EE-611
Supplementary Notes
Circular Waveguides

TM modes (H,=0)

A circular waveguide with radius of ais given.
Assuming that the cylindrical axis coincides with

the z axis and transverse coordinates are (r ,f).
E, satisfies the Helmholtz Equation

NZE,(r ,f)+K2E,(r ,f)=0

In cylindrical coordinates
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+ K2E,(r ,f)=0

Assuming separation of variables,
E,(r,f)=R(r)F(f)

Substituting into the above Equation and dividing by (RF)
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Multiplying by r 2,
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TheF term should be a constant and setting it to -n®.

The R term becomes
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Dividing by r 2.
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This equation is known as the Bessel Equatl ons.
The complete solution to E(r ,f) can be written as



E,(r,f)=[AJ, (k) + BY,(kr)[Csin(uf )+Dcoquf )]

Here J (k. ) isthe Bessel Function of thefirst kind of order n and argument (k) and

Y, (k) isthe Bessal Function of the second kind of order n and argument (k.r ). Sincethe
point r =0 isapoint in the cylindrical waveguide, the field should be finite there. Since

Y, (0)=¥, for al orders, B should be equal to zero. Also, the fields should repest
themselves every 2p, i.e., n=n, aninteger. Therefore the final solution can be written as

E,(r,f)=A J,(k;r) sin(nf) or
E,(r,f)=A J,(k.r) cos(nf)
Applying the boundary conditionsthat at r =a, the tangential field should be zero
E(af)=A J(kea) sin(nf) =0
The only way this can be satisfied isif

In(kea)=0 Eq.A

Similarly for the TE modes, we solve for H,(r ,f). The solution is exactly the same as for
E,, but the boundary condition for this case becomes

dJ(k.r
h(kd), -
dr (Eq.B)
These two equations lead to the following cut-off frequencies
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Here p, isthel'th zero of the Bessel function of n'th kind and p,," is the I'th zero of the
derivative of the n'th order Bessel function .



