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Abstract. We prove dispersive estimates for the linear Schrödinger evolution

associated to an operator −∆+V in R3, where the potential is a signed measure
with fractal dimension at least 3/2.

1. Introduction

The dispersive properties of the free Schrödinger semigroup eit∆ as a map be-
tween Lp(Rn) and its dual space are well understood, thanks to Plancherel’s identity
(or more generally the Spectral Theorem) in the case p = 2, and Fourier inversion
in the case p = 1. On one endpoint, the L2 conservation laws extend readily to any
self-adjoint perturbation H = −∆ + V taking the place of −∆ as the infinitesimal
generator. Our goal in this paper is to establish a corresponding L1 7→ L∞ estimate
in three dimensions for a class of short-range potentials V (x) that include measures
as admissible local singularities.

Measure-valued potentials are quite common in one dimension; the operator

− d2

dx2 + cδ0 is often the subject of exercises in a first quantum mechanics course.
In higher dimensions there are several plausible generalizations of this example.
Dispersive estimates are known in the case where V (x) consists of a finite collection
of point masses in R3 [3]. In these results the spaces L1 and L∞ are modified by
a set of local weights because the domain of the associated Schrödinger operator
consists of functions that vanish at each point mass. Here we preserve the idea
of the potential describing an infinitesimally thin barrier and show that dispersive
estimates are valid in unweighted Lp(R3) when V (x) is supported on a compact
two-dimensional surface Σ ⊂ R3. In fact we will consider all compactly supported
fractal measures of sufficiently high dimension. For many purposes the threshold
dimension is 1 (in Rn it would be n − 2) so that multiplication by V is compact
relative to the Laplacian. We are forced to increase the threshold dimension to 3/2
in the proof of the Schrödinger dispersive estimate in order to use the best available
Fourier restriction theorems.

In this paper, a compactly supported signed measure µ is called α-dimensional
if it satisfies

(1) |µ|(B(x, r)) ≤ Cµrα for all r > 0 and x ∈ R3

Nontrivial α-dimensional measures exist for any α ∈ [0, 3]. We also characterize
potentials in terms of the global Kato norm, defined on signed measures in R3 by
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the quantity

(2) ‖µ‖K = sup
y∈R3

∫
R3

|µ|(dx)

|x− y|

Every element with finite global Kato norm is a 1-dimensional measure with
Cµ ≤ ‖µ‖K, by comparing |x − y|−1 to the characteristic function of a ball. The
converse is not quite true, however the Kato class contains all compactly supported
measures of dimension α > 1. We will examine this relationship more carefully in
Proposition 2.

Remark 1. Kato’s work [12] is more closely associated with the local uniform inte-
grability condition (6); the first true norm of this type (integrating over |x− y| < 1
only) is due to Schechter [18]. We follow the naming convention in Rodnianski-
Schlag [17] where the global Kato norm is applied to dispersive estimates in R3.

For the free Schrödinger equation in Rn, the standard dispersive bound is

(3) ‖eit∆f‖∞ ≤ (4π|t|)−n/2‖f‖1
In three dimensions this inequality is stable under small perturbations of the Lapla-
cian. Once the negative part of V is sufficiently large (e.g. ‖V−‖K > 4π) it becomes
possible for H = −∆ + V to acquire one or more bound states that evolve in place
without time-decay according to a law e−itHψj = e−itλjψj . We wish to show that
with the exception of bound states, the Schrödinger propagator of H still satisfies
an estimate of the form (3).

Our main result imposes an additional spectral assumption that all eigenvalues
of H be strictly negative, and that there is no resonance at zero. In this context a
resonance occurs when the equation

ψ + (−∆− (λ± i0))−1V ψ = 0

has nontrivial solutions belonging to the weighted space 〈x〉sL2(R3) for each s > 1
2

but not to L2 itself. Such functions also solve Hψ = λψ, however the lack of square-
integrability gives resonances different spectral properties from a true eigenvalue.
Forbidding eigenvalues and resonances at zero is a common practice, as it is known
that the continuous part of the linear Schrödinger evolution may have leading-order
decay of |t|−1/2 if zero is not a regular point of the spectrum [6], [22]. The necessity
of a spectral assumption over the interval λ > 0 is uncertain but it is included here
for the sake of simplicity.

Theorem 1. Let V be a compactly supported signed measure on R3 of dimension
d > 3

2 . If the Schrödinger operator −∆ + V has no resonance at zero and no
eigenvalues at any λ ≥ 0, then the dispersive estimate

(4) ‖e−it(−∆+V )Pacf‖∞ . |t|−3/2‖f‖1
holds for every f ∈ L1(R3). The symbol Pac denotes projection onto the continuous
spectrum of −∆ + V .

The dispersive estimate is also valid if, for a fixed d > 3
2 , V can be expressed as

the Kato-norm limit of compactly supported d-dimensionsal measures.

Remark 2. During the course of the proof we demonstrate that resonances cannot
exist at any λ > 0 (Lemma 6), and that embedded eigenvalues also cannot exist
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provided the dimension of V is greater than 2 (Proposition 7). The uniform resol-
vent bounds that are central to the argument also suffice to prove the absence of
singular continuous spectrum by applying Theorem XIII.20 of [16].

Dispersive estimates with a time decay rate of |t|−3/2 were found by Rauch [14]
and Jensen-Kato [10] for initial data belonging to weighted L2(R3). The first state-
ment of type (4) was proved by Journé-Soffer-Sogge [11] for potentials satisfying

both V̂ ∈ L1 and |V (x)| . |x|−7−ε. Here the effects of the perturbation are com-
puted directly onto the Schrödinger propagator using Duhamel’s formula. Several
authors have since refined the older spectral methods to reproduce (4) with less
restrictive conditions on the potential ([21], [17], [8], [7], [1]). This has been par-
ticularly effective in three dimensions, thanks to a convenient expression for the
resolvent of the Laplacian as an integral operator. Progress along these lines in
other dimensions (with time decay |t|−n/2 for estimates on Rn) can be found in [19],
[2], [5], along with the results in [11].

We follow the same procedure as in [1], where the dispersive estimate is derived
from an integrability property of a family of operators that describes the difference
between the free and perturbed spectral measures. The desired integrability follows
in turn from a Wiener L1 inversion theorem involving Fourier analysis of operator-
valued functions on the real line.

There are two main difficulties with extending previous work to the class of
measure-valued potentials. The first is to verify that that multiplication by V has
small form-bound relative to the Laplacian so that one can speak freely regarding
the self-adjointness of −∆+V and its essential spectrum. The second is to identify
function spaces on which multiplication by V is well defined (which excludes any
Lp(R3)) and the resolvent of the Laplacian has suitable asymptotics. Most of the

analysis takes place in L2(V ) for this reason. The embedding Ḣ1(R3) ⊂ L2(V )
plays a key role mediating between the two types of operators and insuring that
the end result is still translation-invariant.

Section 2 addresses the properties of V as a quadratic form over Ḣ1(R3) and
spells out basic relations between this Sobolev space and the global Kato norm.
These results are not surprising but we are unaware of a careful treatment in the
literature. The proof of Theorem 1 unfolds over the course of Section 3. We recall
the reduction argument and abstract Wiener theorem from [1] then show that each
one of its hypotheses are satisfied for the class of potentials under consideration.
The high energy resolvent bounds (Theorem 8) may shed light on other scattering
phenomena beyond the scope of the current paper.

2. Self-Adjointness

For any potential which is not a bounded function of x there are well known
difficulties identifying the domain of −∆ + V and its adjoint operator. We can
take advantage of the KLMN theorem [15, Theorem X.17] to produce a unique self-

adjoint operator with the correct quadratic form on Ḣ1(R3) provided V satisfies
the form bound

(5)
∣∣∣ ∫

R3

|ϕ(x)|2 dV
∣∣∣ ≤ a‖ϕ‖2Ḣ1 + b‖ϕ‖2L2
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for some a < 1. It will suffice to assume that V satisfies the“local Kato condition”

(6) lim
r→0+

sup
y∈R3

∫
|x−y|<r

|x− y|−1 |V |(dx) = 0.

Measures that are α-dimensional for some α > 1 automatically satisfy (6) with an
explicit modulus of continuity as r approaches zero.

Proposition 2. Suppose µ is an α-dimensional measure, α > 1, with support in
the ball B(0, 2M ). Then µ ∈ K with the global and local estimates

‖µ‖K .
Cµ
α− 1

2(α−1)M

and sup
y∈R3

∫
|x−y|<r

|µ|(dx)

|x− y|
.

Cµ
α− 1

rα−1 for all r > 0.

Consequently, if V can be approximated in K by a sequence of measures µj with
dimension αj > 1, then V satisfies (6).

Proof. For each point y ∈ B(0, 2M+1),

(7)

∫
R3

|µ|(dx)

|x− y|
≤

∞∑
k=−∞

2−k|µ|(B(y, 2k))

. Cµ2(M+2)(α−1)

(
1

1− 2(1−α)
+ 1

)
by estimating |µ|(B(y, 2k)) ≤ Cµ2αmax(k,M+2). To integrate over the region of
finite radius r, the sum in (7) is taken over k ≤ dlog re instead.

If |y| > 2M+1 then the integral in (7) is easily bounded by 2|y|−1|µ|(B(0, 2M ))
by observing that |x− y| ∼ |y| within the support of µ.

Convergence of µj in the global Kato norm forces the collection of functions
ηj(r) = supy

∫
|x−y|<r |x − y|−1 d|µj | to converge uniformly in r. The property

limr→0 ηj(r) = 0 is preserved by uniform convergence. �

The class of functions V (x) (i.e. absolutely continuous measures V (x) dx) defined
by property (6) is considered at length in [20]. It is suggested there that singular
measures satisfying (6) may be approximated by a bounded function via convolution
with smooth mollifiers. While this approach is indeed useful we emphasize that
convergence in the Kato norm generally fails because of the placement of absolute
values. The weak convergence argument that takes its place is detailed below.

Note that (6) implies that ∆−1V is a uniformly continuous function. Moreover
the entire family ∆−1(V ω) is equicontinuous, where ω ranges over the bounded
measurable functions of unit norm. Both these claims are proved as part of Lemma 5
in the next section. Then we have the estimates

‖τz∆−1V f‖L∞(V ) . ‖V ‖K‖f‖L∞(V ) for all z ∈ R3

‖(1− τz)∆−1V f‖L∞(V ) . o(1)‖f‖L∞(V ) as |z| → 0.

The vanishing rate o(1) depends on the specific profile of V but is independent of
the choice of f ∈ L∞(V ).

By duality, and the fact that translations commute with ∆−1, the same operator
estimates hold for L1(V ) as well. Applying the Schur test to the integral kernels
of these operators extends the result to all Lp(V ), 1 ≤ p ≤ ∞. This gives an
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embedding of Ḣ1(R3) into L2(V ) because by a TT ∗ argument it suffices to show
that (−∆)−1V is a bounded map from L2(V ) to itself.

The function space L2(V ) is not preserved by translations, however the embed-

ded subspace Ḣ1(R3) ⊂ L2(V ) is translation invariant. The fact that the action of
translations on this subspace is continuous with respect to the L2(V ) norm is also
verified by a TT ∗ argument. Let T = (1− τz)|∇|−1 : L2(R3)→ L2(V ). Then

‖T‖ =
(
‖TT ∗V ‖L2(V )→L2(V )

)1/2
=
(∥∥((1− τz) + (1− τ−z)

)
∆−1V

∥∥
L2(V )→L2(V )

)1/2

= o(1)

with the end result that ‖f − τzf‖L2(V ) ≤ o(1)‖f‖Ḣ1 for all f ∈ Ḣ1(R3).
For the purposes of (5) there is not much distance between V and its close

translates because∫
R3

|ϕ(x)|2 dV −
∫
R3

|ϕ(x)|2 dV (x− z) =

∫
R3

(
|ϕ(x)|2 − |ϕ(x+ z)|2

)
dV

=

∫
R3

(
ϕ(x)− ϕ(x+ z)

)
ϕ̄(x) dV

+

∫
R3

ϕ(x+ z)
(
ϕ̄(x)− ϕ̄(x+ z)

)
dV

≤ ‖(1− τ−z)ϕ‖L2(V )

(
‖ϕ‖L2(V ) + ‖τ−zϕ‖L2(V )

)
≤ o(1)‖ϕ‖2

Ḣ1

Let V r(x) be the quantity r−3
∫
B(x,r)

dV , which represents the “average value”

of V over a ball radius r. For fixed r > 0, V r(x) is a continuous function bounded
by r−2‖V ‖K. Then by splitting V = (V − V r) + V r and averaging the above
inequality over all |z| < r we see that∣∣∣ ∫

R3

|ϕ(x)|2 dV
∣∣∣ ≤ o(1)‖ϕ‖2

Ḣ1 +
∣∣∣ ∫

R3

|ϕ(x)|2 dV r
∣∣∣

≤ o(1)‖ϕ‖2
Ḣ1 + r−2‖V ‖K‖ϕ‖2L2

so the coefficient on ‖ϕ‖Ḣ1 becomes smaller than 1 provided r is sufficiently close
to zero.

3. The Dispersive Estimate

The proof of the dispersive estimate for the Schrödinger operator −∆+V follows
the same road-map and technical machinery as in [1]. First one represents the
propagator eit(−∆+V ) as an integral over the spectral measure, which is expressed
in terms of resolvents via the Stone formula. Start with the expression

(8) e−itHPacf =
1

2πi

∫ ∞
0

e−itλ[R+
V (λ)−R−V (λ)]f dλ,

where R±V (λ) := (H − (λ ± i0))−1 are the perturbed resolvents. The relationship

between R±V (λ) and the corresponding free resolvent R±0 (λ) = (−∆ − (λ ± i0))−1

is given by the multiplicative identities

R±V (λ) = (I +R±0 (λ)V )−1R±0 (λ) = R±0 (λ)(I + V R±0 (λ))−1.



6 MICHAEL GOLDBERG

When (8) is subjected to a change of variable λ→ λ2 and integration by parts,
the end result is

e−itHPacf =
1

πi

∫ ∞
−∞

e−itλ
2

λR+
V (λ2)f dλ

=
1

2πt

∫ ∞
−∞

e−itλ
2 d

dλ
R+
V (λ2)f dλ

=
1

2πt

∫ ∞
−∞

e−itλ
2(
I +R+

0 (λ2)V
)−1 d

dλ

[
R+

0 (λ2)
](
I + V R+

0 (λ2)
)−1

f dλ.

We have made a slight shift in notation here, setting R+
0 (λ2) = (−∆− (λ+ i0)2)−1

to account for the fact that (λ+ i0)2 = (λ2 − i0) when λ < 0.
The explicit formula for the free resolvent kernel in three dimensions is

(9) R+
0 (λ2)(x, y) = (4π|x− y|)−1eiλ|x−y|.

Apply Parseval’s identity to the last integral in λ, taking e−itλ
2 d
dλ

[
R+

0 (λ2)
]

to be
one of the factors. It is the Fourier transform of a bounded function in all variables,
with upper bound controlled by |t|−1/2.

Our remaining task is to show that (I + V R+
0 (λ2))−1f is the Fourier transform

of a measure on R1+3 whose total variation norm is bounded by ‖f‖1. This is done
by applying an operator-valued Wiener L1 Inversion Theorem [1, Theorem 3], and
taking care to recognize where signed measures occur in lieu of integrable functions.
The dispersive estimate then follows by integration in absolute value.

To set the background for the Wiener theorem, let X be a Banach space and
WX the space of bounded linear maps T : X → L1(R;X) with associated norm

(10) ‖T‖WX
= sup
‖f‖X=1

∫
R

‖Tf(ρ)‖X dρ.

This becomes an algebra under the product

(11) S ∗ Tf(ρ) =

∫
R
S
(
Tf(σ)

)
(ρ− σ) dσ

and we use WX to denote the unital extension of WX .

Remark 3. In the case where there exists a family of bounded linear operators
S(ρ) : X → X satisfying S(ρ)f = Sf(ρ), the product formula can be restated as a
convolution

S ∗ T (ρ)f =

∫
R
S(ρ− σ)Tf(σ) dσ.

More generally the associated “cross-section”operators S(ρ) may be unbounded at
each ρ ∈ R. One such example with X = L1(R) is to fix an integrable function η
and set Sf(ρ) = f(ρ)η(x).

The Fourier transform of an element T ∈ WX is computed by its action on test
functions in X,

T̂ (λ)f =

∫
R
e−iλρTf(ρ) dρ.

The family of operators T̂ (λ) are bounded uniformly by ‖T‖WX
, continuous in

λ with respect to the strong operator topology, and converge strongly to zero as
|λ| → ∞. The Fourier transform of the identity element in WX is 1̂(λ) = I.
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Products inWX correspond to pointwise composition of operators on the Fourier
transform side, so an element T ∈ WX cannot be invertible unless T̂ (λ) is invertible
in B(X) for each λ. With two extra assumptions this pointwise condition is also
sufficient.

Theorem 3 ([1, Theorem 3]). Suppose T is an element of WX satisfying the
properties

(C1) lim
δ→0
‖T (ρ)− T (ρ− δ)‖WX

= 0.

(C2) lim
R→∞

‖χ|ρ|≥RT‖WX
= 0.

If I + T̂ (λ) is an invertible element of B(X) for every λ ∈ R, then 1 + T possesses
an inverse in WX of the form 1 + S.

In fact it is only necessary for some finite power TN ∈ WX (using the definition
of products inWX given by (11)) to satisfy the translation-continuity condition (C1)
rather than T itself.

The proof is constructive, and it is important to note that the inverse of 1+T has
norm controlled by the following quantities: ‖T‖WX

, supλ ‖(I+T̂ (λ))−1‖X→X =: α,
the value of R for which the norm in (C2) is smaller than 1/(Kα), the exponent N ,
and the value of δ for which the norm in (C1) is smaller than 1/K when applied to
TN . The auxilliary constant K is determined by a choice of cutoff functions used
during the construction.

Proposition 4. Any subset U ⊂ WX for which there is uniform control over these
five parameters will admit a uniform bound supT∈U ‖(1 + T )−1‖WX

≤ C <∞.

For the application to Schrödinger dispersive bounds we would like to choose X
to be the space M of finite complex Borel measures on R3 and T̂ (λ) = V R+

0 (λ2).
There is a slight technical obstruction because the family of operators T (ρ) have a
distribution kernel

K(ρ, x, y) =
V (x)

4π|x− y|
δ0(ρ+ |x− y|).

Given a measure µ ∈ M, the image Tf is a measure on R4 whose total variation
satisfies ‖Tµ‖ ≤ (4π)−1‖V ‖K‖µ‖M but it is not guaranteed to belong to L1(R;M).

We work instead with a regularized version of T obtained by cutting off T̂ (λ) to
finite support. Let η be a standard cutoff function on the line, and define TL so
that T̂L(λ) = η(λ/L)T̂ (λ) = η(λ/L)V R+

0 (λ2).
For each L > 0 the integral kernel associated to TL is given by

(12) KL(ρ, x, y) = L
V (x)

4π|x− y|
η̌(L(ρ+ |x− y|)).

Therefore at a fixed value of ρ we have a bound∫
R3

|TLµ(ρ, · )| ≤ L

4π
‖η̌‖sup

∫∫
|V |(dx) |µ|(dy)

|x− y|
≤ L

4π
‖V ‖K‖µ‖M.
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Now that TLµ is seen to be an M-valued function, one can also check its L1 norm
by integrating

(13)

∫
R
‖TLµ(ρ, · )‖M dρ ≤

∫
R7

dρL
∣∣η̌(L(ρ+ |x− y|))

∣∣ |V |(dx)

4π|x− y|
|µ|(dy)

≤ ‖η̌‖1
4π

∫
R6

|V |(dx)

|x− y|
|µ|(dy)

≤ ‖η̌‖1
4π
‖V ‖K‖µ‖M.

This demonstrates that each TL ∈ WM, with ‖TL‖ bounded independently of L.
In order to prove Theorem 1 it suffices to show that

lim sup
L→∞

‖(1 + TL)−1‖WM <∞

as this will guarantee that (1 + T )−1f is a finite measure on R1+3 by taking a
distributional limit. Proposition 4 provides a clear path for obtaining uniform
estimates.

For the majority of the discussion we will assume that V is compactly supported
and has dimension d > 3

2 . The list of modifications to accomodate Kato-norm
limits of such potentials is given at the conclusion.

Already there is a uniform bound for ‖TL‖WM , the next step is to determine α by
establishing a norm bound for (I + η(λ/L)V R+

0 (λ2))−1 :M→M that is uniform
over λ ∈ R, L ≥ L0. There are separate arguments for low/intermediate and
high energy. The lower-energy estimates are based on compactness and absence of
embedded eigenvalues. The high-energy analysis is a decay estimate for oscillatory
integrals of the type encountered in Fourier restriction operators. The technical
work encountered in this step will then make it easy to set values for the remaining
three parameters (R, N , and δ).

Observe that the family of operators V R+
0 (λ2) is norm-continuous with respect

to λ via the estimate

(14)

‖V R+
0 (λ2

1)− V R+
0 (λ2

2)‖M→M ≤ ‖V ‖M sup
x,y∈R3

∣∣∣eiλ1|x−y| − eiλ2|x−y|

4π|x− y|

∣∣∣
≤ ‖V ‖M

|λ1 − λ2|
4π

.

Then the norm of (I+V R+
0 (λ2))−1 is a continuous function of λ, and it is bounded

on any finite interval λ ∈ [−L0, L0] provided the operator I+V R+
0 (λ2) is invertible

for each λ. The Fredholm Alternative argument behind pointwise (in λ) invertabil-
ity is standard, however its details need to be checked in the function spaces under
consideration.

Lemma 5. Suppose V is a compactly supported measure satisfying (6). Then for
each λ ∈ R, the operator V R+

0 (λ2) :M→M is compact.

Proof. It is easier to show that the operator R−0 (λ2)V acts compactly on the space
of bounded functions in R3. The stated result follows by duality.
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Let g be any bounded measurable function with supx∈R3 |g(x)| ≤ 1. Then

|R−0 (λ2)V g(x)| ≤ (4π)−1‖V ‖K, so the image of the unit ball is bounded as ex-
pected. To verify equicontinuity, examine the difference

|R−0 (λ2)V g(x1)−R−0 (λ2)V g(x2)| ≤
∫
R3

|g(y)|
∣∣∣∣ e−iλ|x1−y|

4π|x1 − y|
− e−iλ|x2−y|

4π|x2 − y|

∣∣∣∣ |V |(dy)

Fix a value of r > 0 such that
∫
|x−y|<2r

|x − y|−1|V |(dy) < ε for every x ∈ R3.

Assuming |x1 − x2| < r
2 , the integral splits into the regions |y − x1| < r and

|y − x1| > r. In the former region there is little cancellation so the integral is
maximized by∫

|y−x1|<r
(4π|x1 − y|)−1 |V |(dy) +

∫
|y−x2|<2r

(4π|x2 − y|)−1 |V |(dy) < (2π)−1ε.

In the latter region the Mean value Theorem places a bound∣∣∣∣ e−iλ|x1−y|

4π|x1 − y|
− e−iλ|x2−y|

4π|x2 − y|

∣∣∣∣ ≤ 1

2π
max(|λ|, 2

|y−x1| )
|x1 − x2|
|y − x1|

< (2π)−1 max(|λ|, 2r−1)
|x1 − x2|
|y − x1|

where we have used the geometric property |y − x2| > 1
2 |y − x1|. It follows that

|R−0 (λ2)V g(x1)−R−0 (λ2)V g(x2)| < Cε provided |x1 − x2| < min(r, |λ|−1)ε.
Furthermore, for all x well outside the support of V , there is the decay estimate

|R−0 (λ2)V g(x)| < 2|x|−1‖V ‖M. Compactness of the operator R−0 (λ2)V now follows
from the Arzelà-Ascoli theorem. �

Lemma 6. Suppose V ∈ M (with no support assumption) satisfies (6), and for
some λ 6= 0 there exists a nonzero solution µ ∈ M to the eigenvalue equation
(I+V R+

0 (λ2))µ = 0. Then R+
0 (λ2)µ is an L2 eigenfunction of the operator −∆+V

with eigenvalue λ2.

Proof. Based on the one-sided inverse (−∆ − λ2)R+
0 (λ2) = I acting on M, any

measure satisfying µ = −V R+
0 (λ2)µ gives rise to the identity

(−∆− λ2)R+
0 (λ2)µ = −V R+

0 (λ2)µ.

Then R+
0 (λ2)µ belongs to the null-space of (−∆ + V − λ2). The image of a typical

element of M under R+
0 (λ2) belongs to the weighted space |x| 12 +εL2, which would

correspond to a resonance of −∆+V rather than an eigenvalue. We show next that
if λ 6= 0 then in fact µ ∈ M has special mapping properties that place R+

0 (λ2)µ ∈
L2(R3).

Split the free resolvent into the sum of its local and nonlocal parts. The local
part R+

1 is convolution against (4π|x|)−1eiλ|x|χ|x|<r, and the nonlocal part R+
2 is

convolution against the bounded function (4π|x|)−1eiλ|x|χ|x|≥r. The value of r is

chosen so that supy∈R3

∫
|x−y|<r |x− y|

−1 |V |(dx) < 1.

Each solution of the eigenvalue equation satisfiesR+
0 (λ2)µ = −R+

0 (λ2)V R+
0 (λ2)µ,

which splits into −(R+
1 +R+

2 )V R+
0 (λ2)µ leading to the identity

R+
0 (λ2)µ = −(I +R+

1 V )−1R+
2 V R

+
0 (λ2)µ = (I +R+

1 V )−1R+
2 µ

The integration kernel of R+
2 is bounded everywhere by r−1, so R+

2 µ belongs to
the space of bounded functions on R3. Meanwhile the splitting radius was chosen so



10 MICHAEL GOLDBERG

that the operator inverse (I+R+
1 V )−1 acting on bounded functions has a convergent

Neumann series expansion. Thus supx |R+
0 (λ2)µ(x)| <∞.

Observe that the duality pairing 〈R+
0 (λ2)µ, µ〉 is well defined, with the property

〈R+
0 (λ2)µ, µ〉 = −〈R+

0 (λ2)µ, V R+
0 (λ2)µ〉 = −

∫
R3

|R+
0 (λ2)µ(x)|2 V (dx) ∈ R

because V is assumed to be a real-valued signed measure. Consequently

Im 〈R+
0 (λ2)µ, µ〉 = Cλ−1

∫
λS2
|µ̂(ξ)|2 dS(ξ) = 0

by Parseval’s identity, which implies that the Fourier transform of µ vanishes on
the sphere radius |λ|. It follows from Proposition 4.1 of [9] that R+

0 (λ2)µ ∈ L2(R3).
If V is assumed to have compact support then direct examination of µ̂ in the
neighborhood of the sphere |ξ| = |λ| shows that R+

0 (λ2)µ also has rapid polynomial
decay at infinity. �

Remark 4. The proposition cited shows that R+
0 (λ2)f ∈ L2(R3) provided f ∈

L1(R3) and f̂
∣∣
λS2 = 0. It can be extended to finite measures with only superficial

changes to the proof.

Lemma 6 eliminates the possibility of embedded resonances. Pointwise existence
of (I +V R+

0 (λ2))−1 still requires that −∆ +V have no embedded eigenvalues, and
no resonance or eigenvalue at λ = 0. These properties are incorporated into the
spectral assumptions of Theorem 1. For a large class of potentials the embedded
eigenvalue condition is automatically satisfied.

Proposition 7. Suppose V is a compactly supported measure of dimension d > 2.
Then −∆ + V has no embedded eigenvalues λ2 > 0.

Proof. The unique continuation theorems in [13] asserting the absence of embed-
ded eigenvalues apply here provided multiplication by V is a bounded map from
Ẇ

1
4 ,4(R3) to its dual space. An equivalent condition is that Ẇ

1
4 ,4(R3) embeds as

a subspace of L2(V ).
If V is supported in B(0, 2M ) with dimesnion d > 2 then V also satisfies the

Kato-type condition supy
∫
R3 |x − y|−γ |V |(dx) < ∞ for any γ < d, by imitating

the proof of Proposition 2. Applying the argument for Kato-class potentials in

Section 2 leads to the conclusion here that (−∆)
γ−3
2 V is a bounded map on Lp(V )

for all 1 ≤ p ≤ ∞, and in particular that Ḣ
3−γ
2 (R3) embeds into L2(V ). The same

is certainly true for the non-homogeneous space H
3−γ
2 as well.

A straightforward T ∗T argument shows that (1−∆)
2−γ
2 L∞(R3) is also contained

in L2(V ) for any γ > 2. Noting that (1−∆)
2−γ
2 has an integrable convolution kernel

Kγ(x) there is an immediate bound

‖(1−∆)
2−γ
2 V (1−∆)

2−γ
2 f‖1 ≤ ‖Kγ‖21‖V ‖M‖f‖∞.

Finally, the fact that W
1
4 ,4(R3) ⊂ L2(V ) follows by choosing 2 < γ < d and

applying Riesz-Thorin interpolation to the L2 and L∞ estimates. The assumption
that V is compactly supported permits an extension to the homogeneous Sobolev
space Ẇ

1
4 ,4(R3) as desired.

�
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At this point we have shown that ‖(I+η(λ/L)V R+
0 (λ2))−1‖ is uniformly bounded

on any compact set λ ∈ [−L0, L0] for all L ≥ L0. A separate high-energy argument
is required to set a value for L0 for which the operator inverse can be controlled
independent of |λ|, L > L0. We will show that, under the assumption that V has
dimension d > 3

2 , that limλ→±∞ ‖(V R+
0 (λ2))2‖ = 0 as a bounded operator on M.

Then the operator inverse is controlled by 1 + ‖V ‖K for all sufficiently large λ and
L, by applying (13) and summing the Neumann series.

Our calculations rely on a resolvent estimate at high energy relating L2(V ) to
its dual space.

Theorem 8. Suppose V is a compactly supported measure of dimension d > 3
2 .

There exists ε > 0 so that the free resolvent satisfies

(15) ‖R+
0 (λ2)V f‖L2(V ) . 〈λ〉−ε‖f‖L2(V ).

There are close connection between the free resolvent R+
0 (λ2) and the restriction

of Fourier transforms to the sphere λS2. We make use of a Fourier restriction
estimate proved by Erdogan [4], with the specific case of interest in three dimensions
extracted below.

Theorem 9 ([4], Equation (15)). Let AR denote the annulus |x−R| < 1 inside R3,
with R > 1. Suppose V is a compactly supported measure of dimension d ∈ ( 3

2 ,
5
2 ).

Then functions g supported in AR satisfy an inequality

(16) ‖g∨‖L2(V ) . R
β‖g‖2

for each β > 7
8 −

d
4 . In particular it is possible to choose β < 1

2 .

Proof of Theorem 8. The specific inequality we derive has the form

‖R+
0 (λ2)V f‖L2(V ) . λ

2β−1 log λ‖f‖L2(V )

uniformly over λ > 4. The logarithmic factor is most likely an artifact of the
method of estimation. The case λ < −4 is identical up to complex conjugation.

The free resolvent R±0 (λ2) acts by multiplying Fourier transforms pointwise by
the distribution

1

|ξ|2 − λ2
± iπ

λ
dσ(|ξ| = |λ|).

For the surface measure term it suffices to note that since V has compact support
the dual statement to (16) implies that∥∥(V f)∧

∥∥
L2(AR)

. Rβ‖f‖L2(V )

and
∥∥∇ξ(V f)∧

∥∥
L2(AR)

. Rβ‖f‖L2(V )

from which it follows that
∥∥(V f)∧

∣∣
|ξ|=R

∥∥
L2(dσ)

. Rβ‖f‖L2(V ). The same estimates

hold for higher derivatives Dα
ξ (V f)∧ by considering xαf ∈ L2(V ) instead of f . In

particular there is control of the outward normal gradient∥∥∥ ξ
|ξ| · ∇ξ(V f)∧(ξ)

∣∣
|ξ|=R

∥∥∥
L2(dσ)

. Rβ‖f‖L2(V )

which will come in handy in the next step.
Let φ be a smooth function supported in the annulus 1

2 ≤ |ξ| < 2 that is identi-

cally 1 when 3
4 ≤ |ξ| ≤

3
2 . First use φ to cut the Fourier multiplier away from the
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sphere of radius λ, with the result

Kλ(x) :=
(1− φ(ξ/λ)

|ξ|2 − λ2

)∨
(x) ∼

{
|x|−1 if |x| < λ−1

λO(λ|x|)−N if|x| ≥ λ−1

A slightly modified version of (7) shows that
∫
R3 |Kλ(x − y)| |V |(dx) . λ1−d

uniformly in y. The Schur test then shows that integration against Kλ(x− y)V (y)
defines a bounded operator on Lp(V ), 1 ≤ p ≤ ∞, with norm comparable to λ1−d.
This part of the free resolvent, with frequencies removed from λ, is bounded on
L2(V ) and enjoys relatively rapid polynomial decay since d > 3

2 .

For each λ
2 < s < 2λ define Fs(x) to be V f ∗ sin(s|x|)

|x| so that sF̂s(ξ) is the

restriction of 4π(V f)∧(ξ) to the sphere |ξ| = s. Based on the preceding estimates,
both Fs and d

dsFs belong to L2(V ) with norms bounded by λ2β−1 uniformly over
the interval s ∼ λ.

The remaining part of the free resolvent appears as a principal value integral,
with the derived bound∥∥∥p.v.∫ 2λ

λ/2

(sφ( sλ )

s+ λ
Fs

) 1

s− λ
ds
∥∥∥
L2(V )

. λ2β−1 log λ.

The size and smoothness of Fs make it possible to bring the norm inside when
|s−λ| > 1, and to lessen the singularity via integration by parts when |s−λ| ≤ 1. �

Corollary 10. Suppose V is a compactly supported measure of dimension d > 3
2 .

Then there exists ε > 0 so that

(17) ‖(V R+
0 (λ2))kµ‖M . 〈λ〉−ε(k−1)C(V )k‖µ‖M

Proof. The convolution kernel of R+
0 (λ2) is dominated by |x− y|−1, which belongs

to Lp(V ) uniformly over y ∈ R3 for each 1 ≤ p < d. Then R+
0 (λ2) maps M to

Lp(V ). Interpolation between Theorem 8 and the elementary L1(V ) bounds yields
an operator bound

‖R+
0 (λ2)V f‖Lp(V ) ≤ C(V )〈λ〉−

2
p′ ε‖f‖Lp(V )

which can be applied (k− 1) times, followed by an inclusion map Lp(V ) ↪→ L1(V ).
�

For our application, choose L0 large enough so that (17) ensures the operator
norm of (V R+

0 (λ2))2 is less than 1
2 for all |λ| > L0. Then∥∥(I + η(λ/L)V R+
0 (λ2))−1

∥∥
M→M < C(1 + ‖V ‖K)

for all λ, L > L0. We previously showed that (I + V R+
0 (λ2))−1 is bounded and

continuous over the interval λ ∈ [−L0, L0], and the introduction of a cutoff η(λ/L)
has no effect there once L > L0. The combined bounds show that

αL := sup
λ∈R
‖(1 + T̂L(λ))−1‖M→M ≤ α <∞

uniformly for L > L0.
The choice of N is governed by Corollary 10. Set N to be the first integer large

enough so that (N − 1)ε > 2. This number depends only on the dimension of V
without regard to any measures of its size.

The next parameter to consider is RL, which governs the inequality

‖χ|ρ|≥RLTL‖WM ≤ (Kα)−1
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This is controlled by direct examination of the integral kernel of TL in (12). More
specifically,

(18)

‖χ|ρ|≥RTL‖WM = sup
y∈R3

∫
R3

∫
|ρ|>R

L
|η̌(L(ρ+ |x− y|))|

4π|x− y|
dρ|V |(dx)

. sup
y∈R3

∫
|x−y|>R−1

|V |(dx)

|x− y|
+ L−1

∫
|x−y|<R−1

|V |(dx)

|x− y|

The first integral is bounded by R−1‖V ‖M for any R > 2. Meanwhile the second
integal is less than L−1‖V ‖K so for all L & α‖V ‖K it suffices to choose R to be the
larger of 2 and Cα‖V ‖M.

It will be convenient in the next step to have additional control of ‖χ|ρ|≥RTL‖WM .
Using the same construction, one can find R so that

‖χ|ρ|≥RTL‖WM ≤ (KN)−1(C‖V ‖K)−(N−1)

for any L & N(C‖V ‖K)N .

The purpose of N is to give ‖(T̂L)N (λ)‖ sufficiently rapid decay (in λ) so that
Fourier inversion forces (TL)N (ρ) to be a continuously differentiable operator-valued
function, with derivative smaller in operator norm than C(V )N . For each fixed
0 < δ < 1 one can estimate the size of the difference (TL)N (ρ)− (TL)N (ρ− δ) using
the mean value theorem with the result

‖(TL)N ( · )− (TL)N ( · − δ)‖WM ≤
∫
|ρ|≤NR+1

‖(TL)N (ρ)− (TL)N (ρ− δ)‖B(M) dρ

+ 2‖χ|ρ|≥NR(TL)N‖WM
≤ δ(C(V ))NNR+ 2N‖χ|ρ|≥RTL‖WM‖TL‖N−1

WM

Based on the prior estimates the choice of δ < (NRK)−1C(V )−N will cause

‖TL( · )− TL( · − δ)‖WM ≤ 3/K

for all L > max(L0, α‖V ‖K, N(C‖V ‖K)N ). This concludes the proof of Theorem 1
in the case where V is a compactly supported measure of dimension d > 3

2 .
The extension of dispersive estimates to potentials V which are the Kato-norm

limit of compactly supported d-dimensional measures is more or less routine. As
before the norm of TL withinWM has a uniform bound in terms of ‖V ‖K from (13).
No approximation properties are required in this step.

The arguments used to establish a finite value for α require more individual at-
tention. Proposition 2 guarantees that V satisfies (6) so there are no complications
regarding the self-adjointness of −∆+V . Elementary limiting arguments can be ap-
plied to (14) to show that V R+

0 (λ2) has continuous (but not necessarily Lipschitz)
dependence on λ, and to Lemma 5 to show that each operator V R+

0 (λ2) is compact.
Under the assumption that −∆ + V has no resonance at zero and no threshold or
embedded eigenvalues, there is a uniform norm bound on (I + V R+

0 (λ2))−1 over
any finite interval λ ∈ [−L0, L0]. Note that embedded resonances are still forbidden
by Lemma 6.

For the low and intermediate energy estimates, it suffices for V to be the limit
(in K) of a sequence of compactly supported measures satisfying (6). Following
Corollary 10, if each µj in the approximating sequence has dimension dj >

3
2 then

lim
λ→±∞

‖(V R+
0 (λ2))2‖M→M = 0.
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Then L0 can be set large enough for the Neumann series of (I+η(λ/L)V R+
0 (λ2))−1

to converge uniformly over the infinite intervals |λ| > L0. Combined with the low-
energy results this gives a finite bound for αL once L > L0.

The process for choosing N requires that d = inf dj >
3
2 , so that there is a

uniform value of ε > 0 in Corollary 10. Then one can again declare N to be the
smallest integer satisfying (N − 1)ε > 2.

The selection criteria for RL are little changed. So long as V is the Kato norm-
limit of compactly supported potentials it is permissible to estimate

lim
R→∞

sup
y∈R3

∫
|x−y|>R−1

|V |(dx)

|x− y|
= 0

inside of (18), replacing the explicit decay rate of R−1‖V ‖M. Thus for some R <∞
this integral term will be smaller than (Kα)−1. The lower bounds placed on L are
independent of the support of V and do not need further adjustment.

To find δ, first choose an approximating measure µ of dimension d > 3
2 such that

‖V − µ‖K . (KN)−1‖V ‖−(N−1)
K . With T̃L denoting the element of WM generated

by the potential µ and cutoff η(λ/L), it follows from (13) that

‖TL − T̃L‖WM < (KN)−1‖V ‖−(N−1)
K

uniformly for all L > 0. Then the norm difference of their respective N th powers
is controlled by K−1. Based on the properties of µ, one can choose δ > 0 so that
‖(T̃L)N ( · )− (T̃L)N ( · − δ)‖WM ≤ 3/K for all sufficiently large L. By the triangle
inequality a similar translation bound holds for TL as well, with

‖(TL)N ( · )− (TL)N ( · − δ)‖WM ≤ 5/K.

All five of the parameters related to the construction of (1 + TL)−1 (namely
‖TL‖K, αL, R, N , and δ) have an eventual uniform bound as L → ∞. Therefore
the operator inverses ‖(1+TL)−1‖WM are also uniformly bounded, and their weak

limit (1 + T )−1 is a finite measure on R1+3 as desired.
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