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N THE SOLUTION OF THE GENERAL EQUATION
| OF THE FOURTH DEGREE.

By A. LovaE, St. John’s College, Oxford.

DEFERRING to the paper by M. Legoux, which appeared
VU in this Journal in October last, on an application of
e special form of determinant, previously discussed by
r. Glaisher and Mr. Scott in this Journal in 1879 and 1880,
have, by means of this form of determinant, been led to
n extremely simple solution of the general equation of the
rth degree, which appears to have been previously over-

oked.
" Transforming the equation

az* + 4ba® + 6ca® + 4dm + e =0 cuvvverernnns(1)

0 as to lose its second term, by putting y = ax + b, we obtain
Y 6HY + 4Gy + F=0.rierernereenns(2).
Let us now identify this expression with the determinant
Y b & T e

Y P g

7 " Y P

p " Y

Splitting this determinant into factors in the manner ’
hown by Mr. Scott, it reduces to

Ny+gptr| |y-mp-r
. ptry Yty T—py Y4
(y+9* = (p+rVHy -2+ (P~
y"—l—g2—2pr)“—(2gy—-p2—r2)2.... ......... vesrorreennsens(3)

= o' — 25" (¢"+2pr) + gy (P +7°) + (8 = 2r)" = (PP (4).
Comparing coefficients in (4) and (2), we obtain

¢+ 2r=—38H

g (p*+r)= G} ...... cevnereens (8),
_ (¢~ 2pr)' = (p"+ 7%= F
hence  4¢°+ 12Hg' + (OH* - F) ¢ =G*=0.........(6).
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By making use of the values . '
F=aI-3H!, G'=a*(HI-aJ)— 4",

where 1, J are the two invariants-of the quartic, this equatiot
may be written in either of the forms :

4" +120g + (12 H* — &I ) ¢ — G* = 0. . (6)
2 3 2
or 4(-‘1_1065) 1T g O (8,

a
Again, substituting from (5) in (3), we obtain

2

(3" + 3L+ 2¢°)" ~ <2f1y— g) =0;

~ therefore

{(y+9)”+35+92— %{(y-—q)u SH+ ¢+ gl} =0;
that is

{(a:c+ b+q)+ 3H+g2__g} .

% {(aw+b—q)’+ 3H+g2+—§}=0 }

On finding any value of ¢* from (6) and substituting i
in any of the equations (7), we thus split the biquadrati
into two quadratic factors, each of which can be at on
solved for the roots. '- .

I have given the-above method of arriving at equations (7
and the reducing cubic (6), as it was the way in which I wa
myself led to them ; but ‘the first of equations (7) is so simple
and, when once arrived at, so self-evident, that it might h
been sufficient to have written it down immediately after (2):

On expanding it, and subtracting (2) from it, we arrivi
at once at the reducing cubic (6).

—

The roots of the biquadratic are most intimately connecte
with those of the reducing cubic. Of these latter, one i
positive, and the other two are either both positive, botl
negative, or both imaginary, Moreover, in the first case twi
or all of the roots may be equal, and in the second case
the two negative roots may be equal. Also any one or mor

of the roots may be zero. ~To each of these cases correspond
some special peculiarity in the roots of the biquadratic. 3

To investigate the general conditions for real or imaginar,

roots of the biquadratic, let &, 8 be the roots correspondin




s

" Gfenéf_ai Eguatzgn of the. Fourth Degree.

o the first factor of (7), and y, 8 the roots corresponding to .
“the second factor. ' .

T dea-@= =43
nd i“’(v—3)2=-§—(92+33). :
Hence all the roots will be real, or all imaginary, if : ur
2 .

(¢ +3H) - % i positive;
nd two of the roots will be real and two imaginary, if

2
<gz + 33)2 _% 18 negative.

~  Taking the first case, and substituting from equation (6),
.we have

(¢*+8H ) >4q' +12Hg" + 121" - o°1
1> 3(g+ H)';
I>3¢*, where ap=¢"+ H.
But (from 6") 4¢’ - Ip +J=0;
¢* (4 — I)*=J%;
IP — 27J% is POSItVe wverrverrrrrsansans(8).

Similarly, in the second case, that is, when there are two
real and two imaginary roots,

I* =277 is negative.covusveunnennena(9); -
and if two of the roots are equal, o

TP =27 = Ouerrereverenennens (10)s

The equal roots must of course be real, unless the quartic is
a perfect square, when they can be either real or imaginary.)
But I°—27J? is the discriminant (with its sign changed)
of the reducing cubic; therefore, if it is positive, all the roots
of the cubic are real; if it is negative, two roots are _
imaginary ; and if it is zero, two roots are equal. ‘ .
Hence, if all the roots of the reducing cubic are real, the
roots of the biquadratic are either all real or all imaginary;
if the cubic has two imaginary roots, the biquadratic has two
roots real and two imaginary; and if the reducing cubic has
two equal roots, so also has the biquadratic. 3
Further, if all the values of ¢* are not only real, but .
positive, all the roots of the biquadratic must be real, for -
all its quadratic factors will have real coefficients, which can

3\
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~_only happen when the linear factors involve only
quantities. There will be no negative root of (6)
coefficients are alternately positive and negative; and th

fore the necessary and sufficient conditions for all the rog
of the biquadratic to be real are :

H negative......(1)
12H* ~ o’ 1 positive ...... (ii)} ......... ceenne (11

I? —27J7" positive ......(iii) )
these conditions simply expressing that the roots of f
reducing cubic (6) are all real and positive. N
Now the conditions for all the roots of the biquads
to be real are found, by applying Sturm’s theorem, to be

H negative...... (1)
2 HI - 3aJ negative......(ii) } ....... ceener (12)
1% —27J% positive .,....(iii)

and it is important to reconcile the apparent discrepan
between these two sets of conditions,
“We have the identity

H(12H® - a’I)+ 3G =d* 2HI - 3aJ),
_singe G+4aH =" (HI—-aJ);

.th'erefore {12 (ii)} expresses not only that 12H" = oI must he

2

positive, but also that it must be greater than 3:35
And it is readily proveable that this condition must
fulfilled if the roots of the cubic (6) are all positive;

let I, m, n be these roots, then
PFirm+n*—8mnz= ({+m+n)F+md+n*—mn—nl— Im
therefore (I+m + n) (mn + nl+ lm) — 9lmn '
= (l+m+a) (4 m' + %) — (P + m’ +n°) — 6lmn
=l(m—a)f4+mn- 1) +n(l-m), '
which is positive if [, m, n are all positive ; therefore
| — H(12H*— ¢*I) - 3 G" must be positive;
that is, 9 HI — 3a.J must be negative.

But this condition is implicitly contained in those of (1
as can be seen from inspection of the easily verified identit;

o' (I°—21J7%) :
= 19HI(2HI - 3aJ ) - 8 (2HI - 3aJ ' — I* (12H* - &'l
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Hence either series of conditions (11) or (i?) may bé.
mployed at pleasure, but in practice those of (11) would
senerally, if not always, be most easy of application. . = .

_If any of the values of ¢° are negative, there will in geheral
& be no real root of the biquadratic, as can at once be seen
£ by writing (7) in the form '

3 G\?
(9'+8H+2¢) - ¢° (23/ - ?z—) ’
which, for a negative value of ¢*, is the sum of two squares,
-and cannot therefore vanish for a real value of y, except in -
he special case in which both squares vanish simultaneously. KX
~ This special case is that of equal roots, for, eliminating ¢
§  from the two equations -

2y — g =0,
y+3H+2¢=0,
f - we obtain ¥’ +38Hy+ G =0.
But this is the first derived function from (2), and can
nly vanish with it when (2) has equal roots. B

(In this case we know that (6) will also have equal roots, "
fact which can also be established by eliminating y from
he above simultaneous equations.)

If the cubic has all its roots equal, the biquadratic will

. have three equal roots, For in this case I=0 and J=0,

- and (6) reduces to

(¢ +H) =o.

Hence G*+ 4H*® =0, and the quartic (7) reduces to

' {(ax+b+q)—4¢"} (ax +b—q)'=0;"

that is, (ax+b—q) (e +b+39)=0, : :
g =+ /(= H) if G is positive, S
q=—+(~ H) if G is negative. R

When one of the roots of the cubic is zero, that is, when
@ =0, the equation is reducible at once to a quadratic in
(az+ b)%. In fact we bave

(az+ 8)* + 6H (ax + b)* + o’ - 8H*=0;

therefore  {(ax +0)* + 3H}® — (12H* —a’l) =0,
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Also, in this case,
H(12H* - o*1)=2HI - 3aJ,
and o (18 —21J"%) = (12H* — ') (' — 3H?),
since AH?=o (HI—-ad). '

When two of the roots of the cubic are zero (a par
case of equal roots), the quartic becomes a perfect squ
for in this case ‘ o

G=0, 12["-a’I=0,
and (6) reduces to ¢* (¢*+8H) =0,
whence (7) becomes {(az +b)* + 3H}" = 0.

Lastly, when all the roots of the cubic vanish, the biqua
ratic reduces to
' (ox +0)* =03 :
for in this case all the coefficients H, @, I vanish : a conditi
which may also be written .

A METHOD OF EXPRESSING ANY FARTICU

ARBITRARY CONSTANT IN THE SOLUTION OF

LINEAR DIFFERENTIAL, EQUATIONS IN
TERMS OF THE INITIAL CONDITIONS.

Part 1.
By E. J. RouTH.
THE object of the following paper may be very bri

stated. Qliven any number of simultaneous differentia
equations with constant coefficients, it is known that th
dependent variables z, y, #, &c. can be expressed in te
of the independent variable #, by means of a series of expy
nentials real or imaginary. Let one of these exponentials b
w=Pe", then P iz a function of the initial values of th
variables @, y, &c. and of their differential coefficients. It}
here proposed to exhibit this function, Thus, without solvin
the equations, any one term of the solution can be separate
from the others ‘and its value written down, without finding
those other terms, The rule is given with some exampl
in Art. 7, and to this the reader may at once proceed.




