Dispersive bounds for Polyharmonic Schrödinger Operators

Michael Goldberg

University of Cincinnati

AMS Central Section Meeting Creighton University, Omaha, NE October 8, 2023

Support from Simons Foundation grant #635369. Collaborators: Burak Erdogan (Illinois) and William Green (Rose-Hulman)

Support from Simons Foundation grant #635369. Collaborators: Burak Erdogan (Illinois) and William Green (Rose-Hulman)

Schrödinger equation
$$\begin{cases} iu_t(x,t) = ((-\Delta)^m + V)u(x,t), \ x \in \mathbb{R}^n, \ m \in \mathbf{N} \\ u(x,0) = u_0(x) \end{cases}$$

Want to prove same $L^1 \rightarrow L^\infty$ bounds as the $V \equiv 0$ case.

What happens when $V \equiv 0$:

$$e^{-it(-\Delta)^m}$$
 is convolution with kernel $\mathcal{F}(e^{-it|\xi|^{2m}}) = t^{-\frac{n}{2m}} \mathcal{K}\left(\frac{|x|}{t^{1/2m}}\right).$

 $\begin{array}{l} {\cal K}(|x|) \text{ is a bounded function,} \\ \text{and } {\cal K}(|x|) \ \sim \ \frac{1}{|x|^{\frac{n(m-1)}{2m-1}}}e^{-i|x|^{(1+\frac{1}{2m-1})}} \ \text{ for large values of } |x|. \end{array}$

This allows derivatives of K up to order n(m-1) to be bounded as well.

We'd like to find a condition on V so that the propagator e^{-itH} satisfies

$$\left\| e^{-itH} P_{ac}(H) u_0 \right\|_{\infty} \lesssim |t|^{-\frac{n}{2m}} \|u_0\|_{1}$$

and $\left\| |H|^{\frac{n(m-1)}{2m}} e^{-itH} P_{ac}(H) u_0 \right\|_{\infty} \lesssim |t|^{-\frac{n}{2}} \|u_0\|_{1}.$

The projection $P_{ac}(H)$ is needed to avoid steady-state solutions of the form $u(x, t) = e^{-it\lambda_0}\psi$.

We'll choose a condition on V so that H has no singular continuous spectrum.

Define
$$\|V\|_{K^{lpha}} := \sup_{z \in \mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|V(y)|}{|z - y|^{lpha}} \, dy, \quad 0 \le lpha < n.$$

 K^0 coincides with $L^1(\mathbb{R}^n)$.

Multiplication by $V \in K^{n-2m}$ has the same dilation scaling as $(-\Delta)^m$.

Let K_0 denote the K^{n-2m} closure of $C_c(\mathbb{R}^n)$ functions. Then $H = (-\Delta)^m + V$ is a relatively compact perturbation of $(-\Delta)^m$.

[as long as n > 2m...]

Theorem (Erdogan-G-Green)

In dimensions 2m < n < 4m, both perturbed dispersive bounds are true provided $V \in K_0$ and $H = (-\Delta)^m + V$ has no threshold resonances or embedded eiganvalues in $[0, \infty)$.

The bounds are:

$$\left\| e^{-itH} P_{ac}(H) u_0 \right\|_{\infty} \lesssim |t|^{-\frac{n}{2m}} \|u_0\|_{1}$$

and $\left\| |H|^{\frac{n(m-1)}{2m}} e^{-itH} P_{ac}(H) u_0 \right\|_{\infty} \lesssim |t|^{-\frac{n}{2}} \|u_0\|_{1}.$

Stationary method: Use the functional calculus of H,

$$e^{-itH}P_{ac}(H) = rac{1}{2\pi i}\int_0^\infty e^{-it\lambda} (R_V^+(\lambda) - R_V^-(\lambda)) d\lambda.$$

Resolvents:
$$R_V^{\pm}(\lambda) := \lim_{\epsilon \to 0^+} \left((-\Delta)^m + V - (\lambda \pm i\epsilon) \right)^{-1}$$
.
 $R_0^{\pm}(\lambda) := \lim_{\epsilon \to 0^+} \left((-\Delta)^m - (\lambda \pm i\epsilon) \right)^{-1}$

Stationary method: Use the functional calculus of H,

$$e^{-itH}P_{ac}(H) = rac{1}{2\pi i}\int_0^\infty e^{-it\lambda} (R_V^+(\lambda) - R_V^-(\lambda)) d\lambda.$$

Resolvents:
$$R_V^{\pm}(\lambda) := \lim_{\epsilon \to 0^+} \left((-\Delta)^m + V - (\lambda \pm i\epsilon) \right)^{-1}$$
.
 $R_0^{\pm}(\lambda) := \lim_{\epsilon \to 0^+} \left((-\Delta)^m - (\lambda \pm i\epsilon) \right)^{-1}$

Useful identity:

$$R_V^+(\lambda) - R_V^-(\lambda) = (I + R_0^-(\lambda)V)^{-1} [R_0^+(\lambda) - R_0^-(\lambda)] (I + VR_0^+(\lambda))^{-1}.$$

After a change of variables $\lambda \mapsto \lambda^{2m}$, we have

$$e^{-itH}P_{ac}(H) = C \int_0^\infty e^{-it\lambda^{2m}} \lambda^{2m-1} J^*(\lambda) [R_0^+(\lambda^{2m}) - R_0^-(\lambda^{2m})] J(\lambda) \, d\lambda.$$

After a change of variables $\lambda \mapsto \lambda^{2m}$, we have

$$e^{-itH}P_{ac}(H) = C \int_0^\infty e^{-it\lambda^{2m}} \lambda^{2m-1} J^*(\lambda) [R_0^+(\lambda^{2m}) - R_0^-(\lambda^{2m})] J(\lambda) \, d\lambda.$$

 $R_0^{\pm}(\lambda^{2m}) =$ Fourier multiplication by $\frac{1}{|\xi|^{2m} - \lambda^{2m}} \pm \frac{\pi i}{m\lambda^{2m-1}} d\sigma\Big|_{|\xi|=\lambda}$.

After a change of variables $\lambda \mapsto \lambda^{2m}$, we have

$$e^{-itH}P_{ac}(H) = C \int_0^\infty e^{-it\lambda^{2m}} \lambda^{2m-1} J^*(\lambda) [R_0^+(\lambda^{2m}) - R_0^-(\lambda^{2m})] J(\lambda) \, d\lambda.$$

 $R_0^{\pm}(\lambda^{2m}) = \text{Fourier multiplication by} \quad \frac{1}{|\xi|^{2m} - \lambda^{2m}} \pm \frac{\pi i}{m\lambda^{2m-1}} d\sigma \Big|_{|\xi| = \lambda}.$ $J(\lambda) = \left[I + V R_0^+(\lambda^{2m})\right]^{-1} \text{ for } \lambda > 0.$

We're trying to establish time decay of

$$e^{-itH}P_{ac}(H) = C \int_0^\infty e^{-it\lambda^{2m}} \lambda^{2m-1} J^*(\lambda) [R_0^+(\lambda^{2m}) - R_0^-(\lambda^{2m})] J(\lambda) \, d\lambda.$$

Integrate by parts to gain integer powers of t.

Use Plancherel to gain the last fractional power of t.

We're trying to establish time decay of

$$e^{-itH}P_{ac}(H) = C \int_0^\infty e^{-it\lambda^{2m}} \lambda^{2m-1} J^*(\lambda) [R_0^+(\lambda^{2m}) - R_0^-(\lambda^{2m})] J(\lambda) \, d\lambda.$$

Integrate by parts to gain integer powers of t.

Use Plancherel to gain the last fractional power of t.

We'll need $\widehat{J}(\rho)$ to be integrable in a suitable sense. Recall that $J(\lambda) = [I + VR_0^+(\lambda^{2m})]^{-1}$.

L^1 Inversion Lemmas

Wiener's Lemma:

If
$$\hat{f} \in L^1(\mathbb{R})$$
 and $1 + f(\lambda) \neq 0$ for all $\lambda \in \mathbb{R}$,
then $\mathcal{F}(\frac{1}{1+f(\lambda)}) - \delta_{\rho=0} \in L^1(\mathbb{R})$.

L¹ Inversion Lemmas

Wiener's Lemma:

If
$$\hat{f} \in L^1(\mathbb{R})$$
 and $1 + f(\lambda) \neq 0$ for all $\lambda \in \mathbb{R}$,
then $\mathcal{F}(\frac{1}{1+f(\lambda)}) - \delta_{\rho=0} \in L^1(\mathbb{R})$.

Operator-Valued version:

Theorem (Beceanu)

If $K(x,y) := \int_{\mathbb{R}} |\widehat{T}(\rho, x, y)| d\rho$ is the kernel of an operator in $\mathcal{B}(X)$, and $I + T(\lambda)$ is invertible in $\mathcal{B}(X)$ for all $\lambda \in \mathbb{R}$, then $\left\| \mathcal{F}[(I + T(\lambda))^{-1}] - \delta_{\rho=0}I \right\|_{L^{1}(\rho)}$ is also an operator in $\mathcal{B}(X)$provided T is the norm-limit of $C_{c}(\mathbb{R})$ operator-valued functions. We'd like to apply the inversion theorem to $I + VR_0^+(\lambda^{2m})$. Mostly in $\mathcal{B}(L^1(\mathbb{R}^n))$. But perhaps in $\mathcal{B}(K^{\alpha})$ as needed.

The kernel of $R_0^+(\lambda^{2m})$ has the form $|x - y|^{n-2m}f(\lambda|x - y|)$. If $\hat{f} \in L^1(\mathbb{R})$, then the condition $V \in K^{n-2m}$ gives the right integrability of the Euclidean structure form

its Fourier transform.

10/13

We'd like to apply the inversion theorem to $I + VR_0^+(\lambda^{2m})$. Mostly in $\mathcal{B}(L^1(\mathbb{R}^n))$. But perhaps in $\mathcal{B}(K^{\alpha})$ as needed.

The kernel of $R_0^+(\lambda^{2m})$ has the form $|x - y|^{n-2m}f(\lambda|x - y|)$. If $\hat{f} \in L^1(\mathbb{R})$, then the condition $V \in K^{n-2m}$ gives the right integrability of its Fourier transform.

More specifically, the kernel of $R_0^+(\lambda^{2m})$ looks like

$$\frac{e^{i\lambda|x-y|}}{\lambda^{\frac{4m-(n+1)}{2}}|x-y|^{\frac{n-1}{2}}}.$$

Can't IBP more than $\frac{n-1}{2}$ times. Be careful where you distribute powers of λ .

- There's a small problem that if m > 1, then the analytic extension of $R_0^+(\lambda^{2m})$ grows exponentially on the negative half-line $\lambda < 0$.
- We should pick a different extension. The integral we care about is supported on $[0,\infty)$.

- There's a small problem that if m > 1, then the analytic extension of $R_0^+(\lambda^{2m})$ grows exponentially on the negative half-line $\lambda < 0$.
- We should pick a different extension. The integral we care about is supported on $[0,\infty)$.
- Kato norms K^{α} , $0 \le \alpha \le n 2m$, don't seem to interpolate well. It would simplify some arguments if they did.

How to verify that $I + VR_0^+(\lambda^{2m})$ is invertible in $\mathcal{B}(L^1)$ for all $\lambda_0 > 0$.

It's a compact perturbation of the identity. If it's not invertible, there must be a function $\phi \in L^1(\mathbb{R}^n)$ in its null space. Then $\psi = R_0^+(\lambda_0^{2m})\phi$ is a (generalized) eigenfunction of $H = (-\Delta)^m + V$.

By an argument due to Agmon, $\widehat{\phi}(\xi) = 0$ for all $|\xi| = \lambda_0$.

That is sufficient to imply $\psi \in L^2(\mathbb{R}^n)$. [G, '16] And we assumed H had no embedded eigenvalues. What happens when $n \leq 2m$:

Free resolvent $R_0^+(\lambda^{2m})$ behaves badly near $\lambda = 0$. This probably can be handled in some way. m = 1, n = 1 case done by (Hill '20).

For n < 2m, right condition is probably $(1 + |x|)^{2m-n}V \in L^1(\mathbb{R}^n)$.

What happens when $n \leq 2m$:

Free resolvent $R_0^+(\lambda^{2m})$ behaves badly near $\lambda = 0$. This probably can be handled in some way. m = 1, n = 1 case done by (Hill '20).

For n < 2m, right condition is probably $(1 + |x|)^{2m-n} V \in L^1(\mathbb{R}^n)$.

What happens when m > 4m:

 $R_0^+(\lambda^{2m})$ grows like $\lambda^{\frac{(n+1)-4m}{2}}$ as $\lambda \to \infty$.

One can generate counterexamples to $L^1 \rightarrow L^{\infty}$ PDE bounds unless V(x) is more regular in some way.