


















long swapped helix between the dimers was confirmed. Inter-
molecular cross-links observed between Lys96 and Ser167,
Lys118 and Lys140, Lys118 and Ser142, and Lys118 and Lys133 are
consistent with the extended helix swap. There was also con-
firmatory evidence of the folded helical hairpins at each end of
the dimer with the intramolecular cross-link between Lys23 and
Lys59, for example.

However, we reproducibly noted interactions that could not
be reconciled in the rigid crystal structure. Implementation of
the hairpins in helix 5 and their subsequent juxtaposition to
residues 106 –116 satisfied critical cross-links constraints while
also improving the fit to the SAXS data. Several studies have
postulated the existence of a hairpin in helix 5 despite its
absence in either crystal structure (9, 12). In the double belt disc
model, Li et al. (10) hypothesized that helix 5 hairpins could
reduce the diameter of discoidal HDL. Applying to the crystal

structure of Mei and Atkinson (12), helix 5 flexibility might
allow the formation of a “presentation tunnel” for the docking
of lecithin:cholesterol acyl transferase and the subsequent
influx of cholesterol ester, an idea supported by molecular
dynamics studies (10, 36). We also observed interactions
between the N terminus and the central domain of the dimer.
For example, the intermolecular cross-link between the N ter-
minus and Lys118 can only occur if the N-terminal major helix
(residues 7–34) swings back across the dimer as illustrated in
our closed model. However, we also saw the N terminus inter-
acting intramolecularly with Lys77, which is consistent with the
crystal structure. Because the N terminus cannot be in two
places at once, we were forced to postulate at least two models
in equilibrium.

This result is intriguing when considering the transition of
apoA-I to a lipid-bound species. Mei and Atkinson (12) postu-

FIGURE 10. AllosMod-FoXS modeling of the monomeric apoA-I�185–243 . a, derivation of the initial model as postulated by Mei and Atkinson (12). b,
cross-linking data from Tables 1 and 2 superimposed on a molecular contact blot generated for the theoretical model. c, single best fit conformation from
AllosMod-FoXS output superimposed on the molecular envelope. d, comparison of the experimental monomeric apoA-I�185–243 x-ray scattering profile (black
line) to the single best fit initial (green line) and final (purple line) profiles generated by AllosMod-FoXS. e, regions of �-helicity in our final model of monomeric
apoA-I �185–243 (magenta) versus that determined in monomeric full-length apoA-I by Chetty et al. (44) (black) and the crystal structure (green). The boxes
represent �-helical segments.
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lated that the crystal structure could form a discoidal HDL par-
ticle through a “sequential unhinging of the N-terminal bun-
dle.” They proposed that the hairpin at each end of the dimer
can swing away from the AB-repeating backbone and then
unfurl to form a ring that approximates the double belt model
of lipid-bound apoA-I (10). This movement is quite analogous
to our closed (i.e. closed ring) conformation of the lipid-free
dimer. Both transitions are predicted to occur using the N-ter-
minal minor helix as a hinge.

Mei and Atkinson (12) proposed that the N-terminal bundles
are stabilized by two hydrophobic clusters at each end of the

bundle (Fig. 11a). The N-terminal aromatic cluster holds the
first helix, the second helix B of H1, and the helix of the first A
unit of H2 together. The C aromatic cluster holds the N-termi-
nal helix and H4(AB2) together through �-� interactions.
Influx of lipid was suggested to open the N-terminal helix bun-
dle by disrupting one or both staple domains. Our data suggests
that, in solution, these helical bundles may be more dynamic
(Fig. 11, b and c). Interestingly, we found similar aromatic clus-
ters in the closed model that might contribute to its stability
(Fig. 11c). Trp8 is in close proximity to Trp108 and Phe104 in the
long swapped helix. Additionally, Phe33 from both N-terminal

FIGURE 11. Disruption of hydrophobic “staples” that allow mobility of the N terminus in solution. a, one monomer of the Mei crystal structure of apoA-I
showing the C aromatic cluster (comprised of residues Phe33, Phe104, and Trp108) and an N aromatic cluster (Trp8, Phe71, and Trp72) that is proposed to stabilize
the four-helix bundles on each end of the dimer structure. b, the open form of the solution model reported here showing the plausibility of both interactions.
c, the closed form of the solution model showing disruptions of the N aromatic cluster allowing the N-terminal major helix, using the N-terminal minor helix
(blue) as a hinge, to swing toward the middle of the dimer. Stabilization of the N-terminal helix is postulated to occur with two alternative aromatic clusters: (i)
between Phe33 on the N-terminal major helices of each molecule and (ii) Trp8 at the end of the N-terminal major helix with Trp108 and Phe104 on the domain
swap.
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major helices are in close proximity in the middle of the mole-
cule. Thus, hydrophobic clusters could be pseudostabilizing
features in both conformers in solution.

We caution that this proposed structural equilibrium is only
relevant in the context of this particular deletion mutant and its
role with respect to lipid binding or other functions in the full-
length protein is less clear. The missing C terminus has been
shown repeatedly to play a major role in lipid binding (34,
37– 40). It is possible that, when present, the C terminus stabi-
lizes the N-terminal bundles in much the same way they appear
to be under crystallization conditions (30). Indeed, in apoA-IV,
there are extensive stabilizing interactions between the N and C
termini at both ends of its dimer (41). Engagement of the
apoA-I C terminus, by lipid or perhaps ABCA1, may free up the
N-terminal helix to swing away from the helical bundle as part
of the particle assembly process. Nevertheless, the absence of
the C terminus may have allowed the fortuitous visualization of
a transition step (the opening of the N-terminal bundles) dur-
ing lipid binding that would otherwise not be apparent in a
static full-length structure.

Based on our SAXS data, the half circle curvature likely man-
ifests as lipid accumulates. The curvature in the crystal struc-
ture may have arisen from a pseudolipid-like environment con-
tributed by PEG or other additives during crystallization.
Indeed, additives like isopropanol can induce a lipid-bound-
like structure to otherwise lipid-free apoA-I (42). Crystal pack-
ing and other factors could also be responsible (43).

With regard to monomeric apoA-I�185–243, our results are
highly compatible with the monomer scheme proposed by Mei
and Atkinson (12). The idea is quite similar to the “pocket knife
closing” model that we proposed for apoA-IV (13). The overall
�-helicity of our model is 61%, which matches nicely with cir-
cular dichroism data estimating 59% helicity for this mutant in
solution (12). Although it is dangerous to make direct compar-
isons from a deletion mutant to the monomeric full-length ver-
sion of apoA-I, we did find it interesting that our final model
exhibited �-helical character in many of the same regions
assigned by the hydrogen-deuterium exchange experiments of
Chetty et al. (44) in WT apoA-I; there was 65% overlap of helical
residues (Fig. 10e). There was also some cross-link overlap
between apoA-I�185–243 versus those reported for full-length
apoA-I. These data imply that some of the structural features of
apoA-I�185–243 could apply to WT apoA-I. Confirmation
awaits more detailed studies on WT apoA-I.

Finally, we acknowledge the strong experimental evidence
showing that apoA-I exhibits molten globule characteristics in
solution (29, 30, 35, 45). apoA-I has a free energy of denatur-
ation that is well below that of most soluble proteins (45, 46)
with helical segments that are constantly folding and unfolding
on a time scale of seconds (44). Although the molecules must
have a distinct shape as evidenced by the SAXS data, the two
dimeric structures reported here are probably best thought of
as two general conformational classes, each representing a set
dynamically related structures which coexist at any given time.

In summary, we report two related models for soluble
dimeric apoA-I�185–243 that differ by the location of the N ter-
minus. We also provided strong evidence supporting the pos-
tulated monomeric structure of apoA-I�185–243. This work

emphasizes that high resolution structural studies should be
coupled with innovative in-solution experiments to understand
the dynamics of the exchangeable apolipoproteins. This will
allow us to better understand how they transition in response to
lipid. Current work is focused on deriving a structure for full-
length apoA-I using these models as a foundation.

Author Contributions—J. T. M. conducted experiments, derived the
models, and wrote the paper. J. M. and M. C. conducted experi-
ments. R. G. W., T. B. T., M. K. J., J. P. S., and W. S. D. analyzed data,
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D. B. L., P. C. C., and F. C. G. analyzed data.
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