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Abstract

In this paper, we showed that for suitable (8,p,s,f) the B-order fractional derivative with
respect to the last coordinate of the Fourier transform of an LP(R™) function is in H~° after
restricting to a graph of a function with non-vanishing Gaussian curvature provided that the
restriction of the Fourier transform of such function to the surface is in H®. This is a generalization
of the result in [5, Theorem 1.12].

2020 Mathematics Subject Classification. 42B10; 42B20.

1 Introduction

1.1 Fourier restriction problem

The desirable properties of the Fourier transform of an LP(R™) function are crucial in classical har-
monic analysis with application to Kakeya conjecture, Bochner-Riesz summabilities, and partial dif-
ferential equations, see [8}|11]. Hausdorff-Young’s inequality ensures that the Fourier transform of an
LP(R™) function is in L7 T (R") whenever 1 < p < 2. However, this does not give us any information
if the Fourier transform of an LP(R™) function is restricted to a measure-zero subset ¥ < R™. The
Fourier restriction problem, in the most general form, seeks to determine the complete range of (p, q)
for which

1FlslLas) < 1o (L.1)

holds for all f € LP(R™) for a measure-zero set ¥ c R™ with n > 2, where f(1) = S €2 fa)da
Different choices of ¥ and n lead to different ranges of (p,q) and it remains an open problem in
most cases, and the best result currently in R? for parabolas is [10]; and for a higher dimension, see
[6]. We also refer to the reader [3] for the survey on Fourier restriction estimates on different ¥. In
particular, if 3 is a two-dimensional sphere or a compact parabola around the origin, the range of
(p,q) is completely characterized by [2]. It is also worth mentioning that the Tomas-Stein Theorem,
established in [7,9], states that Equation holds for ¢ = 2 and 1 < p < 27:‘:32 with ¥ having
non-zero Gaussian curvature at the origin.

One reason for imposing > having a point with non-vanishing Gaussian curvature is to rule out
“uninteresting” cases. If we consider ¥ to be a hyperplane in R", then the only possible range of
(p,q) is ¢ = 0 and 1 < p < o0. This may suggest that we should consider ¥ having non-zero Gaussian
curvature at origin (without losing generality). In this paper, we will assume that X is a graph of a
function h defined on R"~! with a vanishing gradient at 0 and an invertible Hessian matrix at 0. A
precise statement will be given in Section [2.1

The next step of the Fourier restriction problem is to consider the possibilities of the derivative
of the Fourier transform of an LP(R™) function. In [5], various versions of the derivative Fourier
restriction problem are discussed, with the core idea being to impose suitable assumptions to obtain

(kaf € H—*(X2), or more importantly, qﬁ% € H7%(X) for a fixed ¢. Here, g € H™*(X) means

PLe
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gls € H*(X), and H *(X) is the L?>-based Bessel potential space as defined in Section If
16V fll -y < |f|Lr@®ny, then the trace of V¥ f e H, ?(X) for f € LP(R™). Cho, Guo, and Lee
|1, Theorem 1.1] studied the trace value of f in Sobolev spaces, and G. and Stolyarov [5, Proposition

1.1] used this to obtain a characterization of exponents for which H(ZSVICJ?HH—S(E) < IIflze®ny holds.
More precisely,

Theorem A ([5, Proposition 1.1]). Let p > 1. The inequality HgbkaHH—s(Z) S | flzr@ny holds for all

feLP(R™) if and only if k < s, k < 0p, and 2k — s < Kp, where/ﬁp=”Tf1—”7+3 and0p=%—”7+1.

Moreover, G. and Stolyarov also established some necessary conditions and some sufficient conditions
for

16V  Fli-2(s) < 1oy + 16F [ aecs,) (1.2)

for all f € LP(R™) with fo e HY(X) given ¢ € C*(X), where C*(X) is the space of all smooth
functions with support properly contained in 3.

More precisely, they (|5, Theorem 1.11]) showed that if (1.2)) holds, p > 1, s > 0, and ¢ > 0, then
the exponents have to satisfy

kE < min{s + 1,5 + £}; k< op; 2k — s < Kp; (1.3)
ke .
m < K/p lf k > S. (14)

However, the sufficient conditions do not match with the necessary conditions due to the constraint

k € N. In order to have (1.2, other than (1.3]) and (1.4), they ([5, Theorem 1.12]) additionally assume

that "Tfl — 243 € N and either 2[“72k,| < k, or k < |%2] hold, where [z] is the smallest integer

greater than or equal to z and |z| is the greatest integer less than or equal to x. If 2[£2k,] < K,

and k < |%2] do not hold, then one has to assume that s > k — ﬁ;fﬂ] In particular, if £ = 1 and
s=0,
Theorem B ([5, Corollary 1.13]). Let m be an integer in [2, %5%) and ¢ > -2~ . Then,

Hff)Vf||L2(z) SIfI 2n42 : + ||¢J?||Hf(z)

L7n+3+2m (Rn

for all f e S(R™) and ¢ € CF(X).

In order to remove the constraint k € N, we need to consider an alternative for =2, and the Riesz

fractional derivative, defined by [(—A)*f](€) = ¢, |€] i (€), would be a good choice. The question
now becomes:

Question: For what ranges of (3, p, s,£) does the inequality

I(—=A)2 Fli—e(s) < Ifllony + 6 | mecsy

hold true for f e S(R™)?

In this paper, we will focus on the derivative along the transversal direction. We remark that Theorem
[A] holds in this case by replacing k by B with the aid of Lemma[I]

1.2 Results and outline

Our first main theorem is to provide a sufficient condition so that the fractional derivative of f is in
L2(%).



Theorem 1. Suppose that f € LP(R™) has f|g € HY(Y), and g € CX (). Ifp > 1, 28 < Ky, 28 < 0y,
0<B<1, andﬁ;%, then

m\\

1. we have (— Agn) = cn|m e L3(%) and

é ~ ~
lp(=A¢, )2 fllL2(z) Snp.s. y oSl mes),

where —A¢, denotes the Laplacian with respect to the &,-variable.

2 fe LX) and

2. if p =1, we have pi3

of A
O3] Snpe Mlaraey + 10l
nllL2(x)
When p =1, we additionally require £ > = obtammg the above result.

In particular, we have a continuous analogue of Theorem [B| when 5 = 1. Moreover, this result
can be applied to n = 3 and n = 4, which is not covered by Theorem [B] From Theorem [3] the best
possible range of § is [0, 2] when n = 3; when n = 4, the best range of § is [0, i]; and when n = 5,
the best range of 8 is [0, 1] with p = 1, and we also recover the result in [5] that the (usual) derivative
of f on ¥ isin L? if p =1 and ¢ > 2 from the second statement.

The following theorem shows that (1.3)) and (1.4)) are almost sufficient conditions for (1.2)).

Theorem 2. Let s, {, kp, 0, and § be non-negative numbers. Fiz ¢ € CL(X). If

B <min{s +1,s + {}; B < op; 28 — s < Kp; (1.5)
Bt .
1.
s +€ ﬁ HP Zfﬁ > S ( 6)
hold, S+2 T2 Shp whenever k, < 20 and > s, and p > 1, then

[6(=2¢,)72 Fll-ss) < Mooy + 167 meqny

holds for all f € S(R™) that f|g € HE(E), In case of p € N, we have

S le@ny + 16F | meeny
H=+(%)

%

ocs

While the results in Theorems |1| and |2 provide bounds on the derivatives of f , they are largely
derived by analysis of the associated difference quotient

~ ~

£eU cR" ! and ne R\{0}.

The first author proved LP? — L? estimates for T' under the assumption that f = 0 on the sphere
in [4]. Here we extend the bound to all cases where the restriction of f to ¥ is sufficiently smooth.

Corollary 1. Suppose f € LP(R™) has fls € H'(S), and ¢ € CL(%). If1 <p < 2222 apd £ > e
then

16T fllrzrz S [flLe@e) + 16 mecs)

The above estimate is also true for p =1 if £ > 2&1 ;= 27:;14.




The condition ¢ > 52—
P

7 is necessary due to “shifted Knapp” counterexamples identical to those in
15].

In fact, to derive the bounds for the derivatives of f , we consider an operator using 7', namely,

Suf(€) = / W) Ty (TF(E, ) (—r)dr = / W(=1)Fgsn (TF (€, ) (r)dr (L.7)

R

The term —7 is to eliminate the negative sign obtained from the Fourier transform, and %, _,, = %,
denotes the one dimensional Fourier transform from n-variable to r-variable.

With S,,, we are able to prove the following theorems.

Theorem 3. Suppose f € LP(R"™) has f|g € H(X), and ¢ € C*(X). Under the hypothesis in Theorem
with B # 0, for all b€ R we have

sup  [@Syze-14ivy flr2s) S | flre@ny + 10f e (s)-

lwllLos <1

Theorem 4. Let s, £, kp, and o, be non-negative numbers and B > 0. Fiz ¢ € CF(X). Under the
same hypothesis in Theorem[d, for all b€ R we have

sup [ @Suza-rvivn fla—o(m) < |l ooy + 16F e (1.8)

lwl o<1
whenever f € LP(R™) with f|g e HY ().

We remark that the implicit constants depend on s, ¢, s, 0p, and §, but they are independent of
b. Moreover, it suffices to consider f € S(R™), the space of Schwartz functions on R™, thanks to a
density lemma [5, Lemma 3.10].

Theorems 1] and [2| follow from Theorems [3| and 4] by choosing w = (sgn(u))? and w = 1. This is
because one can show that

Si(sgn(uyuys—1 f(§)

_ 27T3/2,8_1 |.’I]n|’86_27Ti(wl'€+wnh(£))f(flf/7 xn)dfﬁldl’n ~ [(_A§n)
Rn

and similarly one has S;,s—1f ~ [28f]s(¢) if B € N. From this calculation, we have to exclude
the case f = 0 in Theorem [3] but we can include § = 0 in Theorem [1| because it follows from the
hypothesis.

The organization of the reminder of this paper is as follows. In Section [2| we state the assumptions
on h, provide definitions of different types of Sobolev spaces, and compute the kernel of .S,,. In Section
the proofs of Theorems [3|and [4] are shown. The proof of Corollary [I]is given in Section[d] In Section
Corollary [1] for a variation of T is given there.

2 Preliminary

2.1 Notations

In this paper, we assume that ¥ is a graph of a function h defined on R*~!. Let U be a neighborhood
of the origin in R"~!. We assume that the function h € C*(U) such that h(0) = 0, VA(0) = 0,

det(FZh(O)) # 0, and the second differential of h in U is sufficiently close to the one at 0.

ag2

Since the roles of £ and 7 are different, we consider T'f in anisotropic Sobolev (Bessel potential)
spaces. To be more precise, if g is a function defined on R"~! x R and 7,7 € R, then we define

o€ gy = [ [ @+ D0+ )P o omalan )P,
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where F (¢ ) (2,r) denotes the Fourier transform from (&, n)-variable to (z,r)-variable. Moreover, we
will consider negative homogeneous Sobolev spaces in {-variable and inhomogeneous Sobolev spaces
in 7, and the inner product of such spaces are given by

02y = [ [ [ Frron(en) ZaorinlCrlle = B (0 e dedcn

if v € (0, ”7_1) We have used the fact that the negative homogeneous Sobolev space has a norm given
by
90y = Oy [ 16 BE)REAIONE = (7~ e
X
provided that v € (0, 25%).
On the other hand, we also assume that f € LP(R™) and f|2 € HY(X), where the norm of H*(X) is
given by

Wl = [ |Fenalol€ MO + el

In this paper, the implicit constant in < may vary from line to line.

Before we move on to calculating the kernel of S¥S,,, we shall recall the notations of some useful
exponents in this paper:

n n+1
op = — — ;
p P 2 ’
n+l1l n+3
Kp 1= — .
p 2

2.2 Computing the kernel of S* S,

Let us recall S,,, where w is a complex-valued bounded measurable function.

Suf(€) = / W) Ty (TS (6, ) (=) = / W(=r) Fyon (TF (€, ) () dr

R

We first compute the Fourier transform of T'. To do so, for f € S(R™),

e—Qﬂiz,Ln -1

%0
lim / / e—7r2£172627ri7]r( )e—2‘n’i(z'~5+wnh(§))f(xl7mn)dm/dxndn
—o JRn

e—0+ n

F(Tf(E,-))(=7)

lim 27 | By, o(r)e 2@ ekl £ (0! o Vda! d,,

e—0t R
where 0 .
1 (=r—y)? TVE
By, e(r) = —/ e  d =/ e at.
\E —In 717\1/‘Etr
Note that as e — 07, we have
NG if0<r <z
. —/T, if &, <r <0;
S$r(xy) = /mly (r):= lim E r) =
(o) = VAL, ()= Jim B e =4 N0 e
0, otherwise.

Therefore, using Dominated Convergence Theorem, we have

Fo(TF(E,))(—r) = —2mi / Sp(an)e 2@ ErTn ) £ (0! 3 V' day.

n



We are now able to compute the kernel of S%S,,. For ¢ € (0, "7_1), we use homogeneous norm, and
have

(6Sufs Swg)s
/ / H(6)Su FOHOSug Q)€ — ¢+ dedC

- / SE)w(r) Fysr (TF (&, ) (=) A(Qw (') F s (Tg(C, ) (=) € = (2" Hdrdr'dgdC
UxU JRxR
¢
U JR
R

g)qs(g)w(r)w(r’)< /n sr(mn)e—Qwi(J;l'f-l-l'nh(g))f(x/7 xn)dm’dm)

J.
X

~ / (/ e—zm(zaamh(&))ezm(y/.¢+ynh(<))¢(§)@|§ _ CI%_"Hdgdg)
xR UxU

< [wiva, <r>dr) ([ oL 00 ) 1)

xR
</ ST(yn)eQTri(yl'<+ynh(<))g(y/’ yn)dyldyn> |€ _ C|2Z—n+1d7adr1dé—dc

By denoting W (zy) = [ w( 2, (r)dr, the kernel of $*S,, (in H*) can be expressed as

Ko(,y) = 6y (2, )W (2,) W (yn),

where

~

Py s(z,y) = / 2@ e+ anh(©) 2mily’CHunh(O) () 3( )€ — ¢ HLdCdE.
UxU

For (¢S f, ¢Swg>L2(g), its kernel is

Ko(z,y) = 6.5z, y)W (2,)W (yn),

where

~

Pos(w,y) = / e Pl e N 6) de.
UxU

2.3 A useful lemma

The following version of Stein-Weiss inequality is based on the proof of Theorem 1.16 in [5].

Lemma 1. Let o, 8 € [0,251], v € [0,250), and B(f,9) := [gu g K(z,y)f(2)g(y)dady. Suppose
that the kernel K satisfies

(K (2, )] < (L4 [z)* 71+ )™ 7 (1 + |z —yl)

for all x,y e R™. We have
IB(f, )| < 1f e @mnlgl e @n)

provided that

ep>1l,y=>a,0p>a+p, fip>2a—7+ﬂ; or

op:landw?a,”gl a+f, 2= = 2a —v + 6.

We remark that Theorem 1.16 in [5] requires that a and S to be integers because they are the order
of partial derivatives.



3 Proof of Theorem [3] and 4]

3.1 Proof of Theorem [3
3.1.1 Casep>1

Suppose 5 > 0 and b € R. We start with a lemma.

Lemma 2. Leta€ (—1,0), 0< A < "7*1, >0, and w e L* (R; C) with norm at most 1. We have

|6SuativwflF-acmy SN0fluewy sup |9Suzasivoin fla—2a-eim) + 1170 (en)

Jwlpoe <1

provided that k, = 2a — A+ 2, 0, > 2a+ 2, A > a, and everything on the right-hand side is finite.

Proof. We first observe that for complex-valued w = wg + iwy, where wgr and wy are real-valued
bounded measurable functions, we have

Syativg f(€) = / P+ wp(r) + iwr (r)] Fy o (TF(E,)) (—r)dr

R

= Oyatibyp f(é-) + iSu‘hL“’wa(f)'

By taking the norm, one has

sup ||¢Sua+ibwaH—A(Z) <2 sup ||¢Sua+ibw/fHH—A(E).

lw] Lo ricy<1 | oo (mymy <1
Moreover, L*(R;R) = L*(R;C), so we can focus on w € L™(R;R) with |w]p»mr) < 1.
Note that one has
<¢Su’1+ibwf7 ¢Sua+ibwf>H7A(Z)

— W ()2 + W ()2 A
Z/Rn y ¢2A,2($»y)<| b(Tn)] ‘2F| b(Un)l —;R(fmyn)>f(x,xn)f(y’,yn)dydx

—: (I) + (II) — (1),

where

Wan(xn) :=/Rr“+ibw(r)\/77r1mn(r)dr,

and R(zn,yn) = [Wap(2n) — Wap(yn)]*.
The terms [(I)| and |(I])| can be controlled similarly, so it suffices to consider |(I)|. By writing

(0] < o (sl )

one has

| el
H—24-¢(%)
If we define 4

w(u) = (u_a_lw(u)Wa,b(u) + u_“_l_lew(u)Wa,b(u)),

then [ u? TG (u) /Tl (u)du = §|Wap(2,)|? and |@] per) < 1 because [Wep(u)| < |ul*™ and
|w||pe < 1. Therefore,

(gt

| ~ [0S,msrsnin Liranegsy S S [9Summrsiinfl-zact(sy.
H—2A4-¢(%)) lwlre<1



The condition a € (—1,00) is used to obtain an estimate for |W, y(u)|, but the relation between p, a,
and A is not used.

To estimate |(I11)], note that |R(xpn, yn)| < |20 — yn|? max{|x,|??, |y, |**}, and rewrite (I11) as

R [ [Z2]yn | |732n‘$‘y"‘$2‘$"‘

(ITL) + (I11y) + (I113).

((L11)]

A

- )@A,zu,y)R(xn,yn)nf(x',xn>||f<y',yn>|dyd:c
[yn|Z2|zn ]

One can observe that if |, | = 2|y, | or |z,| < 2|y,|, then

~ 1

1624 5@ 9) R(@n, )| S (U4 Jzn) ™A+ Jya) ™A+ |2 — yau) 272077
while if @ < |yn| < 2|2y|, then
~— n—1
|¢2—A,E(I7 Y)R(wn, yn)| S (14 |xn|)aﬂ4(1 + |yn|)a7A(1 + [Ty — yn|)A+27T7

In order to apply Lemma [I} we require A > 0, 2 + 2a < 0p, and 2 4+ 2a — A < &, in the first case;
and A > a, 2+a < 0p, and 2a — A+2 < K, in the second case. Therefore, we need A > a, 2+2a < oy,
and 2a — A + 2 < K, and the conditions are satisfied by the hypothesis.

Applying Lemmato (II1y) and ([II5) with 8 =0, 8 =2+ 2a, vy = A and to (I115) with § = a,
B=2,v=A,fori=1,2,3 we have

((LLL)] < 110 zen)-
The case A = 0 follows similarly. O

Let us go back to the proof of Theorem [3] Assume 5 € (0,1]. By applying Lemma [2[to A =0 >
a=p—1>—1, we have

~ 1 1
6Susrsmuflias) < 1671k s 16Susremuld o + 1flzo@n (3.1)

lwlre<1
with k, > 28 and o, > 20.

We also need an a priori estimate.

2n+42

L=, we have

Lemma 3. For1 <p<

sup [0S usn =1+ (uy [l = 2y S 1 flLr@r)-
lwl o (r;cy<1,b€R

Proof. Let us write Wy (r) :== W, _1,(r) = [ u™ T Pw(u)\/T1, (u)du.

Since |w|L» < 1, we have

/u“"flﬂbw(u)ﬁlmn(u)du < |xn P
R

Consider the bilinear form B(f, g) = (¢S xp—1+iv (4 [ (;SSunprww(u)g)H_m,,(Z). Its kernel is bounded
by

~ _— n—1
10 ey 2 (@ )W p(20) W p(yn)| S (14 [2n )7 (14 [yn]) ™" (14 |20 —yn)™ 2 (1 + [z ])™ (14 [yn])™
_n—1

S (A4 |z —yn|) 7

and by the aid of Lemma [I] we have
||¢Su"“l’_l+ibw(u)f”H.*"P (%) < ”f”Li"(R")-

When k), = 0 (i.e. when p = %)7 we use the Hardy-Littlewood-Sobolev inequality instead. O



Using Linderslf Theorem by regarding (1 + |¢])™*% as a weight and applying to the function £, set

6 € [0,1] such that 28 —1 = (1 —0)(k, — 1) +60(8 — 1), i.e. 0 = 'Z;%Zﬂﬁ = ’?pizg’ we have

H¢5u2[3—1+ibwf”1_'1,g(z) S sup Hd)Suﬁ—l“bwf”%?(Z) sup H(jﬁsunp—l%bwfﬂi;_e

w]reo<1 |wlze<1

~ 1 1
< (167150y S 16Suzamsvivn Fl—e sy + [ Flioen) 115G

lwlpe <t

SHsbfll(ﬁe(z)llfllﬂ?w)Jr‘ sup || @Suzs-1+iva f | Gr—e sy 1 F I Lo Gy + 1 o iy

Jwl g <1

(3.2)

— _ _kpB
Here, ¢ = (1 —0)k, = e R
We can obtain the estimate for supy,, .. <1 [@Sus-1+ivw flm-¢( 2) using (3.2 . Let C be the implicit
constant in M suppy), . <1 |19Su2s- 1+1bwaH vz < (20)™ = HfHLp rn), then we are done. If not,

i.€. SUP|y|,» <1 H¢5u2ﬁ—l+zbwf”H—Z(Z) > (20)1 7| fllrny, then (3.2) implies

sup [ ¢Sys-14i fl ey < CUSF (sl 1 o fimy + 15 Do em) (OIS I famy) ™

ool oo <1
< 1570 0
S @Sl ee sy + 1712 @y

Thus, we have

| lt“'up ) |#Suzs—1tiv i fla-e(s) S N0flmesy + 1 fle@ny, (3.3)
wi o<
forallbeR, £ > 5 given that f e LP(R"), k, =228, p>1and 0 < 8 < 1.

Plugging 1] into (3.1)), we have
~ 1 ~ 1
H ﬁupq lpSus—1+ivi fllLoey S N1 ey (I0F e sy + 1 f e @) + [ flle@n)
w|po <
~ o f ey + 1f e n)- (34)
This finishes the proof of Theorem

3.1.2 Casep=1

When p =1, k1 = "; and ”pfﬁ = (oo )Qﬁ, thus, the argument in Lemmais no longer true.
1-7

n—

Lemma 4. Let € > 0. We have

sup IS umi=1+ivep(uy fla—r1-2 () < | flLr@n)-

”w”LJ:(R;C)<17b€R
Proof. Fix € > 0. Note that for f € L*(R"), we have

IS urr—1+ibas(uy f |12 (x)

= Héﬁ(f) VVM—1,b(Cﬂn)6727”(7”’@”‘”"h(f))f(:n'7 xy)dz'dz,

H—nl—a(Rn—l).
We will prove that

S [u(R™)]

H(b(g) / Wmfl,b(mn)6_2m(w’€+xnh(€))M(dxlv dx.,)
n H—ml—s(]Rn—l)




for all Borel measures p with |u(R™)] < 1. Then the lemma follows from taking du = P
L+ (R™

In this case, it suffices to prove for the delta measures because the delta measures are extremal
points in the unit ball of Borel measures. Let the delta measure be 0(,/ .., ). We have

H¢(§) /]R Wmfl,b(mn)e_QWi(xlf+xnh(£))5(1'7%,) (dz’, dxy,)

H—r1—¢ (Rn—l)

= Hﬁb(f)Wm—l,b(:L’n)e2“i(m'5+1nh(£))“
H—'ﬁ—E(]Rn—l)

< (U [t o()e 2rEermm@n) o

~ (14 ) ( [ s
Rn—1

2

Fe(o(@e e ) ay)

2

< (1t Jaal)™ (14 [a]) ™ ( e |y|>2“12€dy) <1 = |5 ay (RY)]

Rn—1
We have used the Van der Corput Lemma to obtain (1 + |z,]) " in the last line. O
If we set 0 = ';1;2;, which is in [0, 1] provided that 0 < § < 1 and 28 < k1, then Equation (3.2)
holds if ¢ > Nﬁ'ilﬁ + 51656 > ,fj’ilﬂ and p = 1; and this implies (3.3) and (3.4) whenever ¢ > lfj’ilﬂ,

1
0 < B < min{l,x;/2}, and p = 1.

3.2 Higher power of
For 8 > 1, one can take A > a = 8 — 1, we have

|6Sua-rsivn fl3-aisy S N6Flmeesy  sup  [@Suza-revi flu—2a-2(s) + [ 120 (an)-

[wllpe<1

Interpolating this with Lemma [3] we have

[$Suzs-rsa flr-2a-c S | f Lo @n) + 10 erecs)

provided that 8 € [1, %2] (which is less than 2F1), k), > 28 — A, and o), > 23, { > K:fﬂ (8 — A), and
B8 —1< A < f hold simultaneously.

Indeed, if we take A =a = 3 — 1, we have

Theorem 5. Suppose f € LP(R™) has f|g € HYX), and ¢ € CL (). If kp = B+ 1 and o, > 20,

625:15 andléﬂé%", we have

sup  |¢Sus-1rive fli—s+icmy S | Flooeny + [6F | res)

Jwllpoe <1,beR

and

sup ||@Suze-rvivy fa-241-0(5) S [ flLr@n) + [0 me()-

Jwl e <1.beR

For % < B < Kp, we would apply Lemma [2to a = %” —1 and 24 + ¢ = kp. Therefore, one needs

2A = kp — € > kp — 2 = 2aq, that is, £ < 2, and the best possible we have is

2

||¢Su(np/2>—1+ibwaH_ CELp. Sloflaesy + 1fe@ny

given that o, > K, and K, = /.
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By writing

98 us-seiva flar—s() = 195, 5p s, FI] —epue N0Sumpseinn Fl7 s

with 8 = 26 4 r,(1 — 0) and s = (“25)0 + K, (1 — ) = LBtBrp—thp e have

2 Kp
|pSus-1+ivw fla—sz)y S 1 flee@n) + |0f e (s)-

Theorem 6. Suppose f € LP(R™) has f|g € HY(X), and ¢ € CX(X). If 22 < B < Ky, £ < min{k,, 2},
and o, > Kp, then we have

sup [ @Sus—rvwn fla-s(z) S [ Flo@n) + 16F|mes),

el Lo <1,beR

LB+Brp—LlKp
Kp .

where s =

On the other hand, instead of taking 24 + £ = £, if we take A =a = %2 — 1 and set 24 +( > &,
(i.e. £ = 2), using the embedding of Sobolev spaces and Lemma we have

S6flmee) sup N6Sysp=rvvi fla-2a-e(z) + | F 7o)

||¢Su("'1>/2)_1+ibwa2
H ol e <1

.
R

S leflmecsy sup N6Symp=reviy fla=ro(m) + 1 £ @r)

Jwlz-<1
< 712 2
< oflge + 1f12r )

with the conditions x, > 2 and o, > x,. Then, by writing

”QSSuB*H'“’waH_S(E) = Hd)SuNTp—1+7‘,bwf”iI1_%’(Z)H(j)su’cpfl'”bwf”}q_—eﬁp ()

with 8= 220 + k(1 —0) and s = (52 — 1)0 + k(1 — 0) = Wsi”_%’, we have

|6Sus—1+ivw fl o (2) < | Floc@ny + 165 | erecsy-

Theorem 7. Suppose f € LP(R™) has f|g e HY(Y), and ¢ € C* (). If LB <Ry, 022, Ky =2
and o, > Ky, then we have

sup  [|¢Sus—rsivw fla—s(m) S 1 floo@n) + [6F | mecs),

wl oo <1,beR

28+ Brp—2kp

where s = —
P

3.3 Proof of Theorem [4]

To obtain Theorem {4 we assume that ((1.5) and (1.6) hold. If 5 < s, then one can apply Theorem
to conclude that (1.8) holds. In particular, 8 < s includes the case k, < 8 < o, due to the

inequality 26 — s < kp. In the remainder of this section, we only consider the cases § > s and
0 < B8 < Kp. Note that for fixed ¢, ,, and 8, then s > max{0,5 — 1,3 — ¢, w} if 28 < Kp;
P

and s > max{0,8 — 1,8 — ¢, erB::*M", 25+ﬁ::72'§” 208 — kp} if Ky < 20.

3.3.1 When 0</¢<2:

The first subcase is 0 < 8 < min{ :’jfz, “2}. In this case, we always have 0, > k), = 2 and { > %
P P

11



If k, < 2, then we have min{-"

/{+Z’2

< 1 and ( . ) holds by Theoreml

If kK, > 2 and 0

< 1, and Theorem I allows us to have CIf
>2and 1< /?<
<1,

When 2 < k) < 4= 17forO B <

+E’2}_N+Z
“1)

f <1, then mm{
2

> 1 whenever x, >

’ +Z ’ 2 Z 1
mln{n vl 2 and we can apply Theoreml When &, > r 7, we need to conmder 0<p<1
and 1 <8 < mm{ +€7 “2}. For 0 < 8 <1, we apply Theorem for 1 <8< mm{ﬁ 2 2}, we also
have k, 228> 1+ and £ > 7—66 > K”—f, thus we can apply Theorem
The second subcase is mm{ﬁ B < B <
If mm{ +€’ 2} = %2, then £ > k,. Then for 8 € (%2, k,), one just requires s > 2 — &, in order

to have More precisely, if 7’1 < 1 (i.e. kp < 2 only, other situations imply &, > £), one has
Sup”w”bbél |‘¢Su»ip/2—l+ibwaL2(E) S ”f”Lp(Rn) + Hd)fHH’fp (]Rn). By interpolation, we have

||¢Suﬁfl+ibwaH* H¢S rp/2— 1+1bwaL2(E H‘ZSS rp—1+ib f| —ﬁp(z)

with 3 = %2(0) + k(1 — 0) and s > 0(9) p(l —60) = 28 — k. Thus, we can conclude that (1.8))
holds if 3 € (7”, kp] and mm{n R =

If min{-= . +Z

or 2 < K, < 745 and £ € (1,2]), then using interpolation as above with 3 = :’jre (0) + Hp(l —0)

and s = k,(1 —0) = MZ’_EK”, we can conclude that (1.8) holds. We now consider &, > T1 with

7
le ( 2]. In this case Z—K:p < 2. For %2 < 8 < Ky, we can directly apply Theorem@ For

7
> f and maX{O B—1,8—0 B Br=tiny _ 31 e can apply

K

Theoreml For —np < B < %2, we have max{0,5— 1,8 — ¢, erB:’:*Z“P} = BHBrp—try Therefore,

Kp

7”} = +E’ then k, > ¢. If H’Z’fe < 1 (é.e. when K, < 2, or K, = 2 and £ € [0,1],

tipl
’;'-i+€s
/

~p+€ < B < /—@p, we have

by interpolation as in the case above with 8 = 1k, (0) + 22(1 — 0) and s > w, we can
D
conclude that ( . ) holds.

3.3.2 When {>2

The first subcase is 0 < 8 < 2 . We have o, > K, = 20 only.

If K, < 2, then observe that £ > 2> k), > - ’ZB . This allows us to apply Theorema

If K, =2, for 0 < B <1, wehave £ > 2 > ol 2 “”B , and (L.8) holds by using Theorem For
28 =

1<8< we also have £ > 2 > H:f 5 and K, = ﬁ + 1. Therefore, . ) follows from Theorem

g =T
The second subcase is %‘7 < B < Kp.
If k), = 2, follows from Theorem |7| directly.
If /@p < 2 we have % <1land ¢ > 2 > k,. In fact, we are in the same situation as in the subcase
- +€’ 2 21— —" in 0 < ¢ < 2. Therefore, we can conclude that holds.
This finishes the proof of Theorem [

Remark. We can see that the conditions on s are sufficient to have and sharp in all cases but
2[3+,(3Hp—2mp

min{ -

{>=2and 1< ”2—” < B < Kp. It is not sharp in the sense that we addltlonally assumed s >

of which the lower bound is strictly larger than W’zi”_m if £ > 2. See Figures I and I for more
P
explanations.

12



Ki‘fz, %2} < 1, we directly interpolate the points (¢,0) and (kp, ). The
region bounded by the bold lines is the region of all exponents that we can obtain, and it is optimal.
The case £, < 2 and £ > 0, the case , > 2 and £ € [0, 1], and the case x, € [2, 75;] and £ € (1,2] are

in this situation.

Figure 1: When ¢ = min{

Figure 2: The case kp > % and ¢ € (1,2]. The line joining (1, 0) and (%Hp, w) iss=p-1,

‘
and the line joining (2 k), W) and (kp, kp) is s = w. Theorem@allows us to obtain
g P

Kp (’{pfz)

20 2
the exponents between (uTle7 £k, —1) and (%2, (:@,,27—6)) The region bounded by the bold lines is
the region of all exponents that we can obtain, and it is optimal.

the exponents between (

) and (kp, kp), and an interpolation argument allows us to obtain

13



Figure 3: This figure shows a case of £ > 2, k, > 2, and k;, > £. The line connecting (1,0) and
(kp/2,kp/2 — 1) is s = B — 1, the line joining (k,/2, kp/2 — 1) and (kp, Kp) is s = w, the

dashed line is s = w, and the line below the dashed line is s = 23 — x,,. The region bounded
by the bold lines is the region of all possible exponents that we can obtain, and the shaded region is the

region that we cannot obtain using Theorem as we are not able to obtain (1.8) for (K_Tlnp, Z_Tllip —1).

Figure 4: This figure shows a case of £ > 2, k, > 2, and ¢ > k,. The line connecting (1,0) and

(Kp/2,kp/2 —1) is s = B — 1, the line joining (k,/2, kp/2 — 1) and (kp, kp) is s = w, and the
P

dashed line is s = W, which is below the line s = 23 — £,,. Although s = W does

not come into the play, we cannot obtain the exponents in the shaded region because we are not able

to obtain (1.8) for (k, — 1, K, — 2) due to the limitation of Lemma
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4 Proof of Corollary

4.1 Kernel of T*T
Assuming f,g € S(R"), if v € (0, 5), we have
ATHI(S T(9)(& M) iy uz
_47r2C'/// +|r))? (/ se(x n)e—Qﬂi(?ﬂ'~£+xnh(§))f(xl’xn)dx,dxn>
. ( / L orlym)e™ '“*’“h“”g(z/wdy'dyn) HEHOE — ¢[2 "+ drdCdg
= /n L Ko@) f@)gly)dedy,

where —
Kf'y;r (l‘, y) = 47T2Cl7—min (xn» yn)¢2_%2(ma y)

and

(1 + minfjay,|, [ya|})' 7 — 1

Tmin(xnvyn) = X[0,%0) (xnyn) 1+ 927

When v =0 and 7 = 0, one has

TUNEMeE), T(9) (& m(E)rzrs = / Koo(z,y)f(x)g(y)dzdy,

R xRn™

where -
Koo(z,y) = 471'25mm($m yn)¢2072(:c, Y)
and
Smin(Tn, Yn) = Xﬂxxj(xnyn)nﬁIQ|an|yn|}

4.2 Main proof

Fix 1 <p < 2;1;52

KT(f)o, T(9))r212]

/ K(z,y) f(2',20)9(y , yn)da'dy dzy, dyy

. To start with, we write

n—1

2

[K(w y) — (4n°) ————¢? oz(w,y)]f(w',wn)g(y’,yn)dx’dy’dmndyn

Rn—1 Rn—1

Tn|+ |Un
2) / / Mdﬂoyz(m?y)f(m',xn>g(y',yn>dx'dy'dxndyn
RxR JRn—1xRn—1

4
+ (47 5

=:(I)+ (II).

We first estimate (I). Note that

|n| + [ynl

D) < C|an _yn|

Smin(xnv yn) -

because when z,y, < 0 we have |z,| + |yn| = |Zn — Yn| while Spmin(zn, yn) = 0. To proceed, we define
the operator

~

T(9)(@, &n; yn) ¢=/ o (@ )9y )dy = FH (e 2minvlFg()25) (o)

Rn—1
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for g € LY(R"!). Note that the last equality holds because the kernel of T is of convolution type (i.e.
¢*ox(,y) = ¢ n(z —y)). Since ¢ € CX(U), one has

HT(g)('vxn;yn)HLp(R"—l) §¢7 (]- + |xn - yn|) (n= 1) 2)||f||L7’ Rn—1)

n+2
+5 )

Then, using Hardy-Littlewood-Sobolev inequality with 1 < p < we have

'WSAR %M £ )19 o)) (@) da dyndz,

C(n—1)(i_1
3 /R ® |zn = ynlll £, xn)HLP(R”—l)(l + |Tn = ynl) (n=G, 2)Hg('a yn)HLP(R"—l)dmndyn
X

< HfHLP Ly, ”9HL ,LE

yn

To estimate (II), it suffices to consider

By duality and ( with 8 = % we have

Kelznlfs 0 @1zl S 0lenl fl-ec2) |99 e ()
S (16l + 1o (1691 mes) + 19 Lo ger))-

Thus, we can conclude that
KT(1)é, T(9)d>rzr2| S (165 1are(sy + 1 1o @) (169152 sy + 9] Lo @))-

One can show the case p = 1 similarly.
Remark. The a prz'om' bound for T'f is H(b(g)(Tf)(f,n)HngH; < C|f| e wny with % <y < ”7*1,

1 < p < min{ 2n+2 2n+2

n+2+27’ r5— 27+4T} Or'D = 745 2y+4ar"

[o()(TF)(E:n)l o < Ol e @m)

In particular, if v = kp and 7 = K, — %, then

2(n+1)
n+4

with p e (1, Jas T >=0.

5 A version of T

Let us consider the operator

~

(&, h(€) +n) — F(&,h(E))
|| '

Tof(&m) =
We can express Ty, f in terms of T'f. More precisely, we have

Tof(€mn) = = |a Tf(Em).

When a = 1, it follows immediately from Corollary [1| that

||T1f”L§L$7 S N fllpe ey + 10 f [ ey

The following examples show that it is impossible to have LgLfI bound for |ao — 1] = %
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Example. Let h(§) = |£|?. Consider f(x) = e 11 with o > 3. We will show that it is impossible to
obtain LgL%. Note that

—EP=(€P+m)® _ -1 —lel* -
€ v —e _ o lelet e

||~ ||

mEP—n® _q

Tof(&mn) =

When |n| < %, then

|2_|f‘4 C|§|26_C,‘£|4
et

for some ¢, ¢’ > 0. When we square (5.1) both sides and integrate it with respect to n € (—%, %),
the integral will diverge because 2a0 — 2 € [1, 00).

T f(Em| = e (5.1)

On the other hand, let us consider o < % with the same function f. If n is sufficiently large so that
e—2nlE*—n* < 1, then

1
2[n|®
After squaring and integrating (5.2)) with respect to n in that range, this integral will diverge as 2a < 1.

o f (€, m)| = e 16718 (5.2)

Now we focus on the case a € (3, 3). Let us compute the kernel of T#T,, on LZL2.
Ta(H)Emb(€), Talg) (& md(E))r2rs = /R . Koz, y) f(2)g(y)dzdy,
'VLX n

where —
K&O(xa y) = I(xnv yn)¢20,2(m7 y)

6727”;1”17 -1 627riyn77 -1
I(zn, yn) =/ ( )Q(Q )dn.
R ul

By considering the principal value of I(x,,y,) and using change of variables,

and

Han, ) = [ 5@ @0 = yn)n) = cosmyan) = cos@mann) +1
; =

= Ca[|xn|2a_2xn + |yn|2a_2yn — |zn — yn|2a_2(33n - yn)]:
where Co = [, 1_%2(37”36& <wasac(3,3).

Therefore, we can write

(Ta(F)(Eme (&), Tal9) (& mP(E) 212

= / Coz[|xn|2a721'n + |yn|2a72yn]¢2072(1,7y)f(x)g(y)dfdy
R” xR™

—Ca o [0 =y (20 — yn)16%0 £ (2, y) f (2)g(y)dwdy
TLX n
=: (I) + (II).
Using the Hardy-Littlewood-Sobolev inequality, for 1 < p < nﬂziv we have

[(ID)] < 1 flze @ gl Lo en)-

To estimate (I), it suffices to consider the case for z,,. Indeed, we can write

/n |xn|2a72xnf(x)g(y)dy = <Sw(r)r2"‘*2f¢a §¢>L2(E),
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where w(r) = i(sgn(r))?* 3. Using Equation (3.3) with 8 = a — 1 € (3,1), we have

/ ’ Jon 22, f(2)9(y)dy| < (| Flzo@n) + 165|168 e sy,

Kp(2a—1)

plaa—l) 2n+2 kp(200—1)
S50t 1 or the case ¢ >

ntda+i 5y —2a+1 and p = 1.

for the case £ > and 1 <p<

In summary, we have
Theorem 8. Let a € (1,2). Suppose f € LP(R") has f|§] € HY(X), and p € CX(X). If £ > %

and 1 <p < 222 then

16TaflL2e2 S [floe@n) + [0f1me(s)-

k1(2a—1) _ (n—=1)(2a—1)
2k1—2a0+1 = 2(n—2a)

The estimate is also true forp =1 if £ >
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