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Abstract

In this paper, we showed that for suitable pβ, p, s, ℓq the β-order fractional derivative with
respect to the last coordinate of the Fourier transform of an LppRnq function is in H�s after
restricting to a graph of a function with non-vanishing Gaussian curvature provided that the
restriction of the Fourier transform of such function to the surface is in Hℓ. This is a generalization
of the result in [5, Theorem 1.12].
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1 Introduction

1.1 Fourier restriction problem

The desirable properties of the Fourier transform of an LppRnq function are crucial in classical har-
monic analysis with application to Kakeya conjecture, Bochner-Riesz summabilities, and partial dif-
ferential equations, see [8, 11]. Hausdorff-Young’s inequality ensures that the Fourier transform of an

LppRnq function is in L
p

p�1 pRnq whenever 1 ¤ p ¤ 2. However, this does not give us any information
if the Fourier transform of an LppRnq function is restricted to a measure-zero subset Σ � Rn. The
Fourier restriction problem, in the most general form, seeks to determine the complete range of pp, qq
for which

} pf |Σ}LqpΣq À }f}LppRnq (1.1)

holds for all f P LppRnq for a measure-zero set Σ � Rn with n ¥ 2, where pfpιq � �
Rn e

�2πiι�xfpxqdx.
Different choices of Σ and n lead to different ranges of pp, qq and it remains an open problem in
most cases, and the best result currently in R3 for parabolas is [10]; and for a higher dimension, see
[6]. We also refer to the reader [3] for the survey on Fourier restriction estimates on different Σ. In
particular, if Σ is a two-dimensional sphere or a compact parabola around the origin, the range of
pp, qq is completely characterized by [2]. It is also worth mentioning that the Tomas-Stein Theorem,
established in [7, 9], states that Equation (1.1) holds for q � 2 and 1 ¤ p ¤ 2n�2

n�3 with Σ having
non-zero Gaussian curvature at the origin.

One reason for imposing Σ having a point with non-vanishing Gaussian curvature is to rule out
“uninteresting” cases. If we consider Σ to be a hyperplane in Rn, then the only possible range of
pp, qq is q � 8 and 1 ¤ p ¤ 8. This may suggest that we should consider Σ having non-zero Gaussian
curvature at origin (without losing generality). In this paper, we will assume that Σ is a graph of a
function h defined on Rn�1 with a vanishing gradient at 0 and an invertible Hessian matrix at 0. A
precise statement will be given in Section 2.1.

The next step of the Fourier restriction problem is to consider the possibilities of the derivative
of the Fourier transform of an LppRnq function. In [5], various versions of the derivative Fourier
restriction problem are discussed, with the core idea being to impose suitable assumptions to obtain

ϕ∇k pf P H�spΣq, or more importantly, ϕ B
β
pf

Bξβn
P H�spΣq for a fixed ϕ. Here, g P H�spΣq means
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g|Σ P H�spΣq, and H�spΣq is the L2-based Bessel potential space as defined in Section 2.1. If

}ϕ∇k pf}H�spΣq À }f}LppRnq, then the trace of ∇k pf P H�s
locpΣq for f P LppRnq. Cho, Guo, and Lee

[1, Theorem 1.1] studied the trace value of pf in Sobolev spaces, and G. and Stolyarov [5, Proposition

1.1] used this to obtain a characterization of exponents for which }ϕ∇k pf}H�spΣq À }f}LppRnq holds.
More precisely,

Theorem A ([5, Proposition 1.1]). Let p ¡ 1. The inequality }ϕ∇k pf}H�spΣq À }f}LppRnq holds for all
f P LppRnq if and only if k ¤ s, k   σp, and 2k � s ¤ κp, where κp � n�1

p � n�3
2 and σp � n

p � n�1
2 .

Moreover, G. and Stolyarov also established some necessary conditions and some sufficient conditions
for

}ϕ∇k pf}H�spΣq À }f}LppRnq � }ϕ pf}HℓpΣq (1.2)

for all f P LppRnq with pfϕ P HℓpΣq given ϕ P C8
c pΣq, where C8

c pΣq is the space of all smooth
functions with support properly contained in Σ.

More precisely, they ([5, Theorem 1.11]) showed that if (1.2) holds, p ¡ 1, s ¥ 0, and ℓ ¥ 0, then
the exponents have to satisfy

k ¤ mints� 1, s� ℓu; k   σp; 2k � s ¤ κp; (1.3)

kℓ

s� ℓ� k
¤ κp if k ¡ s. (1.4)

However, the sufficient conditions do not match with the necessary conditions due to the constraint
k P N. In order to have (1.2), other than (1.3) and (1.4), they ([5, Theorem 1.12]) additionally assume
that n�1

p � n�3
2 P N and either 2r ℓ�1

ℓ κps ¤ κp or k ¤ t
κp

2 u hold, where rxs is the smallest integer

greater than or equal to x and txu is the greatest integer less than or equal to x. If 2r ℓ�1
ℓ κps ¤ κp

and k ¤ t
κp

2 u do not hold, then one has to assume that s ¥ k � κp�k
κp�tκp{2u . In particular, if k � 1 and

s � 0,

Theorem B ([5, Corollary 1.13]). Let m be an integer in r2, n�1
2 q and ℓ ¥ m

m�1 . Then,

}ϕ∇ pf}L2pΣq À }f}
L

2n�2
n�3�2m pRnq

� }ϕ pf}HℓpΣq

for all f P SpRnq and ϕ P C8
c pΣq.

In order to remove the constraint k P N, we need to consider an alternative for B
Bxn

, and the Riesz

fractional derivative, defined by rp�∆qsf sppξq � cn|ξ|2s pfpξq, would be a good choice. The question
now becomes:

Question: For what ranges of pβ, p, s, ℓq does the inequality

}ϕp�∆qβ{2 pf}H�spΣq À }f}LppRnq � }ϕ pf}HℓpΣq

hold true for f P SpRnq?

In this paper, we will focus on the derivative along the transversal direction. We remark that Theorem
A holds in this case by replacing k by β with the aid of Lemma 1.

1.2 Results and outline

Our first main theorem is to provide a sufficient condition so that the fractional derivative of pf is in
L2pΣq.
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Theorem 1. Suppose that f P LppRnq has pf |Σ P HℓpΣq, and ϕ P C8
c pΣq. If p ¡ 1, 2β ¤ κp, 2β   σp,

0 ¤ β ¤ 1, and ℓ ¥ κpβ
κp�β , then

1. we have p�∆ξnq
β
2 pf � cn {|xn|βf P L2pΣq and

}ϕp�∆ξnq
β
2 pf}L2pΣq Àn,p,β,ℓ }f}LppRnq � }ϕ pf}HℓpΣq,

where �∆ξn denotes the Laplacian with respect to the ξn-variable.

2. if β � 1, we have B
Bξn

pf P L2pΣq and
����ϕ B pfBξn

����
L2pΣq

Àn,p,β,ℓ }f}LppRnq � }ϕ pf}HℓpΣq

When p � 1, we additionally require ℓ ¡ κ1β
κ1�β obtaining the above result.

In particular, we have a continuous analogue of Theorem B when β � 1. Moreover, this result
can be applied to n � 3 and n � 4, which is not covered by Theorem B. From Theorem 3, the best
possible range of β is r0, 12 s when n � 3; when n � 4, the best range of β is r0, 34 s; and when n � 5,
the best range of β is r0, 1s with p � 1, and we also recover the result in [5] that the (usual) derivative

of pf on Σ is in L2 if p � 1 and ℓ ¡ 2 from the second statement.

The following theorem shows that (1.3) and (1.4) are almost sufficient conditions for (1.2).

Theorem 2. Let s, ℓ, κp, σp, and β be non-negative numbers. Fix ϕ P C8
c pΣq. If

β ¤ mints� 1, s� ℓu; β   σp; 2β � s ¤ κp; (1.5)

βℓ

s� ℓ� β
¤ κp if β ¡ s (1.6)

hold, 2β
s�2�β ¤ κp whenever κp   2β and β ¡ s, and p ¡ 1, then

}ϕp�∆ξnqβ{2 pf}H�spΣq À }f}LppRnq � }ϕ pf}HℓpRnq

holds for all f P SpRnq that pf |Σ P HℓpΣq. In case of β P N, we have����ϕBβ pfBξβn

����
H�spΣq

À }f}LppRnq � }ϕ pf}HℓpRnq

While the results in Theorems 1 and 2 provide bounds on the derivatives of f̂ , they are largely
derived by analysis of the associated difference quotient

Tfpξ, ηq �
pfpξ, hpξq � ηq � pfpξ, hpξqq

η
,

ξ P U � Rn�1, and η P Rzt0u.
The first author proved Lp Ñ L2 estimates for T under the assumption that pf � 0 on the sphere

in [4]. Here we extend the bound to all cases where the restriction of pf to Σ is sufficiently smooth.

Corollary 1. Suppose f P LppRnq has pf |Σ P HℓpΣq, and ϕ P C8
c pΣq. If 1   p ¤ 2n�2

n�5 and ℓ ¥ κp

2κp�1 ,

then
}ϕTf}L2

ξL
2
η
À }f}LppRnq � }ϕ pf}HℓpΣq.

The above estimate is also true for p � 1 if ℓ ¡ κ1

2κ1�1 � n�1
2n�4 .
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The condition ℓ ¥ κp

2κp�1 is necessary due to “shifted Knapp” counterexamples identical to those in

[5].

In fact, to derive the bounds for the derivatives of pf , we consider an operator using T , namely,

Swfpξq �
�
R
wprqFηÑrpTfpξ, �qqp�rqdr �

�
R
wp�rqFηÑrpTfpξ, �qqprqdr (1.7)

The term �r is to eliminate the negative sign obtained from the Fourier transform, and FηÑr � Fη

denotes the one dimensional Fourier transform from η-variable to r-variable.

With Sw, we are able to prove the following theorems.

Theorem 3. Suppose f P LppRnq has pf |Σ P HℓpΣq, and ϕ P C8
c pΣq. Under the hypothesis in Theorem

1 with β � 0, for all b P R we have

sup
}w}L8¤1

}ϕSu2β�1�ibwf}L2pΣq À }f}LppRnq � }ϕ pf}HℓpΣq.

Theorem 4. Let s, ℓ, κp, and σp be non-negative numbers and β ¡ 0. Fix ϕ P C8
c pΣq. Under the

same hypothesis in Theorem 2, for all b P R we have

sup
}w}L8¤1

}ϕSu2β�1�ibwf}H�spΣq À }f}LppRnq � }ϕ pf}HℓpΣq (1.8)

whenever f P LppRnq with pf |Σ P HℓpΣq.

We remark that the implicit constants depend on s, ℓ, κp, σp, and β, but they are independent of
b. Moreover, it suffices to consider f P SpRnq, the space of Schwartz functions on Rn, thanks to a
density lemma [5, Lemma 3.10].

Theorems 1 and 2 follow from Theorems 3 and 4 by choosing w � psgnpuqqβ and w � 1. This is
because one can show that

Sipsgnpuquqβ�1fpξq
� 2π3{2β�1

�
Rn

|xn|βe�2πipx1�ξ�xnhpξqqfpx1, xnqdx1dxn � rp�∆ξnq
β
2 pf s|Σpξq

and similarly one has Siuβ�1f � rxβnf sp|Σpξq if β P N. From this calculation, we have to exclude
the case β � 0 in Theorem 3, but we can include β � 0 in Theorem 1 because it follows from the
hypothesis.

The organization of the reminder of this paper is as follows. In Section 2, we state the assumptions
on h, provide definitions of different types of Sobolev spaces, and compute the kernel of Sw. In Section
3, the proofs of Theorems 3 and 4 are shown. The proof of Corollary 1 is given in Section 4. In Section
5, Corollary 1 for a variation of T is given there.

2 Preliminary

2.1 Notations

In this paper, we assume that Σ is a graph of a function h defined on Rn�1. Let U be a neighborhood
of the origin in Rn�1. We assume that the function h P C8pUq such that hp0q � 0, ∇hp0q � 0,

detp B2hBξ2 p0qq � 0, and the second differential of h in U is sufficiently close to the one at 0.

Since the roles of ξ and η are different, we consider Tf in anisotropic Sobolev (Bessel potential)
spaces. To be more precise, if g is a function defined on Rn�1 � R and γ, τ P R, then we define

}gpξ, ηq}2Hγ
ξ Hτ

η
:�

�
Rn�1

�
R
p1� |x|q2γp1� |r|q2τ |Fpξ,ηqÑpx,rqgpx, rq|2dxdr,
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where Fpξ,ηqÑpx,rq denotes the Fourier transform from pξ, ηq-variable to px, rq-variable. Moreover, we
will consider negative homogeneous Sobolev spaces in ξ-variable and inhomogeneous Sobolev spaces
in η, and the inner product of such spaces are given by

xg1, g2y 9H�γ
ξ Hτ

η
�

�
R

�
U

�
U

FηÑrg1pξ, rqFηÑrg2pζ, rq|ξ � ζ|2γ�n�1p1� |r|q2τdξdζdr

if γ P p0, n�1
2 q. We have used the fact that the negative homogeneous Sobolev space has a norm given

by

}ψ} 9H�γpΣq � Cn,γ

�
U�U

ψpξ, hpξqqψpζ, hpζqq|ξ � ζ|2γ�n�1dξdζ

provided that γ P p0, n�1
2 q.

On the other hand, we also assume that f P LppRnq and pf |Σ P HℓpΣq, where the norm of HℓpΣq is
given by

}ψ}2HℓpΣq :�
�
Rn�1

��FξÑzrψpξ, hpξqqspzq
��2p1� |z|q2ℓdz.

In this paper, the implicit constant in À may vary from line to line.

Before we move on to calculating the kernel of S�wSw, we shall recall the notations of some useful
exponents in this paper:

σp :� n

p
� n� 1

2
;

κp :� n� 1

p
� n� 3

2
.

2.2 Computing the kernel of S�

wSw

Let us recall Sw, where w is a complex-valued bounded measurable function.

Swfpξq �
�
R
wprqFηÑrpTfpξ, �qqp�rqdr �

�
R
wp�rqFηÑrpTfpξ, �qqprqdr

We first compute the Fourier transform of T . To do so, for f P SpRnq,

FηpTfpξ, �qqp�rq � lim
εÑ0�

� 8

�8

�
Rn

e�π2εη2

e2πiηr
�
e�2πixnη � 1

η



e�2πipx1�ξ�xnhpξqqfpx1, xnqdx1dxndη

� lim
εÑ0�

2πi

�
Rn

Exn,εprqe�2πipx1�ξ�xnhpξqqfpx1, xnqdx1dxn,

where

Exn,εprq :�
1?
ε

� 0

�xn

e�
p�r�yq2

ε dy �
� � r?

ε

� xn�r?
ε

e�t2dt.

Note that as εÑ 0�, we have

srpxnq �
?
π1xnprq :� lim

εÑ0�
Exn,εprq �

$'''&
'''%

?
π, if 0   r   xn;

�?π, if xn   r   0;

� sgnpxnq
?
π
2 if r � 0;

0, otherwise.

Therefore, using Dominated Convergence Theorem, we have

FηpTfpξ, �qqp�rq � �2πi

�
Rn

srpxnqe�2πipx1�ξ�xnhpξqqfpx1, xnqdx1dxn.
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We are now able to compute the kernel of S�wSw. For ℓ P p0, n�1
2 q, we use homogeneous norm, and

have

xϕSwf, ϕSwgy 9H�ℓ

�
�
U

�
U

ϕpξqSwfpξqϕpζqSwgpζq|ξ � ζ|2ℓ�n�1dξdζ

�
�
U�U

�
R�R

ϕpξqwprqFηÑrpTfpξ, �qqp�rqϕpζqwpr1qFηÑrpTgpζ, �qqp�r1q|ξ � ζ|2ℓ�n�1drdr1dξdζ

�
�
U�U

�
R�R

ϕpξqϕpζqwprqwpr1q
� �

Rn

srpxnqe�2πipx1�ξ�xnhpξqqfpx1, xnqdx1dxn



�
� �

Rn

srpynqe2πipy
1�ζ�ynhpζqqgpy1, ynqdy1dyn



|ξ � ζ|2ℓ�n�1drdr1dξdζ

�
�
Rn�Rn

� �
U�U

e�2πipx1�ξ�xnhpξqqe2πipy
1�ζ�ynhpζqqϕpξqϕpζq|ξ � ζ|2ℓ�n�1dζdξ




�
� �

R
wprq?π1xn

prqdr

� �

R
wpr1q?π1yn

pr1qdr1


fpx1, xnqgpy1, ynqdxdy.

By denoting W pxnq �
�
R wprq

?
π1xn

prqdr, the kernel of S�wSw (in 9H�ℓ) can be expressed as

Kwpx, yq �|ϕ2�ℓ,Σpx, yqW pxnqW pynq,

where |ϕ2�ℓ,Σpx, yq �
�
U�U

e�2πipx1�ξ�xnhpξqqe2πipy
1�ζ�ynhpζqqϕpξqϕpζq|ξ � ζ|2γ�n�1dζdξ.

For xϕSwf, ϕSwgyL2pΣq, its kernel is

Kwpx, yq � |ϕ20,Σpx, yqW pxnqW pynq,

where |ϕ20,Σpx, yq �
�
U�U

e�2πirpx1�y1q�ξ�pxn�ynqhpξqs|ϕpξq|2dξ.

2.3 A useful lemma

The following version of Stein-Weiss inequality is based on the proof of Theorem 1.16 in [5].

Lemma 1. Let α, β P r0, n�1
2 s, γ P r0, n�1

2 q, and Bpf, gq :� �
Rn�Rn Kpx, yqfpxqgpyqdxdy. Suppose

that the kernel K satisfies

|Kpx, yq| À p1� |x|qα�γp1� |y|qα�γp1� |x� y|qβ�γ�n�1
2

for all x, y P Rn. We have
|Bpf, gq| À }f}LppRnq}g}LppRnq

provided that

� p ¡ 1, γ ¥ α, σp ¡ α� β, κp ¥ 2α� γ � β; or

� p � 1 and γ ¥ α, n�1
2 ¥ α� β, n�1

2 ¥ 2α� γ � β.

We remark that Theorem 1.16 in [5] requires that α and β to be integers because they are the order
of partial derivatives.
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3 Proof of Theorem 3 and 4

3.1 Proof of Theorem 3

3.1.1 Case p ¡ 1

Suppose β ¡ 0 and b P R. We start with a lemma.

Lemma 2. Let a P p�1,8q, 0 ¤ A   n�1
2 , ℓ ¥ 0, and w P L8pR;Cq with norm at most 1. We have

}ϕSua�ibwf}2H�ApΣq À }ϕ pf}HℓpΣq sup
}w}L8¤1

}ϕSu2a�1�biwf}H�2A�ℓpΣq � }f}2LppRnq

provided that κp ¥ 2a�A� 2, σp ¡ 2a� 2, A ¥ a, and everything on the right-hand side is finite.

Proof. We first observe that for complex-valued w � wR � iwI , where wR and wI are real-valued
bounded measurable functions, we have

Sua�ibwfpξq �
�
R
ra�ibrwRprq � iwIprqsFηÑrpTfpξ, 9qqp�rqdr

� Sua�ibwR
fpξq � iSua�ibwI

fpξq.
By taking the norm, one has

sup
}w}L8pR;Cq¤1

}ϕSua�ibwf}H�ApΣq ¤ 2 sup
}w1}L8pR;Rq¤1

}ϕSua�ibw1f}H�ApΣq.

Moreover, L8pR;Rq � L8pR;Cq, so we can focus on w P L8pR;Rq with }w}L8pR;Rq ¤ 1.

Note that one has

xϕSua�ibwf, ϕSua�ibwfy 9H�ApΣq

�
�
Rn�Rn

|ϕ2�A,Σpx, yq
� |Wa,bpxnq|2 � |Wa,bpynq|2

2
� 1

2
Rpxn, ynq



fpx1, xnqfpy1, ynqdydx

�: pIq � pIIq � pIIIq,
where

Wa,bpxnq :�
�
R
ra�ibwprq?π1xn

prqdr,

and Rpxn, ynq � |Wa,bpxnq �Wa,bpynq|2.
The terms |pIq| and |pIIq| can be controlled similarly, so it suffices to consider |pIq|. By writing

pIq �
B
ϕF

� |Wa,bpxnq|2
2

f



, ϕpgF

9H�ApΣq
,

one has

|pIq| ¤
����ϕF

� |Wa,bpxnq|2
2

f


����
9H�2A�ℓpΣq

}ϕpg}HℓpΣq.

If we define rwpuq :� �u�a�1wpuqWa,bpuq � u�a�1�2biwpuqWa,bpuq
�
,

then
�
R u

2a�1�bi rwpuq?π1xn
puqdu � 1

2 |Wa,bpxnq|2 and } rw}L8pRq À 1 because |Wa,bpuq| À |u|a�1 and
}w}L8 ¤ 1. Therefore,����ϕF

� |Wa,bpxnq|2
2

f


����
9H�2A�ℓpΣq

� }ϕSu2a�1�bi
rwf} 9H�2A�ℓpΣq À sup

}w}L8¤1

}ϕSu2a�1�biwf}H�2A�ℓpΣq.
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The condition a P p�1,8q is used to obtain an estimate for |Wa,bpuq|, but the relation between p, a,
and A is not used.

To estimate |pIIIq|, note that |Rpxn, ynq| À |xn � yn|2 maxt|xn|2a, |yn|2au, and rewrite pIIIq as

|pIIIq| À
�
R

� �
|xn|¥2|yn|

�
�
|xn|
2 ¤|yn|¤2|xn|

�
�
|yn|¥2|xn|



||ϕ2�A,Σpx, yqRpxn, ynq||fpx1, xnq||fpy1, ynq|dydx

�: pIII1q � pIII2q � pIII3q.
One can observe that if |xn| ¥ 2|yn| or |xn| ¤ 2|yn|, then

||ϕ2�A,Σpx, yqRpxn, ynq| À p1� |xn|q�Ap1� |yn|q�Ap1� |xn � yn|qA�2�2a�n�1
2 ;

while if |xn|
2 ¤ |yn| ¤ 2|xn|, then

||ϕ2�A,Σpx, yqRpxn, ynq| À p1� |xn|qa�Ap1� |yn|qa�Ap1� |xn � yn|qA�2�n�1
2 ,

In order to apply Lemma 1, we require A ¥ 0, 2� 2a   σp, and 2� 2a� A ¤ κp in the first case;
and A ¥ a, 2�a   σp, and 2a�A�2 ¤ κp in the second case. Therefore, we need A ¥ a, 2�2a   σp,
and 2a�A� 2 ¤ κp, and the conditions are satisfied by the hypothesis.

Applying Lemma 1 to pIII1q and pIII3q with β � 0, β � 2� 2a, γ � A and to pIII2q with β � a,
β � 2, γ � A, for i � 1, 2, 3 we have

|pIIIiq| À }f}2LppRnq.

The case A � 0 follows similarly.

Let us go back to the proof of Theorem 3. Assume β P p0, 1s. By applying Lemma 2 to A � 0 ¥
a � β � 1 ¡ �1, we have

}ϕSuβ�1�ibwf}L2pΣq À }ϕ pf} 1
2

HℓpΣq sup
}w}L8¤1

}ϕSu2β�1�ibw}
1
2

H�ℓpΣq � }f}LppRnq (3.1)

with κp ¥ 2β and σp ¡ 2β.

We also need an a priori estimate.

Lemma 3. For 1   p ¤ 2n�2
n�3 , we have

sup
}w}L8pR;Cq¤1,bPR

}ϕSuκp�1�ibwpuqf} 9H�κp pΣq À }f}LppRnq.

Proof. Let us write Wp,bprq :�Wκp�1,bprq �
�
R u

κp�1�ibwpuq?π1rpuqdu.
Since }w}L8 ¤ 1, we have ����

�
R
uκp�1�ibwpuq?π1xn

puqdu
���� À |xn|κp .

Consider the bilinear form Bpf, gq � xϕSuκp�1�ibwpuqf, ϕSuκp�1�ibwpuqgy 9H�κp pΣq. Its kernel is bounded
by

||ϕ2�κp,Σpx, yqWp,bpxnqWp,bpynq| À p1� |xn|q�κpp1� |yn|q�κpp1� |xn � yn|qκp�n�1
2 p1� |xn|qκpp1� |yn|qκp

À p1� |xn � yn|qκp�n�1
2 ;

and by the aid of Lemma 1, we have

}ϕSuκp�1�ibwpuqf} 9H�κp pΣq À }f}LppRnq.

When κp � 0 (i.e. when p � 2n�2
n�3 ), we use the Hardy-Littlewood-Sobolev inequality instead.
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Using Linderölf Theorem by regarding p1� |ξ|qm�ib as a weight and applying to the function pf , set
θ P r0, 1s such that 2β � 1 � p1� θqpκp � 1q � θpβ � 1q, i.e. θ � κp�2β

κp�β � κp�2β
κp�β , we have

}ϕSu2β�1�ibwf} 9H�ℓpΣq À sup
}w}L8¤1

}ϕSuβ�1�ibwf}θL2pΣq sup
}w}L8¤1

}ϕSuκp�1�ibwf}1�θ
H�κp pΣq

À �}ϕ pf} 1
2

HℓpΣq sup
}w}L8¤1

}ϕSu2β�1�ibwf}
1
2

H�ℓpΣq � }f}LppRnq
�θ}f}1�θ

LppRnq

À }ϕ pf}θHℓpΣq}f}1�θ
LppRnq � sup

}w}L8¤1

}ϕSu2β�1�ibwf}θH�ℓpΣq}f}1�θ
LppRnq � }f}LppRnq.

(3.2)

Here, ℓ � p1� θqκp � κpβ
κp�β .

We can obtain the estimate for sup}w}L8¤1 }ϕSuβ�1�ibwf}H�ℓpΣq using (3.2). Let C be the implicit

constant in (3.2). If sup}w}L8¤1 }ϕSu2β�1�ibwf}H�ℓpΣq ¤ p2Cq 1
1�θ }f}LppRnq, then we are done. If not,

i.e. sup}w}L8¤1 }ϕSu2β�1�ibwf}H�ℓpΣq ¡ p2Cq 1
1�θ }f}LppRnq, then (3.2) implies

sup
}w}L8¤1

}ϕSu2β�1�ibwf}θH�ℓpΣq ¤ Cp}ϕ pf}θHℓpΣq}f}1�θ
LppRnq � }f}LppRnqqpC}f}1�θ

LppRnqq�1

¤ }ϕ pf}θHℓpΣq � }f}θLppRnq.

Thus, we have

sup
}w}L8¤1

}ϕSu2β�1�ibwf}H�ℓpΣq À }ϕ pf}HℓpΣq � }f}LppRnq, (3.3)

for all b P R, ℓ ¥ κpβ
κp�β given that f P LppRnq, κp ¥ 2β, p ¡ 1 and 0 ¤ β ¤ 1.

Plugging (3.3) into (3.1), we have

sup
}w}L8¤1

}ϕSuβ�1�ibwf}L2pΣq À }ϕ pf} 1
2

HℓpΣqp}ϕ pf}HℓpΣq � }f}LppRnqq
1
2 � }f}LppRnq

� }ϕ pf}HℓpΣq � }f}LppRnq. (3.4)

This finishes the proof of Theorem 3.

3.1.2 Case p � 1

When p � 1, κ1 � n�1
2 and

κpβ
κp�β � pn�1qβ

n�1�2β ; thus, the argument in Lemma 3 is no longer true.

Lemma 4. Let ε ¡ 0. We have

sup
}w}L8pR;Cq¤1,bPR

}ϕSuκ1�1�ibwpuqf}H�κ1�εpΣq À }f}L1pRnq.

Proof. Fix ε ¡ 0. Note that for f P L1pRnq, we have

}ϕSuκ1�1�ibwpuqf}H�κ1�εpΣq

�
����ϕpξq

�
Rn

Wκ1�1,bpxnqe�2πipx1ξ�xnhpξqqfpx1, xnqdx1dxn
����
H�κ1�εpRn�1q

.

We will prove that����ϕpξq
�
Rn

Wκ1�1,bpxnqe�2πipx1ξ�xnhpξqqµpdx1, dxnq
����
H�κ1�εpRn�1q

À |µpRnq|

9



for all Borel measures µ with |µpRnq| ¤ 1. Then the lemma follows from taking dµ � fpxq
}f}L1pRnq

dx.

In this case, it suffices to prove for the delta measures because the delta measures are extremal
points in the unit ball of Borel measures. Let the delta measure be δpx1,xnq. We have����ϕpξq

�
Rn

Wκ1�1,bpxnqe�2πipx1ξ�xnhpξqqδpx1,xnqpdx1, dxnq
����
H�κ1�εpRn�1q

�
����ϕpξqWκ1�1,bpxnqe�2πipx1ξ�xnhpξqq

����
H�κ1�εpRn�1q

À p1� |xn|qκ1
��ϕpξqe�2πipx1ξ�xnhpξqq��

H�κ1�εpRn�1q

� p1� |xn|qκ1

� �
Rn�1

p1� |y|q�2κ1�2ε
���Fξpϕpξqe�2πipx1ξ�xnhpξqqqpyq

���2dy
 1
2

À p1� |xn|qκ1p1� |xn|q�κ1

� �
Rn�1

p1� |y|q�2κ1�2εdy


 1
2

À 1 � |δpx1,xnqpRnq|.

We have used the Van der Corput Lemma to obtain p1� |xn|q�κ1 in the last line.

If we set θ � κ1�2β
κ1�β , which is in r0, 1s provided that 0 ¤ β ¤ 1 and 2β ¤ κ1, then Equation (3.2)

holds if ℓ ¥ βκ1

κ1�β � εβ
κ1�β ¡ βκ1

κ1�β and p � 1; and this implies (3.3) and (3.4) whenever ℓ ¡ βκ1

κ1�β ,

0 ¤ β ¤ mint1, κ1{2u, and p � 1.

3.2 Higher power of β

For β ¡ 1, one can take A ¥ a � β � 1, we have

}ϕSuβ�1�ibwf}2H�ApΣq À }ϕ pf}HℓpΣq sup
}w}L8¤1

}ϕSu2β�1�biwf}H�2A�ℓpΣq � }f}2LppRnq.

Interpolating this with Lemma 3, we have

}ϕSu2β�1�ibwf}H�2A�ℓ À }f}LppRnq � }ϕ pf}HℓpΣq

provided that β P r1, κp

2 s (which is less than n�1
2 ), κp ¥ 2β � A, and σp ¡ 2β, ℓ ¥ κp

κp�β pβ � Aq, and
β � 1 ¤ A   β hold simultaneously.

Indeed, if we take A � a � β � 1, we have

Theorem 5. Suppose f P LppRnq has pf |Σ P HℓpΣq, and ϕ P C8
c pΣq. If κp ¥ β � 1 and σp ¡ 2β,

ℓ ¥ κp

κp�β and 1 ¤ β ¤ κp

2 , we have

sup
}w}L8¤1,bPR

}ϕSuβ�1�ibwf}H�β�1pΣq À }f}LppRnq � }ϕ pf}HℓpΣq

and

sup
}w}L8¤1,bPR

}ϕSu2β�1�ibwf}H�2β�1�ℓpΣq À }f}LppRnq � }ϕ pf}HℓpΣq.

For
κp

2 ¤ β ¤ κp, we would apply Lemma 2 to a � κp

2 � 1 and 2A� ℓ � κp. Therefore, one needs
2A � κp � ℓ ¥ κp � 2 � 2a, that is, ℓ ¤ 2, and the best possible we have is

}ϕSupκp{2q�1�ibwf}
H�κp�ℓ

2 pΣq
À }ϕ pf}HℓpΣq � }f}LppRnq

given that σp ¡ κp and κp ¥ ℓ.

10



By writing

}ϕSuβ�1�ibwf}H�spΣq � }ϕS
u

κp
2
�1�ibw

f}θ
H

�κp�ℓ
2 pΣq

}ϕSuκp�1�ibwf}1�θ
H�κp pΣq

with β � κp

2 θ � κpp1� θq and s � pκp�ℓ
2 qθ � κpp1� θq � ℓβ�βκp�ℓκp

κp
, we have

}ϕSuβ�1�ibwf}H�spΣq À }f}LppRnq � }ϕ pf}HℓpΣq.

Theorem 6. Suppose f P LppRnq has pf |Σ P HℓpΣq, and ϕ P C8
c pΣq. If

κp

2 ¤ β ¤ κp, ℓ ¤ mintκp, 2u,
and σp ¡ κp, then we have

sup
}w}L8¤1,bPR

}ϕSuβ�1�ibwf}H�spΣq À }f}LppRnq � }ϕ pf}HℓpΣq,

where s ¥ ℓβ�βκp�ℓκp

κp
.

On the other hand, instead of taking 2A� ℓ � κp, if we take A � a � κp

2 � 1 and set 2A� ℓ ¥ κp
(i.e. ℓ ¥ 2), using the embedding of Sobolev spaces and Lemma 3 we have

}ϕSupκp{2q�1�ibwf}2
H�κp

2
�1pΣq

À }ϕ pf}HℓpΣq sup
}w}L8¤1

}ϕSuκp�1�biwf}H�2A�ℓpΣq � }f}2LppRnq

À }ϕ pf}HℓpΣq sup
}w}L8¤1

}ϕSuκp�1�biwf}H�κp pΣq � }f}2LppRnq

À }ϕ pf}2Hℓ � }f}2LppRnq

with the conditions κp ¥ 2 and σp ¡ κp. Then, by writing

}ϕSuβ�1�ibwf}H�spΣq � }ϕS
u

κp
2
�1�ibw

f}θ
H1�κp

2 pΣq
}ϕSuκp�1�ibwf}1�θ

H�κp pΣq

with β � κp

2 θ � κpp1� θq and s � pκp

2 � 1qθ � κpp1� θq � 2β�βκp�2κp

κp
, we have

}ϕSuβ�1�ibwf}H�spΣq À }f}LppRnq � }ϕ pf}HℓpΣq.

Theorem 7. Suppose f P LppRnq has pf |Σ P HℓpΣq, and ϕ P C8
c pΣq. If

κp

2 ¤ β ¤ κp, ℓ ¥ 2, κp ¥ 2
and σp ¡ κp, then we have

sup
}w}L8¤1,bPR

}ϕSuβ�1�ibwf}H�spΣq À }f}LppRnq � }ϕ pf}HℓpΣq,

where s ¥ 2β�βκp�2κp

κp
.

3.3 Proof of Theorem 4

To obtain Theorem 4, we assume that (1.5) and (1.6) hold. If β ¤ s, then one can apply Theorem
A to conclude that (1.8) holds. In particular, β ¤ s includes the case κp   β   σp due to the
inequality 2β � s ¤ κp. In the remainder of this section, we only consider the cases β ¡ s and

0 ¤ β ¤ κp. Note that for fixed ℓ, κp, and β, then s ¥ maxt0, β � 1, β � ℓ,
ℓβ�βκp�ℓκp

κp
u if 2β ¤ κp;

and s ¥ maxt0, β � 1, β � ℓ,
ℓβ�βκp�ℓκp

κp
,
2β�βκp�2κp

κp
, 2β � κpu if κp   2β.

3.3.1 When 0 ¤ ℓ ¤ 2:

The first subcase is 0 ¤ β ¤ mint κpℓ
κp�ℓ ,

κp

2 u. In this case, we always have σp ¡ κp ¥ 2β and ℓ ¥ κpβ
κp�β .

11



If κp ¤ 2, then we have mint κpℓ
κp�ℓ ,

κp

2 u ¤ 1 and (1.8) holds by Theorem 3.

If κp ¥ 2 and 0 ¤ ℓ ¤ 1, then mint κpℓ
κp�ℓ ,

κp

2 u � κpℓ
κp�ℓ ¤ 1, and Theorem 3 allows us to have (1.8). If

κp ¥ 2 and 1   ℓ ¤ 2, then mint κpℓ
κp�ℓ ,

κp

2 u ¥ 1 whenever κp ¥ ℓ
ℓ�1 . When 2 ¤ κp ¤ ℓ

ℓ�1 , for 0 ¤ β ¤
mint κpℓ

κp�ℓ ,
κp

2 u ¤ 1, and we can apply Theorem 3. When κp ¥ ℓ
ℓ�1 , we need to consider 0 ¤ β ¤ 1

and 1 ¤ β ¤ mint κpℓ
κp�ℓ ,

κp

2 u. For 0 ¤ β ¤ 1, we apply Theorem 3; for 1 ¤ β ¤ mint κpℓ
κp�ℓ ,

κp

2 u, we also

have κp ¥ 2β ¥ 1� β and ℓ ¥ κpβ
κp�β ¥ κp

κp�β , thus we can apply Theorem 5.

The second subcase is mint κpℓ
κp�ℓ ,

κp

2 u   β ¤ κp.

If mint κpℓ
κp�ℓ ,

κp

2 u � κp

2 , then ℓ ¥ κp. Then for β P pκp

2 , κps, one just requires s ¥ 2β � κp in order

to have (1.8). More precisely, if
κp

2 ¤ 1 (i.e. κp ¤ 2 only, other situations imply κp ¥ ℓ), one has

sup}w}L8¤1 }ϕSuκp{2�1�ibwf}L2pΣq À }f}LppRnq � }ϕ pf}Hκp pRnq. By interpolation, we have

}ϕSuβ�1�ibwf}H�spΣq ¤ }ϕSuκp{2�1�ibwf}θL2pΣq}ϕSuκp�1�ibwf}1�θ
H�κp pΣq

with β � κp

2 pθq � κpp1 � θq and s ¥ 0pθq � κpp1 � θq � 2β � κp. Thus, we can conclude that (1.8)

holds if β P pκp

2 , κps and mint κpℓ
κp�ℓ ,

κp

2 u � κp

2 .

If mint κpℓ
κp�ℓ ,

κp

2 u � κpℓ
κp�ℓ , then κp ¥ ℓ. If

κpℓ
κp�ℓ ¤ 1 (i.e. when κp ¤ 2, or κp ¥ 2 and ℓ P r0, 1s,

or 2 ¤ κp ¤ ℓ
ℓ�1 and ℓ P p1, 2s), then using interpolation as above with β � κpℓ

κp�ℓ pθq � κpp1 � θq
and s ¥ κpp1 � θq � βℓ�βκp�ℓκp

κp
, we can conclude that (1.8) holds. We now consider κp ¥ ℓ

ℓ�1 with

ℓ P p1, 2s. In this case,
κpℓ
κp�ℓ ¤ ℓ�1

ℓ κp ¤ κp

2 . For
κp

2 ¤ β ¤ κp, we can directly apply Theorem 6. For
κpℓ
κp�ℓ ¤ β ¤ ℓ�1

ℓ κp, we have ℓ ¥ κp

κp�β and maxt0, β � 1, β � ℓ,
ℓβ�βκp�ℓκp

κp
u � β � 1, we can apply

Theorem 5. For ℓ�1
ℓ κp ¤ β ¤ κp

2 , we have maxt0, β � 1, β � ℓ,
ℓβ�βκp�ℓκp

κp
u � ℓβ�βκp�ℓκp

κp
. Therefore,

by interpolation as in the case above with β � ℓ�1
ℓ κppθq � κp

2 p1 � θq and s ¥ ℓβ�βκp�ℓκp

κp
, we can

conclude that (1.8) holds.

3.3.2 When ℓ ¥ 2:

The first subcase is 0 ¤ β ¤ κp

2 . We have σp ¡ κp ¥ 2β only.

If κp ¤ 2, then observe that ℓ ¥ 2 ¥ κp ¥ κpβ
κp�β . This allows us to apply Theorem 3.

If κp ¥ 2, for 0 ¤ β ¤ 1, we have ℓ ¥ 2 ¥ κp

κp�1 ¥ κpβ
κp�β , and (1.8) holds by using Theorem 3. For

1 ¤ β ¤ κp

2 , we also have ℓ ¥ 2 ¥ κp

κp�β and κp ¥ 2β ¥ β � 1. Therefore, (1.8) follows from Theorem
5.

The second subcase is
κp

2 ¤ β ¤ κp.

If κp ¥ 2, (1.8) follows from Theorem 7 directly.

If κp   2, we have
κp

2   1 and ℓ ¥ 2 ¥ κp. In fact, we are in the same situation as in the subcase

mint κpℓ
κp�ℓ ,

κp

2 u � κp

2 in 0 ¤ ℓ ¤ 2. Therefore, we can conclude that (1.8) holds.

This finishes the proof of Theorem 4.

Remark. We can see that the conditions on s are sufficient to have (1.8) and sharp in all cases but

ℓ ¥ 2 and 1 ¤ κp

2 ¤ β ¤ κp. It is not sharp in the sense that we additionally assumed s ¥ 2β�βκp�2κp

κp
,

of which the lower bound is strictly larger than
ℓβ�βκp�ℓκp

κp
if ℓ ¡ 2. See Figures 3 and 4 for more

explanations.
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pκp, κpq

pc, 0q β

s

Figure 1: When c � mint κpℓ
κp�ℓ ,

κp

2 u ¤ 1, we directly interpolate the points pc, 0q and pκp, κpq. The

region bounded by the bold lines is the region of all exponents that we can obtain, and it is optimal.
The case κp ¤ 2 and ℓ ¥ 0, the case κp ¥ 2 and ℓ P r0, 1s, and the case κp P r2, ℓ

ℓ�1 s and ℓ P p1, 2s are
in this situation.

p1, 0q

pκp, κpq

p ℓ�1
ℓ κp,

pℓ�1qκp�ℓ
ℓ q

pκp

2 ,
κp�ℓ

2 q

β

s

Figure 2: The case κp ¥ ℓ
ℓ�1 and ℓ P p1, 2s. The line joining p1, 0q and p ℓ�1

ℓ κp,
pℓ�1qκp�ℓ

ℓ q is s � β� 1,

and the line joining p ℓ�1
ℓ κp,

pℓ�1qκp�ℓ
ℓ q and pκp, κpq is s � ℓβ�ℓκp�κpβ

κp
. Theorem 6 allows us to obtain

the exponents between pκp

2 ,
pκp�ℓq

2 q and pκp, κpq, and an interpolation argument allows us to obtain

the exponents between p ℓ�1
ℓ κp,

ℓ�1
ℓ κp � 1q and pκp

2 ,
pκp�ℓq

2 q. The region bounded by the bold lines is
the region of all exponents that we can obtain, and it is optimal.
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p1, 0q

pκp, κpq

pκp{2, κp{2� 1q

β

s

Figure 3: This figure shows a case of ℓ ¥ 2, κp ¥ 2, and κp ¥ ℓ. The line connecting p1, 0q and

pκp{2, κp{2 � 1q is s � β � 1, the line joining pκp{2, κp{2 � 1q and pκp, κpq is s � 2β�2κp�κpβ
κp

, the

dashed line is s � ℓβ�ℓκp�κpβ
κp

, and the line below the dashed line is s � 2β�κp. The region bounded

by the bold lines is the region of all possible exponents that we can obtain, and the shaded region is the
region that we cannot obtain using Theorem 7, as we are not able to obtain (1.8) for p ℓ�1

ℓ κp,
ℓ�1
ℓ κp�1q.

p1, 0q

pκp, κpq

pκp

2 ,
κp

2 � 1q

β

s

Figure 4: This figure shows a case of ℓ ¥ 2, κp ¥ 2, and ℓ ¥ κp. The line connecting p1, 0q and

pκp{2, κp{2� 1q is s � β � 1, the line joining pκp{2, κp{2� 1q and pκp, κpq is s � 2β�2κp�κpβ
κp

, and the

dashed line is s � ℓβ�ℓκp�κpβ
κp

, which is below the line s � 2β � κp. Although s � ℓβ�ℓκp�κpβ
κp

does

not come into the play, we cannot obtain the exponents in the shaded region because we are not able
to obtain (1.8) for pκp � 1, κp � 2q due to the limitation of Lemma 2.
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4 Proof of Corollary 1

4.1 Kernel of T �T

Assuming f, g P SpRnq, if γ P p0, n�1
2 q, we have

xT pfqpξ, ηqϕpξq, T pgqpξ, ηqϕpξqy 9H�γ
ξ Hτ

η

� 4π2C 1
�
R

�
U

�
U

p1� |r|q2τ
� �

Rn

srpxnqe�2πipx1�ξ�xnhpξqqfpx1, xnqdx1dxn



�
� �

Rn

srpynqe2πipy
1�ζ�ynhpζqqgpy1, ynqdy1dyn



ϕpξqϕpζq|ξ � ζ|2γ�n�1drdζdξ

�
�
Rn

�
Rn

K�γ,τ px, yqfpxqgpyqdxdy,

where
K�γ,τ px, yq � 4π2C 1τminpxn, ynq|ϕ2�γ,Σpx, yq

and

τminpxn, ynq � χr0,8qpxnynq
p1�mint|xn|, |yn|uq1�2τ � 1

1� 2τ
.

When γ � 0 and τ � 0, one has

xT pfqpξ, ηqϕpξq, T pgqpξ, ηqϕpξqyL2
ξL

2
η
�

�
Rn�Rn

K0,0px, yqfpxqgpyqdxdy,

where
K0,0px, yq � 4π2sminpxn, ynq|ϕ20,Σpx, yq

and
sminpxn, ynq � χr0,8qpxnynqmint|xn|, |yn|u.

4.2 Main proof

Fix 1   p ¤ 2n�2
n�5 . To start with, we write

|xT pfqϕ, T pgqϕyL2
ξL

2
η
|

�
����
�
R

�
Rn�1

�
R

�
Rn�1

Kpx, yqfpx1, xnqgpy1, ynqdx1dy1dxndyn
����

¤
����
�
R

�
Rn�1

�
R

�
Rn�1

�
Kpx, yq � p4π2q |xn| � |yn|

2
|ϕ20,Σpx, yq

�
fpx1, xnqgpy1, ynqdx1dy1dxndyn

����
� p4π2q

����
�
R�R

�
Rn�1�Rn�1

|xn| � |yn|
2

|ϕ20,Σpx, yqfpx1, xnqgpy1, ynqdx1dy1dxndyn
����

�: pIq � pIIq.

We first estimate pIq. Note that����sminpxn, ynq � |xn| � |yn|
2

���� ¤ C|xn � yn|

because when xnyn   0 we have |xn| � |yn| � |xn� yn| while sminpxn, ynq � 0. To proceed, we define
the operator

T pgqpx1, xn; ynq :�
�
Rn�1

|ϕ20,Σpx, yqgpy1qdy1 � F�1pe�2πipxn�ynq|ξ|2 |ϕpξq|2pgqpx1q
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for g P L1pRn�1q. Note that the last equality holds because the kernel of T is of convolution type (i.e.|ϕ20,Σpx, yq � |ϕ20,Σpx� yq). Since ϕ P C8
c pUq, one has

}T pgqp�, xn; ynq}LppRn�1q Àϕ p1� |xn � yn|q�pn�1qp 1
p� 1

2 q}f}LppRn�1q.

Then, using Hardy-Littlewood-Sobolev inequality with 1   p ¤ 2n�2
n�5 , we have

|pIq| À
�
R�R

|xn � yn|
�
Rn�1

|fpx1, xnq||T rgp�, ynqspx1q|dx1dyndxn

À
�
R�R

|xn � yn|}fp�, xnq}LppRn�1qp1� |xn � yn|q�pn�1qp 1
p� 1

2 q}gp�, ynq}LppRn�1qdxndyn

À }f}Lp

x1L
p
xn
}g}Lp

y1L
p
yn
.

To estimate pIIq, it suffices to consider

�
Rn�Rn

|xn|
2
|ϕ20,Σpx, yqfpxqgpyqdxdy � xϕz|xn|f, ϕ pgyL2

ξ
.

By duality and (3.3) with β � 1
2 , we have

|xϕz|xn|f, ϕ pgyL2
ξ
| À }ϕz|xn|f}H�ℓpΣq}ϕpg}HℓpΣq

À p}ϕ pf}HℓpΣq � }f}LppRnqqp}ϕpg}HℓpΣq � }g}LppRnqq.
Thus, we can conclude that

|xT pfqϕ, T pgqϕyL2
ξL

2
η
| À p}ϕ pf}HℓpΣq � }f}LppRnqqp}ϕpg}HℓpΣq � }g}LppRnqq.

One can show the case p � 1 similarly.

Remark. The a priori bound for Tf is }ϕpξqpTfqpξ, ηq} 9H�γ
ξ Hτ

η
¤ C}f}LppRnq with 1�2τ

2 ¤ γ   n�1
2 ,

1   p   mint 2n
n�2�2τ ,

2n�2
n�5�2γ�4τ u or p � 2n�2

n�5�2γ�4τ . In particular, if γ � κp and τ � κp � 1
2 , then

}ϕpξqpTfqpξ, ηq}
H
�κp
ξ H

κp� 1
2

η

¤ C}f}LppRnq

with p P p1, 2pn�1q
n�4 s as τ ¥ 0.

5 A version of T

Let us consider the operator

Tαfpξ, ηq �
pfpξ, hpξq � ηq � pfpξ, hpξqq

|η|α .

We can express Tαf in terms of Tf . More precisely, we have

Tαfpξ, ηq � η

|η|αTfpξ, ηq.

When α � 1, it follows immediately from Corollary 1 that

}T1f}L2
ξL

2
η
À }f}LppRnq � }ϕ pf}HℓpΣq.

The following examples show that it is impossible to have L2
ξL

2
η bound for |α� 1| ¥ 1

2 .
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Example. Let hpξq � |ξ|2. Consider fpxq � e�|x|
2

with α ¥ 3
2 . We will show that it is impossible to

obtain L2
ξL

2
η. Note that

Tαfpξ, ηq � e�|ξ|
2�p|ξ|2�ηq2 � e�|ξ|

2�|ξ|4

|η|α � e�|ξ|
2�|ξ|4 e

�2η|ξ|2�η2 � 1

|η|α

When |η|   |ξ|
1000 , then

|Tαfpξ, ηq| ¥ e�|ξ|
2�|ξ|4 c|ξ|2e�c1|ξ|4

|η|α�1
(5.1)

for some c, c1 ¡ 0. When we square (5.1) both sides and integrate it with respect to η P p� |ξ|
1000 ,

|ξ|
1000 q,

the integral will diverge because 2α� 2 P r1,8q.
On the other hand, let us consider α ¤ 1

2 with the same function f . If η is sufficiently large so that

e�2η|ξ|2�η2 ¤ 1
2 , then

|Tαfpξ, ηq| ¥ e�|ξ|
2�|ξ|4 1

2|η|α (5.2)

After squaring and integrating (5.2) with respect to η in that range, this integral will diverge as 2α ¤ 1.

Now we focus on the case α P p 12 , 32 q. Let us compute the kernel of T�αTα on L2
ξL

2
τ .

xTαpfqpξ, ηqϕpξq, Tαpgqpξ, ηqϕpξqyL2
ξL

2
η
�

�
Rn�Rn

Kα
0,0px, yqfpxqgpyqdxdy,

where
Kα

0,0px, yq � Ipxn, ynq|ϕ20,Σpx, yq
and

Ipxn, ynq �
�
R

pe�2πixnη � 1qpe2πiynη � 1q
|η|2α dη.

By considering the principal value of Ipxn, ynq and using change of variables,

Ipxn, ynq �
�
R

cosp2πpxn � ynqηq � cosp2πynηq � cosp2πxnηq � 1

|η|2α dη

� Cα

�|xn|2α�2xn � |yn|2α�2yn � |xn � yn|2α�2pxn � ynq
�
,

where Cα � �
R

1�cosp2πtq
|t|2α dt   8 as α P p 12 , 32 q.

Therefore, we can write

xTαpfqpξ, ηqϕpξq, Tαpgqpξ, ηqϕpξqyL2
ξL

2
η

�
�
Rn�Rn

Cα

�|xn|2α�2xn � |yn|2α�2yns|ϕ20,Σpx, yqfpxqgpyqdxdy
� Cα

�
Rn�Rn

r|xn � yn|2α�2pxn � ynqs|ϕ20,Σpx, yqfpxqgpyqdxdy
�: pIq � pIIq.

Using the Hardy-Littlewood-Sobolev inequality, for 1 ¤ p ¤ 2n�2
n�4α�1 , we have

|pIIq| À }f}LppRnq}g}LppRnq.

To estimate pIq, it suffices to consider the case for xn. Indeed, we can write
�
Rn

|xn|2α�2xnfpxqgpyqdy � xSwprqr2α�2fϕ, pgϕyL2pΣq,
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where wprq � ipsgnprqq2α�3. Using Equation (3.3) with β � α� 1
2 P p 12 , 1q, we have����

�
Rn

|xn|2α�2xnfpxqgpyqdy
���� À p}f}LppRnq � }ϕ pf}HℓpΣqq}ϕpg}HℓpΣq,

for the case ℓ ¥ κpp2α�1q
2κp�2α�1 and 1   p ¤ 2n�2

n�4α�1 or the case ℓ ¡ κpp2α�1q
2κp�2α�1 and p � 1.

In summary, we have

Theorem 8. Let α P p 12 , 32 q. Suppose f P LppRnq has pf |Σ P HℓpΣq, and ϕ P C8
c pΣq. If ℓ ¥ κpp2α�1q

2κp�2α�1

and 1   p ¤ 2n�2
n�4α�1 , then

}ϕTαf}L2
ξL

2
η
À }f}LppRnq � }ϕ pf}HℓpΣq.

The estimate is also true for p � 1 if ℓ ¡ κ1p2α�1q
2κ1�2α�1 � pn�1qp2α�1q

2pn�2αq .
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