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In order to understand the properties of the microwave structures, well known
series and parallel RLC circuits will be reviewed and their relation to microwave resonant
circuits will be made.

Series RLC circuit

Consider first the series connected RLC circuit as shown in the figure. The input
impedance can be written as
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This can be written as
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Here  ωo=1/sqrt(LC) is the resonant frequency. Let

ω = ωo+ ∆ω (3)
where ∆ω is the deviation of the frequency from resonant frequency ωo. Substituting Eq.3
into Eq.2
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Neglecting second order terms and expanding 1/(1+x) as 1-x  for x<<1 (x=∆ω/ωo)

Zin  ≈ R + j(ωo+∆ω)L
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The input impedance can be written in terms of power loss and energy stored
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The quality factor can be written as
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Therefor as the series resistance decreases the quality factor increases.
Eq.4 can now be written in terms of the Q of the circuits.
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The magnitude and phase of Eq.6 can now be plotted against frequency ω.
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Note that at resonance when ω=ωo, the input impedance magnitude is equal to R

and the phase is 0o. Let ω1 = ωo- ∆ω and ω2 = ωo+ ∆ω be the frequencies at which real and
imaginary parts of Zin are equal, i.e.,
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and the fractional bandwidth BW is defined as

BW = 
ω2 − ω1

ωo
 = 

1
Q

Note that the bandwidth is inversely proportional to the Q of the resonant structure.
The higher the Q of the circuit, the narrower is the bandwidth of the circuit.



Parallel RLC circuit
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The same procedure is used for the derivation of Zin.
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In terms of energies and power loss
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In the case of parallel circuit, the Q increases with increasing R. Zin can be written
in terms of Q as
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Magnitude and phase of Zin as a function of ω for the parallel RLC is plotted in the
figure below.
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Loaded Q

The circuits given above are isolated circuit elements. In actual circuitry, the
resonant structure is connected to the outside world or signal is coupled from an external
system. The resonant circuit is usually connected to a transmission line and thus sees at its
terminals equivalent resistance Re.

For the Series circuit, the external resistance is in series with the R of the isolated
system. The total resistance is then

Rt=R+Re

The equivalent Q of the system including the external resistance is now defined as
the loaded Q, or QL.
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Here Qo=1/ωCR is the unloaded Q and the Qe=1/ωCRe is the external Q of the
cavity. The measurement provides the loaded QL which is always smaller than the unloaded
Qo of the resonant structure.

For the parallel circuitry, the external resistance is in parallel with the isolated
resistance.

The total resistance  is Rt=[RRe/(R+Re)]. The loaded Q for this case is
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This is the same result as the Series case.

R L
C

Re


