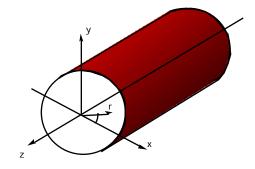
EE-611 Supplementary Notes Circular Waveguides



TM modes (H_z=0)

A circular waveguide with radius of a is given. Assuming that the cylindrical axis coincides with the z axis and transverse coordinates are (,). E_z satisfies the Helmholtz Equation

$${}_{t}^{2}E_{z}(,)+k_{c}^{2}E_{z}(,)=0$$

In cylindrical coordinates

$$\frac{1}{2} - \frac{E_z(,,)}{2} + \frac{1}{2} - \frac{2E_z(,,)}{2} + k_c^2 E_z(,,) = 0$$

Assuming separation of variables,

$$E_{z}(,)=R()()$$

Substituting into the above Equation and dividing by (R_{-})

$$\frac{1}{R} \frac{1}{2} - \frac{R}{2} + \frac{1}{2} \frac{1}{2} \frac{2}{2} + k_c^2 = 0$$

Multiplying by ²,

$$\frac{2}{R}$$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{R}{2}$ $+ \frac{1}{2}$ $\frac{2}{2}$ $+$ $^{2}k_{c}^{2}=0$

The term should be a constant and setting it to $-^{2}$.

$$\frac{1}{2} = -2$$

The R term becomes

$$\frac{2}{R} \frac{1}{R} - \frac{2}{r} + \frac{2}{k_c^2} = 0$$

Dividing by ².

$$\frac{1}{2}$$
 $\frac{R}{2}$ + $k_c^2 - \frac{2}{2}$ R=0

Bessel Equation

This equation is known as the *Bessel Equations*. The complete solution to $E_z(\ ,\)$ can be written as

$$E_z(,) = [AJ(k_c) + BY(k_c)][Csin() + Dcos()]$$

Here J (k_c) is the Bessel Function of the first kind of order and argument (k_c) and Y (k_c) is the Bessel Function of the second kind of order and argument (k_c). Since the point =0 is a point in the cylindrical waveguide, the field should be finite there. Since Y (0)= , for all orders, B should be equal to zero. Also, the fields should repeat themselves every 2, i.e., =n, an integer. Therefore the final solution can be written as

$$\begin{split} & E_z(\ ,\)=A\ J_n(k_c\)\ sin(n\) \qquad or \\ & E_z(\ ,\)=A\ J_n(k_c\)\ cos(n\) \end{split}$$

Applying the boundary conditions that at =a, the tangential field should be zero

$$E_{z}(a,) = A J_{n}(k_{c}a) sin(n) = 0$$

The only way this can be satisfied is if

$$J_n(k_c a) = 0$$
 Eq.A

Similarly for the TE modes, we solve for $\rm H_z(~,~).$ The solution is exactly the same as for $\rm E_z,$ but the boundary condition for this case becomes

$$\frac{dJ_n(k_c)}{d} = a^{=0}$$
(Eq.B)

These two equations lead to the following cut-off frequencies

$$k_c a = p_{nl}$$
 $f_{c,nl} = \frac{1}{2 \quad \overline{\mu}} \frac{p_{nl}}{a}$ for TM waves
 $k_c a = p'_{nl}$ $f_{c,nl} = \frac{1}{2 \quad \overline{\mu}} \frac{p'_{nl}}{a}$ for TE waves

Here p_{nl} is the l'th zero of the Bessel function of n'th kind and p_{nl} ' is the l'th zero of the derivative of the n'th order Bessel function .