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From the Numerical Analysis Bench:

Error Analysis of Overset Finite Element Methods for Aerospace Problems

-

High Order Finite Element Methods (FEM) are becoming popular in CFD. Overset
Methods are important in problems with complex geometry (design). Schwarz Iteration is
usually used to produce the overset approximation.

Talk Outline:

I. Survey known theory for Schwarz/Overset/FEM methods.
II. Theoretical Analysis of Direct Solve FEM/Overset.
III. Theoretical Analysis of Least Squares FEM /Overset
AIAA Aviation Denver Co. Thursday, June 8, 2017 (2:00-5:30 PM).

(Don French in collaboration with Jack Benek and Chris Schrock).



Inviscid Supersonic Flow Computation in a Complex Geometry
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Classical Schwarz Iteration (1D Description):

{ Solve LU = f on © = [0,1] with U(0) = U(1) =0.

Schwarz Iteration on Overlapping Grids:

Guess UM (b).
Don=1,2,3,....
Solve LU = f on Qg with U@ (0) = 0 and U@ (p) = U1 (b).
Solve LU@"t1D) = f on Q; with U@t (q) = U2 (q) and URT1) (1) = 0.
End.

Overlapping domains € = [0,b] and 1 = [a, 1] and successive iterates U™ and U®»+1).
Guess U1 (q) to generate U*~1) on Q; in middle figure.



Basic PDE Problems and Overset:

Abstract PDE Problem:
Solve LU = f on 2 with BCs on 0f2.

Example Differential Operator:
LU = —vAU+ BV -FU)+~U with 0 <v << 1, y~ 1/At.

Overset PDE Problem with Domains ¢ & 24
Solve LW = f on €20 and LV = f on €23
BCs for W on 020 and BCs for V on 9023

W & V "match” on "overlap”.

FEM /Overset:

FEM functions w on 20 and v on €21 to approximate W and V.

Mesh parameters H on 20 and h on 21 (6 independent of H and h).
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Theoretical Convergence Analyses:

(i) Overset/PDE/Schwarz using Maximum Principles: Many, many papers ... (Dolean &

Natif (2005), Clerc (1998), Gander (2008), Gander & Rohde (2005), ...).

(ii) Overset/PDE/Schwarz using Sobolev Spaces: P.L. Lions (1989), Zhang & Jiang (2012).

(iii) Numerical/Overset/PDE/Schwarz (§ independent of H & h) Mathew & Russo (FDs —

2002), Kopteva & Pickett (FEM — 2002), Canuto & Funaro (Spectral — 1988) and DF et
al (2014 & 2016).

Observations:

(i) Maximum Principle proofs usually do not extend to FEMs.

(ii) Sobolev proofs appear to rely on symmetry of PDE & mesh extensions.



Direct FEM/Overset:

Qo’ ww
Prototype Problem: Find U so H
—vU" 4+ U +~U = g on (0,1) b b e '
h
BCsU(0)=0& U(1)=0and v >0, v>> 1. > v

Direct Matrix Solve:
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Computations: Galbraith et al (2014) used Direct Solve schemes on many CFD problems.

Theoretical Analysis (DF et al = AIAA Aviation June 2016):

Block Matrix System is invertable.

Convergence: (w,v) — (U|Q ,U|Q ) as h& H — 0.
0 1

Likely Extensions: Time-dependent case, 1-D Systems, ...




Least Squares Overset Finite Element Scheme in 2D

Model Problem:

{ Find U = U(«x,y) such that
LU=p-VU+~AU=f iInQCR? with U=g¢ onTl_and Il =aQ.

Where T = {z €T :n(z) - 8(x) < 0} inflow boundary & My = 92 — I'_ is outflow boundary.

Assumption: Vector function g and scalar function v > 0 are smooth & 3 number 4o > 0 so
that
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LS for First-Order Hyperbolic (No Overset): Bochev & Choi (2000 & 2001), Bochev &

Gunzburger (2006) and Guermond (2004 — L!-Minimization).



Overlapping Overset Domains:
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59 is PW Polynomials on € and S} is PW Polynomials on ;.

LSFEM Overset Scheme: S% and S}: Continuous PW polynomials of degree < g.

( Find (w,v) € S% x S} that minimizes
®(p,q) = [, (Lo—)?dA+ [, (La— > dA+ [, (p—q)*dA
+ fr%asz(p —9)%ds+ fr{masz(q —9)% ds

over all (p,q) € S% x S}i.
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Partition of Unity Analysis:

Cutoff functions p and 1 — p where p € C®(Q2), p=1 on Q9 — 1, p=0 on Q1 — Qo and
O<p<lon N2,

Vp#0 on 0N and |p

-1
10000020 < po ~ (Minimum Width Q0N Q1) .

Distribution of p

Qole

O<<p<1

Define for LSFEM solution (w,v) function u £ U
w on 20— €21
u=pw+(l—-—pw o u=< pw—+(1—-pv on QLpN
v on 21 — Q.

= Lu= [pLw+ (1~ p)Lv] + (8- Vp)(w—v).



Key Proof Steps:

Energy Estimate:

1 1
vo | Z2dA+= | Z?|B-n|lds< = | Z?B-n|lds+ | (LZ)Z dA
Q 2 r 2 r Q
_l’_

1 1
vo/(u—U)QdA-l-— (u—U)QIB-nldSS—/ (u—U)QIﬁ-nlds-l—/(ﬁu—EU)(u—U)dA
2 2
Q M r Q
Interpolants Zy on S9 and Z, on S;

d(w,v) < P(ZTpU, TU) < C(HQQ + hQQ).
Since f=LU and U =g on I_;

1Lu — flloge = |lp(Lw—f)+ 1A —=p)(Lv—f)+ (B -Vp)(w—v)|oz0
< |lLw = fllo2,.9 + [[1£v — fllo2,0, + Cllw — v||o,2,0ne
< C\/d(w,v) < C(H2q+h2q)l/2.

For Prescribed BC on I _:
1/2
oz < C(HY 4+ 127)"

. lu—g
Conclude:

1
70/|u—U|2 dA—I—E/ lu—UJ?|B-n|ds < C(H* +h*) = u—U at rate O(h?+ HY).
Q r
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Implementation Details:

Find (w,v) € S% x S} so that
fQO(Lw — )LndA + fgml(w —v)ndA+ fr%m(w —gnds=0 VneSY
le(ﬁv — F)LEdA — fQOm o, (w— V)€ dA + frmm(v —g)¢ds=0 V¢e St

No Nl
w(x) = Zw]¢?($) and v(x) = Zv]¢]l(:v)
(Basis {¢g,...,9}, } for S§ and {¢g, ..., ¢y, } for Sp).
0 0 0 _ N
K+ M*+ B C @ FO
= =
U 1
—CT K'+ M' + B! v F
Where B B
0 _ 0p 40 0 __ 0,0 0 _ 0,0
K3j —/ L¢j£¢i dA, M;; —/ ¢j¢z‘ dA, B;; —/ ¢j¢z‘ ds
Qo QN I‘?ﬂaQ
1 _ 1,1 1 _ 1,1 1 _ 1,1
Kij —/ L¢j£¢i dA, Mij —/ ¢j¢z‘ dA, Bz’j —/ ¢j¢z‘ ds,
(9] Q1N I’EOGQ

F) = / fL) dA+ / ge? ds, F} = / fL; dA+ / go; ds and Cj; = / ¢; b7 dA.
Qo I‘?ﬂaQ (9] I’{maQ QoN
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Sample Computation: Peculiar Problem:

aU' +~U = f with a(z) =sinh(3(xz — 1/2)) cosh(3(x — 1/2)), ~ = cosh(3/2)),
U(x) =tanh(z —1/2) & f(z) = (yv+ 1)tanh(3(x — 1/2)).

No initial or boundary conditions — with ~ as chosen, solution is unique.

6 . . T i T T T T T LS Overset Appx:

-
_____
-
—a=
-

y = a(x) function ] os| o

a=0.44
b =0.63
N, =3
N, =3

!
U and u Values

0.4

-0.6—

L* Err = 7.84e—-002
—08kL

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X—Axis Xx—values

One dimensional computation with piecewise linears.

Convergence Rate & Errors:

No Ni L°°-Errors Rate
5 5 3.00 x 102 —
10 10 8.08 x 1073 1.89
20 20 2.24 x 1073 1.85
40 40 5.83 x 10~% 1.94
80 80 1.47 x 104 1.99
160 | 160 | 3.69 x 10~° 1.99
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L'-Method? Shocks/Roughness/W111(Q):

Galerkin Schemes tend to provide Best Approximations in the H! — Norm:

12

120 = (/ Z? dx + /(Z’)2 dfﬁ) 12 Q=(-1,1).
Q Q

Consider U = U(x) with a slightly smoothed shock:

Jump occurs on [—&/2, /2] Peak occurs on [—€/2, /2]
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€/2
H|UH%,2,Q 2/(U’)2 d$=/ (1/€)? dx = 1/e.
Q _

€/2

While in the Wh1 — Norm:

U

€/2
|1,1,s2=/|U|dl’+/|U'|de’S2'1+/ (1/€) dz = 3.
Q Q —e/2

= Guermond (2004) L-Minimization Scheme.
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Future Directions:

Overset LSFEM Overset:

Computations/Extensions to more general Aerospace Problems.
DG & SUPG Approaches as well as estimates with Viscosity via Mixed Methods.

L1-Method from Guermond for FEM/Overset.

Assumptions on Overlap Width §: Dependence on Mesh Parameters h& H.
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The "Lab”:

Marshall Galbraith Jack Benek Don French Chris Schrock
John A. Benek is a Senior Scientist in Computational Fluid Dynamics at WPAFB.

Marshall Galbraith is a PostDoc at MIT Aerospace. He graduated from the Department
of Aerospace Engineering, University of Cincinnati, Cincinnati, OH 45221-0070 and was a
scientist at WPAFB.

Don French is a Professor at Department of Mathematical Sciences, University of Cincinnati,
Cincinnati, OH 45221-0025.

Chris Schrock is a Scientist in Computational Fluid Dynamics at WPAFB.
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