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MICHAEL GOLDBERG

Abstract. The matrix Ap condition extends several results in weighted norm
theory to functions taking values in a finite-dimensional vector space. Here we
show that the matrix Ap condition leads to Lp-boundedness of a Hardy-Littlewood
maximal function, then use this estimate to establish a bound for the weighted Lp

norm of singular integral operators.

1. Preliminaries

Weighted Norm theory forms a basic component of the study of singular inte-
grals. Here one attempts to characterize those measure spaces over which a broad
class of singular integral operators remain bounded. For the case of singular inte-
gral operators on C-valued functions in Euclidean space, the answer is given by the
Hunt-Muckenhoupt-Wheeden theorem [10]. It states that the necessary and suffi-
cient condition for boundedness in Lp(dµ) is that dµ = W (x) dx and the function W

satisfies the Ap condition, namely:
( 1

|B|

∫
B

W dx
)1/p( 1

|B|

∫
B

W−p′/pdx
)1/p′

≤ C for

all balls B ⊂ Rn.
TheAp condition requires considerable interpretation in order to apply it to weighted

measures of Cd-valued functions. First, the weight W (x) should take values in the
space of positive d×d Hermitian forms. This raises concerns about the order in which
products are taken, since matrices need not commute, and also what it means for the
quantity on the left-hand side to be uniformly bounded. Treil [21] conjectured that
the correct statement of the matrix A2 condition should be

sup
B

∥∥∥( 1

|B|

∫
B

W dx
)1/2( 1

|B|

∫
B

W−1dx
)1/2∥∥∥ <∞

where exponents 1/2 indicate operator powers of a nonnegative matrix. This was
subsequently proven in [23] and again in [24].

If p is different from 2, the matrix Ap condition cannot be written in terms of
averages of operator powers of weight W . Averages still play a crucial role, however
it is more accurate to regard W (x) as a Banach space norm on Cd rather than a
matrix. A correct formulation of the matrix Ap condition, which is also the subject
of this note, first appeared in [12] and [25]. Because their statements do not appear
similar, it is especially important to understand what properties matrix Ap weights
share with their scalar counterparts. This is discussed further in the next section.
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Boundedness estimates on singular integral operators were originally obtained by
way of the Hardy-Littlewood maximal function M . If a scalar weight W possesses
the A∞ property (several equivalent definitions are given in [18]), then the Lp norm of
any singular integral is dominated by the Lp norm of M via a distributional argument
commonly known as the good-λ inequality. The Ap condition is specifically required
to ensure that ‖Mf‖Lp(W ) ≤ C‖f‖Lp(W ).

Some of these techniques fail to generalize to the case of vector-valued functions
with matrix weights. There is no known analogue of the A∞ property to create
simultaneous estimates for every exponent p. The weak-Lp(W ) spaces used to prove
boundedness of the Hardy-Littlewood maximal function are not well defined in this
setting. In general, much of the ability to compare objects and dominate one by
another is lost when the objects are vectors rather than scalars. The theory of
matrix weights has consequently evolved along much different lines. One fundamental
technique employed in both [23] and [25] is to choose a good basis (often inspired by
Haar functions) in Lp(W ) and consider the integral operator as a matrix acting on
the coefficient space. Estimates may then be made separately on the matrix and on
the coefficient embedding operator. Even in the scalar case these ideas have yielded
new results and new ways of approaching weighted norm problems.

In this note we attempt to tackle the difficulties of extending the classical theory, or
else circumvent them. Some arguments may be borrowed nearly word for word, some
remain intact only if they are presented in a specific manner. Our hope is to discover
which properties of scalar Ap weights admit some generalization to the case of vector-
valued functions and matrix weights, leading to a more complete understanding of
the matrix Ap class.

Let T be a singular integral operator associated to kernel K(x) in the sense that
Tf(x) =

∫
Rn K(x − y)f(y) dy for almost every x outside the support of f . The

following regularity hypotheses are to be assumed for K:

(1) |K(x)| ≤ C|x|−n and |∇K(x)| ≤ C|x|−n−1

and additionally we suppose that for some choice of p, 1 < p < ∞, the bound
‖Tf‖Lp ≤ A‖f‖Lp holds for all f ∈ Lp. One may then apply T to functions taking
values in Cd by allowing it to act separately on each coordinate function, that is:
(Tf)j = Tfj. This new operator, also denoted by T , is a singular integral operator
whose associated convolution kernel is K times the identity matrix.

In a similar manner, define the truncated operators Tε to be convolution with
Kε(x) = χ{|x|>ε}K(x) for all ε > 0. Note that T and the Tε all commute with
pointwise multiplication by any constant matrix Λ, in other words ΛTf = T (Λf).

A matrix weight W is a function on Rn taking values in d × d positive-definite
matrices, with weighted norm space Lp(W ) defined by

(2) ‖f‖pLp(W ) =

∫
Rn

|W 1/pf |pdx

One is often concerned with the relationship between a weight and its average over
arbitrary balls. The most straightforward notion of an average, WB = 1

|B|

∫
B
W dx,
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turns out to be useful only in the study of L2(W ). With any exponent p 6= 2, this
does not properly respect the structure of the underlying Lp-space. The following
definitions are needed instead:

A metric ρ = ρx( · ) denotes a family of Banach space norms on Cd, indexed by
x ∈ Rn. The weighted norm space Lp(ρ) is given by

‖f‖pLp(ρ) =

∫
Rn

[
ρx(f(x))

]p
dx

Note that for any matrix weight W , Lp(W ) is isometrically equivalent to Lp(ρ) with
the metric ρx(e) = |W 1/p(x)e|. Given a ball B ⊂ Rn and an exponent p > 1, let ρp,B
be defined by the formula

ρp,B(e) =
( 1

|B|

∫
B

[
ρx(e)

]p
dx
)1/p

This will be our method for averaging the metric ρ over a ball B.
The dual metric ρ∗ is defined pointwise in x to be

ρ∗x(e) = sup
f∈Cd

|(e, f)|
ρx(f)

One immediate consequence is that (e, f) ≤ ρ∗x(e)ρx(f).

Proposition 1.1. For any e ∈ Cd and any ball B ⊂ Rn, ρ∗p′,B(e) ≥ (ρp,B)∗(e).

Proof. Given two vectors e, f ∈ Cd,

(e, f) ≤ 1

|B|

∫
B

ρ∗x(e)ρx(f) dx

≤
( 1

|B|

∫
B

[
ρ∗x(e)

]p′
dx
)1/p′

·
( 1

|B|

∫
B

[
ρx(f)

]p
dx
)1/p
= ρ∗p′,B(e)ρp,B(f)

In other words, ρ∗p′,B(e) ≥ (e, f)

ρp,B(f)
. The proof is completed by taking the supremum

over all f ∈ Cd. �

A metric ρ is called an Ap metric if there exists some constant C <∞ so that the
opposite statement

(3) ρ∗p′,B(e) ≤ C(ρp,B)∗(e) for all balls B ⊂ Rn

is also true. Since the averages over cubes and balls in Rn differ by no more that a
fixed constant, Ap metrics satisfy an analogous condition for cubes, and vice versa.
Stated either way, the Ap condition characterizes an important class of weighted
measures.

Theorem 1. (Nazarov,Treil [12], Volberg [25]) Let d <∞. The following statements
are equivalent:

1) The Hilbert Transform is bounded on Lp(ρ).
2) ρ is an Ap metric.
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We will prove this theorem again for metrics which are induced by some matrix
weight W . There is no loss of generality because for fixed dimension d < ∞ every
metric can be uniformly approximated by matrix weights.

Proposition 1.2. Let d <∞. Given a Banach space norm ρx on Cd, there exists a
positive selfadjoint matrix Wx such that

(4) ρx(e) ≤ |Wx(e)| ≤
√
d · ρx(e) for all e ∈ Cd.

Proof. Let O represent the unit ball of ρx, and E the ellipsoid of maximal volume
contained in O. There exists a positive selfadjoint matrix Wx such that Wx(E) is the
standard unit ball in Cd. The image Wx(O) is a convex balanced set containing the
unit ball, and containing no ellipsoid of greater volume.

If there exists a point v ∈ Wx(O) with |v| >
√
d, then by convexity the boundary

of Wx(O) can only be tangent to the unit sphere at points w such that

(w,v) ≤ 1

|v|
<

1√
d

For some δ > 0 the ellipsoid with major axis length eδ in the direction of v and
minor axes length e−δ/(|v|

2−1) in every direction perpendicular to v is also contained
in Wx(O). This has strictly greater volume than the unit ball, contradicting the
property of Wx(O) stated above. �

It is now possible to state the Ap condition in terms of matrix weights, though some
precision is lost in the process. Given a matrix weight W and a ball B ⊂ Rn, define
a Banach space norm XB on Cd by considering the Lp(W ) norm of characteristic
functions on B.

‖v‖XB = |B|−1/p‖χBv‖Lp(W )

By proposition 1.2 there exists a positive-definite d × d matrix VB such that
‖v‖XB ≤ |VBv| ≤ d1/2‖v‖XB . From a heuristic standpoint, VB might be consid-
ered an “Lp average” of W 1/p over ball B. With p′ = p

p−1 the dual exponent to p,

let V ′B be an Lp
′

average of W−1/p. In summary, matrices VB, V
′
B enjoy the following

properties:

|VBv| ∼ |B|−1/p‖χBW 1/pv‖Lp

|V ′Bv| ∼ |B|−1/p
′‖χBW−1/pv‖Lp′

(5)

Remark. The definition of VB and V ′B depends implicitly on the method used to
approximate Banach space norms by matrices. For the purposes of our discussion,
VB and V ′B may be any two matrices satisfying (5).

The statement about weights taking the place of proposition 1.1 is

|VBV ′Be| ≥ |e| for all vectors e ∈ Cd and balls B ⊂ Rn.

A matrix weight W satisfies the matrix Ap condition if VBV
′
B are uniformly bounded

as operators on Cd; that is

(6) ‖VBV ′B‖ ≤ C <∞ for all balls B ⊂ Rn
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The exact value of C depends on the choice of VB and V ′B, and is therefore determined
here only up to a factor of d.

Our approach to Theorem 1 is styled after Coifman and Fefferman’s proof [5] in
the scalar (d = 1) case. Two technical problems arise immediately: first that general
d× d matrices do not commute with one another, and second the matter of defining
a maximal operator for vector-valued functions. To choose pointwise a vector with
the largest `2(Cd) magnitude is clearly wrong because the effect of weight W (x)
may depend strongly on the direction. In the special case where W is uniformly
nonsingular (i.e. ‖W (x)‖ · ‖W−1(x)‖ ≤ C for all x) this can be controlled by a
constant factor, but we have no such a priori assumptions about W .

For this reason our analysis will take place primarily in unweighted Lq spaces,
following [4]. Rather than deal with T directly, we consider the action of W 1/pTW−1/p

on functions in Lq(dx). With the family of truncated operatorsW 1/pTεW
−1/p in mind,

we define the maximal truncated operator (W 1/pT )∗ to be

(7) (W 1/pT )∗f(x) = sup
ε>0
|W 1/pTεf(x)|

with the convention that f = W−1/pg and g is a function in Lq(dx). One estimate
from the scalar theory that remains wholly intact is the bound

(8) |W 1/pTW−1/pg|(x) ≤ |(W 1/pT )∗W
−1/pg|(x) + C|g(x)|

The constant C depends only on our choice of operator T but not on the function
g. This will allow us to infer the boundedness of T by controlling the behavior
of its truncations. Our primary results are the following four theorems, numbered
according to the section in which they appear:

Four Theorems.
(3.2) If W is a matrix Ap weight, there exists δ > 0 such that the vector Hardy-
Littlewood maximal function Mw (defined in section 3) is a bounded operator from
Lq(Rn;Cd) to Lq(R;R) whenever |p− q| < δ.

(4.2): Given a singular integral operator T as above, and a weight W ∈ Ap, there
exists δ > 0 such that (W 1/pT )∗W

−1/p is a bounded operator from Lq(Rn;Cd) to
Lq(R;R) whenever |p− q| < δ.

(5.1): Consequently W 1/pTW−1/p is bounded on Lq(Rn;Cd) for these exponents q.

(5.2): In particular, T is bounded on Lp(W ) if W ∈ Ap. With one additional hy-
pothesis on the structure of T , the converse statement is also true.

Remark. The exponent W 1/p is used throughout, even when we are considering
functions under an Lq norm with q 6= p. This places us squarely in the setting of [25],
where the Ap metric W 1/p is the basic object of study. Theorem 5.1 then asserts that
any Ap metric is also an Aq metric for all q in some open interval containing p.

2. Properties of Ap Weights

We would like first to characterize the matrix Ap class in a more transparent
manner by borrowing a lemma from [12]:
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Proposition 2.1. A metric ρx satisfies the Ap condition if and only if the operators
f → χB

1
|B|

∫
B
f dx are uniformly bounded on Lp(ρ). In fact, the uniform bound is

equal to the Ap constant of ρ.

Proof. The Lp(ρ) norm of χB
1
|B|

∫
B
f dx is given by 1

|B|

( ∫
B

[
ρy
( ∫

B
f dx

)]p
dy
)1/p

,

which in turn is equal to |B|−1/p′ρp,B
( ∫

B
f dx). Therefore

sup
‖f‖Lp(ρ)=1

∥∥χB 1
|B|

∫
B
f dx

∥∥
Lp(ρ)

= sup
f

sup
e∈Cd
|B|−1/p′

∫
B

(e, f(x)) dx

(ρp,B)∗(e)

= sup
e∈Cd
|B|−1/p′

‖χBe‖Lp′ (ρ∗)
(ρp,B)∗(e)

= sup
e∈Cd

ρ∗p′,B(e)

(ρp,B)∗(e)

Equality between the first and second lines takes place because Lp(ρ) is the dual
space of Lp

′
(ρ∗). �

Corollary 2.2. Let ρ be an Ap metric. For any vector v ∈ Cd, ρx(v)p is a scalar Ap
weight with constant less than or equal to that of ρ.

Proof. Let φ be any scalar function and consider f = φv. The weighted norm of f
is ‖f‖Lp(ρ) = (

∫
B
φp [ρx(v)]pdx)1/p. Proposition 2.1 applied to f states that all maps

φ→ χB
1
|B|

∫
B
φ dx are uniformly bounded on the Lp space with measure [ρx(v)]pdx,

with norms less than the Ap constant of ρ. We now apply Proposition 2.1 again,
this time in the scalar setting, to conclude that [ρx(v)]p is a scalar Ap weight whose
constant is also less than the Ap constant of ρ. �

Corollary 2.3. If W is a matrix Ap weight, then ‖W‖ is a scalar Apweight.

Proof. Let ei be the standard unit basis for Cd. Since W (x) is a nonnegative and
selfadjoint operator at each point x,

‖W (x)‖ = ‖W 2/p(x)‖p/2 ∼ [tr(W 2/p(x))]p/2

=
( d∑
i=1

|W 1/p(x)ei|2
)p/2
∼

d∑
i=1

|W 1/p(x)ei|p
(9)

pointwise in x. By corollary 2.2, each individual function |W 1/p(x)ei|p is a scalar
Ap weight, therefore their sum is as well. �

Remarks. Both of these corollaries are proven in [23] for the case p = 2, and are
adapted here with minimal alteration.

From this point forward we will work exclusively in the language of matrix weights.
While our primary definition of Ap weights (6) is decidedly less elegant than that of
Ap metrics (3), the ability to use notaion and theorems from linear algebra makes it
a worthwhile sacrifice.

One crucial feature in the theory of scalar Ap weights is the presence of “Reverse
Hölder” inequalities estimating the average of W 1+ε in terms of the average of W .
We will employ inequalities of a similar character as the centerpiece of our analysis.
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Proposition 2.4. Let W be an Ap weight. Then there exist δ > 0 and constants Cq
such that for all balls B ⊂ Rn,

(10)
1

|B|

∫
B

‖W 1/p(y)V ′B‖qdy ≤ Cq, all q < p+ δ

(11)
1

|B|

∫
B

‖VBW−1/p(y)‖qdy ≤ Cq, all q < p′ + δ

Proof. We will verify only the first of these statements. The second one is proven in
an identical manner with the starting point that W−p′/p is an Ap′ weight.

By Corollary 2.2, all functions of the form |W 1/p(y)V ′Be|p are scalar Ap weights
with Ap norms bounded uniformly in e. It is therefore possible to choose q and Cq
so that the Reverse Hölder inequality

1

|B|

∫
B

|W 1/p(y)V ′Be|qdy ≤ Cq

( 1

|B|

∫
B

|W 1/p(y)V ′Be|pdy
)q/p

is satisfied for all e ∈ Cd.
Let ei once again be the standard unit basis for Cd. It is useful to remember that

the norm of any d×d matrix M (not necessarily Hermitian) is controlled by its action
on the vectors ei via the formula

‖M‖ ≤ d1/2 sup
i
|Mei|

We may now estimate the desired integral:

1

|B|

∫
B

‖W 1/p(y)V ′B‖qdy ≤
1

|B|

∫
B

(
d1/2 sup

i
|W 1/p(y)V ′Bei|

)q
dy

≤ dq/2
d∑
i=1

1

|B|

∫
B

|W 1/p(y)V ′Bei|qdy ≤ Cq

d∑
i=1

( 1

|B|

∫
B

|W 1/p(y)V ′Bei|pdy
)q/p

∼ Cq

d∑
i=1

|VBV ′Bei|q ≤ d · Cq‖VBV ′B‖q ≤ Cq.

�

Note. In later sections we will also use the slightly weaker inequality

(12) |B|−1
∫
B

‖W 1/p(y)V −1B ‖
qdy ≤ Cq, all q < p+ δ

whose proof follows the above calculations almost word for word.

3. The Hardy-Littlewood Maximal Function

There is a wide variety of possible maximal functions to choose from, each of
which has its own advantages and limitations. In [4] we first considered an auxiliary
maximal function M ′

w, given by

(13) M ′
wg(x) = sup

x∈B

1

|B|

∫
B

|VBW−1/p(y)g(y)| dy
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Although the intuitive meaning of M ′
w is unclear, one may approach it with the

classical tools of weak-type inequalities and interpolation. A direct application of the
second reverse Hölder inequality (11) proves the following lemma.

Lemma 3.1. Let W be an Ap weight. Then there exists δ > 0 such that

‖M ′
wg‖Lq ≤ Cq‖g‖Lq(Rn;Cd), all g ∈ Lq, all q > p− δ.

Sketch of Proof. The reverse Hölder inequality allows us to extend Proposition 2.1
to exponents p − δ < q < ∞. For this maximal function one may use the Vitali
Covering Lemma to obtain a weak-type (q, q) estimate. The result then follows from
the Marcinkiewicz Interpolation Theorem.

The vector Hardy-Littlewood maximal function Mw is defined as

(14) Mwg(x) = sup
x∈B

1

|B|

∫
B

|W 1/p(x)W−1/p(y)g(y)|dy

The following equivalent definition of Mw is often quite useful:

(15) Mwg(x) = M
(
|W 1/p(x)W−1/p(·)g(·)|

)
(x)

Here M denotes the classical Hardy-Littlewood maximal operator acting on scalar-
valued functions. The only difference between Mw and M ′

w is the presence of a
weight W 1/p(x) rather than an average weight VB over a ball containing x. The
reverse Hölder inequalities suggest that Ap weights are often pointwise comparable
to their averages, in which case ‖Mwg‖ would be controlled by ‖M ′

wg‖. For a range
of exponents near p, this line of reasoning can be made precise.

Theorem 3.2. Let W be an Ap weight. Then there exists δ > 0 such that

‖Mwg‖Lq ≤ Cq‖g‖Lq(Rn;Cd), all g ∈ Lq, all |p− q| < δ.

Proof. Let us suppose for a moment that the suprema defining Mwg and M ′
wg are

taken over cubes in some dyadic grid. The entire preceding discussion holds for
maximal functions over cubes, so in particular we can still estimate ‖M ′

wg‖ via Lemma
3.1. For each point x, choose a (dyadic) cube Rx such that

Mwg(x) ≤ 2|Rx|−1
∫
Rx

|W 1/p(x)W−1/p(y)g(y)|dy

≤ 2‖W 1/p(x)V −1Rx
‖ ·
(
|Rx|−1

∫
Rx

|VRxW−1/p(y)g(y)|dy
)
.

For each integer j, define {Sj} to be the collection of dyadic cubes R = Rx that
are maximal with respect to the property 2j ≤ |R|−1

∫
R
|VRW−1/p(y)g(y)|dy < 2j+1.

Maximality insures that whenever Mwg(x) 6= 0 the cube Rx is contained in some Sj
with

|Rx|−1
∫
Rx

|VRxW−1/p(y)g(y)|dy ≤ 2|Sj|−1
∫
Sj

|VSjW−1/p(y)g(y)|dy.

When j is fixed, the disjoint union ∪jSj is contained in the set where M ′
wg(x) ≥ 2j.
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Consider the functionsNQ(x) = sup
x∈R⊂Q

‖W 1/p(x)V −1R ‖, defined for x ∈ Q. By virtue

of the preceding two statements, the inequality Mwg(x) ≤ 4 · 2j+1NSj(x) must hold
for some number j (this is trivial at the points where Mwg(x) = 0). It follows that

(16) ‖Mwg‖qLq ≤ C
∞∑

j=−∞

2jq
∑
Sj

∫
Sj

(
NSj(x)

)q
dx

By Lemma 3.3 below, we can continue the estimate as follows:

‖Mwg‖qLq ≤ C

∞∑
j=−∞

2jq
∑
Sj

|Sj| ≤ C
∞∑

j=−∞

2jq |{M ′
wg ≥ 2j}| ≤ C‖M ′

wg‖
q
Lq

The proof is then complete by Lemma 3.1.
�

Lemma 3.3. Let W be a matrix Ap weight and functions NQ(x) be defined as above.
Then there exist δ > 0 and Cq <∞ such that for all dyadic Q,∫

Q

(
NQ(x)

)q
dx ≤ Cq|Q| for all q < p+ δ

Proof. We present an informal argument here, assuming that
∫
Q
N q
Q ≤ B|Q| with

some finite B then deriving an a priori bound for B. This may be readily adapted
into a rigorous proof.

Let A < ∞ be a large constant to be specified later. Denote by {Rj} the set of
maximal cubes satisfying ‖VQV −1Rj

‖ > A. Outside of ∪jRj, NQ(x) ≤ A‖W 1/p(x)V −1Q ‖.

Thus

∫
Q\∪jRj

(
NQ(x)

)q
dx ≤ C|Q|, seen by applying reverse Hölder inequality (12).

We claim that
∑

j |Rj| < 1
2
|Q| if A is sufficiently large. Remember first that

‖VQV −1Rj
‖ = ‖V −1Rj

VQ‖ ≤ C‖V ′RjVQ‖, by Proposition 1.1. It follows that

(17) |Rj| · ‖V ′RjVQ‖
p′ = sup

|e|=1

|Rj| · |V ′RjVQe|
p′

∼ sup
|e|=1

∫
Rj

|W−1/p(y)VQe|p
′
dy ≤

∫
Rj

‖W−1/p(y)VQ‖p
′
dy

The cubes Rj are disjoint from one another, so

Ap
′∑

j

|Rj| < C

∫
∪jRj
‖W−1/p(y)VQ‖p

′
dy ≤ C

∫
Q

‖W−1/p(y)VQ‖p
′ ≤ C|Q|

This estimate shows that for A large enough,
∑

j |Rj| < 1
2
|Q|, and the value of A

may be chosen independently of Q.
Inside each cube Rj, we may assume that NQ(x) = NRj(x), otherwise the bound

NQ(x) ≤ A‖W 1/p(x)V −1Q ‖ still holds. Then

(18)

∫
∪jRj

(
NQ(x)

)q
=
∑
j

∫
Rj

(
NRj(x)

)q ≤ B
∑
j

|Rj| <
1

2
B|Q|.
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Putting these pieces together, we would discover that B ≤ C + 1
2
B, where C <∞

is determined by the constants in the reverse Hölder inequality. �

This concludes the proof that matrix Ap weights enjoy Lq-boundedness of the
dyadic Hardy-Littlewood maximal function for a range of exponents |q−p| < δ. There
is a standard argument employing two incompatible dyadic grids [7] for extending
results of this kind to the general setting. Thus the Hardy-Littlewood maximal
function as we originally defined it (as a supremum over balls containing x) is bounded
in Lq for the same range of exponents q.

4. A Distributional Inequality

Proposition 4.1. Let W be a matrix Ap weight and fix q < 2 + δ. Then there exist
positive constants 0 < b < 1, c > 0 depending only on q, the Ap “norm” of W , and
the dimensions d, n such that∣∣∣{x ∈ Rn : (W 1/pT )∗f(x) > α; max

(
M ′

w(W 1/pf)(x),Mw(W 1/pf)(x)
)
< cα

}∣∣∣
(19) <

1

2
bq
∣∣{x ∈ Rn : (W 1/pT )∗f(x) > bα}

∣∣
for all f ∈ C∞c (Rn;Cd)

From this point onward we follow as closely as possible in the footsteps of Coifman
and Fefferman [5], decomposing the set where (W 1/pT )∗f > bα into a union of cubes
and proving the desired inequality on each cube separately. Our decomposition uses
a slightly modified version of the Whitney covering lemma, stated below.

Covering Lemma. Given a set E ⊂ Rn of finite (Lebesgue) measure, there exists
a collection {Qj} of pairwise disjoint cubes such that:

i) E ⊂ ∪jQj up to sets of measure zero
ii) |Qj ∩ E| ≥ 1

2
|Qj|

iii) |3Qj ∩ Ec| ≥ Cn|3Qj|
A simple consequence of statements i) and ii) is that

∑
j |Qj| ≤ 2|E|.

Proof. Let {Qj} be the collection of dyadic cubes maximal under the property that
|Q ∩ E| ≥ 1

2
|Q|. Then conditions ii) and iii) hold with constant Cn = 1

2
· (2

3
)n. The

first condition also holds because as ε → 0, the ratio |B(x, ε) ∩ E|/|B(x, ε)| → 1 at
almost every x ∈ E. �

Proof of Proposition 4.1. Write f = W−1/pg and let

E = {x ∈ Rn : (W 1/pT )∗f(x) > bα}

Apply the covering lemma to obtain cubes {Qj} with the specified properties. It
suffices to verify that in each cube Q = Qj there is a distributional inequality

(20)
∣∣{x ∈ Q : (W 1/pT )∗f(x) > α ; max

(
M ′

wg(x),Mwg(x)
)
< cα

}∣∣ < 1

4
bq|Q|.
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For this we use a construction similar to the one in [5]. Let O be the ball with
the same center as Qj and radius 5 diam (Q). By the covering lemma and inequality
(11), there exists a point x ∈ 3Q such that

(W 1/pT )∗f(x) < bα and ‖VOW−1/p(x)‖ < C

Let B = B
(
x, 3 diam(Qj)

)
. Since B ⊂ O and is of comparable size, ‖VBV −1O ‖ is

bounded by a constant and hence ‖VBW−1/p(x)‖ < C.
Assume

∣∣{x ∈ Q : M ′
wg(x) < cα}

∣∣ ≥ 1
4
bq|Q|, otherwise the proposition is trivially

satisfied. Then there exists a point y ∈ Q such that

M ′
wg(y) < cα and ‖VBW−1/p(y)‖ ≤ Cb−1

Write f1 = χBf and f2 = χBcf . By the sublinearity of (W 1/pT )∗, the set where
(W 1/pT )∗f(x) > α is contained in the union of sets (W 1/pT )∗fi(x) > α/2, i = 1, 2.

The operator T∗ is weak-type (1, 1). This fact is easily obtained from the scalar
case when d is finite, but is also true in general [17]. Consequently,

|{(VBT )∗f1(x) >
α

2R
}| ≤ AR

α
‖VBf1‖L1(Rn;Cd)

Here we are using the property that operator T∗ commutes with multiplication by
any constant matrix, in this case VB. Furthermore,

‖VBf1‖L1 =

∫
B

|VBf(y)|dy ≤ |B|M ′
wg(y) ≤ Ccα|Q|

with the end result that
∣∣{x ∈ Q : (VBT )∗f1(x) > α

2R
}
∣∣ ≤ CcR|Q|.

It follows that |{x ∈ Q : (W 1/pT )∗f1(x) > α
2
}| ≤ (CcR + C ′R−p)|Q| for all R >

0, because the Reverse Hölder inequality (10) guarantees that ‖W 1/p(x)V −1B ‖ < R
except on a set of measure less than C ′R−p. Taking the infimum over R,

(21)
∣∣{x ∈ Q : (W 1/pT )∗f1(x) > α/2}

∣∣ ≤ C0c
p/(p+1)|Q|

For the second estimate, we begin by noting that the point x is chosen so that
(W 1/pT )∗f(x) < bα and ‖VBW−1/p(x)‖ < C. Then (VBT )∗f(x) < Cbα. Our esti-
mate for |{(W 1/pT )∗f2(x) > α/2}| relies on the following inequality which holds for
all x ∈ Q.

(22) (VBT )∗f2(x) ≤ (VBT )∗f(x) + C ′M
(
|VBf |

)
(y)

≤ Cbα + C ′‖VBW−1/p(y)‖ ·M
(
|W 1/pf |

)
(y)

≤ Cbα + C ′‖VBW−1/p(y)‖ ·Mwg(y) ≤ (Cb+ C ′b−1c)α

In the preceding expressions M(·) denotes the scalar Hardy-Littlewood maximal func-
tion.

Imitating the method for the |(W 1/pT )∗f1| estimate, we see that∣∣{x ∈ Q : (W 1/pT )∗f2(x) > R(Cb+ C ′b−1c)α}
∣∣ ≤ AR−r|Q|
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where r may be chosen so that q < r < p+ δ. Once again (10) has been invoked, this
time to guarantee that ‖W 1/pV −1B ‖ > R only on a set of measure less than CR−r|B|.
Set R equal to (4bC)−1. Then

(23)
∣∣{x ∈ Q : (W 1/pT )∗f2(x) > (1/4 + C1b

−2c)α}
∣∣ ≤ C2b

r|Q|

Statement (20) is then verified by choosing b < (8C2)
1/q−r and c sufficiently small.

Summing over all cubes Qj proves the proposition. �

Corollary 4.2. With c as in Proposition (4.1),∥∥(W 1/pT )∗f
∥∥q
Lq
≤ 2c−q

∥∥max
(
M ′

w(W 1/pf),Mw(W 1/pf)
)∥∥q

Lq

for all f ∈ C∞c (Rn;Cd)

Proof. If both sides of (19) are multiplied by qαq−1 and integrated over the the interval
0 ≤ α <∞, the resulting inequality is∫

Rn

(
[(W 1/pT )∗f ]q − c−q max

(
[M ′

w(W 1/pf)]q, [Mw(W 1/pf)]q
))

+
dx

≤ 1

2

∫
Rn

[(W 1/pT )∗f ]q dx

from which it follows that

‖(W 1/pT )∗f‖qLq −
1

cq
∥∥max

(
M ′

w(W 1/pf),Mw(W 1/pf)
)∥∥q

Lq
≤ 1

2
‖(W 1/pT )∗f‖qLq

The remaining task is to verify that the Lq norm of (W 1/pT )∗f is finite. A key
estimate is the fact that T∗f(x) ≤ Cf (1 + |x|)−n for all f ∈ C∞c , where Cf depends
on f . Then

(W 1/pT )∗f(x) ≤ C‖W‖1/p(1 + |x|)−n

There are many ways to show that the expression on the right-hand side is in Lq,
all exploiting the fact that ‖W‖ is a scalar Ap weight. One possibility is to choose
any nontrivial (scalar) function φ ≥ 0 ∈ C∞c . We have shown in Theorem 3.2 that
‖W‖1/pM(‖W‖−1/pφ) ∈ Lq whenever |p− q| < δ.

On the other hand, C(1 + |x|)−n ≤M(‖W‖−1/pφ), which completes the proof. �

5. The Main Theorem

Theorem 5.1. Let T be a linear operator whose associated convolution kernel K(x)
satisfies the hypotheses in (1), and which acts separately on each coordinate function
of f (in other words, (Tf)j = Tfj ). Let W be a matrix Ap weight.

There exists δ > 0 such that W 1/pTW−1/p is a bounded operator on Lq(Rn;Cd)
whenever |q − p| < δ.

Proof. As in the scalar case, the truncated operators Tε possess a weak limit T0,
and T = T0 + A, where A is a bounded pointwise multiplier. In dimensions d > 1,
A = A(x) is a matrix-valued function, but the hypothesis ΛTΛ−1 = T requires A(x)
to be a scalar L∞ function multiplied by the identity matrix.
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The function W 1/pTW−1/pg is dominated pointwise by g and (W 1/pT )∗(W
−1/pg),

as in equation (8):

|W 1/pTW−1/pg(x)| = |W 1/pT0W
−1/pg(x) + A(x)g(x)|

≤ |(W 1/pT )∗(W
−1/pg)(x)|+ C|g(x)|.

The triangle inequality for Lq-norms immediately yields the result

(24)
∥∥W 1/pTW−1/pg

∥∥
Lq
≤
∥∥(W 1/pT )∗W

−1/pg
∥∥
Lq

+ C‖g‖Lq

For all g such that W−1/pg ∈ C∞c , the right-hand side is controlled by ‖g‖Lq .
Observe that W q/p is a locally integrable matrix-valued function. Then C∞c (Rn;Cd)
is a dense subset of Lq(W q/p). The map f ∈ Lq(W q/p)→ g = W 1/pf ∈ Lq(dx) is an
invertible isometry, so its image W 1/p(C∞c ) is dense in Lq. Thus the boundedness of
W 1/pTW−1/p may then be extended to all functions g ∈ Lq(Rn;Cd), |p− q| < δ. �

A converse statement, with some minor modifications, is also true.

Theorem 5.2. Suppose that T is a convolution operator as above, with the addi-
tional nondegeneracy hypothesis that there exists some unit vector u ∈ Rn such that
|K(ru)| ≥ a|r|−n, all r ∈ R \ {0}. If T is a bounded operator on Lp(W ), then W is
an Ap weight.

In order to prove this theorem we first need a result about integral operators with
bounded and compactly supported kernels:

Proposition 5.3. Let S be an integral operator Sf(x) =
∫
Rn S(x, y)f(y) whose

(scalar) kernel S(x, y) is supported in B×B and satisfies the bound |S(x, y)| ≤ |B|−1
for all (x, y) ∈ B ×B.

The norm of S as an operator on Lp(W ) is less than Cd‖VBV ′B‖, where Cd is a
dimensional constant independent of the particular choice of S. In the special case
S0(x, y) = |B|−1χB×B, the operator norm of S0 is also greater than C−1d ‖VBV ′B‖.

Proof. This is a straightforward calculation similar to those found in Section 2. Let
f be any function in Lp(W ). We first estimate the size of W 1/p(x)Sf(x) pointwise
for each x.

|W 1/p(x)Sf(x)| =
∣∣∣W 1/p(x)

∫
B

S(x, y)f(y) dy
∣∣∣

=
∣∣∣ ∫

B

S(x, y)W 1/p(x)f(y) dy
∣∣∣ ≤ |B|−1 ∫

B

|W 1/p(x)f(y)|dy

≤ |B|−1
(∫

B

∥∥W 1/p(x)W−1/p(y)
∥∥p′dy)1/p′ · ‖f‖Lp(W ).

As in Section 2, we now introduce an orthonormal basis of vectors ei spanning Cd.
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(∫
B

‖W 1/p(x)W−1/p(y)‖p′dy
)1/p′

≤
(∫

B

(
d1/2 sup

i
|W−1/p(y)W 1/p(x)ei|

)p′
dy
)1/p′

≤ d1/2
( d∑
i=1

∫
B

|W−1/p(y)W 1/p(x)ei|p
′
dy
)1/p′

≤ Cd

( d∑
i=1

|B| · |V ′BW 1/p(x)ei|p
′
)1/p′

≤ Cd|B|1/p
′‖V ′BW 1/p(x)‖

which leads to the estimate |W 1/p(x)Sf(x)| ≤ Cd|B|−1/p‖V ′BW 1/p(x)‖ · ‖f‖Lp(W ).

Then for all ‖f‖Lp(W ) ≤ 1, it follows that

(25) ‖Sf‖Lp(W ) ≤ C
(
|B|−1

∫
B

‖V ′BW 1/p(x)‖pdx
)1/p

≤ Cd

(
|B|−1

∫
B

(
d1/2 sup

i
|W 1/p(x)V ′Bei|

)p)1/p
≤ Cd

(∑
i

|B|−1
∫
B

|W 1/p(x)V ′Bei|p
)1/p

∼ Cd

(∑
i

|VBV ′Bei|p
)1/p
≤ Cd‖VBV ′B‖

The second assertion is a restatement of Proposition 2.1. �

Proof of Theorem 5.2. First, let ε > 0 be small enough so that 2ε+ε2 < 1
2
C−2d . There

exists a number t0 <∞ such that

(26) |K(v)−K(rt0u)| ≤ ε|K(rt0u)| whenever v ∈ B(rt0u, 2r), all r ∈ R \ {0}.
This is seen to be true because |K(rt0u)| ≥ a

tn0 |r|n
but |∇K(x)| ≤ C

tn+1
0 rn+1 for all

x ∈ B(rt0u, r). It suffices to choose t0 >
2C
εa

.
Let B denote the ball B(y, r) in Rn, and B′ the translated ball B′ = B(y+rt0u, r).

We wish to consider the operator SB defined by

SBf = χBT
(
χB′T (χBf)

)
This is an integral operator whose kernel SB(x, y) = χB×B

∫
B′
K(x − z)K(z − y) dz

is supported in B×B. If T acts boundedly on Lp(W ), so too does SB with operator
norm less than or equal to ‖T‖2.

The restrictions
{
x, y ∈ B, z ∈ B′

}
guarantee that z−y ∈ B(rt0u, 2r) and x− z ∈

B(−rtou, 2r). Thus the values of K(z − y) and K(x− z) do not vary much over the
region of integration. Using the bounds established in (26), we rewrite SB(x, y) as
the sum of a characteristic function and a small remainder:
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(27) SB(x, y) = |B|K(rt0u)K(−rt0u)χB×B + S1(x, y),

where |S1(x, y)| ≤ 1
2
C−2d |B| · |K(rt0u)K(−rt0u)|

According to Proposition 5.3, the first term corresponds to an operator with norm
at least C‖VBV ′B‖. In terms of other constants, C is proportional to a2t−2n0 C−1d . The
operator corresponding to the second term has norm no more than half as great. It
follows that ‖SB‖ ≥ 1

2
C‖VBV ′B‖. Then

(28) ‖VBV ′B‖ ≤ 2C−1‖SB‖ ≤ 2C−1‖T‖2 <∞
for all balls B ⊂ Rn, and W is an Ap weight. �

Corollary 5.4. If W is a matrix Ap weight, there exists δ > 0 such that W q/p is an
Aq weight whenever |q − p| < δ. In other words, an Ap metric is also an Aq metric
for all |q − p| < δ.

Remarks. We could have proven this statement directly in section 2, using the
reverse Hölder inequality to show that operators f → χB

1
|B|

∫
B
f dx are uniformly

bounded on Lq(W q/p). To do so would have added another computation without
simplifying the subsequent discussion in any way.

Recall that a matrix weight W ∈ Ap if and only if the averaging operators AB
defined by

ABf = χB
1

|B|

∫
B

f dx

are uniformly bounded on Lp(W ). An equivalent statement is that the conjugated
operators W 1/pABW

−1/p are uniformly bounded on the unweighted space Lp(Cd). It
is trivial to observe that AB are uniformly bounded on L∞(Cd) with norm 1. By
interpolation on the analytic family of operators1{

W (1−z)/pABW
(z−1)/p, 0 ≤ Re(z) ≤ 1

}
we find that W 1/rABW

−1/r are uniformly bounded on Lr(dx) for all r > p, leading
to another result well known in the scalar case:

Proposition 5.5. If W is a matrix Ap weight, then W is also a matrix Ar weight
for all r > p.

One crucial difference must be noted. We cannot use the reverse Hölder inequality
in this setting to extend the range of exponents to r > p − δ. If we could, then by
corollary 5.4 and proposition 5.5 for each weight W ∈ Ap there would exist numbers
r < q < p such that W q/r ∈ Aq ⊂ Ap. Instead, counterexamples are known; in [1] a
matrix A2 weight W is constructed for which W s 6∈ A2 for any s > 1.

On a speculative note, perhaps this (suspected) lack of self-improvement is related
to the absence of a unifying matrix A∞ class whose elements are all contained in
some Ap with p finite. We do not claim to have proven anything here, nor have we
investigated thoroughly the union of the Ap-weight classes in search of a common A∞

1Following [16], with the slight modification Fz(ψ) = |ψ|
α(z)
α −1ψ
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property. It has been suggested [25] that the scalar A∞ condition generalizes instead
to an entire spectrum of Ap,∞ conditions, one for each exponent p, in the matrix
setting.

6. The Case d =∞

Most of the estimates in the preceding discussion fail when the dimension d is
infinite. Banach space norms may not be representable by matrices, and traces (when
defined at all) are no longer comparable to operator norms. Most importantly, the
main theorem is false. Gillespie et al. [9] have constructed operator A2 weights W
for which the Hilbert Transform is unbounded on L2(W ).

The test function f in their counterexample is constructed out of Haar functions
on different length-scales, with the signs chosen so that each new piece contributes
positively to the overall L2(W ) norm of Tf . Linearity of T is needed to ensure that
the whole of Tf will be equal to the sum of the various parts, and also to bound
from below an expectation over choices of signs. When applied to merely sublinear
operators such as a maximal function, the argument is less successful. We do not
presently know if the Hardy-Littlewood maximal operator Mw is bounded or not.
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