
EE-611
Supplementary Notes
Circular Waveguides

         TM modes (Hz=0)

    A circular waveguide with radius of a is given.
Assuming that the cylindrical axis coincides with
the z axis and transverse coordinates are (ρ,φ).
Ez satisfies the Helmholtz Equation

∇2
t Ez(ρ,φ)+k2

cEz(ρ,φ)=0

In cylindrical coordinates
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cEz(ρ,φ)=0

Assuming separation of variables,

Ez(ρ,φ)=R(ρ)Φ(φ)

Substituting into the above Equation and dividing by (RΦ)
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Multiplying by ρ2,

ρ2

R  


1
ρ

∂
∂ρ  

ρ
∂R
∂ρ  


 
  + 

1
Φ

∂2Φ

∂φ2
 +ρ2k2

c=0

The Φ term should be a constant and setting it to -ν2.
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The R term becomes
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Dividing by ρ2.
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R=0           Bessel Equation

This equation is known as the Bessel Equations.
The complete solution to Ez(ρ,φ) can be written as
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Ez(ρ,φ)=[AJν(kcρ) + BYν(kcρ)][Csin(υφ)+Dcos(υφ)]

Here Jν(kcρ) is the Bessel Function of the first kind of order ν and argument (kcρ) and

Yν(kcρ) is the Bessel Function of the second kind of order ν and argument (kcρ).  Since the

point ρ=0 is a point in the cylindrical waveguide, the field should be finite there. Since

Yν(0)=∞, for all orders, B should be equal to zero. Also, the fields should repeat

themselves every 2π, i.e., ν=n, an integer. Therefore the final solution can be written as

Ez(ρ,φ)=A Jn(kcρ) sin(nφ)          or

Ez(ρ,φ)=A Jn(kcρ) cos(nφ)

Applying the boundary conditions that at ρ=a, the tangential field should be zero

Ez(a,φ)=A Jn(kca) sin(nφ) = 0

The only way this can be satisfied is if

Jn(kca)=0                  Eq.A
Similarly for the TE modes, we solve for Hz(ρ,φ). The solution is exactly the same as for
Ez, but the boundary condition for this case becomes

dJn(kcρ)
dρ ρ=a=0

            (Eq.B)
These two equations lead to the following cut-off frequencies
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Here pnl is the l'th zero of the Bessel function of n'th kind and pnl' is the l'th zero of the
derivative of the n'th order Bessel function .


