that $\frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}} \in W^{-k, p^{\prime}}\left(\mathbb{R}^{n}\right)$ is very bad.

A priori bounds

What are the a priori bounds for a restriction of $\frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}}$?
Keep in mind that $\frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}} \in W^{-k, p^{\prime}}\left(\mathbb{R}^{n}\right)$ is very bad.
Theorem

$$
\begin{gathered}
\text { If } f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \frac{2 n+2}{n+3+2 k} \\
\text { then }\left.\frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}}\right|_{\Sigma} \text { exists as an element of } H^{-k}(\Sigma) .
\end{gathered}
$$

A priori bounds

What are the a priori bounds for a restriction of $\frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}}$?
Keep in mind that $\frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}} \in W^{-k, p^{\prime}}\left(\mathbb{R}^{n}\right)$ is very bad.
Theorem

$$
\begin{gathered}
\text { If } f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \frac{2 n+2}{n+3+2 k} \\
\text { then }\left.\frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}}\right|_{\Sigma} \text { exists as an element of } H^{-k}(\Sigma) .
\end{gathered}
$$

The case $k=0$ is the Stein-Tomas theorem. The case $k=\frac{n-1}{2}$ is proved by stationary phase.
The in-between cases are proved by interpolation.

A priori bounds

What are the a priori bounds for a restriction of $\frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}}$?
Keep in mind that $\frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}} \in W^{-k, p^{\prime}}\left(\mathbb{R}^{n}\right)$ is very bad.
Theorem

$$
\begin{gathered}
\text { If } f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \frac{2 n+2}{n+3+2 k} \\
\text { then }\left.\frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}}\right|_{\Sigma} \text { exists as an element of } H^{-k}(\Sigma) .
\end{gathered}
$$

The case $k=0$ is the Stein-Tomas theorem. The case $k=\frac{n-1}{2}$ is proved by stationary phase.
The in-between cases are proved by interpolation. In this talk l'll concentrate on the $k=1$ case.

An extreme case

If $\left.\hat{f}\right|_{\Sigma} \equiv 0$, that makes its restriction as smooth as possible. What can we say about $\frac{\partial \hat{f}}{\partial \xi_{n}}$ in this case?

An extreme case

If $\left.\hat{f}\right|_{\Sigma} \equiv 0$, that makes its restriction as smooth as possible.
What can we say about $\frac{\partial \hat{f}}{\partial \xi_{n}}$ in this case?
Theorem (G-Stolyarov, '20)
If $f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \frac{2 n+2}{n+7}$, and $\left.\hat{f}\right|_{\Sigma} \equiv 0$, then $\left\|\frac{\partial \hat{f}}{\partial \xi_{n}}\right\|_{L^{2}(\Sigma)} \lesssim\|f\|_{p}$.
We need $n \geq 5$ here, so that $\frac{2 n+2}{n+7} \geq 1$.

An extreme case

If $\left.\hat{f}\right|_{\Sigma} \equiv 0$, that makes its restriction as smooth as possible.
What can we say about $\frac{\partial \hat{f}}{\partial \xi_{n}}$ in this case?
Theorem (G-Stolyarov, '20)
If $f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \frac{2 n+2}{n+7}$, and $\left.\hat{f}\right|_{\Sigma} \equiv 0$, then $\left\|\frac{\partial \hat{f}}{\partial \xi_{n}}\right\|_{L^{2}(\Sigma)} \lesssim\|f\|_{p}$.
We need $n \geq 5$ here, so that $\frac{2 n+2}{n+7} \geq 1$.
$\frac{\partial \hat{f}}{\partial \xi_{n}} \in L^{2}(\Sigma)$ is much better than the a priori bound in $H^{-1}(\Sigma)$.

The main idea

Why does \hat{f} vanishing on Σ have so much influence on $\frac{\partial \hat{f}}{\partial \xi_{n}}$?

The main idea

Why does \hat{f} vanishing on Σ have so much influence on $\frac{\partial \hat{f}}{\partial \xi_{n}}$?
Look at $F(r)=\|\hat{f}\|_{L^{2}\left(\Sigma+r \bar{e}_{n}\right)}^{2}=\iint_{R^{2 n}} f(x) \bar{f}(y) \hat{\Sigma}(x-y) e^{i r\left(x_{n}-y_{n}\right)} d x d y$.

The main idea

Why does \hat{f} vanishing on Σ have so much influence on $\frac{\partial \hat{f}}{\partial \xi_{n}}$?
Look at $F(r)=\|\hat{f}\|_{L^{2}\left(\Sigma+r \bar{e}_{n}\right)}^{2}=\iint_{R^{2 n}} f(x) \bar{f}(y) \widehat{\Sigma}(x-y) e^{i r\left(x_{n}-y_{n}\right)} d x d y$.
Basic properties: $F(r) \geq 0$, and $F(0)=0$ by assupmtion.
Show that $F^{\prime \prime}(r)$ is bounded by $\|f\|_{p}^{2}$. Then $0 \leq F(\delta) \lesssim \delta^{2}\|f\|_{p}^{2}$.

The main idea

Why does \hat{f} vanishing on Σ have so much influence on $\frac{\partial \hat{f}}{\partial \xi_{n}}$?
Look at $F(r)=\|\hat{f}\|_{L^{2}\left(\Sigma+r \bar{e}_{n}\right)}^{2}=\iint_{R^{2 n}} f(x) \bar{f}(y) \widehat{\Sigma}(x-y) e^{i r\left(x_{n}-y_{n}\right)} d x d y$.
Basic properties: $F(r) \geq 0$, and $F(0)=0$ by assupmtion.
Show that $F^{\prime \prime}(r)$ is bounded by $\|f\|_{p}^{2}$. Then $0 \leq F(\delta) \lesssim \delta^{2}\|f\|_{p}^{2}$.
So $\left.\hat{f}\right|_{\Sigma} \equiv 0$, and on a nearby surface, $\|\hat{f}\|_{L^{2}\left(\Sigma+r \bar{e}_{n}\right)} \lesssim \delta\|f\|_{p}$.

The main idea

Why does \hat{f} vanishing on Σ have so much influence on $\frac{\partial \hat{f}}{\partial \xi_{n}}$?
Look at $F(r)=\|\hat{f}\|_{L^{2}\left(\Sigma+r \bar{e}_{n}\right)}^{2}=\iint_{R^{2 n}} f(x) \bar{f}(y) \widehat{\Sigma}(x-y) e^{i r\left(x_{n}-y_{n}\right)} d x d y$.
Basic properties: $F(r) \geq 0$, and $F(0)=0$ by assupmtion.
Show that $F^{\prime \prime}(r)$ is bounded by $\|f\|_{p}^{2}$. Then $0 \leq F(\delta) \lesssim \delta^{2}\|f\|_{p}^{2}$.
So $\left.\hat{f}\right|_{\Sigma} \equiv 0$, and on a nearby surface, $\|\hat{f}\|_{L^{2}\left(\Sigma+r \bar{e}_{n}\right)} \lesssim \delta\|f\|_{p}$.
Summary: $\left.\hat{f}\right|_{\Sigma+r \bar{e}_{n}}$ is a continuous $L^{2}(\Sigma)$-valued function of $r \in[-1,1]$. But it is Lipschitz-continuous at $r=0$ if \hat{f} vanishes on Σ.

Prior Work

Why the condition $\left.\hat{f}\right|_{\Sigma} \equiv 0$ is interesting (to me): Spectral theory of Schrödinger operators $H=-\Delta+V(x)$ on \mathbb{R}^{n}.

Prior Work

Why the condition $\left.\hat{f}\right|_{\Sigma} \equiv 0$ is interesting (to me): Spectral theory of Schrödinger operators $H=-\Delta+V(x)$ on \mathbb{R}^{n}.

Free resolvent $R_{0}^{+}\left(\lambda^{2}\right)=\lim _{\epsilon \rightarrow 0^{+}}\left(-\Delta-(\lambda+i \epsilon)^{2}\right)^{-1}$.
$R_{0}^{+}\left(\lambda^{2}\right)$ is a Fourier multiplier with "symbol" $\frac{1}{|\xi|^{2}-\lambda^{2}}+\frac{\pi i}{2 \lambda} d \sigma_{|\xi|=\lambda}$.

Prior Work

Why the condition $\left.\hat{f}\right|_{\Sigma} \equiv 0$ is interesting (to me): Spectral theory of Schrödinger operators $H=-\Delta+V(x)$ on \mathbb{R}^{n}.

Free resolvent $R_{0}^{+}\left(\lambda^{2}\right)=\lim _{\epsilon \rightarrow 0^{+}}\left(-\Delta-(\lambda+i \epsilon)^{2}\right)^{-1}$.
$R_{0}^{+}\left(\lambda^{2}\right)$ is a Fourier multiplier with "symbol" $\frac{1}{|\xi|^{2}-\lambda^{2}}+\frac{\pi i}{2 \lambda} d \sigma_{|\xi|=\lambda}$.

A resonance is a function ψ "close to $L^{2 "}$ satisfying $\psi=-R_{0}^{+}\left(\lambda^{2}\right) V \psi$. It's a eigenfunction of H if $\psi \in L^{2}$.

We'd like every resonance to be an eigenfunction.

S. Agmon's Argument

Agmon: If V is real-valued, then each resonance has $\left.\widehat{V \psi}\right|_{|\xi|=\lambda} \equiv 0$.
Then $R_{0}^{+}\left(\lambda^{2}\right) V \psi$ is better than the a priori estimates for the free resolvent, and it is better than the initial assumptions on ψ.

Bootstrap until $\psi \in L^{2}$.

S. Agmon's Argument

Agmon: If V is real-valued, then each resonance has $\left.\widehat{V \psi}\right|_{|\xi|=\lambda} \equiv 0$.
Then $R_{0}^{+}\left(\lambda^{2}\right) V \psi$ is better than the a priori estimates for the free resolvent, and it is better than the initial assumptions on ψ.

Bootstrap until $\psi \in L^{2}$.

Agmon worked with ψ and $V \psi$ in weighted $L^{2}\left(\mathbb{R}^{n}\right)$, so that $\widehat{V \psi} \in H^{s}\left(\mathbb{R}^{n}\right)$. Then he reduced the special bound on $R_{0}^{+}\left(\lambda^{2}\right) V \psi$ to the Hardy inequality.

Work with W. Schlag

G-Schlag ('04) worked with $V \psi \in L^{P}\left(\mathbb{R}^{3}\right)$.

Lemma

If $\phi \in L^{1}\left(\mathbb{R}^{3}\right)$ and $\left.\hat{\phi}\right|_{|\xi|=\lambda} \equiv 0$, then $R_{0}\left(\lambda^{2}\right) \phi \in L^{2}\left(\mathbb{R}^{3}\right)$.

Work with W. Schlag

G-Schlag ('04) worked with $V \psi \in L^{p}\left(\mathbb{R}^{3}\right)$.

Lemma

If $\phi \in L^{1}\left(\mathbb{R}^{3}\right)$ and $\left.\hat{\phi}\right|_{|\xi|=\lambda} \equiv 0$, then $R_{0}\left(\lambda^{2}\right) \phi \in L^{2}\left(\mathbb{R}^{3}\right)$.

There is an \mathbb{R}^{n} version of this lemma, with $\phi \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \frac{2 n+2}{n+5}$. (G. '16)

An open problem

Intuition suggests that if \hat{f} vanishes at the place where a Fourier multiplier is most singular, there should be a qualitative improvement in the mapping bounds.

An open problem

Intuition suggests that if \hat{f} vanishes at the place where a Fourier multiplier is most singular, there should be a qualitative improvement in the mapping bounds.

Example:
The ball multiplier in R^{2} typically maps $L^{1}\left(\mathbb{R}^{2}\right)$ to $L^{q}\left(\mathbb{R}^{2}\right)$ for any $q>\frac{4}{3}$.

An open problem

Intuition suggests that if \hat{f} vanishes at the place where a Fourier multiplier is most singular, there should be a qualitative improvement in the mapping bounds.

Example:
The ball multiplier in R^{2} typically maps $L^{1}\left(\mathbb{R}^{2}\right)$ to $L^{q}\left(\mathbb{R}^{2}\right)$ for any $q>\frac{4}{3}$.
If \hat{f} vanishes on the unit circle, then $M_{\text {ball }} f \in L^{q}\left(\mathbb{R}^{2}\right)$ for any $q>\frac{5}{4}$. (G. '16)

An open problem

Intuition suggests that if \hat{f} vanishes at the place where a Fourier multiplier is most singular, there should be a qualitative improvement in the mapping bounds.

Example:

The ball multiplier in R^{2} typically maps $L^{1}\left(\mathbb{R}^{2}\right)$ to $L^{q}\left(\mathbb{R}^{2}\right)$ for any $q>\frac{4}{3}$.
If \hat{f} vanishes on the unit circle, then $M_{\text {ball }} f \in L^{q}\left(\mathbb{R}^{2}\right)$ for any $q>\frac{5}{4}$. (G. '16)

Conjecture: This is also true for any $q>1$.

Proving Dirichlet-to-Neumann Bounds

Assume $\left.\hat{f}\right|_{\Sigma} \in H^{\ell}(\Sigma)$.

Proving Dirichlet-to-Neumann Bounds

Assume $\left.\hat{f}\right|_{\Sigma} \in H^{\ell}(\Sigma)$.
Idea: We can control $\frac{\partial \hat{f}}{\partial \xi_{n}}$ by interpolating between

- $k=0$ assumption $\left.\quad \hat{f}\right|_{\Sigma} \in H^{\ell}(\Sigma)$.
- $k=\kappa_{p}=\frac{n+1}{p}-\frac{n+3}{2} \quad$ a priori bound $\left.\quad \frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}}\right|_{\Sigma} \in H^{-k}(\Sigma)$.

Note: $k=\kappa_{p}$ is the same as $p=\frac{2 n+2}{n+3+2 k}$. It's the maximum number of derivatives allowed in our a priori bound.

Proving Dirichlet-to-Neumann Bounds

Assume $\left.\hat{f}\right|_{\Sigma} \in H^{\ell}(\Sigma)$.
Idea: We can control $\frac{\partial \hat{f}}{\partial \xi_{n}}$ by interpolating between

- $k=0$ assumption $\left.\quad \hat{f}\right|_{\Sigma} \in H^{\ell}(\Sigma)$.
- $k=\kappa_{p}=\frac{n+1}{p}-\frac{n+3}{2} \quad$ a priori bound $\left.\quad \frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}}\right|_{\Sigma} \in H^{-k}(\Sigma)$.

Note: $k=\kappa_{p}$ is the same as $p=\frac{2 n+2}{n+3+2 k}$. It's the maximum number of derivatives allowed in our a priori bound.

Then we expect to see $\frac{\partial \hat{f}}{\partial \xi_{n}} \in L^{2}(\Sigma)$ if $\ell=\frac{\kappa_{p}}{\kappa_{p}-1}$.

Proving Dirichlet-to-Neumann Bounds

The idea hints at the right answer despite being badly flawed.

Proving Dirichlet-to-Neumann Bounds

The idea hints at the right answer despite being badly flawed.

- The assumption $\left.\hat{f}\right|_{\Sigma} \in H^{\ell}(\Sigma)$ is much too fragile for Complex interpolation.

Proving Dirichlet-to-Neumann Bounds

The idea hints at the right answer despite being badly flawed.

- The assumption $\left.\hat{f}\right|_{\Sigma} \in H^{\ell}(\Sigma)$ is much too fragile for Complex interpolation.
- Standard counterexamples (radial, translated, Knapp) introduce other constraints on ℓ, k, and p.

Method 1 (G-Stolyarov '20)

Instead of interpolation, we use the Leibniz rule.

$$
\frac{\partial^{2}}{\partial r^{2}}\langle\hat{f}, \hat{g}\rangle_{L^{2}\left(\Sigma+r \bar{e}_{n}\right)}=\left\langle\hat{f}, \frac{\partial^{2} \hat{g}}{\partial \xi_{n}^{2}}\right\rangle+\left\langle\frac{\partial^{2} \hat{f}}{\partial \xi_{n}^{2}}, \hat{g}\right\rangle+2\left\langle\frac{\partial \hat{f}}{\partial \xi_{n}}, \frac{\partial \hat{g}}{\partial \xi_{n}}\right\rangle .
$$

Method 1 (G-Stolyarov '20)

Instead of interpolation, we use the Leibniz rule.

$$
\frac{\partial^{2}}{\partial r^{2}}\langle\hat{f}, \hat{g}\rangle_{L^{2}\left(\Sigma+r \bar{e}_{n}\right)}=\left\langle\hat{f}, \frac{\partial^{2} \hat{g}}{\partial \xi_{n}^{2}}\right\rangle+\left\langle\frac{\partial^{2} \hat{f}}{\partial \xi_{n}^{2}}, \hat{g}\right\rangle+2\left\langle\frac{\partial \hat{f}}{\partial \xi_{n}}, \frac{\partial \hat{g}}{\partial \xi_{n}}\right\rangle .
$$

The left-hand side can be controlled by $\|f\|_{p}\|g\|_{p}$, similar to the $F^{\prime \prime}(r)$ claim earlier.

Method 1 (G-Stolyarov '20)

Instead of interpolation, we use the Leibniz rule.

$$
\frac{\partial^{2}}{\partial r^{2}}\langle\hat{f}, \hat{g}\rangle_{L^{2}\left(\Sigma+r \bar{e}_{n}\right)}=\left\langle\hat{f}, \frac{\partial^{2} \hat{g}}{\partial \xi_{n}^{2}}\right\rangle+\left\langle\frac{\partial^{2} \hat{f}}{\partial \xi_{n}^{2}}, \hat{g}\right\rangle+2\left\langle\frac{\partial \hat{f}}{\partial \xi_{n}}, \frac{\partial \hat{g}}{\partial \xi_{n}}\right\rangle .
$$

The left-hand side can be controlled by $\|f\|_{p}\|g\|_{p}$, similar to the $F^{\prime \prime}(r)$ claim earlier.

The first term on the right side is controlled by $\|\hat{f}\|_{H^{\ell}(\Sigma)}\left\|\frac{\partial^{2} \hat{g}}{\partial \xi_{n}^{2}}\right\|_{H^{-\ell}(\Sigma)}$. The second term is similar.

Method 1 (G-Stolyarov '20)

Instead of interpolation, we use the Leibniz rule.

$$
\frac{\partial^{2}}{\partial r^{2}}\langle\hat{f}, \hat{g}\rangle_{L^{2}\left(\Sigma+r \bar{e}_{n}\right)}=\left\langle\hat{f}, \frac{\partial^{2} \hat{g}}{\partial \xi_{n}^{2}}\right\rangle+\left\langle\frac{\partial^{2} \hat{f}}{\partial \xi_{n}^{2}}, \hat{g}\right\rangle+2\left\langle\frac{\partial \hat{f}}{\partial \xi_{n}}, \frac{\partial \hat{g}}{\partial \xi_{n}}\right\rangle .
$$

The left-hand side can be controlled by $\|f\|_{p}\|g\|_{p}$, similar to the $F^{\prime \prime}(r)$ claim earlier.

The first term on the right side is controlled by $\|\hat{f}\|_{H^{\ell}(\Sigma)}\left\|\frac{\partial^{2} \hat{g}}{\partial \xi_{n}^{2}}\right\|_{H^{-\ell}(\Sigma)}$. The second term is similar.

The last term on the right is the one we want to control.

Method 1 (G-Stolyarov '20)

The end result is a bound

$$
\left\|\frac{\partial \hat{f}}{\partial \xi_{n}}\right\|_{L^{2}(\Sigma)}^{2} \lesssim\|f\|_{p}^{2}+\|\hat{f}\|_{H^{\ell}(\Sigma)}+\left\|\frac{\partial^{2} \hat{f}}{\partial \xi_{n}^{2}}\right\|_{H^{-\ell}(\Sigma)}
$$

Method 1 (G-Stolyarov '20)

The end result is a bound

$$
\left\|\frac{\partial \hat{f}}{\partial \xi_{n}}\right\|_{L^{2}(\Sigma)}^{2} \lesssim\|f\|_{p}^{2}+\|\hat{f}\|_{H^{\ell}(\Sigma)}+\left\|\frac{\partial^{2} \hat{f}}{\partial \xi_{n}^{2}}\right\|_{H^{-\ell}(\Sigma)}
$$

If you use the a priori estimate for $k=2$, the conclusion is that $\ell=2$ is sufficient.

Iterating the Leibniz rule gets us to a bound in terms of $\left\|\frac{\partial^{k} \hat{f}}{\partial \xi_{n}^{k}}\right\|_{H^{-(k-1) \ell}(\Sigma)}$.
If κ_{p} is an integer, we can obtain the optimal $\ell=\frac{\kappa_{p}}{\kappa_{p}-1}$ this way.

Method 2 (work in progress)

Let's consider the difference quotients $F(r)=\frac{1}{r}\left[\left.\hat{f}\right|_{\Sigma+r \bar{r}_{n}}-\left.\hat{f}\right|_{\Sigma}\right]$.
For $r \neq 0$ this is a continuous $L^{2}(\Sigma)$-valued function of r. We would like to show it is continuous at $r=0$ as well.

Method 2 (work in progress)

Let's consider the difference quotients $F(r)=\frac{1}{r}\left[\left.\hat{f}\right|_{\Sigma+r \bar{e}_{n}}-\left.\hat{f}\right|_{\Sigma}\right]$.
For $r \neq 0$ this is a continuous $L^{2}(\Sigma)$-valued function of r.
We would like to show it is continuous at $r=0$ as well.

Keeping the Riemann-Lebesgue Lemma in mind, it would suffice to take the Fourier transform in r and then show that

$$
\int_{-\infty}^{\infty}\|\hat{F}(\rho)\|_{L^{2}(\Sigma)} d \rho \lesssim\|f\|_{p}+\|\hat{f}\|_{H^{\ell}(\Sigma)}
$$

Method 2 (work in progress)

Let's consider the difference quotients $F(r)=\frac{1}{r}\left[\left.\hat{f}\right|_{\Sigma+r \bar{e}_{n}}-\left.\hat{f}\right|_{\Sigma}\right]$.
For $r \neq 0$ this is a continuous $L^{2}(\Sigma)$-valued function of r.
We would like to show it is continuous at $r=0$ as well.

Keeping the Riemann-Lebesgue Lemma in mind, it would suffice to take the Fourier transform in r and then show that

$$
\int_{-\infty}^{\infty}\|\hat{F}(\rho)\|_{L^{2}(\Sigma)} d \rho \lesssim\|f\|_{p}+\|\hat{f}\|_{H^{\ell}(\Sigma)}
$$

In fact, that condition would suffice to show that the partial derivative $\frac{\partial \hat{f}}{\partial \xi_{n}}$ exists pointwise almost everywhere on Σ. Which is false for $f \in L^{p}, p>1$, even if \hat{f} vanishes on Σ.

Method 2 (work in progress)

Let's consider the difference quotients $F(r)=\frac{1}{r}\left[\left.\hat{f}\right|_{\Sigma+r \bar{e}_{n}}-\left.\hat{f}\right|_{\Sigma}\right]$.
For $r \neq 0$ this is a continuous $L^{2}(\Sigma)$-valued function of r.
We would like to show it is continuous at $r=0$ as well.

Keeping the Riemann-Lebesgue Lemma in mind, it would suffice to take the Fourier transform in r and then show that

$$
\int_{-\infty}^{\infty}\|\hat{F}(\rho)\|_{L^{2}(\Sigma)} d \rho \lesssim\|f\|_{p}+\|\hat{f}\|_{H^{\ell}(\Sigma)}
$$

In fact, that condition would suffice to show that the partial derivative $\frac{\partial \hat{f}}{\partial \xi_{n}}$ exists pointwise almost everywhere on Σ. Which is false for $f \in L^{p}, p>1$, even if \hat{f} vanishes on Σ.

So we need to use a weaker notion of integrability for $\hat{F}(\rho)$ which still implies that $F(r)$ is continuous.

Questions for Further Study

Questions for Further Study

- That Ball Multiplier Conjecture.

Questions for Further Study

- That Ball Multiplier Conjecture.
- Differentiability of \hat{f} pointwise a.e. on Σ.

Questions for Further Study

- That Ball Multiplier Conjecture.
- Differentiability of \hat{f} pointwise a.e. on Σ.
- Bounds on $\frac{\partial \hat{f}}{\partial \xi_{n}}$ in a non-Hilbert space. i.e. not using $T^{*} T$ methods.

Questions for Further Study

- That Ball Multiplier Conjecture.
- Differentiability of \hat{f} pointwise a.e. on Σ.
- Bounds on $\frac{\partial \hat{f}}{\partial \xi_{n}}$ in a non-Hilbert space. i.e. not using $T^{*} T$ methods.
- what happens when $n=4$? Or $n=3$? (If the derivative of \hat{f} exists, it will be in L^{q} for some $q<2$.)

References

S. Agmon, Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 2, 151-218.
M. Goldberg and W. Schlag, A Limiting absorption principle for the three-dimensional Schrödinger equation with L^{p} potentials. Intl. Math. Res. Not. 2004:75 (2004), 4049-4071.
M. Goldberg, The Helmholtz equation with L^{p} data and Bochner-Riesz multipliers. Math. Res. Lett. 23 (2016), no. 6, 1665-1679.
M. Goldberg and D. Stolyarov, Restrictions of higher derivatives of the Fourier transform. Trans. Amer. Math. Soc. Ser. B 7 (2020), 46-96.

