Dispersive bounds for Polyharmonic Schrödinger Operators

Michael Goldberg

University of Cincinnati

AMS Central Section Meeting
Creighton University, Omaha, NE
October 8, 2023

Preliminaries

Support from Simons Foundation grant \#635369.
Collaborators: Burak Erdogan (Illinois) and William Green (Rose-Hulman)

Preliminaries

Support from Simons Foundation grant \#635369.
Collaborators: Burak Erdogan (Illinois) and William Green (Rose-Hulman)

Schrödinger equation $\left\{\begin{aligned} i u_{t}(x, t) & =\left((-\Delta)^{m}+V\right) u(x, t), x \in \mathbb{R}^{n}, m \in \mathbf{N} \\ u(x, 0) & =u_{0}(x)\end{aligned}\right.$

Want to prove same $L^{1} \rightarrow L^{\infty}$ bounds as the $V \equiv 0$ case.

Free Dispersive Estimates

What happens when $V \equiv 0$:
$e^{-i t(-\Delta)^{m}}$ is convolution with kernel $\mathcal{F}\left(e^{-i t|\xi|^{2 m}}\right)=t^{-\frac{n}{2 m}} K\left(\frac{|x|}{t^{1 / 2 m}}\right)$.
$K(|x|)$ is a bounded function, and $K(|x|) \sim \frac{1}{|x|^{\frac{n(m-1)}{2 m-1}}} e^{-i|x|^{\left(1+\frac{1}{2 m-1}\right)}}$ for large values of $|x|$.

This allows derivatives of K up to order $n(m-1)$ to be bounded as well.

Perturbed Dispersive Estimates

We'd like to find a condition on V so that the propagator $e^{-i t H}$ satisfies

$$
\begin{aligned}
\left\|e^{-i t H} P_{a c}(H) u_{0}\right\|_{\infty} & \lesssim|t|^{-\frac{n}{2 m}}\left\|u_{0}\right\|_{1} \\
\text { and }\left\||H|^{\frac{n(m-1)}{2 m}} e^{-i t H} P_{a c}(H) u_{0}\right\|_{\infty} & \lesssim|t|^{-\frac{n}{2}}\left\|u_{0}\right\|_{1} .
\end{aligned}
$$

The projection $P_{a c}(H)$ is needed to avoid steady-state solutions of the form $u(x, t)=e^{-i t \lambda_{0}} \psi$.

We'll choose a condition on V so that H has no singular continuous spectrum.

Global Kato norms

Define $\|V\|_{K^{\alpha}}:=\sup _{z \in \mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|V(y)|}{|z-y|^{\alpha}} d y, \quad 0 \leq \alpha<n$.
K^{0} coincides with $L^{1}\left(\mathbb{R}^{n}\right)$.
Multiplication by $V \in K^{n-2 m}$ has the same dilation scaling as $(-\Delta)^{m}$.
Let K_{0} denote the $K^{n-2 m}$ closure of $C_{c}\left(\mathbb{R}^{n}\right)$ functions. Then $H=(-\Delta)^{m}+V$ is a relatively compact perturbation of $(-\Delta)^{m}$. [as long as $n>2 m \ldots$...]

Main Results

Theorem (Erdogan-G-Green)

In dimensions $2 m<n<4 m$, both perturbed dispersive bounds are true provided $V \in K_{0}$ and $H=(-\Delta)^{m}+V$ has no threshold resonances or embedded eiganvalues in $[0, \infty)$.

The bounds are:

$$
\begin{aligned}
\left\|e^{-i t H} P_{a c}(H) u_{0}\right\|_{\infty} & \lesssim|t|^{-\frac{n}{2 m}}\left\|u_{0}\right\|_{1} \\
\text { and }\left\||H|^{\frac{n(m-1)}{2 m}} e^{-i t H} P_{a c}(H) u_{0}\right\|_{\infty} & \lesssim|t|^{-\frac{n}{2}}\left\|u_{0}\right\|_{1} .
\end{aligned}
$$

Setup, Part 1

Stationary method: Use the functional calculus of H,

$$
e^{-i t H} P_{a c}(H)=\frac{1}{2 \pi i} \int_{0}^{\infty} e^{-i t \lambda}\left(R_{V}^{+}(\lambda)-R_{V}^{-}(\lambda)\right) d \lambda
$$

Resolvents: $R_{V}^{ \pm}(\lambda):=\lim _{\epsilon \rightarrow 0^{+}}\left((-\Delta)^{m}+V-(\lambda \pm i \epsilon)\right)^{-1}$.

$$
R_{0}^{ \pm}(\lambda):=\lim _{\epsilon \rightarrow 0^{+}}\left((-\Delta)^{m}-(\lambda \pm i \epsilon)\right)^{-1}
$$

Setup, Part 1

Stationary method: Use the functional calculus of H,

$$
e^{-i t H} P_{a c}(H)=\frac{1}{2 \pi i} \int_{0}^{\infty} e^{-i t \lambda}\left(R_{V}^{+}(\lambda)-R_{V}^{-}(\lambda)\right) d \lambda
$$

Resolvents: $R_{V}^{ \pm}(\lambda):=\lim _{\epsilon \rightarrow 0^{+}}\left((-\Delta)^{m}+V-(\lambda \pm i \epsilon)\right)^{-1}$.

$$
R_{0}^{ \pm}(\lambda):=\lim _{\epsilon \rightarrow 0^{+}}\left((-\Delta)^{m}-(\lambda \pm i \epsilon)\right)^{-1}
$$

Useful identity:

$$
R_{V}^{+}(\lambda)-R_{V}^{-}(\lambda)=\left(I+R_{0}^{-}(\lambda) V\right)^{-1}\left[R_{0}^{+}(\lambda)-R_{0}^{-}(\lambda)\right]\left(I+V R_{0}^{+}(\lambda)\right)^{-1}
$$

Setup, Part 2

After a change of variables $\lambda \mapsto \lambda^{2 m}$, we have

$$
e^{-i t H} P_{a c}(H)=C \int_{0}^{\infty} e^{-i t \lambda^{2 m}} \lambda^{2 m-1} J^{*}(\lambda)\left[R_{0}^{+}\left(\lambda^{2 m}\right)-R_{0}^{-}\left(\lambda^{2 m}\right)\right] J(\lambda) d \lambda .
$$

Setup, Part 2

After a change of variables $\lambda \mapsto \lambda^{2 m}$, we have

$$
e^{-i t H} P_{\mathrm{ac}}(H)=C \int_{0}^{\infty} e^{-i t \lambda^{2 m}} \lambda^{2 m-1} J^{*}(\lambda)\left[R_{0}^{+}\left(\lambda^{2 m}\right)-R_{0}^{-}\left(\lambda^{2 m}\right)\right] J(\lambda) d \lambda .
$$

$R_{0}^{ \pm}\left(\lambda^{2 m}\right)=$ Fourier multiplication by $\frac{1}{|\xi|^{2 m}-\lambda^{2 m}} \pm\left.\frac{\pi i}{m \lambda^{2 m-1}} d \sigma\right|_{|\xi|=\lambda}$.

Setup, Part 2

After a change of variables $\lambda \mapsto \lambda^{2 m}$, we have

$$
e^{-i t H} P_{\mathrm{ac}}(H)=C \int_{0}^{\infty} e^{-i t \lambda^{2 m}} \lambda^{2 m-1} J^{*}(\lambda)\left[R_{0}^{+}\left(\lambda^{2 m}\right)-R_{0}^{-}\left(\lambda^{2 m}\right)\right] J(\lambda) d \lambda .
$$

$R_{0}^{ \pm}\left(\lambda^{2 m}\right)=$ Fourier multiplication by $\frac{1}{|\xi|^{2 m}-\lambda^{2 m}} \pm\left.\frac{\pi i}{m \lambda^{2 m-1}} d \sigma\right|_{|\xi|=\lambda}$.
$J(\lambda)=\left[I+V R_{0}^{+}\left(\lambda^{2 m}\right)\right]^{-1}$ for $\lambda>0$.

Setup, Part 3

We're trying to establish time decay of

$$
e^{-i t H} P_{a c}(H)=C \int_{0}^{\infty} e^{-i t \lambda^{2 m}} \lambda^{2 m-1} J^{*}(\lambda)\left[R_{0}^{+}\left(\lambda^{2 m}\right)-R_{0}^{-}\left(\lambda^{2 m}\right)\right] J(\lambda) d \lambda .
$$

Integrate by parts to gain integer powers of t.
Use Plancherel to gain the last fractional power of t.

Setup, Part 3

We're trying to establish time decay of

$$
e^{-i t H} P_{a c}(H)=C \int_{0}^{\infty} e^{-i t \lambda^{2 m}} \lambda^{2 m-1} J^{*}(\lambda)\left[R_{0}^{+}\left(\lambda^{2 m}\right)-R_{0}^{-}\left(\lambda^{2 m}\right)\right] J(\lambda) d \lambda .
$$

Integrate by parts to gain integer powers of t.
Use Plancherel to gain the last fractional power of t.
We'll need $\widehat{J}(\rho)$ to be integrable in a suitable sense.
Recall that $J(\lambda)=\left[I+V R_{0}^{+}\left(\lambda^{2 m}\right)\right]^{-1}$.

L^{1} Inversion Lemmas

Wiener's Lemma:

If $\hat{f} \in L^{1}(\mathbb{R})$ and $1+f(\lambda) \neq 0$ for all $\lambda \in \mathbb{R}$, then $\mathcal{F}\left(\frac{1}{1+f(\lambda)}\right)-\delta_{\rho=0} \in L^{1}(\mathbb{R})$.

L^{1} Inversion Lemmas

Wiener's Lemma:
If $\hat{f} \in L^{1}(\mathbb{R})$ and $1+f(\lambda) \neq 0$ for all $\lambda \in \mathbb{R}$, then $\mathcal{F}\left(\frac{1}{1+f(\lambda)}\right)-\delta_{\rho=0} \in L^{1}(\mathbb{R})$.

Operator-Valued version:

Theorem (Beceanu)

If $K(x, y):=\int_{\mathbb{R}}|\hat{T}(\rho, x, y)| d \rho$ is the kernel of an operator in $\mathcal{B}(X)$, and $I+T(\lambda)$ is invertible in $\mathcal{B}(X)$ for all $\lambda \in \mathbb{R}$, then $\left\|\mathcal{F}\left[(I+T(\lambda))^{-1}\right]-\delta_{\rho=0} I\right\|_{L^{1}(\rho)}$ is also an operator in $\mathcal{B}(X)$. ...provided T is the norm-limit of $C_{c}(\mathbb{R})$ operator-valued functions.

Notes on Assembling The Pieces

We'd like to apply the inversion theorem to $I+V R_{0}^{+}\left(\lambda^{2 m}\right)$. Mostly in $\mathcal{B}\left(L^{1}\left(\mathbb{R}^{n}\right)\right)$. But perhaps in $\mathcal{B}\left(K^{\alpha}\right)$ as needed.

The kernel of $R_{0}^{+}\left(\lambda^{2 m}\right)$ has the form $|x-y|^{n-2 m} f(\lambda|x-y|)$.
If $\hat{f} \in L^{1}(\mathbb{R})$, then the condition $V \in K^{n-2 m}$ gives the right integrability of its Fourier transform.

Notes on Assembling The Pieces

We'd like to apply the inversion theorem to $I+V R_{0}^{+}\left(\lambda^{2 m}\right)$. Mostly in $\mathcal{B}\left(L^{1}\left(\mathbb{R}^{n}\right)\right)$. But perhaps in $\mathcal{B}\left(K^{\alpha}\right)$ as needed.

The kernel of $R_{0}^{+}\left(\lambda^{2 m}\right)$ has the form $|x-y|^{n-2 m} f(\lambda|x-y|)$.
If $\hat{f} \in L^{1}(\mathbb{R})$, then the condition $V \in K^{n-2 m}$ gives the right integrability of its Fourier transform.

More specifically, the kernel of $R_{0}^{+}\left(\lambda^{2 m}\right)$ looks like $\frac{e^{i \lambda|x-y|}}{\lambda^{\frac{4 m-(n+1)}{2}}|x-y|^{\frac{n-1}{2}}}$.
Can't IBP more than $\frac{n-1}{2}$ times.
Be careful where you distribute powers of λ.

More Notes on Assembling the Pieces

There's a small problem that if $m>1$, then the analytic extension of $R_{0}^{+}\left(\lambda^{2 m}\right)$ grows exponentially on the negative half-line $\lambda<0$.

We should pick a different extension. The integral we care about is supported on $[0, \infty)$.

More Notes on Assembling the Pieces

There's a small problem that if $m>1$, then the analytic extension of $R_{0}^{+}\left(\lambda^{2 m}\right)$ grows exponentially on the negative half-line $\lambda<0$.

We should pick a different extension. The integral we care about is supported on $[0, \infty)$.

Kato norms $K^{\alpha}, 0 \leq \alpha \leq n-2 m$, don't seem to interpolate well. It would simplify some arguments if they did.

Even More Notes on Assembling the Pieces

How to verify that $I+V R_{0}^{+}\left(\lambda^{2 m}\right)$ is invertible in $\mathcal{B}\left(L^{1}\right)$ for all $\lambda_{0}>0$.
It's a compact perturbation of the identity. If it's not invertible, there must be a function $\phi \in L^{1}\left(\mathbb{R}^{n}\right)$ in its null space. Then $\psi=R_{0}^{+}\left(\lambda_{0}^{2 m}\right) \phi$ is a (generalized) eigenfunction of $H=(-\Delta)^{m}+V$.

By an argument due to Agmon, $\widehat{\phi}(\xi)=0$ for all $|\xi|=\lambda_{0}$.
That is sufficient to imply $\psi \in L^{2}\left(\mathbb{R}^{n}\right)$. [G, '16] And we assumed H had no embedded eigenvalues.

About the Range of Dimensions

What happens when $n \leq 2 m$:
Free resolvent $R_{0}^{+}\left(\lambda^{2 m}\right)$ behaves badly near $\lambda=0$.
This probably can be handled in some way. $m=1, n=1$ case done by (Hill '20).

For $n<2 m$, right condition is probably $(1+|x|)^{2 m-n} V \in L^{1}\left(\mathbb{R}^{n}\right)$.

About the Range of Dimensions

What happens when $n \leq 2 m$:
Free resolvent $R_{0}^{+}\left(\lambda^{2 m}\right)$ behaves badly near $\lambda=0$.
This probably can be handled in some way. $m=1, n=1$ case done by (Hill '20).

For $n<2 m$, right condition is probably $(1+|x|)^{2 m-n} V \in L^{1}\left(\mathbb{R}^{n}\right)$.

What happens when $m>4 m$:
$R_{0}^{+}\left(\lambda^{2 m}\right)$ grows like $\lambda^{\frac{(n+1)-4 m}{2}}$ as $\lambda \rightarrow \infty$.
One can generate counterexamples to $L^{1} \rightarrow L^{\infty}$ PDE bounds unless $V(x)$ is more regular in some way.

