# Patch Antenna



Figure 1. Overall dimensions of the rectangular patch. The antennas is fed by a coaxial line at the position  $(x_0, y_0)$ .

. Figure 2 show various feed mechanisms for a rectangular patch antenna. These are:

- (a) Coaxial probe located at a distance  $(X_0, Y_0)$  from the center,
- (b) Slot coupled antenna,
- (c) Microstrip line direct coupling and
- (d) Side coupled microstrip line.



(c) Microstrip Line (d) Side Coupled Line





Figure 3. Position of the coaxial feed probe.  $Y_0$  is chosen at w/2

For the substrate, polyimide is chosen and  $_r$  is taken to be equal to 3.0. The design frequency is  $f_0=10$  GHz. The only variable taken in the design is the thickness of the polyimide substrate and the thickness is incremented by 10  $\mu$ m starting from 10  $\mu$ m up to 200  $\mu$ m.

The following parameters of the patch antenna are investigated for the design purposes.

- (a) Dimensions of the antenna.
- (b) Radiation efficiency
- (c) Input resistance
- (d) Probe Reactance
- (e) Antenna Q
- (f) Radiation pattern

#### Dimensions of the antenna.

The value of W can be optimized to increase the radiation efficiency and other parameters of the antenna. In order to excite the fundamental  $TM_{010}$  mode, the condition (L > w > h) has to be satisfied. The initial length L is chosen using

$$L = \frac{c}{2f_0 \sqrt{_{eff}}} \tag{1}$$

Here  $f_0$  is the resonant frequency of the antenna.

$$L = \frac{c}{2f_0 \sqrt{_{eff}}} - 2 \quad L \tag{2}$$

Equivalent Circuit of the Patch Antenna.

A simplified equivalent circuit for the input impedance of the probe fed antenna is shown in Figure 5. In this figure,  $X_f$  is the probe reactance, L and C are the equivalent inductance and capacitance of the antenna, and R is the equivalent resistance of the antenna at resonance. This circuit is used to calculate the Q and frequency bandwidth of the antenna.



Figure 5. Equivalent circuit of the probe fed antenna.

### Q factors for the Probe Fed Patch Antenna

For the dielectric material and the conductor losses the following formulas are used to calculate the Q factors due to dielectric and conductor losses.

$$Q_d = \frac{1}{tna(\ )}$$
$$Q_c = \frac{1}{2} \quad _0 \mu_r \left(\frac{k_o h}{R_s}\right)$$

The Q factors  $Q_{sp}$  and  $Q_{sw}$  determine the amount of power radiated into space and surface waves. To relate these a radiation efficiency of  $e_{r}^{o}$  is defined assuming no dielectric and conductor losses. This efficiency accounts only for the power loss due to excitation of surface waves, i.e.,

$$e_r^o \approx \frac{Q_r}{Q_{sp}}$$

where the radiation quality factor Q<sub>r</sub> is defined as

$$\frac{1}{Q_r} = \frac{1}{Q_{sp}} + \frac{1}{Q_{sw}}$$

**Radiation Efficiency and Bandwidth.** 



Figure 6, Variation of various Q's as a function of substrate thickness.



Figure 7. Radiation efficiency as a function of substrate thickness.



Figure 8. Bandwidth as a function of the substrate height

## **Input Impedance**

.Figure 9 shows the input resistance of the patch antenna as a function of the probe position for various substrate thickness. As the thickness of the substrate increases, the input resistance increases. The thickness of the dielectric should be at least 50  $\mu$ m in order not to use matching networks and directly connect to a 50 line.

The probe reactance Xf is also calculated as a function of the substrate thickness. Assuming a probe radius of 50  $\mu$ m. The result is shown in Figure 10.



Figure 9. The input resistance as a function of the probe position x0 from the center of the patch. The upper curve is for a substrate thickness of 200  $\mu$ m and the lower is for 10  $\mu$ m. The increments are 10  $\mu$ m.



Figure 10. The probe reactance as a function of substrate height.

The frequency variation of the probe resistance is calculated using the expression

$$Z_{in} = jX_{f} + \frac{R}{1 + j2Q_{t}(f_{r} - 1)}$$
 where  $f_{r} = \frac{f}{f_{0}}$ 

Figure 11 show the real part of the input impedance as a function of frequency for a substrate thickness of 50  $\mu$ m. The -3 dB point is also shown in the same figure.

#### **Radiation Patterns.**

The resulting radiation pattern is shown in Figure 13. This is a 3D plot of the radiated E field. For this calculation, a substrate height of 50  $\mu$ m is chosen.

Figure 14 show the E-plane radiation pattern for the antenna with the same conditions given in Figure 13.



Figure 13. 3D Radiation pattern of the rectangular patch for a substrate thickness of 50  $\mu m$ .



Figure 14. E-plane radiation pattern

**References:** 

- (1) D.R Jackson and N.G. Alexopoulus, "Simple Approximate Formulas for the input Resistance, Bandwidth and Efficiency of Resonant Rectangular Patch," IEEE Trans. Antenna Propagation, Vol. AP-39, pp.407-410, 1991.
- (2) D. R. Jackson, Stuart Long, Jeffrey T. Williams & Vickie B. Davis, Advances in Microstrip and Printed Antennas, Ed. By Kai Fong Lee and Wei Chen, Chapter 5. John Wiley and Sons (1997).
- (3) Constantine A. Balanis, Antenna Theory, 2'nd Ed. John Wiley and Sons, 1997.
- (4) J.R.Carver and J.W.Mink, "Microstrip Antenna Technology," IEEE Trans. .Antennas & Propagation, Vol-29, pp.2-24 (1981).