A Schrödinger Dispersive Estimate in \mathbb{R}^3 With Singular Potentials

MARIUS BECEANU AND MICHAEL GOLDBERG

AMS Western Regional Meeting, Albuquerque, New Mexico, April 17, 2010.

Support provided by NSF grant DMS-0901063

Start with Wiener's Theorem:

If $f \in C(\mathbb{T})$ has $\hat{f} \in \ell^1(\mathbb{Z})$ and $f(x) \neq 0 \ \forall x$, then the Fourier coefficients of $\frac{1}{f(x)}$ also belong to $\ell^1(\mathbb{Z})$.

There is also a version for $f \in C_0(\mathbf{R})$ with $\hat{f} \in L^1(\mathbf{R})$.

Two methods of proof:

Fourier Analysis (Wiener)

Commutative Banach Algebras/Maximal Ideals (Gelfand)

Our version involves operator-valued functions $f \in C_0(\mathbf{R}; B(X)).$

Theorem 1 If \hat{f} satisfies the "L¹-Strong" bound $\int_{\mathbf{R}} \|\hat{f}(\rho)\eta\|_X d\rho \lesssim C \|\eta\|_X \qquad (2)$ and I + f(x) is invertible for each $x \in \mathbf{R}$,

[plus technical conditions on $\hat{f}(\rho)$]

then $[I + f(x)]^{-1} \in C(\mathbf{R}; B(X))$ also satisfies (2).

Note: Inequality (2) says that $\hat{f} : X \to L^1(\mathbf{R}; X)$. These maps embed isometrically in $B(L^1(\mathbf{R}; X))$. Linear Schrödinger Equation in ${\rm R}^3$

$$\begin{cases} iu_t + Hu = 0, & H = -\Delta + V(x) \\ u(0, x) = f(x) \end{cases}$$

The search for Dispersive Estimates:

Is $||e^{-itH}f||_{\infty} \leq |t|^{-\frac{3}{2}}||f||_1$ for all (most?) $f \in L^1$?

It is true for $V \equiv 0$ by Fourier inversion.

Scaling considerations: $V_r(x) = r^{-2}V(rx)$ has same dynamical properties as V.

Spectral problem: If there is an eigenvector $(-\Delta + V)\Psi = \lambda \Psi$, then the solution $u(t,x) = e^{-i\lambda t}\Psi(x)$ does not decay as $t \to \infty$. We will measure V with the global Kato norm $\|V\|_{\mathcal{K}}:=\sup_y \int_{\mathbf{R}^3} \frac{|V(x)|}{|x-y|}\,dx$

Theorem 3 (Rodnianski-Schlag, '04) If $||V||_{\mathcal{K}} < 4\pi$, then $||e^{-itH}f||_{\infty} \lesssim ||f||_1$

There are no eigenvalues, and constant is explicit.

Theorem 4 (Beceanu-G) If V belongs to \mathcal{K} -closure of $C_c^b(\mathbb{R}^3)$ and H has no eigenvalues or resonances in $[0,\infty)$,

Then $||e^{-itH}P_{ac}(H)f||_{\infty} \lesssim ||f||_1$ for all $f \in L^1$.

Idea of Proof: e^{-itH} is a spectral multiplier

$$e^{-itH}P_{ac}(H)f = C\int_0^\infty e^{-it\lambda}(R^+(\lambda) - R^-(\lambda))f\,d\lambda$$

where
$$R^{\pm}(\lambda) := \lim_{arepsilon o 0} (H - (\lambda \pm iarepsilon))^{-1}$$

This is related to the case $V \equiv 0$ by the identity $R^{\pm}(\lambda) = R_0^{\pm}(\lambda)[I + VR_0^{\pm}(\lambda)]^{-1}$

The factor $R_0^{\pm}(\lambda)$ is good. It describes $V \equiv 0$. We need L^1 estimate on Fourier transform of $[I + VR_0^{\pm}(\lambda)]^{-1}$ to complete the calculation. Notice that $\|V\|_{\mathcal{K}}$ is well defined if V is a measure

$$\|V\|_{\mathcal{K}} = \sup_{y} \int_{\mathbf{R}^3} \frac{1}{|x-y|} \, dV(x)$$

Theorem 5 (Beceanu-G, in progress) The dispersive estimate also holds if V(x) is supported on a surface $\Sigma \subset \mathbb{R}^3$

Open Question 1: Is the "local Kato condition"

$$\lim_{R \to 0} \left[\sup_{y} \int_{|x-y| < R} \frac{1}{|x-y|} dV(x) \right] = 0$$

sufficient for dispersive estimates?

Open Question 2: The Wiener Theorem applies so long as V satisfies a "distal Kato condition"

$$\lim_{R \to \infty} \left[\sup_{y} \int_{|x-y| > R} \frac{1}{|x-y|} dV(x) \right] = 0.$$

Then V is not necessarily compact relative to $-\Delta$.

What is the correct spectral condition for such H?

Open Question 3: Are the technical conditions an essential part of Theorem 1?

Or is it sufficient for $f \in C_0(\mathbf{R}; B(X))$ to be strongly continuous, with $[I + f(x)]^{-1}$ uniformly bounded?

Are there other interesting noncommutative L^1 -inversion theorems?

Open Question 4: Are we done yet?