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Linear Schrodinger Equation in R", n > 3.

{ iur + (A +V(it,z)u=0
w0, -)=f, fe€L*R")

Structural assumptions on V:
e Periodic in time — V(t+2m,x) =V (¢, x).
n/2

e Short-range in space — V € L' " L7°.

e Complex-valued — No L2 conservation law!

The search for Strichartz Estimates:
Is lullp2rg < IIfllg2 for most f € L?(R™)?
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The main obstacles are solutions with

o(t + 2w, ) = 2T M G(¢, ).

These fall into two main classes:;

Eigenvalues — where e~ ¢ € L2(T x R"™).
These can be quasiperiodic if A is real,
or grow/decay exponentially if A is complex.

Resonances — where e~ ¢ € LI(R™; L2(T)).
These can only occur for XA € R.



Eigenfunctions have well-defined initial data

®(z) = ¢(0,z) € L*(R").

At each eigenvalue )\, the collection of such &
forms a subspace X, C L2(R").

Eigenvalues/Resonances at X of the adjoint
operator (with V(¢,z)) are also a concern.

Their initial data forms a subspace X, ¢ L%(R").



Theorem 1 Suppose that neither operator has any
resonances, and at each eigenvalue X the bound
solutions ¢, ¢ satisfy

(z)p € L2(T x R™) or ¢ € LY (R"; L%(T))
(z)® € L2(R™) or & ¢ Whe (R™)

Finally suppose that L2-orthogonal projection from
X, to X, is bijective.

Then there are finitely many eigenvalues, counted
with multiplicity, and

lullz2pg + llullom;2@ny) < 1112

for all f € L2(R™) orthogonal to @,X).



Corollaries and Special cases:

o If V =V(x) is time-independent, it suffices to
check A € [0, c0).

o If V =V (x) is real valued, it suffices to check
the eigenvalues/resonances at A = 0.

o If V is real-valued, and |V (t,z)| < C{z)~27¢,
it suffices to check A € Z, and only in
dimensions n < 6.



Let UT represent the forward free propagator
Ut f(t,z) =e 2 f(z), t>0
t .
Utg(t,z) = / e_z(t_S)Ag(s,:c) ds

— 00

which satisfies the mapping estimates
Ut L?(R™) — L?LY,
L2LY — L2L4

Define w(z) = (IV(-,0) o)’ € L1(R?).

This gives a factorization V = w?(z)z(¢, 2)
with z bounded and time-periodic.



Using Duhamel’'s method, a formal solution is

u=UTf+i UTwz (T —iwUtTwz) " LwUT¥
maps to EL'tQ

L?LY

Problem: The operator (I — iwUTwz)"1 is
unbounded on Lt%w precisely because there are
eigenvalues and resonances.

Can we show that wU"‘f belongs to its domain?



Computations for time-independent V:

Take Fourier transform in time variable.

g(r,2) = | e g(t,x) dt

Each cross-section L2(R"™) with fixed 7 is an
invariant space. Furthermore,

(’UJU-I_’LUZQ)A(T, x) = i(wR (T)wz)g(7, )

is a continuously varying (in 7) family of compact
operators, whose norm decreases as 7 — oo. Here,
we adopt the resolvent notation
R (1) = lim(=A — (7 —ie)) 1
el0

Fredholm Alternative = (I + wR~(7)wz)~1 exists
unless 7 is an eigenvalue or resonance.



If A is a “good” eigenvalue, then we have a local
estimate

7 — A7 H|9ll2, ¥ € zwX)y,

I+wR™ (7 -1 < -
|(I+wR™ (T)wz)” "9Yll2 S {nwnz, 1 3a%,

even though the family of operators (wR™(7)wz)
is not differentiable in 7.

Thus for each & € X, we need to know whether
(1 + ) (U Y (), ZP)| 12
= |1+ Z Ot (), V)

is controlled by || f]|2-

L2

10



Kato Smoothing estimates:

Since 1 is bounded, it causes no difficulties.

|1t (), ve)

Gt p T
L$=H(e A £ TP
S fl2l[Ve]ly
S I ll201Pllg

>HL2(R+)

The singularity |r — A|~! creates the main terms.
12

AR RORE]
= [(R=Q(eMAtV — 1)1,V

>HL2(R+)
= [[((e—it@+X _ 1y, cT>>HL2(R+)

To make this finite requires (f,®) = 0 and also a
Kato smoothing bound for (e %4 f, ®).

Sufficient conditions include ® € LY or (z)® € L2.
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Time support issues: since Duhamel’'s formula
should yield a solution u(¢, z) supported in the time
interval ¢t € [0,00), we need to verify that

et (I + wUTwz) twUTf

still belongs to LtQ,x for any u < 0.

Response: Repeat the computations over the
translated domain 7 € iu + R and beware of
complex eigenvalues.
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What changes if V is periodic in time?
Fundamental domain for eigenfunctions becomes
[0, 27] x R"™, often considered as T x R".

Fourier transform z(r,z) is supported in 7 € Z.

Invariant subspaces of wU Twz are found by
restricting = to an equivalence class [7] € R/Z.

Plancherel’s identity is taken over 7 € [0,1] ~ R/Z.
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More changes for periodic V:

As an operator on e"*L2(T x R™), the norm of
(I —iwUTwz)" 1y is controlled by

{ (1—|—| cot(r — )\)|)||¢||, for eigenvectors

11l otherwise

Since this function is periodic in 7, the main “Kato
smoothing” estimate becomes discrete in t.

—2mikA p G |2 2112
S (e R E )7 < (1713119
keZ

Such a bound is true for ® € WL4(R"?) or else
(x)® € L?(R™), among other spaces.

Proof uses Fourier restriction properties of &.
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Applications and possible extensions:

e Orbital stability for ground state (or excited
states) of NLS.

e Similar problems for semi-linear wave equation.

e [ ime-periodic magnetic potentials.

e Schrodinger/wave equation on other manifolds?
n/2

e Generalization to all V € L' " L7

° (your suggestion here)
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