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Basic Facts

Support from Simons Foundation grant #635369.
Collaboration with Dmitriy Stolyarov (St. Petersburg)

Fourier transform f̂ (ξ) =
∫
Rn

e−iξ·x f (x) dx , x , ξ ∈ Rn.

Notation: ξ′ = (ξ1, ξ2, . . . , ξn−1) ∈ Rn−1

Work with paraboloid
{
ξn = |ξ′|2 = ξ2

1 + ξ2
2 + . . .+ ξ2

n−1
}
.

Let Σ be a bounded region of the paraboloid.
Identify ξ ∈ Σ with the corresponding ξ′ ∈ Rn−1.

Michael Goldberg (Cincinnati) Dirichlet to Neumann Spring 2023 1 / 1



Basic Facts

Support from Simons Foundation grant #635369.
Collaboration with Dmitriy Stolyarov (St. Petersburg)

Fourier transform f̂ (ξ) =
∫
Rn

e−iξ·x f (x) dx , x , ξ ∈ Rn.

Notation: ξ′ = (ξ1, ξ2, . . . , ξn−1) ∈ Rn−1

Work with paraboloid
{
ξn = |ξ′|2 = ξ2

1 + ξ2
2 + . . .+ ξ2

n−1
}
.

Let Σ be a bounded region of the paraboloid.
Identify ξ ∈ Σ with the corresponding ξ′ ∈ Rn−1.

Michael Goldberg (Cincinnati) Dirichlet to Neumann Spring 2023 1 / 1



Basic Facts

Support from Simons Foundation grant #635369.
Collaboration with Dmitriy Stolyarov (St. Petersburg)

Fourier transform f̂ (ξ) =
∫
Rn

e−iξ·x f (x) dx , x , ξ ∈ Rn.

Notation: ξ′ = (ξ1, ξ2, . . . , ξn−1) ∈ Rn−1

Work with paraboloid
{
ξn = |ξ′|2 = ξ2

1 + ξ2
2 + . . .+ ξ2

n−1
}
.

Let Σ be a bounded region of the paraboloid.
Identify ξ ∈ Σ with the corresponding ξ′ ∈ Rn−1.

Michael Goldberg (Cincinnati) Dirichlet to Neumann Spring 2023 1 / 1



Dirichlet-to-Neumann Properties

We’re going to work with f ∈ Lp(Rn) where f̂
∣∣
Σ ∈ L2(Σ)

by the Stein-Tomas theorem.

I’ll say there is a Dirichlet-to-Neumann property
if additional smoothness of f̂

∣∣
Σ (e.g. belonging to Hℓ(Σ) for some ℓ > 0)

implies that ∂k f̂
∂ξk

n

∣∣∣
Σ

is smoother than its usual a priori estimates.

Michael Goldberg (Cincinnati) Dirichlet to Neumann Spring 2023 2 / 1



A priori bounds

What are the a priori bounds for a restriction of ∂k f̂
∂ξk

n
?

Keep in mind that ∂k f̂
∂ξk

n
∈ W −k,p′(Rn) is very bad.

Theorem
If f ∈ Lp(Rn), 1 ≤ p ≤ 2n+2

n+3+2k ,
then ∂k f̂

∂ξk
n

∣∣∣
Σ

exists as an element of H−k(Σ).

The case k = 0 is the Stein-Tomas theorem.
The case k = n−1

2 is proved by stationary phase.

The in-between cases are proved by interpolation.

In this talk I’ll concentrate on the k = 1 case.
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An extreme case

If f̂
∣∣
Σ ≡ 0, that makes its restriction as smooth as possible.

What can we say about ∂ f̂
∂ξn

in this case?

Theorem (G-Stolyarov, ’20)

If f ∈ Lp(Rn), 1 ≤ p ≤ 2n+2
n+7 , and f̂

∣∣
Σ ≡ 0, then

∥∥∥ ∂ f̂
∂ξn

∥∥∥
L2(Σ)

≲ ∥f ∥p.

We need n ≥ 5 here, so that 2n+2
n+7 ≥ 1.

∂ f̂
∂ξn

∈ L2(Σ) is much better than the a priori bound in H−1(Σ).
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The main idea

Why does f̂ vanishing on Σ have so much influence on ∂ f̂
∂ξn

?

Look at F (r) =
∥∥f̂

∥∥2
L2(Σ+r ēn) =

∫∫
R2n

f (x)f (y)Σ̂(x − y)eir(xn−yn)dxdy .

Basic properties: F (r) ≥ 0, and F (0) = 0 by assupmtion.

Show that F ′′(r) is bounded by ∥f ∥2
p. Then 0 ≤ F (δ) ≲ δ2∥f ∥2

p.

So f̂
∣∣
Σ ≡ 0, and on a nearby surface,

∥∥f̂
∥∥

L2(Σ+r ēn) ≲ δ∥f ∥p.

Summary: f̂
∣∣
Σ+r ēn

is a continuous L2(Σ)-valued function of r ∈ [−1, 1].
But it is Lipschitz-continuous at r = 0 if f̂ vanishes on Σ.
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∫∫
R2n

f (x)f (y)Σ̂(x − y)eir(xn−yn)dxdy .

Basic properties: F (r) ≥ 0, and F (0) = 0 by assupmtion.

Show that F ′′(r) is bounded by ∥f ∥2
p. Then 0 ≤ F (δ) ≲ δ2∥f ∥2

p.

So f̂
∣∣
Σ ≡ 0, and on a nearby surface,

∥∥f̂
∥∥
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Prior Work

Why the condition f̂
∣∣
Σ ≡ 0 is interesting (to me):

Spectral theory of Schrödinger operators H = −∆ + V (x) on Rn.

Free resolvent R+
0 (λ2) = lim

ϵ→0+
(−∆ − (λ+ iϵ)2)−1.

R+
0 (λ2) is a Fourier multiplier with “symbol” 1

|ξ|2−λ2 + πi
2λdσ|ξ|=λ.

A resonance is a function ψ “close to L2” satisfying ψ = −R+
0 (λ2)Vψ.

It’s a eigenfunction of H if ψ ∈ L2.

We’d like every resonance to be an eigenfunction.
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S. Agmon’s Argument

Agmon: If V is real-valued, then each resonance has V̂ψ
∣∣
|ξ|=λ

≡ 0.

Then R+
0 (λ2)Vψ is better than the a priori estimates for the free resolvent,

and it is better than the initial assumptions on ψ.

Bootstrap until ψ ∈ L2.

Agmon worked with ψ and Vψ in weighted L2(Rn), so that V̂ψ ∈ Hs(Rn).

Then he reduced the special bound on R+
0 (λ2)Vψ to the Hardy inequality.
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Work with W. Schlag

G-Schlag (’04) worked with Vψ ∈ Lp(R3).

Lemma
If ϕ ∈ L1(R3) and ϕ̂

∣∣
|ξ|=λ

≡ 0, then R0(λ2)ϕ ∈ L2(R3).

There is an Rn version of this lemma, with ϕ ∈ Lp(Rn), 1 ≤ p ≤ 2n+2
n+5 .

(G. ’16)
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An open problem

Intuition suggests that if f̂ vanishes at the place where a Fourier multiplier
is most singular, there should be a qualitative improvement in the mapping
bounds.

Example:
The ball multiplier in R2 typically maps L1(R2) to Lq(R2) for any q > 4

3 .

If f̂ vanishes on the unit circle, then Mball f ∈ Lq(R2) for any q > 5
4 .

(G. ’16)

Conjecture: This is also true for any q > 1.
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Proving Dirichlet-to-Neumann Bounds

Assume f̂
∣∣
Σ ∈ Hℓ(Σ).

Idea: We can control ∂ f̂
∂ξn

by interpolating between

k = 0 assumption f̂
∣∣
Σ ∈ Hℓ(Σ).

k = κp = n+1
p − n+3

2 a priori bound ∂k f̂
∂ξk

n

∣∣∣
Σ

∈ H−k(Σ).

Note: k = κp is the same as p = 2n+2
n+3+2k . It’s the maximum number of

derivatives allowed in our a priori bound.

Then we expect to see ∂ f̂
∂ξn

∈ L2(Σ) if ℓ = κp
κp−1 .
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Proving Dirichlet-to-Neumann Bounds

The idea hints at the right answer despite being badly flawed.

The assumption f̂
∣∣
Σ ∈ Hℓ(Σ) is much too fragile for Complex

interpolation.
Standard counterexamples (radial, translated, Knapp) introduce other
constraints on ℓ, k, and p.
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Method 1 ( G-Stolyarov ’20)

Instead of interpolation, we use the Leibniz rule.

∂2

∂r2 ⟨f̂ , ĝ⟩L2(Σ+r ēn) = ⟨f̂ , ∂2ĝ
∂ξ2

n
⟩ + ⟨∂2 f̂

∂ξ2
n
, ĝ⟩ + 2⟨ ∂ f̂

∂ξn
, ∂ĝ

∂ξn
⟩.

The left-hand side can be controlled by ∥f ∥p∥g∥p, similar to the F ′′(r)
claim earlier.

The first term on the right side is controlled by ∥f̂ ∥Hℓ(Σ)
∥∥∂2ĝ

∂ξ2
n

∥∥
H−ℓ(Σ).

The second term is similar.

The last term on the right is the one we want to control.
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The last term on the right is the one we want to control.
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Method 1 ( G-Stolyarov ’20)

The end result is a bound∥∥ ∂ f̂
∂ξn

∥∥2
L2(Σ) ≲ ∥f ∥2

p + ∥f̂ ∥Hℓ(Σ) +
∥∥∂2 f̂

∂ξ2
n

∥∥
H−ℓ(Σ)

If you use the a priori estimate for k = 2, the conclusion is that ℓ = 2 is
sufficient.

Iterating the Leibniz rule gets us to a bound in terms of
∥∥∂k f̂

∂ξk
n

∥∥
H−(k−1)ℓ(Σ).

If κp is an integer, we can obtain the optimal ℓ = κp
κp−1 this way.
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Method 2 (work in progress)
Let’s consider the difference quotients F (r) = 1

r
[
f̂

∣∣
Σ+r ēn

− f̂
∣∣
Σ

]
.

For r ̸= 0 this is a continuous L2(Σ)-valued function of r .
We would like to show it is continuous at r = 0 as well.

Keeping the Riemann-Lebesgue Lemma in mind, it would suffice to take
the Fourier transform in r and then show that∫ ∞

−∞
∥F̂ (ρ)∥L2(Σ) dρ ≲ ∥f ∥p + ∥f̂ ∥Hℓ(Σ).

In fact, that condition would suffice to show that the partial derivative ∂ f̂
∂ξn

exists pointwise almost everywhere on Σ. Which is false for f ∈ Lp, p > 1,
even if f̂ vanishes on Σ.

So we need to use a weaker notion of integrability for F̂ (ρ) which still
implies that F (r) is continuous.
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Questions for Further Study

That Ball Multiplier Conjecture.

Differentiability of f̂ pointwise a.e. on Σ.

Bounds on ∂ f̂
∂ξn

in a non-Hilbert space.
i.e. not using T ∗T methods.

what happens when n = 4? Or n = 3?
(If the derivative of f̂ exists, it will be in Lq for some q < 2.)
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