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Preliminaries

Support from Simons Foundation grant #635369.
Collaborators: Burak Erdogan (Illinois) and William Green (Rose-Hulman)

Schrödinger equation
{

iut(x , t) = ((−∆)m + V )u(x , t), x ∈ Rn, m ∈ N
u(x , 0) = u0(x)

Want to prove same L1 → L∞ bounds as the V ≡ 0 case.
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Free Dispersive Estimates

What happens when V ≡ 0:

e−it(−∆)m is convolution with kernel F
(
e−it|ξ|2m)

= t− n
2m K

(
|x |

t1/2m

)
.

K (|x |) is a bounded function,
and K (|x |) ∼ 1

|x |
n(m−1)
2m−1

e−i |x |(1+ 1
2m−1 )

for large values of |x |.

This allows derivatives of K up to order n(m − 1) to be bounded as well.
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Perturbed Dispersive Estimates

We’d like to find a condition on V so that the propagator e−itH satisfies

∥∥∥e−itHPac(H)u0
∥∥∥

∞
≲ |t|−

n
2m ∥u0∥1

and
∥∥∥|H|

n(m−1)
2m e−itHPac(H)u0

∥∥∥
∞

≲ |t|−
n
2 ∥u0∥1.

The projection Pac(H) is needed to avoid steady-state solutions of the
form u(x , t) = e−itλ0ψ.

We’ll choose a condition on V so that H has no singular continuous
spectrum.

Michael Goldberg (Cincinnati) Polyharmonic Schrödinger Operators October 8, 2023 3 / 13



Global Kato norms

Define ∥V ∥Kα := sup
z∈Rn

∫
Rn

|V (y)|
|z − y |α

dy , 0 ≤ α < n.

K 0 coincides with L1(Rn).

Multiplication by V ∈ Kn−2m has the same dilation scaling as (−∆)m.

Let K0 denote the Kn−2m closure of Cc(Rn) functions.
Then H = (−∆)m + V is a relatively compact perturbation of (−∆)m.

[as long as n > 2m...]
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Main Results

Theorem (Erdogan-G-Green)
In dimensions 2m < n < 4m, both perturbed dispersive bounds are true
provided V ∈ K0 and H = (−∆)m + V has no threshold resonances or
embedded eiganvalues in [0,∞).

The bounds are: ∥∥∥e−itHPac(H)u0
∥∥∥

∞
≲ |t|−

n
2m ∥u0∥1

and
∥∥∥|H|

n(m−1)
2m e−itHPac(H)u0

∥∥∥
∞

≲ |t|−
n
2 ∥u0∥1.

Michael Goldberg (Cincinnati) Polyharmonic Schrödinger Operators October 8, 2023 5 / 13



Setup, Part 1

Stationary method: Use the functional calculus of H,

e−itHPac(H) = 1
2πi

∫ ∞

0
e−itλ(

R+
V (λ) − R−

V (λ)
)

dλ.

Resolvents: R±
V (λ) := lim

ϵ→0+

(
(−∆)m + V − (λ± iϵ)

)−1

R±
0 (λ) := lim

ϵ→0+

(
(−∆)m − (λ± iϵ)

)−1

.

Useful identity:

R+
V (λ) − R−

V (λ) = (I + R−
0 (λ)V )−1[

R+
0 (λ) − R−

0 (λ)
]
(I + VR+

0 (λ))−1.
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Setup, Part 2

After a change of variables λ 7→ λ2m, we have

e−itHPac(H) = C
∫ ∞

0
e−itλ2m

λ2m−1J∗(λ)
[
R+

0 (λ2m) − R−
0 (λ2m)

]
J(λ) dλ.

R±
0 (λ2m) = Fourier multiplication by 1

|ξ|2m − λ2m ± πi
mλ2m−1 dσ

∣∣∣
|ξ|=λ

.

J(λ) =
[
I + VR+

0 (λ2m)
]−1 for λ > 0.
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Setup, Part 3

We’re trying to establish time decay of

e−itHPac(H) = C
∫ ∞

0
e−itλ2m

λ2m−1J∗(λ)
[
R+

0 (λ2m) − R−
0 (λ2m)

]
J(λ) dλ.

Integrate by parts to gain integer powers of t.

Use Plancherel to gain the last fractional power of t.

We’ll need Ĵ(ρ) to be integrable in a suitable sense.
Recall that J(λ) =

[
I + VR+

0 (λ2m)
]−1.
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L1 Inversion Lemmas

Wiener’s Lemma:

If f̂ ∈ L1(R) and 1 + f (λ) ̸= 0 for all λ ∈ R,
then F

( 1
1+f (λ)

)
− δρ=0 ∈ L1(R).

Operator-Valued version:

Theorem (Beceanu)

If K (x , y) :=
∫
R

∣∣T̂ (ρ, x , y)
∣∣ dρ is the kernel of an operator in B(X ),

and I + T (λ) is invertible in B(X ) for all λ ∈ R,

then
∥∥∥F

[
(I + T (λ))−1]

− δρ=0I
∥∥∥

L1(ρ)
is also an operator in B(X ).

...provided T is the norm-limit of Cc(R) operator-valued functions.
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Notes on Assembling The Pieces

We’d like to apply the inversion theorem to I + VR+
0 (λ2m).

Mostly in B(L1(Rn)). But perhaps in B(Kα) as needed.

The kernel of R+
0 (λ2m) has the form |x − y |n−2mf (λ|x − y |).

If f̂ ∈ L1(R), then the condition V ∈ Kn−2m gives the right integrability of
its Fourier transform.

More specifically, the kernel of R+
0 (λ2m) looks like eiλ|x−y |

λ
4m−(n+1)

2 |x − y |
n−1

2
.

Can’t IBP more than n−1
2 times.

Be careful where you distribute powers of λ.
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More Notes on Assembling the Pieces

There’s a small problem that if m > 1, then the analytic extension of
R+

0 (λ2m) grows exponentially on the negative half-line λ < 0.

We should pick a different extension. The integral we care about is
supported on [0,∞).

Kato norms Kα, 0 ≤ α ≤ n − 2m, don’t seem to interpolate well.
It would simplify some arguments if they did.
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Even More Notes on Assembling the Pieces

How to verify that I + VR+
0 (λ2m) is invertible in B(L1) for all λ0 > 0.

It’s a compact perturbation of the identity. If it’s not invertible, there
must be a function ϕ ∈ L1(Rn) in its null space. Then ψ = R+

0 (λ2m
0 )ϕ

is a (generalized) eigenfunction of H = (−∆)m + V .

By an argument due to Agmon, ϕ̂(ξ) = 0 for all |ξ| = λ0.

That is sufficient to imply ψ ∈ L2(Rn). [G, ’16]
And we assumed H had no embedded eigenvalues.
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About the Range of Dimensions

What happens when n ≤ 2m:

Free resolvent R+
0 (λ2m) behaves badly near λ = 0.

This probably can be handled in some way. m = 1, n = 1 case done by
(Hill ’20).

For n < 2m, right condition is probably (1 + |x |)2m−nV ∈ L1(Rn).

What happens when m > 4m:

R+
0 (λ2m) grows like λ

(n+1)−4m
2 as λ → ∞.

One can generate counterexamples to L1 → L∞ PDE bounds
unless V (x) is more regular in some way.
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