Multivariable Calculus, Section 003 MATH-2063-003 (4 credit hours) Fall Semester, 2013

Class Room and Class Times: Room 801 of the Old Chemistry Building Monday, Tuesday, Thursday, and Friday at 8:00-8:55 a.m. except Monday, September 2 (Labor Day), October 7 and 8 (Reading Days), November 11 (Veteran's Day), and November 28-29 (Thanksgiving Holidays)

From Monday, August 26 through Friday, December 6, 2013 and the Final Examination on Friday, December 13 at 8:00-10:00 a.m. in Room 801 Old Chemistry

Teacher: Roger Chalkley **Office**: Room 4504, French Hall West **Office Hours**: 9:15-10:30 a.m. on Monday, Tuesday, and Friday (or by appointment)

Requirement for the course: MATH 1062 with a grade of C or better

Access to the internet service WebAssign at <u>http://WebAssign.net/</u> is needed for the homework problems and your access key is uc 5291 5650 for our section of this course.

Textbook: Calculus – Early Transcendentals, seventh edition, 2012, by James Stewart, Brooks/Cole, Belmont, CA

List of Subject Matter: See the next page for sections and assigned problems. In general, the homework must be submitted by 11:59 p.m. of the Sunday following the day in which the corresponding section was covered in class. (That will also apply in the event that the schedule needs to be adjusted.)

Testing and Grading Policy: There will be three 50-minute examinations, a 2-hour final examination, 3 quizzes, and graded homework. Each 50-minute exam will be graded on a basis of 100 points and count as 1/6 of your final grade. The final examination will graded on a basis of 100 points and count as 2/6 of your final grade. Each quiz will be graded on a basis of 25 points and count as 1/24 of your final grade. The overall homework grade will be based on 25 points accumulated from WebAssign Problems and count as 1/24 of your final grade.

Examination 1 - Friday, September 20, 8:00-8:50 a.m.QExamination 2 - Friday, October 18, 8:10-8:50 a.m.Examination 3 - Friday, November 15, 8:00-8:50 a.m.

Final Exam: Friday, December 13 at 8:00-10:00 a.m. in Room 801 Old Chemistry

Partial credit on examinations and quizzes is awarded only for work that is mostly correct except for one on two minor errors. You will not be given partial credit for attempting to solve a problem by an incorrect method. You must show your work on those tests. A correct answer without the accompanying correct work will receive no credit; an incorrect final answer accompanied by mostly correct work will receive substantial credit. Also, it is your responsibility to arrange your work in a logical manner and to write legibly. The grade is based on the work shown, not what was intended or implied.

Grade of W: November 1 (a Friday) is the last day to withdraw from the class and receive a grade of W.

The Mathematics Learning Center is located in French Hall West, Room 2133. It is a free, walk-in, mathematics tutoring center for all University of Cincinnati students. The tutoring hours may be found at http://www.artsci.uc.edu/departments/math/learning_center.html

Week	Days	Sections	WebAssign Homework
1	Aug. 26-30	13.1 Vector functions and space curves	Section 13.1
		13.2 Derivatives and Integrals of vector functions	Section 13.2
		13.3 Arc length, curvature	Section 13.3
2	Sept. 3-6 Labor Day on Sept. 2	13.4 Motion in spce: velocity and acceleration	Castion 12.4
		14.1 Fuctions of several variables	Section 13.4
		14.2 Limits and continuity	Section 14.1
		Quiz 1	Section 14.2
3	Sept. 9-13	14.3 Partial derivatives	Section 14.3
		14.4 Tangent planes and linear approximations	Section 14.4
		14.5 Chain rule	Section 14.5, part 1
4	Sept. 16-20	14.5 (continued)	Section 14.5, part 2
		14.6 Directional derivatives and gradient vector	Section 14.6
		Examination 1, Friday, 8:00-8:50 a.m.	Section 14.7
5	Sept. 23-27	14.7 Maximum and minimum values	Section 14.7
		14.8 Lagrange multipliers	Section 14.8
6	Sept. 30-Oct. 4	15.1 Double integrals over rectangles	Section 15.1
		15.2 Iterated integrals	Section 15.2
		15.3 Double integrals over general regions, Quiz 2	Section 15.3
7	Oct. 7-11		
	Reading Days Oct. 7, 8	15.4 Double integrals in polar coordinates	Section 15.4
		15.5 Applications of double integrals	Section 15.5
	000.7,0	15.6 Surface area	
8	Oct. 14-18		Section 15.6
		15.7 Triple integrals	Section 15.7
		Examination 2, Friday, 8:00-8:50 a.m.	
9	Oct. 21-25	15.8 Triple integrals in cylindrical coordinates	Section 15.8
		15.9 Triple integrals in spherical coordinates	Section 15.9
10	Oct.28-Nov.1	15.10 Change of variables in multiple integrals	Section 15.10
		16.1 Vector fields	Section 16.1
		Quiz 3	
11	Nov. 4-8	16.2 Line integrals	Section 16.2
		16.3 Fundamental theorem for line integrals	Section 16.3
		16.4 Green's Theorem	Section 16.4, part 1
12	Nov. 12-15	16.4 (continued)	Section 16.4, part 2
	Veterans-Day	16.5 Curl and divergence	Section 16.5
	on Nov. 12	Examination 3, Friday, 8:00-8:50 a.m.	
13	Nov. 18-22	16.6 Parametric surfaces	Section 16.6
		16.7 Surface integrals	Section 16.7
14	Nov. 25-27	16.8 Stokes' Theorem	
	Thanksgiving		Section 16.8
	on Nov. 28, 29		
15	Dec. 1-6	16.9 Divergence theorem	Section 16.9
		16.10 Summary	
16	Dec. 9-13	Final Exam, Friday, Dec. 13, 8:00-10:00 a.m.	