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Uber die Primfactoren der Gruppendeterminante.

Von G. FroBENIUS.

Die Theorie der Charaktere einer Gruppe, deren Grundlagen ich in
meiner letzten Arbeit entwickelt habe, erfordert zu ihrer weiteren Ausge-
staltung die Untersuchung einer Determinante, deren Grad der Ordnung
der Gruppe gleich ist. Nach dem Vorgange von Depexinp, der zuerst
ihre Bedeutung fiir die Theorie der Gruppen erkannt und meine Auf-
merksamkeit auf sie gelenkt hat, nenne ich sie die der Gruppe entspre-
chende Gruppendeterminante. Die h Elemente A, B, C, ... der Gruppe
benutze ich als Indices fiir 4 unabhiingige Variabele x,, xz, %, - .
Indem ich diese Bezeichnung wihle, treffe ich die Festsetzung, dass,
wenn L = MN ist, auch x; = &,y sein soll. Aus diesen A Grossen,
die durch einen Index von einander unterschieden sind, bilde ich
#* Grossen, die mit zwei Indices versehen sind, indem ich Tp g = Tpg—
setze. Sind G,, G,, ... G, die /& Elemente von § in irgend einer be-
stimmten Reihenfolge, so betrachte ich die Matrix (x5 4) = (2pq-1), deren
h Zeilen man erhilt, indem man fiir P der Reihe nach die 4 Elemente
G,, G,, .- G, setzt, und deren % Spalten man erhilt, indem man fiir
() dieselben A Elemente in derselben Reihenfolge setzt. Diese Matrix
besitzt gewisse, durch die Constitution der Gruppe £ bedingte Sym-
metrieeigenschaften. In jeder Zeile finden sich die 4 Variabelen simmt-
lich und ebenso in jeder Spalte. Die verschiedenen Zeilen (Spalten)
unterscheiden sich von einander nur durch die Anordnung der Varia-
belen. Die Gruppendeterminante, die der Gruppe £ entspricht, ist
die Determinante dieser Matrix

© = |&5,q| = %],

Addirt man zu den Elementen der ersten Zeile die aller anderen
Zeilen, so werden jene Elemente alle gleich =&, = £. Daher ist die
ganze Function 2" Grades ©® der A Variabelen z,, %z, @, --- durch
die lineare Function £ theilbar. Mithin zerfiillt ®, von -dem trivialen
Falle » = 1 abgesehen, stets in Factoren niedrigeren Grades. Die An-
zahl & der verschiedenen irreducibelen Factoren oder Primfactoren von
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@ ist gleich der Anzahl der Classen conJuglrter Element
Elemente von § zerfallen. Ist f der Grad eines solchen P
so ist ® durch die f* und durch keine hohere Potenz von &
Der Grad f ist ein Divisor der Ordnung . Durch eine li are Su
st1tut10n lasst smh <I> in eine Funetion yon f2 al)er mcht -yon weniger

:IISi’f

in dieser Weise umformt, so sind die % f* =
unter einander unabhiingig. Setzt man immer dleJenlgen' fVa,mabeIen x
einander gleich, deren Indmes Elemente derselben Classe nd

helen und dle k hnearen Funectionen, dle so au 5 d
von © entsprlnoen smd hnear unabhanglg LA en

aus seinen & W erthen (R) lassen s1ch dle
function ® simmtlich berechnen. Die Theome der
determmante Worm d1e h Grossen T unbesc }

gefuhrt worin . dle Veranderhchkelt ) dleser Gro
dm@ungen Xpy = Lup beschrinkt ist. ‘Dle Ber
minante / tn Grades aber

werde. ‘
Ganz analoge Eigenschaften, wie ein sblchér Primf:
Gruppendeterminante, hat die ganze Function 9" Grad
riabelen, die ich in meiner Arbeit Uber Thetafunctionen mehr
(CreLLe’s Journal Bd. 96) untersucht habe, auf die
durch die Betrachtung der Gruppe der zwischen d
bestehenden Relationen, sondern dureh das fiir di
tende Additionstheorem gefiihrt worden bin. - Sons
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determinante bisher nur fiir den Fall commutativer Gruppen untersucht

worden, wo ihre Primfactoren simmtlich linear sind. Fiir einige be-
sonders einfache, nicht commutative Gruppen hat Deprxinp im Jahre

1886 die Determinante ® durch Rechnung in Primfactoren zerfills,

und seine interessanten Ergebnisse, die er mir vor kurzem mitgetheilt
hat, haben mich veranlasst, die Zerlegung der Gruppendeterminante

in Primfactoren allgemein fiir eine beliebig gegebene Gruppe zu unter-
suchen.

'J

§ 1.
Die Determinante der Matrix At Grades
(1.) (Fp,9) = (@pgm) = ()
bezeichne ich mit ‘
(2.) |%pq]| = | Zpg-1 | = Oy 34, 250 0, ) = Oay) = O) = O,

Unter £ verstehe ich immer das Hauptelement. In dem Zeichen
O(xz) bedeutet R ein veriinderliches Element, fiir das die /4 Elemente
E, A, B, C, ... der Gruppe © zu setzen sind. Bei Anwendung der
Bezeichnung (x) oder ©(x) ist x ein leeres Zeichen, das erst dadurch
eine Bedeutung erhilt, dass daran die Indices E, A, B, C, ... ange-
hiingt werden. .

Nun sei Yz, ¥4, ¥z, Yo --- ein zweites System von /4 unabhingi-
gen Variabelen. Aus ihnen bilde ich die Matrix

(3-) | Uz.0) = Upg—) = ()-

Ihre Zeilen (Spalten) erhilt man, indem man fir P(Q) die % Ele-
mente G, G,, ... G, von § in derselben Reihenfolge setzt, in der sie
bei der Bildung der Matrix (1.) benutzt sind.

' Aus jenen beiden Systemen von je A Variabelen x; und y, bilde
ich ein drittes System 2z, indem ich

(4) z2, = T @y, (RS = A)

setze. In dieser Summe sind fiir R die 2 Elemente von ) zu setzen,
und jedes Element R ist mit dem Elemente S (= R7A) zu verbinden,
das der Bedingung RS = 4 (nicht SR = A) geniigt, so dass auch S
die / Elemente von § durchliuft, jedes Mal verbunden mit R — AS.
Dann ergiebt sich durch Zusammensetzing der beiden Matrizen (1.)
und (3.), welche die hier vorausgesetzten, durch die Constitution der
Gruppe § bedingten Symmetrieeigenschaften besitzen, die Matrix

(5) (#p, Q) = (Fpg=1) = (2) = (@) (y)




1346 Sitzun g der physikalisch-mathematischen “Cl: |
mit denselben Symmetrieeigenschaften. Denn ‘e“s“fi

— >3
rq = <%prYRq = ;a’PR

Setzt man in dieser Summe R = SQ, so durchlauﬁ ‘Aglewhzemg i
mit R die 4 Elemente von §, nur in einer: .mderen Reihenfolge,
und es wird nach (4.) :

Fpg-15—1Ys = Tpg1+

z U——

2Q

)4

Derselbe Satz gilt, wenn man beheblg viele derartlge

zusammensetzt. Sind z. B. z;, 24, 25, 2¢, --- & beheblge Grossen, und
setzt man

wn
o
ok
n
ot
=
(¢}
=
&
=&
ot
s
S
o]
g
Nl
5
S
&
jou
/4]
ol
D
=
=T
o]
€]
P
g
=]
N
D
=]
B

n Mal mit sich selbst zusammen, so mdge sich dié Mateie
(@05, = (@) = (o) = @)
ergeben. Dann ist

(6.) .'vg;) = lecl Tp w0

ausgesetzten Symmetrleelgenschaften z. B‘ di
(Uber lineare Substitutionen und bzlmea e
Bd. 84 S.7), ebenso die Hauptmatrix (Elnhe

(2)° = (Ep Q) - (E}?Q-l) — (5)"
wo gp = 0 ist, ausser wenn R = K ist, und Iy
Nun seien &, ®, &”, ... die verschledenen in

(7.) 0= ¢ 3" --——H«I»

auf’gehenden unzerlegbaren Functionen (Prlmf'unctm
o f. f7 - die Grade dieser ganzen homogenen Func
belen z;, x4, x5, g, ---. In der (wruppendete
Elemente der Diagonale und nur diese gleich .
sich @ auf %, wenn man alle Variabelen ausser z; g
und folglich reducirt sich dann auch & auf d1e
Daher kann man den’ noch unbestimmten constanten
so wihlen, dass in dleser Functlon z} den Coefﬁmenten

den Glelchuncren (2.) und (5.) dle Relation
(8.) | 0(2) = 0(x) O(y).
Daraus ergiebt sich fiir jeden Primfactor von-
= ®(x,,2,, xc,---).._@( R)
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die analoge Relation .
(9.) ®(2) = ®(2) 2(y), wenn (2) = (2) (y)

ist, durch welche die Function ® unabhingig von ihrer Beziehung
zur Gruppendeterminante © charakterisirt werden kann. Denn zerlegt
man die rechte Seite der Gleichung (8.) in Primfactoren, so folgt
daraus, dass ®(2) in das Product einer Function A(x) der % Variabelen
zg allein und einer Function M(y) der 4 Variabelen y, allein zerfillt.
Setzt man dann in der Gleichung @(2) = A () M(y) Yz =€z, so wird
Zp = Ty, also ®(x) = A(z) M(¢). Ebenso ist M(y) = A(e) ®(y) und
Ae) M(e) = ®(e) = 1.

Umgekehrt muss jede unzerlegbare ganze homogene Function ® von
Xy, &y, Lg, -+, die der Bedingung (9.) geniigt, ein Factor der Gruppen-
determinante ©(x) sein. Denn setzt man in dieser Gleichung fiir (y)
die zu (2) adjungirte Matrix, so wird 2, = ¢, ®(2), also

2(2) = O(a) = @(a)2(y),

wo y, eine ganze Function der 4 Variabelen x, ist. Daher muss die

Function ®(x), weil sie unzerleghar ist, ein Factor von ©(x) sein.
Mit Hulfe der Relation (g.) lassen sich alle Eigenschaften der De-
terminanten, die aus dem Multiplicationstheorem fliessen, auf die Prim-
factoren der Gruppendeterminante {ibertragen, namentlich die Eigen-
schaften, welche ich in meiner im Folgenden mit V. citirten Arbeit
Uber vertauschbare Matrizen (S.601 dieses Bandes) entwickelt habe.

o

§ 2.

Jeder Primfactor ®(x) der Gruppendeterminante genligt der Be-
dingung

(1.) b(2) = () 2(y),
falls
(2.) | 2o =Sa,y, (4B =)

gesetzt wird.  Mit Hiilfe dieser Beziehung lassen sich die linearen
Factoren

(3-) ® @) = = x(d),
vollstindig bestimmen. Denn aus der Gleichung
(XD 2) Ex(Byy) = (2x(C)2) = Zx(4B)a,y,
ergiebt sich flir die Coefficienten 7, (4) dieser Functionen die Relation

(4.) x(AB) = x(4)x(B).
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Mithin ist %(E)=1, xw@)xA™H =1 und allgemel
= o, (A)%(B)%(C) (D) - -+, und folglich '

(5.) | BA— ABF

aus A und B ergiebt, nenne ich nach Depexixp den Cbmmutat
A und B. Demnach 1st %(F) 1 fir Jeden Commutator Ly

und ist -
T7AT = A’, T"lBT:: B,

so ist auch B’A’ = A'B'F’. Ist also F ein Oommutat r,

Jerles mit F comumrte Flement F' ein solcher. Thel

tative Grruppe 1st.) Ist G ein Element
Commutatoren F, F', F”,... (die nicht ‘VBI‘SChl
dass G = FF'F”--- ist. Da.her st %(G.
Nun sei ' : '

®GA = AG, 6B = BG,- bllden eine Gruppe ‘
wird. Ist ® die Commutatorgruppe so ist g eme commutati

sche) Gruppe, und damit —% eine commutative Gruppe, ei

wendig und hinreichend, dass ® durch die Oommutatorgrupp
ist. Denn sind ®A und BB zwei Elemente von g, s

ein solches Element F, dass BA = ABF ist, alsq auch
Nun ist ®ABF = (04)(®B)(GF) und GF = 6, also
(GB)(G4) = (84)(6B). =

Diese Eigenschaften der Commutatorgruppe hat DEpEK
1880 gefunden. Verdffentlicht aber sind sie zuerst Vo
reqular substitution groups whose order is less thcm 48 Quar
of Math. 1896, vol.28, p.266. B

Ist G irgend ein Element von ®, so ist fx,(GA)

o

Daher hat (R) fir alle Elemente R des Complex
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Werth. Mithin kann man auch die Zahl y,(4) dem Complexe G A
zuordnen. Da diese Complexe eine commutative Gruppe bilden, und
die ihnen zugeordneten Zahlen «(A) die Eigenschaft (4.) haben, so
bilden die Zahlen +(A), w(B), %(C), -+ einen Charakter der commu-

tativen Gruppe G Fiir eine solche giebt es bekanntlich immer 5 Ve

schiedene Charaktere, deren Werthe simmtlich Einheitswurzeln- sind.
Ist U einer derselben, und setzt man fiir jedes in dem Complexe ®A
enthaltene Element R (R) = L (®4), so ist fiir jedes Element G der
Gruppe ® «(G) =1, und es gilt fiir je zwei Elemente von H die
Gleichung (4.). Ferner ist dann die Funetion (3.), deren Coefficienten

diese Werthe (A4) sind, ein linearer Factor der Gruppendeterminante ©.
Denn setzt man y, = «(R)x,, so ist

pr—l - X(PQ_l) Tpg-1 = X(P)X(Q“l) Ypg-1

und mithin ist |ypg—| = |#pgs| Diese Determinante enthilt aber den
Factor 2y, = = (R)x, = ®, und zwar nur in der ersten Potenz.
Denn addirt man die Elemente aller Zeilen zu denen der ersten Zeile,
so werden dieselben alle gleich =y, = ®, und wenn man dann den
Factor ® aufhebt, alle gleich 1. Zieht man nun die Elemente der
ersten Spalte von denen der folgenden ab, so erkennt man, dass @: &
nur von den Differenzen y,—y, abhingt. Mithin kann dieser Quotient
nicht noch einmal durch die Summe Xy, theilbar sein. '

Folglich ist die Anzahl der linearen Factoren der Gruppendeter-
minante gleich dem Quotienten aus der Ordnung der Gruppe und
der Ordnung ihrer Commutatorgruppe, und jeder lineare Factor ist
nur in der ersten Potenz in ® enthalten.

Diesen Satz hat Depexivp durch Induction gefunden. Einen Linear-
factor, nfimlich X x,, giebt es immer. Der entsprechende Charakter,
%(R) =1 fiir jedes Element R, heisst der Hauptcharakter. Ist ® = §,
so giebt es keinen anderen Linearfactor. Dies muss stets eintreten,

wenn § eine einfache Gruppe ist, deren Ordnung eine zusammen-
gesetzte Zahl ist.

$ 3

Man wihle jetzt eine beliebige ganze Zahl f< /4 und versuche
eine ganze Function f* Grades ® der A4 Variabelen =z, Ty, Tp, -
zu bilden, die der Bedingung (9.) §1 geniigt. In dieser muss der
Coefficient von x7 gleich 1 sein. Denn setat man y, = ¢,, so wird
2p = &g, also ®(2) = ®(x) ®(c), und mithin ist $(c) = 1. &(c) ist aber
der Coefficient von £ in ®(x). Ich bezeichne nun, wenn R von E ver-
schieden ist, den Coefficienten von xf 'z, in &(r) mit % (R), setze aber
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(1) : S ' X(E)"“f’

A Ist U eine Vamabele SO set7e ich zur Abkurzung
(a:+u.s)_t1)(w +u B gy By L <o)

Das Zemhen w, das eine verandelhche Grosse bezelchnet .
scharf zu unterscheiden von den leeren Zeichen x und e, 7
durch Anhingen der Indices E, A, B, C, --- eine Bedeutung erhalten.
Ist nun :

(2.) o(w+ue) = v/ + &0+ 2w By

Xy Ty, Ty, Lo, o+, und zwar ist &, =& und

_ 1 o " 3,4 :
. b, = N == —n)P,.
(3 ) (J‘—— n)! dawn " 0, (/ ).
Endlich ist _
(4.) #, =z:x(R>wR,

Relation N
Y(A) ¥ (B) = (4B) :

die nothwendige und hinreichende Bedingung. Setzt man ‘
so ist ©(y) = @(x). Ist also ®(x) ein Primfactor e Grades von
so ist auch ®(y) ein solcher. In diesem ist der Coefﬁmen
o 'xy, gleich (R} (R). Es gilt also der Satz:
Ist «,(R) ein Charakter f n Grades und L(R) ein C/wrak
Grades von §, so ist auch (R (R) ein Charakter f* Grade.
Dieser neue Charakter ist gleich (R}, wenn J(R) der
charakter ist. Er braucht aber auch in anderen Fillen nicht
verschieden zu sein, nimlich, wenn o (R)= 0 ist ﬁi_i'_jede
Element R, wofiir </(R) von 1 verschieden ist. B
Seien u,, u,,---u, die f Werthe von —u, woflir

(5.) P2+ we) = (04 w) (v + Up) - (u + up) -
verschwindet. Seien a,v,,v,, ..., Constanterjl; und

g(u) = a(u+ v) (v + vs) - -~ (% +'}:zz;.)
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eine ganze Function von w. Dann ist auch, falls man die Variabele %
durch die Matrix (x) ersetzt,

) = 9(@) = a((®) + 0. (9) (@) + ©2(9))--- (@) + va (&)
Mithin findet man durch wiederholte Anwendung der Relation (9.) §1
®(y) = a/ @ (x + vy¢) (2 + vge) .-+ ®(x + v,e).

Setzt man hier
®(x + ve) = (w + v) (ws + ) - .- (wr + v),

so ergiebt sich der Satz: Ist die Matrix (¥) = g((#)) eine ganze Function
der Matrix (x), so ist

®(y) = g(w) g(wn) - - g ().
Ersetzt man hier g(u) durch gu)+v, wo v ein Parameter ist, behilt
aber die Abkiirzung (y) fiir 9((x)) bei, so ergiebt sich die Gleichung

2y +v9) = (0 +g(m)) (0 +g(w) - (v + g ().
Ist z. B. g(u) : ¥, so ist
B+ 08) = (o4 ul) (0 +43) - (0 1 18,
Durch Vergleichung der Coefficienten von /" erhilt man daraus nach (4.)

(6.) S, = 2 x(R) ),

wo S, die Summe der 7" Potenzen der f Grossen Uyy Uy, -+ - Uy ist.
Nach Formel (6.) §1 kann man dafiir auch schreiben
(7) Sn = E X(Rl Rg .. R,,) lesz . --50]3",

RI’R‘I’”'RH

wo jeder der » Summationsbuchstaben R,R,,...R unabhingig von
den anderen die % Elemente von 9 durchliuft.

Aus den Potenzsummen S, kann man aber die Coefficienten &,
der Function (2.) berechnen nach der Formel

adbted e ca b e
(8.) “1)e, =S 1 828885

- qedb3e. L glplet L

wo a,b,c,--. alle ganzen Zahlen (= 0) durchlaufen, die der Bedingung
a+2b+3c+... =n geniigen. Diese Formel gilt auch, wenn n>f
ist, falls dann ®, = 0 gesetzt wird. Mit ihrer Hiilfe werden wir die
Functionen ®,, ®,, ... und besonders ®. = & darstellen. Die Coefficienten
von @ sind ganze Functionen der 4 Constanten %(£), deren Coefficienten
rationale Zahlen sind. Wihlt man 7 > J> so ergeben sich aus jener
Formel Relationen, denen die % Grossen %(R) geniigen miissen. Ehe
ich aber zu diesen Rechnungen iibergehe, muss ich eine wichtige
Eigenschaft der Function % (&) vorausschicken.

Sitzungsberichte 1896, 119

(a+2043c+... =n)
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Setzt man in der Gleichung (9.) § 1 die Variabelen y, = O~ ausse ,1"_
einer, 14, so erhilt man : '

(9-) o B(wpy-) = 5(4) 2(wp),

wo &(A) den Coefficienten von x/ in ®(x,) bezeichnet. Setzt man
aber die Variabelen xp = 0 ausser einer, x4 (und ersetzt dann den
Buchstaben y durch x), so erhélt man

(10.) ®(24-1p) = S(4) 2(wp)-

Trsetzt man hier, falls B ein festes Element ist, fiir jeden Index R
die Variabele x, durch xz-1p, so findet man

®(wg-14m15) = D(4) ®(2p1p) = 2(4)2 (B) q’(wze)‘-
Frsetzt man dagegen in der Gleichung (10.y A durch AB, so wird
@ (2g-1415) = S (AB) ®(wg).

Mithin ist $(AB) = HA)$(B), und demnach ist H(R) ein Charakter
ersten Grades der Gruppe §, eine Einheitswurzel. Ist A ein festes
Element, und setzt man fiir jedes R yz = Zpam, 8O ist

Yp,q = yIJQ—-l = Tpg1g-1 — Tp aq*

Wenn man aber in der Determinante |25 o] Q durch AQ ersetzt; s
wird dadurch nur die Reihenfolge der A Spalten geindert. Ist m

Ordnung des Elementes A, so besteht jene Permutation der 7 Spal i o
aus lauter Cyklen der Ordnung m. Die Anzahl dieser Cyklen ist mlthmv;)'" :

?];2—, und folglich ist die Permutation eine gerade oder ungerade, '

h
nachdem h—~—7; gerade oder ungerade ist. Daher ist

G(xRA—x) — (“ 1)h~— @(.CUR)
also
3
(11.) M(sd) = (-1 7.
Ersetzt man in der Gleichung (10.) xp durch xg,, so erh_éilﬁ ,_

q’( IRA) - :’( ) (a’RA> - 2"(A)b"(A— ) ( R.):
also

(12) " (I)( A~ 1154)':@( )

Die Funetion ®(xz) bleibt also ungefindert, wenn man fir Jeden Index
die Variabele x, durch x, .z, ersetzt, wo A ein festes Element v
ist. Dabei bleibt die Variabele x, ungeiindert. Durch Vergleich g
Coefficienten von af™ xp ergiebt sich aber aus (12.) %(ARA"L)
oder, wenn man R = B4 setzt,
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(13) X(AB) = x(BA).

Theilt man also die 4 Elemente von §) in Classen conjugirter Elemente,
so hat (R) fir alle Elemente R einer Classe denselben Werth.

Nunmehr wende ich mich zur Berechnung der Functionen &, mit
Hiilfe der Formel (8.). Zun#chst ist nach (6.)
=8, = f:x(fi)x

2@2: T“»So: Vl()( B) X "18).[1"4 B

6%y = 81— 3818 + 28 = = (x(4)x )x(C)— (4) X (BO) —x(B) x (4C)
-x(C )X(AB) +X(ABC)+ X ACB))'”A B¢

K

Ich setze daher
(14.) x4, B) = x(A)x(B) - x(4B)

x(4, B, C) = x(A)x(B)x(€) — x(4) x(BC) — x(B)x(AC)

—xX(O)x(AB) + x(ABC) + x(ACB).

Dieser Ausdruck ist symmetrisch in A, B, C, weil %(ABC) bei cy-

klischer Vertauschung der Elemente A, B, (' nach (13.) ungeindert

bleibt. Das allgemeine Bildungsgesetz der Coefficienten der Function

(15.) nl®,(r) = X x&,R,, R)wk T, " Yr,

ist etwas complicirt: Seien A,B,C,D,F,G,H,... L, M irgend

n verschiedene oder gleiche unter den A Elementen von §. Man

bilde die n! Permutationen von 7 Symbolen und zerlege jede der-

selben in cyklische Factoren. Setzt man dann fir die # Symbole
die n Elemente A, B, C,... L, M, so sei etwa

(16.) (ABCD)(FGH) --- (LM)
eine dieser n! Permutationen. Man ordne ihr das Product
(17.) + x(ABCD)x(FGH) - -- x(LM)

zu, wo das Vorzeichen + oder — zu wihlen ist, je nachdem die Per-
mutation (16.) gerade oder ungerade ist. In der Permutation (16.)
bedeutet das Zeichen (FGH), dass die drei Symbole ¥, G, H cyklisch
vertauscht werden sollen, in dem Ausdruck (17.) aber bedeutet FGH
das Product der drei Elemente F, G, H.

Eine gegebene Permutation kann nur in einer Welse als Produet

' von cyklischen Factoren dargestellt werden. Doch kann man die ein-

zelnen Cyklen beliebig anordnen und innerhalb eines jeden Cyklus,
ohne dass er seine Bedeutung indert, die Symbole cyklisch vertauschen.
Andere Umstellungen aber sind nicht zulfissig. So ist die Permutation
(16.) gleich

119*
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(GHF) (ML) --- (CDAB).

In dem entsprechenden Producte (17.) sind aber dieselben Anderungen

gestattet, denn 5,(ABCD) bleibt ungeindert, wenn man die Elemente

A, B, C, D cyklisch vertauscht. Die Summe der den n! Permutationen

entsprechenden n! Producte sei

(18.) x(4, B, C, -+ L, M) = 3" (1)
Diese Function bleibt ungeéindert, wenn man die n Elemente
4,B,C,--- L, M

beliebig unter einander vertauscht. Besteht die Permutation (16.) aus
I Cyklen, so ist sie gerade oder ungerade, je nachdem n—/ gerade
oder ungerade ist. Daher kann man auch schreiben

(19.) (~1px(4, B, C, - L, M) == O(=).

Z. B. ist, gleichgiiltig ob die durch A, B, C, D bezeichneten Elemente
verschieden sind oder nicht,

(20.) X(A’B’ ¢, D)= -
X(A)X(B)x(C)x(D) — x(B) x(C) x(AD) — x(A) x(C) x(BD) = x(4A) x(B) x(CD)
: — x(4) x(D)x(BC) = x(B)X(D) x(4C) = x(C)x(D)x(AB) ..
+x(BC)x(AD) + x(AC)x(BD) +x(AB)x(CD) . -
+X(4)x(BCD) + x(B)x(ACD) + x(C)x(ABD) + x(D)x(ABC) .
+x(A)x(BDC)+x(B)x(ADC)+x(C) x(ADB) + x( D) x(ACB)
— x(ABCD) — x(ACBD)—x(BACD)— x(BCAD) - x(CABD) - x( CBA D)

Ich bilde nun die Summe
(—1y'=x(4, B, C, - L, M) z, wp @, @, &y

4 %p Y¢’

v

worin jeder der n Summationsbuchstaben A, B, C, ... L, M una,bhang1g
von den anderen die 4 Elemente von £ durchlauft. Der Ausdruck
(=1y% (4, B, C,..- L, M) ist eine Summe von n! Producten (- fj(,)
Die Permutation der n Symbole, aus welcher eins dieser Producte
gebildet ist, moge aus a Cyclen von 1 Symbole, b von 2 Symbol
¢ von 3 Symbolen u. s. w. bestehen, so dass a+2b+3c+ ... = n ist
Multiplicirt man dann dies Product T(—%) mit z, &5 Lgoe
summirt, so erhiilt man nach (7.)

(=) SIS Ss
Dies Glied elglebt sich so oft, als es Permutationen giebt, die sich
der angegebenen Art als Product von cyklischen Factoren darsteller
lassen, also (Cavcry, Comptes rendus tom. 21, p.604)
n!
192°8¢-- - alblel-.-

Mal. Mithin ist die betrachtete Summe gleich
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S (1) SIS S -
' 12203¢. .. g! ble! ...

= nl(—1) o,

Damit ist die Formel (15.) bewiesen. Ist also 7> f, so ist
(21.) X(Ry, Ry, .. R,,) = 0 (n>F).
In jedem der (n+1)! Producte der Summe R, R,R,, ... R)
stelle man den Factor, der das mit R bezeichnete Element enthiilt,
an die erste Stelle, und in diesem Factor selbst stelle man mit Hiilfe
einer cyklischen Vertauschung R an die erste Stelle. Dann nehme
man zuerst die Producte, die den Factor v(R) enthalten, dann die,
worin auf’ B das Element R, folgt, dann die, worin auf R das Ele-
ment R, folgt u.s. w. Auf diese Weise erhilt man die Recursions-
formel
(22.)  x(B, R, Ry, Ry, .- R) = x(R)x(R,, Ry, Ry, -- R,)
~X(BRy, Ry, By, -+ R)—x(R,, RR,, Ry, - - R.))—x(B:, R;, RRy, -+ R,)
— -+ =x(Ry, Ry, Ry, --- RR),).
Daraus geht hervor, dass, wenn fiir einen Werth von n die
Grossen % (R, R,, --- R) simmtlich verschwinden, dasselbe auch fiir
Jjeden grosseren Werth von 7 eintreten muss. Speciell ist

(23) X(E,Rl, Ry, - Rn) = (f—")X(RI’ Ry, - Rﬂ)

S 4.

Differentiirt man die Gleichung @ (2) = ®(x)®(y) nach Y4, SO er-
hiilt man '

2 aé(z) z . @(x) B‘I'(y)

~ 9z, AT dy,
und wenn man y = ¢, setzt,
: 3®(x)

(1) D T = X(4)#(2).
R R

Differentiirt man aber jene Gleichung nach z,, so findet man auf
demselben Wege .
a® (x
(2) S0 = ()2 (0)

T g

In diesen Gleichungen ersetze ich x, durch z,—u. Dann ergiebt sich
daraus, da
Me(r—wue) 1 1 o S,

ou u—u, U—1u 0 gt

ist, die Recursionsformel

1 9S4 1 oS, 1 « 08,
(3) n+1 oz, W_n_%"@;a?““ _772 oz, Tamim (n>0)
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aus der sich ein neuer Beweis fiir die Formel (7.) § 3 ableiten 1asst .
Differentiirt man die Gleichung (1.) nach s, multiplicirt sie dann mit
Zsp— und surhmirt nach S, so erhilt man die Gleichung

0%®
2 awleaws xR_A—l mSB‘"l prammng (X(.A.)X(B)—X(B_A)) @’
R .

aus der sich direct die Formel (13.) § 3 ergiebt. Ebenso ist allgemein,
wenn A, B, --- M irgend n Elemente von £ sind,

9"
0L, 0T ¢

- dx Tpa-1¥gg—1"" " Tygpy = x(A,B,--- M)
RS,V 14

Hier mache ich von jenen Relationen eine andere Anwendung.
Setzt man

0P (@ —ue)
e T
R
so lauten sie
4 —1
%ypk—l (Prgo1— Uepg) = S‘Ig (% g = "epp) Ypgt = X(QPT) @(w— ue).

Ich setze noch v, (R™) = v/ (R) und bezeichne die Matrix (% (PQ™)
kurz mit (x'). Dann driickt diese Formel die folgende Beziehung
zwischen Matrizen aus

(4.) () (@) —u(e)) = (@) —u(e) (1) = (X) @ (@—ue). E
Mithin ist (y)(#) = (#)(y). Ist also, nach Potenzen von u entwickelt,
() =(p) + (@ u+(r)u’+ -, so ist (x) mit jeder der Matrizen (p), (¢), (r),
vertauschbar. Entwickelt man nun in der Relation (4.) auch ®(x—ue)
nach Potenzen von #, so miissen die Coefficienten der einzelnen Po-
tenzen von u auf beiden Seiten {ibereinstimmen. Die so erhaltenen
Gleichungen flige man wieder zusammen, nachdem man sie, statt it
den Potenzen der Variabelen %, mit den entsprechenden Potenzen der‘
Matrix (x) multiplicirt hat. Dles Verfahren fithrt zu demselben Re
sultate, wie wenn man direct in der Gleichung (4.) die Va}rlabele_u
durch die Matrix (v) ersetzt. (Ausfithrlicher ist diese Schlussweise
entwickelt V., S.605.) Dann ergiebt sich (y)®(x—(x)e) = 0 ode
deutlicher (%) ®(x,— (%), x4, 25, ¥, ---) =0 und noch ausfithrlich
nach (2.) § 3 ’ '

(5) GO (@)~ @0+ (@2 (1) (0P 8) = 0.

Multiplicirt man noch mit ()", so erhilt man

(6)  IX(AR) (o} o™ e 0o, (1Y e ) = 0.

Setzt man 7 = f, und bestimmt man den Coefﬁ(uenten von x{,
findet man

(7.) x(A8") ==, (8)x (48 + :n.,(S>><(AAS'f“2> — o+ (=1 5(S)x(4)
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WO :

der Coefficient von x¢ in @, ist, also von A unabhiingig ist. Speciell
ist 3,(S) = %(S) und $(8) = 3(5). Setzt man in der Function
®(Lp+ U, Ty, Ty, - Ty, ---) alle Variabelen gleich Null ausser » und
Zg, so.wird

{(9.) @ (,0,0, - 25,0, - ) = W + 31(’8}1/‘1335 =+ 32(8)?’/‘#2@"3 + ek zf(S)xﬁ.

Daher ist &(F) = ({; )
35

Die bisherigen Ergebnisse habe ich allein aus der Relation (9.)
§1 abgeleitet, ohne dabei die Unzerlegbarkeit von ® und den Expo-
nenten ¢ der Potenz von ® zu benutzen, durch welche die Gruppen-
determinante © theilbar ist. Jede der A Variabelen #, kommt in
jeder Zeile und in jeder Spalte von © einmal vor, im Ganzen also an
h Stellen. An jeder dieser 4 Stellen ist ihr aber dieselbe Unterdeter-
minante complementir, wie ich Ch. § 6 gezeigt habe. Ist also ®p, 4
die Unterdeterminante, .die dem Elemente x5, in der Determinante

® = |z | complementir ist, so ist
1 00
(I') ®P,Q - _]L— ExPQ—-l — ®_pQ—1 ’

d . . .
falls man 20, = 52? setzt. Die Unterdeterminanten von ® bilden dem-
' R

nach eine Matrix, welche dieselben Symmetrieeigenschaften hat, wie
die Matrix (x). Nach den bekannten Relationen zwischen den Ele-
menten einer Determinante und den ihnen complementiiren Unter-
determinanten ist

% xl’,R@Q,R - ‘?;xR,PQR,Q = fp Q®
oder
. 00 RIC)
(2') %xME:%mRAEZE—AhG.
Nach (7.) §1 ist ® = ¥, wo ¥ zu ® theilerfremd ist. Mithin ist
. ‘ e aly |
3 j — ¢, /
2 Yan (e A, + ExR) a4l
oder
. 0P BE 2
= v P — | = by,
= %40 (e %, + axR) €, hew

Da ¥ zu ® theilerfremd ist, so ist folglich Sux,, swi durch @ theilbar,

'R
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und weil beide Functionen von demselben Grade sind, so konnen sie
sich nur um einen constanten Factor unterscheiden. Dieser erglebb_ R
sich durch die Vergleichung der Coefficienten von x%, und mlthm be-'v‘ |
steht die Formel
9P oP — o
(3-) %”Aze oz, % RA 3 = x(47)e,

die auf einem anderen Wege schon in §4 abgeleltet ist. Multlphmrtw
man die Gleichung

L
BS g

Xa =x(R)a

mit @z, und summirt nach R, so erhilt man

10 22 — a3y (B2 — o3 5(4R 22
oz, 0y, oz,

Setzt man hier ® = ®¥, so erhilt man

a% 0P oy
ﬁ —_— = :: -1 2Y ——— P ——
¥ o, (AR )(PY o, e axR)’
und folglich ist
h 3% . 0P
[ — —1
(4) e = IX(ARY) S

weil die Differenz dieser beiden Functionen durch & theilﬁar un
vom Grade f—1 ist. Setzt man aber ® = &“¥’, wo @ em von
verschiedener Primfactor von © ist, so erhilt man

rr 92 oS o [ 0¥ o B
hd' ¥ o &3 x(AR )(w T GwR)
und folglich ist
‘ 0®’
(5.) ] X (AR~ 1) =0,

weil diese Function durch &’ theilbar ist. Verglelcht man in dies
Relationen d1e Coefficienten von x4 (bez. x4™), so ergiebt swh

2 X (AR x(R) = — X(A) = X(ARMY(R) =0,

wo (R) der der Primfunction @ entsprechende Charakter ist. Man ka
diese Glelchungen auch schreiben

6. Sx(Bx(S) = 2x(4),  Ex(B)w(S) =
oder

(1) 3x(PRYXRE) =2x(PQY),  3x(PRW(EQY =
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Fiir A = E ist
- h
(3.) Zx(R)x(B) = —;’i, - Ix(B)y(RY) = 0.

R

Daraus fliesst die Folgerung, dass die Werthe (&), %(4), % (B), -
des Charakters %, den entsprechenden Werthen V(E), L (4), V(B)---
des Charakters ¢ nicht proportional sein konnen. Bezeichnet man die
Matrix (% (PQ™)) kurz mit (), so kann man die Relationen (7.) auch auf
die Form

(9) X =50 W =0

bringen.

§ 6.
Gleichzeitig mit P durchliuft auch P die 4 Elemente von $,
nur in einer anderen Reihenfolge. Daher ist

|25,0] = |#p-1,00| = |%g-1, 5]
also

(1.) |22t | = | @gp]-

In jeder dieser beiden Determinanten erhélt man die Zeilen, indem
man fir P, die Spalten, indem man fiir Q die Elemente G, G,, --- G,

-von § setzt. Sind also x, und y, zwei Systeme von je 4 Variabelen,

SO ist ‘
|@pg | = @@, [Ygup] = M@0,
Die beiden Matrizen (xpp-) und (y4,.p) sind aber mit einander ver-
tauschbar, es ist
%wPR—l Yo = ‘Eys-tp Zsgr-
Denn setzt man SQ™ = PR™, also § = PR™(Q), so durchliuft S gleich-
zeitig mit K die 4 Elemente von §, und es ist auch S7P = QR.

Seien a,, @,, ay, -+ die A Wurzeln der (charakteristischen Gleichung
der) Matrix (wpq-1), also die Wurzeln der Gleichung |@pg —uepgi| = 0,
und by, by, by, -+ die A Wurzeln der Gleichung |ye.p—uepga| =0,
also auch der Gleichung |ypg1—uepp| = 0. Dann lassen sich
(V., S.602, III) diese beiden Reihen von je A Wurzeln einander so
zuordnen, dass a,+b,, a,+b,, a;+0b,, --- die Wurzeln der Matrix

(Tpg+ yg1p) Werden.
Auf diesen allgemeinen Satz komme ich spiiter (§ 10) zuriick. Hier
mache ich jetzt die Voraussetzung, dass fiir je zwei Elemente von §

(2.) Ysa = Yan

ist. Theilt man also die 4 Elemente von § in Classen conjugirter
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Elemente, so hat y, fir alle Elemente einer Classe denselben Werth,-
etwa fir die Elemente R der o Classe den Werth y, =y, Ist &
die Anzahl der Classen, so seien die & Variabelen y,, v,, --- y,_,, die
den % Classen (0), (1), --- (k—1) entsprechen, von einander unabhingig.
Da nun Yg. p = Ypgr ist, so ist die Matrix (ypo-) mit der Matrix (2pg-)
vertauschbar. Jede Matrix (x), welche die in § 1 definirten Symmetrie- -
eigenschaften besitzt, ist mit jeder anderen Matrix (y) vertauschbar,
deren Elemente ausserdem noch den Bedingungen (2.) geniigen. Sind
daher u, v, w Variabele, so ist die Determinante '

luacm_1 + VY ppr wsPQﬁl‘ = (¢ (ux + vy + wa)”)
ein Produet von linearen Funectionen von u%, v, w, und mithin ist auch
(3.) @(uz+ Uy + we) = (u,u + v, v + w) (W,u + 0,0+ w) - - (ufu + o0 +w),

WO Uy, Uy, -+ Uz Uy VOR U, ¢, w unabhiingig sind. Den Coefficienten
von w kann man in jeder dieser f linearen Functionen gleich 1 voraus-
setzen, weil die linke Seite fiir v = v = 0 gleich w/ wird. Setzt
man v = 0 und » = 1, so erhilt man ‘ o

(4.) (x4 we) = (ul+w)(u2+w)-~(uf—{— w),

setzt man % = 0 und » =1,
(5) . ‘I’(y+we) E— (U1+w)(v2+w)~~-('uf+w),

Daher héngen u,, u,, --- %, nur von den 4 Variabelen z; ab und haben
dieselbe Bedeutung wie in § 3, wihrend v,, v,, --- v, nur von den .
k Variabelen y, abhingen. ey

Da @& (x) ,unzerlegbar ist, so ist auch @ (x+we) als Function-
von w irreducibel, d. h. dieser Ausdruck kann nicht als Product
zweier ganzen Functionen von w dargestellt werden, deren Coeffi-
cienten rationale Functionen der % unabhiingigen Variabelen x, sind.
Betrachtet man die % Grdssen y, als constant, so ist auch v, eine
Constante, und mithin ist auch )

@40, +w, v, @y, ) = (u, +v, +w) (u, + v, +w) (uf-}—vl + w) | :

als Function von w irreducibel. Diese Funection hat aber. mit der
Funection . ;

P @4y +w) = (u +o, +w)(u,+v,+w) - (uf-{- v+ w)

den linearen Factor w, +v, +w gemeinsam. Folglich miissen beide
Functionen identisch sein. Setzt man w=0 und », = », se ist also

(6) (b(xﬂ+y5’xA4+yA’xE+yB‘ "')-‘:@("I}E-{- NoTys Ty )y

wo # nur von den Variabelen y, abhingt. Setzt man die Variabele:
xp alle gleich Null ausser x; = %, so erhilt man
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(7.) (Yt W Y Y ) = (Wt ), Wpa = Yan)
und daraus durch Vergleichung der Coefficienten von /™
(8.) J1=Zx(B)y,.

So ergiebt sich der Satz:

Ist fiir je zwei Elemente A und B der Gruppe © x5, = 2,5,
so wird die Primfunction f* Grades ®(x) gleich der f* Potenz einer
tinearen Function £ = —;—S % (R) 2.

Fiir alle Elemente R der o Classe, deren Anzahl A, = A, sei, hat
% (R) denselben Werth %,. Ist x4 = w,z, so hat auch fiir diesc A,
Elemente denselben Werth x,. Daher ist =, (R) 2, = = h, %, @, Ist @
ein von ® verschiedener Primfactor von ©, und U (R) der ihm ent-
sprechende Charakter, so konnen nach §5 die % Grossen Y, den
k Grossen v, nicht proportional sein, und mithin konnen die beiden
linearen Functionen X4, "be @, und X 4,%,x, sich nicht etwa nur um
einen constanten Factor unterscheiden. Wendet man nun den obigen
Satz auf jeden Primfactor von ® an, so erhilt man

¢
717?""; X('R)wjg) f:: H(E;f) (Cps = 4p)
Jedem Primfactor ® der Determinante (7.) §1, worin die 2 Variabelen
%, von einander unabhiingig sind, entspricht ein Linearfactor £ der
Determinante (9.), worin xz, = x,, gesetzt ist. Sind die % Variabelen x,
unabhiingig, so entsprechen zwei verschiedenen Primfactoren jener
Determinante zwei wesentlich verschiedene Linearfactoren der Deter-
minante (9.). Ist / der Grad der Primfunction ¢, und e der Expo-
nent der in © aufgehenden Potenz von &, so ist ¢ = e¢f der Expo-
nent der Potenz des entsprechenden Linearfactors £, wodurch die
Determinante (9.) theilbar ist.

Vergleicht man das erhaltene Resultat mit der Formel (22.),
Ch. §5, so erkennt man, dass die Grossen %> Welche dort auf einem
ganz anderen Wege als die Charaktere der Gruppe § eingefithrt sind,
mit den hier definirten Grossen (&) vollig iibereinstimmen, und ebenso
die Zahlen g = ¢f. Nur waren dort die beiden Factoren ¢ und fvon g
willkiirlich gelassen, wihrend sie hier einzeln eine bestimmte Bedeu-
tung haben. Man kénnte daher jetzt von allen dort entwickelten Eigen-
schaften der Charaktere Gebrauch machen. Indessen ziehe ich es
vor, die Ergebnisse jener Arbeit von dem hier gewihlten Ausgangs-
punkt aus noch einmal abzuleiten.

(9.) | leQ~l ! = I (
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37

Wenn man die Gleichung (6.) § 6 nach Yy, differentiirt und dann

die % Variabelen y, alle gleich Null setzt, so findet man
1 0%(x) _ h,x, 99(w)

S day [ ey

wo der Summationsbuchstabe R die h, Elemente der p** Classe durch-
lauft. Ist A ein festes Element, und ersetzt man fiir jedes R die
Variabele @, durch x,,, so #ndert sich & nach (10.) § 3 nur um
einen constanten, von Null verschiedenen Factor. Mithin ist auch

138 (w) _ h,x, 3% (x)
I. = =5 .
(1.) (29) 0z, f 4 o
wo wieder K die 4, Elemente der Classe (¢) durchliuft. Vergleicht man

die Coefficienten von xf{™, so erhilt man

kg

h
(2.) 2 x(48) = "f x(4) x(B),

wo S die Ay mit B conjugirten Elemente durchliuft. Direct erhilt
man diese Relation, indem man fiir die Funetion (7.) §6 den Aus-
druck §,(y) = =% (PQ)y»yq = f7* berechnet. Setzt man S — R-BR
und fiir R alle 2 Elemente von $, so wird S jedem Elemente der

Classe von B gleich und zwar jedem h Mal. Daher ist (Ck. §5, (5.)

]LB
(3.) hix(4)x(B) =/ I X(4R"BR).

Zu demselben Resultate gelangt man direct von der Formel (9.) §6
aus auf dem Ch. S.1001 angegebenen Wege, also mittelst derselben
Schliisse, die in §1 zu der Formel (g.) gefiihrt haben.

Die Anzahl der verschiedenen Primfactoren der Gruppendeter-
minante ® sei /. Diese / Functionen & und die ihnen entsprechenden
Charaktere , mogen durch obere Indices A — 0,1,.---/—1 von ein-
ander unterschieden werden. Nun ist in der Entwicklung der Deter-
minante O(x + we) nach Potenzen von u der Coefficient von 1~ gleich
hxz. Ersetzt man daher in dem Producte |

(4-) 0= T11(e®)

&y durch xz+wu und vergleicht dann die Coefficienten von xy, so
erhilt man

(5-) S WO (R) = he .
Nun ist nach (8.) § 5 und (3.)
‘ . oo h
IHSTRASE) = xS, 3O =2,

£
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und mithin fir jeden Werth von A

]
> 571_ x™ (S1R-1SR) = &,

R, S

und folglich, da dieser Werth von A unabhiingig ist,

e ~ -
> XM (S1RUSR) = bl
A R, S

Jetzt kehre ich die Reihenfolge der beiden Summationen um. Dann
ist nach (5.)

S (S RASR) = o,
ausser wenn STRTSRE = E, also SR = RS ist; dann ist die Summe
gleich 1. Daher ist 4/ gleich der Anzahl der Losungen der Gleichung
SR = RS. Diese aber ist, wie ich Ch. S.987 durch die einfachsten
Betrachtungen gezeigt habe, gleich 4%, und folglich ist / = .

Die Anzahl der verschiedenen Primfactoren der Gruppendeterminante
ist gleich der Anzahl der Classen conjugirter Elemente, worin die Elemente
der Gruppe zerfallen.

Durchliuft R die Classe (), so durchliuft R™ die inverse Classe,

die ich mit (o) bezeichne. Daher sind die Gleichungen (8.)
identisch mit

hf®
zl (%) (’f) —_ , E] (%) ():) - ().
(6') - Lochc Xa e(x) o bo:ch Xa 0
Demnach sind die beiden Matrizen des £*" Grades
' he o)

(7. Gx) ()
complementéir und folglich bestehen auch die Gleichungen
e(®) h el*)

zf(x) X( X 712’ zj(x) X()X(ﬁ)"‘o

E3

Setzt man also A, = A, oder 0, je nachdem (8) = («) ist oder nickt,
SO ist

bl
W) — b Nap
(8.) 2 f(n) X5 ~ hahg

Diese Gleichung erhilt man unmittelbar aus der Relation (2.). Ist
niimlich (4) = ¥, und %(B) = %ﬁ, so lautet diese

AS) = 2B ()
X (A8) = j xa X%

wo S die A; Elemente der B Classe durchliuft. Daher ist

s el®)
22 T8 = f Ej% X&) X8
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(%)
Nun ist aber 2%%(") (AS) = 0, ausser wenn AS = E, also § = A™

ist. Dann ist die Summe gleich 1. Das letztere tritt aber stets und
nur dann ein, wenn (8) = () ist, und so ergiebt sich die Gleichung (8).
Sowohl aus dieser wie aus (6.) folgt, dass die Determinante ™" Grades

(9.) | X
von Null verschieden ist.

Sei allgemeiner A ein bestimmtes Element der «'* Classe und R
ein veriinderliches Element, das die %, mit A conjugirten Elemente
durchliuft. Dieselbe Bedeutung mogen fiir die 2* Classe die Zeichen
B und 8§, fiir die 4" die Zeichen €' und T' haben. Dann ist nach (2.)

o/ Tal ha 73 ’ " h
S/ (RSC) = “23(4)x(8C), = x(5C) = "2 x(B)x(C),
X J s f
also
’ hohe
=/ x(RSC) =
z Sx( ) Fi XXX,

und mithin

22/ el ha/zg§ el X(")Xg‘)

= R, 8 .j

Die linke Seite ist gleich der Anzahl der Losungen der Gleichung
RSC = E. Die rechte Seite zeigt, dass diese Anzahl nicht von dem
Elemente C, sondern nur von der Classe (y) abhéingt, der C' angehort.

he, ;
Bezeichnet man sie mit —ki?—, so ist demnach
b4
hhos el)
' AT N N )
(IO) ]Z'oz]l’,ﬁﬁ/ 2](-() X X /( .

Setzt man fiir C' der Reihe nach die %, Elemente T' der Classe (y), so
ist folglich ., die Anzahl der Losungen der Gleichung RST = E,
falls R die Ay Elemente der Classe () durchliuft, S die 4, der Classe (5)
und 7' die A, der Classe (y). Wie die rechte Seite dieser Gleichung

. .. - hag
unter einander ungedndert. Daher ist auch /: > die Anzahl der Lo-
B

sungen der Gleichung RBT = E, worin an Stelle von S ein festes
Element B der 8" Classe getreten ist.

Aus (6.) und (10.) ergeben sich die Relationen
hely X858 = %) 2 hapy X
Diese zeigen, dass die Grossen 7, den Gleichungen

(11.) hishy s Xy _j herzey Xe
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gentigen.  Dieselben haben daher % Systeme von Losungen

X, = x, , («x=0,1,..k—1)
aber nicht mehr. Denn sind w,, %, - o_, Variabele und setzt man

(12.) ’ 2 ]L“XSZ‘).’]?“ = fEE)
so folgt aus (11.)
haxPEW = = (3 hugry x,) x4
jC) ¥

oder
; ((; /lccﬁ’:ymty) ——/l'c\:,’_a’g(x)) Xg) = O-

i)

Folglich verschwindet die Determinante

(13) l(%}lagﬂg,wy)—ha@vrl, (e, =0,1,.- . k=1)

die eine ganze Function 4*® Grades von 7 ist, fir die & Werthe 7 — £,
die unter einander verschieden sind (vergl. Depexinp, Zur Theorie der
aus n. Haupleinheiten gebildeten complesen Grossen. Gottinger Nachrichten
1885, S. 146).

Die Gleichungen (11.) bestimmen die Grossen X*. Alsdann liefert
die Gleichung (6.) f

A X

J

of J

zu jedem der & Werthsysteme % den entsprechenden Werth von ef=g.

Nach § 3 ist demnach zur vollstindigen Berechnung der % Prim-
functionen ® weiter nichts mehr erforderlich, als die positiven gan-
zen Zahlen e und f, deren Product g bereits bekannt ist, einzeln zu
bestimmen. Diese Aufgabe, von allen die Gruppendeterminante be-
treffenden Fragen die schwierigste, wird in § 9 durch den Satz ge-
16st, dass stets ¢ = f = Vg ist. Nimmt man dazu aus § 12 das

Resultat, dass v, und s, conjugirte complexe Grossen sind, so folgt
aus (7.), dass die Matrix

(14) Vi)

der conjugirten complexen Matrix complementiir ist.

§ 8.
In der Gleichung (7.) § 6 gebe ich den Variabelen Yz die Werthe
%R = %(R), die der Bedingung y,, = y,; nach (12. geniigen,
gung y Y 3-) 3 3 genug

- h
Dann ist nach (8.) § 574 = T}’ und mithin ist

(.) : @(%x’) = 1.
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In Folge der Eigenschaft (13.) § 3 ist die Matrix () mit jeder Matrix (z)
vertauschbar. Ich setze
h
(2.) — &, = ZX(BY oy = Zx(57) oy, (BS = 4)

und bilde aus den Grossen £p,.. die Matrix (£). Dann ist

(@) + () (5x) = @ +u(x)
und mithin nach (9.) §1
) e
(w4 ue) = (& + U x).
Nach Gleichung (6.) § 6 ist aber

(& +u—2~x’) = B + ue),

weil der den Grossen y, = %%’(R) entsprechende Werth von » nach
(8.) § 5 gleich 1 ist. Folglich ist '
(3.) B(x + ue) = B(E + ue).

Ist dagegen @ ein von & verschiedener Primfactor der Gruppen-
determinante, f* sein Grad und ' der entsprechende Charakter, so
ist nach (7.) § 6

q)/(yfe + usk) = (u+ n/)f" Ups=Y,15
wo f4 = ZY(R) yp ist. Setzt man also y, = %%’(R),
(8.) § 5 ¥ = 0. Demnach ist nach (6.) § 6 fiir 2 unabhiingige Varia-
bele 2

so ist nach

¥ (uz + —Z—X/) = ¢'(uz) = u/" ¥(z).

Sei (2) = ()7, also (2) (x) = (¢) und @(z)@(x) = 1. Dann ist
¥(2) @’(uz + %X/) = u/,
und daher, weil (2) (u(z)+(£—>(_)) = u(e)#(é} ist,

(4.) (& + ue) = w/.

Aus diesen beiden Gleichungen, die nur specielle Fille einer
allgemeineren Formel sind, ergiebt sich nach (7.) § 1

(5-) igPQ_l -+ usI’Q—l ] feceet (i)(w_t_Us)e w9

und fir x; = &,

(6.) %X(PQ—l) t gy | = (44 1) WY




/
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Daher verschwindet die charakteristische Determinante der Matrix (£)
fir die f+ 1 Werthe v = 0, u,, %y, --- 4. ,Weil nfimlich die Gruppen-
determinante ©(x) stets den linearen Factor X z, und zwar nur in
der ersten Potenz, enthilt, so ist nothwendig A—ef>0, falls man den
trivialen Fall 2#=1 ausschliesst.

Nun sei G((£)) = 0 die Gleichung niedrigsten Grades, der die
Matrix (£) geniigt (V. § 1, VI). Dann muss die ganze Function G(u),
die ein Theiler der charakteristischen Determinante |£pg —uepg | ist,
fir jede Wurzel der Matrix (£), also fiir jeden der f+1 Werthe
w=0,u,u, - 4 verschwinden und mithin durch u®(x—ue) theilbar
sein. Da ferner die Matrix () mit jeder Matrix (¢) vertauschbar ist,
so ist nach (9.) § 5

(7. €r = () @)'= (Gxr@r = () @)

Multiplicirt man daher die Relation (5.) § 4 mit (), so erhélt man
(8. (Y — (5 @, + (B &=+ (- 1)/ (E) dp = 0,

wo nach (3.)

(9 5, = b(s) = 28)

ist, oder kiirzer

(%) @(m—(&)s) == 0.
Mithin ist w®(@—wue) durch G{w) theilbar, also gleich G(u), und
folglich ist (8.) die Gleichung niedrigsten Grades, der die Matrix (&)
genigt.

Ohne dic Relation (5.) §4 zu benutzen, kann man diesen Satz
auch so einsehen: Die Function G(u) wird erhalten, indem man die
Determinante A Grades (£pp1—uepy) durch den grdssten gemein-
samen Divisor ihrer Unterdeterminanten (A—1)*" Grades dividirt. Sind -
die A Variabelen x, unabhingig, so folgt aus der Gleichung (1.) § 5,
dass die Unterdeterminanten (A—1)*" Grades von ©(x) alle durch & (x)™
theilbar sind. Daher sind die Unterdeterminanten von ©(£—wue) alle
durch ®(f—we)™ = ®(@—uef ™, also auch durch (u—w,)™, theilbar
und nieht durch eine hdhere Potenz von u—u,, weil sonst ©(£—wue)
durch eine héhere als die &* Potenz von u—u, theilbar sein miisste.
Mittelst derselben Sitze ergiebt sich aus den Gleichungen (9.), § 5 und
(6.), dass der Rang der Matrix (y) gleich ¢f ist, wie ich Ch. § 5 aus-
fithrlicher gezeigt habe. Daher ist auch der Rang der Matrix

(10.) ®) = (x) @) = @ ()

gleich ¢f. TFolglich verschwinden h—ef Elementartheiler der charak-
teristischen Determinante von (£) fiir w = 0, und weil das Product

Sitzungsberichte 1896. 120
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derselben nach (6.) gleich '~ ist, so muss jeder von ihnen linear
sein. Mithin enthilt der gr(’jsste gemeinsame Divisor der Unterdeter-
mmanten (A—1)*" Grades jener Determinante den Factor % genau in
der (h—ef—1)*" Potenz, und demnach muss

(1) G(u) = u® (v —ue)
sein.

$9.

Nach diesen Vorbereitungen wende ich mich nun zum Beweise
des Fundamentalsatzes der Theorie der Gruppendeterminanten:

Der Exponent der Potenz, worin die Gruppendeterminante einen Prim-

' Jactor enthdlt, ist dem Grade des Factors gleich.

Den Fall f= 1 habe ich bereits in § 2 erledigt. Wegen der
Schwierigkeit des allgemeinen Beweises schicke ich noch die beson-
deren Fille f = 2 und 3 voraus.

Ist f= 2, so ist

(I-) 2@(1’): q2 }S’),

und der entsprechende Charakter v, geniigt den Relationen w4, B C)y=10
oder

(2.) X () x(B) x(€) = x(4) x(BC) = x(B) x(4C) = x(C€) x (AB) + x(ABC) +x (ACB) = 0.

In dieser Gleichung ersetze ich B durch BC™ und summire dann nach

C iiber die /4 Elemente von § (oder man summire in (2.) tber alle

Elemente B, C, die der Bedingung BC = B’ gentigen, wo B’ ein festes

. Element ist). Mit Hiilfe der Formeln (7.) § 5 und (3.) § 7 findet man

2 KX B~y (B) =2 (4B =L 4 B) - hx(AB) + . x(A)x(B) = o,

also weil f= 2 ist,

(L.;i,) () x(B)—2 x(4B)) =

e
Daher ist e = f, weil nicht fiir je zwei Elemente
’ X(A)x(B)=2x(4B) = 0
sein kann. Denn sonst erhielte man, indem man diese Gleichung mit
x4%p multiplicirt und nach A und B summirt, S*—2S, = 0. Nach (1.) -
wire also 4@ = 87, wihrend ® unzerlegbar ist.
Ist f=3, so ist

(3.) 66 = Sy —38, S + 28,,

und der entsprechende Charakter geniigt den Relationen (4, B, C, D) =

((20.) § 3), Ersetzt man darin ¢ durch CD™ und summirt dann nach
D, so erhilt man
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%(X(A)X(B)X(C)‘“X(B)‘X(AC)"X(A)X(BC)“X(A)X(BC)—X(B)X(AU)
—X(C)X(AB) +x(ABC) +x(ACB) +x(ABC) +x(ABC)+ x(ACB) + x(ACB)
+h(=x(A)X(B)x(C) + x(C)x(AB) + x(4) x(BC) + x(B)x(AC) —x(ABC)—x(ACB))
+ }];“(X(A)X(B)X(C) + x(A)x(B)x(€C) =x(B)x(AC) = x(4)x(BC) —x(C)x(4B)
| ~x(C)x(4B)) = 0,
also wenn man den Factor 4 durch Bi ersetzt,

(D x(B)x(C)—2x(A)x(BC)—2x(B)x(AC) — x(C)x(4B)

h /L)
+ 3x(4BC) + 3x(4CB)) = o.

(4.) (” i

e

Wire nun der zweite Factor immer Null, so erhielte man, indem .

man mit &, 2,2, multiplicirt und summirt, S; —58,S,+ 65, = 0, und indem
man mittelst dieser Gleichung S, aus (3.) eliminirt, 9% = S (S}-28,),
wihrend ® unzerlegbar ist. Daher ist ¢ = f=3.

Im allgemeinen Falle gentigt der Charakter 7, den Relationen

X(A,,B,C, Qal‘?vs) =0,
wo A,B,---R,S irgend f+1 Elemente sind, oder kurz
VT (M —x) = 0.
In jedem der (f+1)! Glieder dieser Summe ersetze ich R durch RS™
und summire dann noch S. Jedes Glied entspricht einer gewissen
Permutation von f+1 Symbolen, die in cyklische Factoren zerlegt
ist. In Bezug auf diese Permutation unterscheide ich drei Fille:

1. R und S kommen in zwei verschiedenen Cyklen der Per-
mutation vor, z. B.

(= X(ABCD--- FR)) (= x(S})(=x(G -+ K)) - --.

Ersetzt man R durch RS und summirt dann nach S, so erhélt man
nach (7.) §5

- %(—X(A»lBCr'D L FR) (= (G- K)o

Dasselbe Resultat ergiebt sich in derselben Weise aus dem Gliede

(- X(BCD - FR) (= x(S4)) (- x(G++ K))--
und aus

(—x(CD--- FR)) (= x(S4B))(—x(G - -- K))---
u. s. w. und schliesslich aus

(=x(B)(=x(SABCD - - F))(=x(G++- K))- -,

aber aus keinem anderen Gliede. Ist also 7 die Anzahl der Elemente
ABCD---FR, so erhilt man auf diesem Wege

120*



1370 Sitzung der physilcalisch-mathematischen Classe vom 3. December.

(5. =

Die f! Glieder dieser Summe sind in analoger Weise wie die der
Summe (19.) § 3 aus den f! Permutationen der J Elemente 4,B,C,---Q,R
gebildet.  Nur erhilt in dieser Summe, worin das Element R bevor-
zugt ist, jedes Glied (II-7,) noch einen Zahlenfactor s Dieser ist
gleich der Anzahl der Elemente des Cyklus, worin R vorkommt
(vergl. (4.)).

2. R und S kommen beide in demselben Cyklus der Permutation
vor, und zwar folgt S in dem Cyklus unmittelbar auf R (es kann also
auch S das erste und R das letzte Element des Cyklus sein), z. B.

(=X (4B FRS))(~x(G - K))---.

Ersetzt man R durch RS™ und summirt dann nach S, so erhilt man

M=xX(AB- - FR)(~x(G - K)).--,

und zwar jedes Glied nur einmal, also im Ganzen
(6.) A=),

3. R und S kommen beide in demselben Cyklus vor, ohne dass
S unmittelbar auf R folgt, z. B.

(=x (A RBCD - FS)) (~x (G -+ K)) (~x (L e N)) e
Ersetzt man R durch RS und summirt dann nach S, so erhilt man
nach (3.) §7

_.}”_(_X(A... R))(«X(BCD F))(—X(G"' K))(«X(L---N))---.
Dasselbe Resultat ergiebt sich in derselben Weise aus dem Gliede
' (= (4~ RCD --- FBS)) (~x (G - K)) (= x (L L N)) e

das durch ecyklische Vertauschung der zwischen R und S stehenden
Elemente BCD --- F aus dem obigen hervorgeht. Die Anzahl der
cyklischen Vertauschungen, die man so ausfiihren kann, ist gleich der

Anzahl der Elemente BCD --- F. Ferner ergiebt sich dasselbe Resultat
aus dem Gliede

(—-X(A---RG-»-KS))(—X(BCD---F))(~—X(L---N))--'.

Auch hier kann man noch die zwischen R und S stehenden Elemente
G-+ K cyklisch vertauschen, was auf so viele Arten moglich. ist, wie
die Anzahl der Elemente G- K betrigt.

Dasselbe Resultat ergiebt sich aus dem Gliede
(=x(4--- RL .- N8))(=x(BCD .. F)) (=x(G - K))

u. s. w., im Ganzen also auf so viele Arten, wie die Anzahl der El
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mente BCD---FG--- KL---N--- betrigt und nicht auf mehr Arten,
also auf f—r Arten, wenn, wie oben, die Anzahl der Elemente A --- R
mit r bezeichnet wird. Demnach erhilt man

(7) — = (=) )
Vereinigt man die drei Ausdriicke (5.), (6.) und (7.), so ergiebt
sich die Gleichung '
(8.) (;——Z—) (=77 (=) = 0.
Mithin ist e = f, wenn man zeigen kann, dass nicht fir je f Ele-
mente AB--- QR | _
Z(f)r(n__x) — 0
ist. Multiplicirt man diese Gleichung mit &, &y - - Ty Tp und summirt
nach jedem der f Elemente A, B, - Q, R, so erhilt man eine Re-
lation zwischen S,, S,, -+ §;. Diese ist nicht identisch (ohne Riick-
sicht auf die Bedeutung von S,, S,, -+ Sy erfillt, da sie in Bezug
auf’ S, linear ist und der Coefficient von S, eine nicht verschwindende
ganze Zahl ist. Ich werde aber zeigen, dass S,, S,, -+ §; f unab-
hiingige Functionen der & Variabelen x, sind, dass also zwischen ihnen
keine Relation besteht, deren Coefficienten von den Variabelen x unab-

hingig sind. Daraus folgt dann, dass auch & , ®,, --- &, unabhiingig
sind, und ebenso wu,, Uy, *-* U ’
Bestinde zwischen den f Functionen S, S,, -+ Sy der A unab-

hingigen Variabelen w, eine Gleichung, so wiirde sich, indem man
sie nach #, differentiirt, eine Relation der Form

a8, as, 3,
‘fl - +“Y2 - +..._}_‘{’/,_a~ — 0
(.CUR .I/‘R wR
ergeben, wo ¥, ¥,, ¥, ganze Functionen der A Variabelen sind,
die von R unabhiingig sind. Nun ist aber
S, = p3 (B R Ry - Ry, 0, 5y - @
. ' R, Ry, Ry ... K, ( ) R, TR, "R, B,
und folglich
it RR, R R
= = Ry Ry  R)w,, ©, - @,
2w, RMR:___R"X( 2 L3 ) R, R, B

T S.. X(RIH‘R’J"'R")lemRsu'xzen+”

Rn_1’

+ S X(RBy-- Ry R)w, @y @

R,R

1 7—

also da +(ABC--- F) bei cyklischer Vertauschung der Elemente un-
geiindert bleibt,
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38,

(9) axR -

oder nach (6.) § 1 und (7.) § 8 o

9.S, '

Ba:R =

3 RR,R,--- R _\. i
n » N z
R“R‘Z""-Rn_IX( 1449 n 1) R, Rs Rn1

(10.)

Sp-1 9

h
S X(RS)at™) = M o)
n = X(RS)wy ;

wo £§ aus den Grossen £z in derselben Weise gebildet ist wie o) aus
den Grossen =z, Speciell ist

3S,
(rr.) =

e ) Sn—l .
9w,

Setzt man diese Ausdriicke in die obige Relation ein, so erhilt man, -
falls man noch R durch R ersetzt,

e ) ] ’
Frp X(BY) + 29,8, + 39,200 4 ... + fEELD = 0.

Setzt man R = PQ™, so wird dies eine Gleichung zwischen Matrizen, :
die, mit (z) multiplicirt, lautet '
() ¥1+2(6) ¥ + 3(2) ¥y + - .- +f(EY ¥ = 0. -
Ich habe aber in § 8 gezeigt, dass die Gleichung niedrigsten Grades,
der die Matrix (£) geniigt, vom Grade f+1 ist. Der zweite Factor
des Ausdrucks (8.) kann also nicht fir jedes System von v Elementen
verschwinden, und mithin muss :
(12.) e=f

sein.

§ 10.

Sind x, und Yr zwei Systeme von je A Variabelen, so ist nae

§ 6 die Matrix (Tpg-1) mit der Matrix (¥g-12) vertauschbar, und folglic’
ist die Determinante :

(r.) !upr—l T Yt Wepg-1 !
ein Product von 4 linearen Functionen der drei Variabelen u, v, w
der Form wa, + 90, +w. Hier sind ay, @y, a; --- die A Wurzeln

Matrix (p) und iy by, 0y, -+ die der Matrix (Yq-17) oder, was
§ 6 dasselbe ist, der Matrix (Yrg-).  Es fragt sich nun, in wel
Weise die Wurzeln dieser beiden Matrizen einander zugeordnet wel
N

miissen, damit ua, + vd, +w ein Linearfactor der Determinante (1
Ich setze

. b o h
S opx(RST) = — &g 2 Ypx (RS = s>
ferner
(pr‘l) - (.:U), (EPQ—I) == (%) ’ ' (yQ—lp) - (?) ’ (YIQ—IP)
wobei immer P die Zeilen und @ die Spalten der Matrix bez



~
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Dann ist d
) @) =) (50 =06, )G =@ Gx)=m.
Die %k verschiedenen Charaktere v, unterscheide ich durch obere In-
dices ™ (x=0,1,--- k—=1). Die dem Charakter * entsprechenden
Matrizen (£) und (1) bezeichne ich mit (%) und (s*). Sind dann x
und A verschieden, so folgt aus (9.) § 5
(2) ENEM=0, ENEN=0. EI)ED)=0, FH)(EW)=0.
Nach Gleichung (5.) § 7 ist '
) e —

7

und mithin
z (EW) = (2), %(ﬁ"‘)) == (3/)-

Entwickelt man also das Product der & Matrizen

11 (u() + o (i) + (2))
nach Potenzen von w, so erhilt man

wh (e) + wh? (u(x) + v(y)) ,

wiihrend die ibrigen .Glieder nach (2.) verschwinden. Zwischen den
Determinanten dieser Matrizen ergiebt sich daher die Beziehung

(3') 1;1 | “'5(1:‘23—1 + ’U'Y“(sz_lp -+ w EPQ“l 1 oo wlb(/n‘—l) l u .;UPQ_] + vaan + wsPQ“‘ I

(vergl. die analoge Entwicklung V. S.610). -Irgend einer der & Fac-
toren der linken Seite sei

(4.) |4 pgs + ¥lgoap + Wepg E

Wie die rechte Seite zeigt, ist diese Determinante gleich einer Potenz
von w, multiplicirt mit einer Anzahl der linearen Factoren wa, +vb, +w
der Determinante (1). Andererseits kann man die Determinante (4.) als
einen speciellen Fall der Determinante (1.) betrachten: Die Wurzeln der
Matrix (£) sind nach (5.) § 8 die f Wurzeln u,, #,, --- u, der Gleichung
®(r—ue) = 0, jede ¢ Mal geziihlt, und ausserdem (%—e¢f) Mal gezihlt
die Zahl 0. Ebenso sind die Wurzeln der Matrix (), die Zahl 0 und
die Wurzeln v, v,, ..., der Gleichung ®(y—ve) = 0. Daher ist die
Determinante (4.) ein Product von linearen Factoren au + bv+w, wo
a eine der f+1 Grossen 0, u,, u,,---% und b eine der f+1 Grdssen
0,9,,0,,...0, ist. Eine Combination, wie a = u,, b = 0, kann aber,
wie die rechte Seite der Gleichung (3.) zeigt, nicht vorkommen. Ab-
gesehen von einer Potenz von w enthilt daher die Determinante (4.)
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nur noch lineare Factoren der Form UU, + V05 +w, worin u, eine

der f Grossen u,,u, .., und v, eine der J Gréssen v, ,0,, ... v, ist.
Nun ist

w(®) +0(0) = (3 (u(2) + o (7),

und daher hat diese Matrix den Rang ef. Mithin enthilt die Deter-
minante den Factor w mindestens in der Potenz h—ef, aber auch in
keiner hoéheren, weil dies nach (5-) §8 nicht einmal fiir ¥ = 0 der
Fall ist. Die iibrigen ef Linearfactoren sind demnach alle von der
Form wwu, +vvg +w. Sei %u, + v, +w einer derselben. Betrachtet man
die 4 Grdssen yg, also die f Grossen vs als constant, so hat die
Determinante (4.), als Function von w betrachtet, mit der irreducibelen
Function ®(uxy+ vo, +w, ux,, UZy, ---) den Linearfactor uU, + v, +w
gemeinsam. Folglich hat sie alle Factoren wuw,_ -+ vo, +w (@ =1,2,... )

mit ihr gemeinsam. Ebenso erkennt man, dass die Determinante die
J* linearen Functionen

’LL’M“"{-U'UB"{‘w (daB:I>21"'f)

saémmtlich enthilt, und jeden gleich oft. Kommt Jeder Factor m Mal
vor, so ist ef = mf?, also ¢ = fm. Auf diese Weise kann man daher,
ohne das Resultat des § 9 zu benutzen, nachweisen, dass ¢ durch f
theilbar ist. Nach diesem ist aber ¢ = S, und mithin ist m = 1, also

(5.) 1u EPQ—‘ T O Ngap T W € gt l — wh~o H{ (uua +vvy + w)

ey B

Durch diese Betrachtung ist nun die Art bestimmt, wie man
die Wurzeln der beiden Matrizen () und (y) einander zuordnen muss,
um die linearen Factoren der Determinante (1.) zu erhalten. Sind
® und & zwei verschiedene Primfactoren von @, so ist jede Wurzel der
Gleichung ®(x—we) = 0 mit jeder Wurzel der Gleichung @ (y—we) =0
-zu combiniren, aber mit keiner Wurzel der Gleichung ®'(y —we) = 0.
Die Allgemeinheit der erhaltenen Formel wird nicht vermindert, wenn
man % = v = 1 und w = 0 setzt. Ist

(6.) @) = TH (ta+ 05)
die Resultante der beiden Functionen ®(zx—ew) und ®(y +cw) de
Variabelen w, so ist ‘
(7.) _.fo]’Q*l +-?/Q—rpl = 1% (z, y).

Konnte man direct beweisen, dass diese Determinante, als Functi‘
der 2/ unabhingigen Variabelen g, Yr betrachtet, keinen mehr"f'ach
Factor besitzt, so wire damit fiir die Gleichung ¢ = # ein neuer B
weis geliefert. Setzt man die 4 Grossen Yr =20, so wird ¥(x, y) = ®(



@
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Auf diesem Wege erlangt man eine tiefere Einsicht in den Grund der
merkwiirdigen Erscheinung, dass die Gruppendeterminante jeden Prim-
factor in einer Potenz enthiilt, deren Exponent dem Grade des Factors
gleich ist.

Von besonderem Interesse ist der specielle Fall, wo y, = —x, ist.
Dann ist die Determinante

(3.) IwPQ—l*xQ—1P+ wsPQ—lI. =w II¥,
WO

(9) | ¥= I (- (ue—u)’)
und ‘

(10.) s=23f

ist. Der Gleichung ¥ = 0 genitigen also die Quadrate der Differenzen
der Wurzeln der Gleichung ®(rx—we) = 0. Ich will nun zeigen, dass

die fir w = 0 verschwindenden Elementartheiler jener Determinante
alle linear sind, oder, was dasselbe ist, dass der Rang r der Matrix

(11.) (@ pgr = T )
gleich
(12.) r—=h—s

ist. Nach Formel (8.) ist 7=A—s. Da die beiden Matrizen (x) und
(x)" mit einander vertauschbar sind, so ist

() s, L0 s 0
c Ty T =SBy = 20, o (RS = 4)
(1) _ < M __ s 0,
T, = ry Lyp1Pp — ;'“"R Lp_14
S (@, — @y, )3 =0
7 VAR Yr-14) YR

% (@ o= T ) Y =0

ein System von /4 linearen Gleichungen zwischen den 4 Unbekannten
Yr- Der Rang der von ihren Coefficienten gebildeten Matrix ist 7.
Mithin bildet das vollstindige System ihrer Losungen eine Matrix vom

yR::m(;) (n:0,1,2,'-')
t <h—r. Enthilt die charakteristische Determinante !xm_1~usm_1[
er Matrix (z) irgend einen Linearfactor u—w, in der ¢ Potenz, so
nthilt ihn nach § 8 der grosste gemeinsame Divisor ihzer Unter-
éterminanten (h—1)*" Grades in der (¢—1)*" Potenz. Folglich ist die
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Gleichung niedrigsten Grades, der die Matrix (x) geniigt, vom Grade
%/ =s, nimlich G((x)) =0, wo
(1) G () = T & (& —ue)

ist. Daher sind die Matrizen @), (@)*, -+ ()" linear unabhiingig, also
sind auch die s Losungen

(14.) Yp = 2 (n=0,1,2, ... s—1)
unabhiingig, und mithin ist s<A—r Folglich ist » = A—s, und die
Grdssen (14.) bilden ein vollstdndiges System unabhéingiger Losungen
der A linearen Gleichungen (13.), unter denen r unabhéingig sind.

§11
Nach den Gleichungen (g.) § 8 ist
(1.) B(z) = 2(5),  @fr) = a,(5), S) = S(5),
also
(2.) nl @ (z)'= Rl,lﬂf-wR” X(By, Ry, - R,) SRXER,_. e ERn
und
(3.) Slt(w) o ’ gz';..,}g X(R1R2 R .Rn) rg]glERg U ERn.

Eine andere Darstellung ergiebt sich aus den F ormeln (10.) §o, nﬁmlich:

e . (n) . . . .
(4-) 5 Siw) = &5 = RE-nR Sr,br, " Ep - (B\R,... R, =E)

1 e

Demnach lassen sich die Functionen S, und &, und speciell & selbst
durch die %4 Variabelen ‘

P . e
(5. s = 4 S X(RS ),

Rang der Matrix, die von den Coefficienten dieser % linearen Funce
tionen der % Variabelen Zp gebildet wird, gleich ¢f ist. Fithrt man

diese Umformung fiir jeden Primfactor von ® aus, so wird die Gruppe
determinante durch

(6.) Sef=h
neue Variabele ausgedriickt. _
Man transformire jede der % Primfunctionen &, @', ... einz
durch eine lineare Substitution in eine Funetion von moglichst wel
neuen Variabelen. Ist ihre Anzahl fiir ®, ¥, ... gleich g¢,q, -
ist g<ef, 9 <€f’,.... Es kénnte dann sein, dass sich die F unctiq
d,d, ... insgesammt durch noch weniger als g+ ¢ + ... neue V3
bele darstellen liessen, lineare Verbindungen der % unabhingigen
riabelen x,. Wire dies der Fall, oder wire g <ef, "oder g <e;

ausdriicken, unter denen nur ef unabhingig sind, weil nach § 8 der
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so liesse sich ® durch eine lineare Substitution in eine Function von
weniger als A Variabelen transformiren. Nun ist aber

3O
® a1

" Differentiirt man diese Gleichung nach Zz-1, so erhilt man

x lzsA]b.

RAC) i . ae h ®
’ 7w, dw, R T rY .9 R
“und mithin
a‘ll@ ( h )IR
— |2 === |9s,|
0w, 3% PQ 0] PR
"~ also
(7) e | (=)
) 0w, 93 o’

Konnte man aber © durch eine lineare Substitution in eine Function
von weniger als 4 Variabelen transformiren, so miisste diese Deter-
minante verschwinden. Folglich lisst sich @ durch ef, aber nicht
durch weniger als ¢f Variabele ausdriicken, die lineare Verbindungen
der A Variabelen x, sind, und die ¢f Variabelen von &, die €f’ von
#',--- sind alle von einander unabhingig.

In einer besonders einfachen Weise lisst sich ® durch die Varia-
belen £, darstellen. Dazu benutze ich den folgenden Determinanten-
satz (vergl. meine Arbeit Uber das Prarr’ sche Problem, CRELLE’S Journal
Bd.82; §4,1

Ist r de/r Rang der Matrix

< (2,8, = 1,2,-:-n)

so verhalten sich die Determinanten " Grades, die sich aus den Elementen

a

minanten " Grades, die sich aus den Elementen von drgend r anderen
- Spalten dieser Matriz bilden lassen.

: Dabei heissen zwei Determinanten entsprechende, wenn zu ihrer
Bildung dieselben Zeilen und zwar in derselben Reihenfolge benutzt
_sind. Derselbe Satz gilt, wenn man die Zeilen und die Spalten ver-
tauscht. Er lisst sich so verallgemeinern:

Ist die Matrix (c,5) aus den beiden Matrizen (a,z) und (b.s) 2usam-

Determinanten v Grades, die sich aus den Elementen von r Spalten der
Matriz (a,z) bilden lassen, wie die entsprechenden Determinanten r*® Grades,
die sich aus den Elementen von irgend r Spalten der Matrix (c.q) bilden
lassen. )
Der Rang der Matrix
Cus = Qa1 bl,@ 4+ Quabog + -+ a‘anbn,‘?)

~von r Spalten dieser Matriz bilden lassen, wie die entsprechenden Deter-

mengesetzt, und ist r der Rang der Matriz (a.z), so verhalten sich die
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ist dann héchstens gleich r. Eine Bedeutung hat aber dieser Satz

nur, wenn der Rang von (c,;) gleich r ist. Dies muss der Fall sein,
wenn die Determinante n'™ Grades (baﬁ) von Null verschieden ist.
Mit dem Zeichen

oy dy * e a,
"Bl B
bezeichne ich die Determinante 7t Grades, gebildet aus den Elementen
der Zeilen «,,a,,...«, und der Spalten B,, B,, ... 8 der Matrix (@.5),
in der angegebenen Reihenfolge. Dann ist also das Verhiltniss
L

oy o+ L,

TR
BiBy - B
von der Wahl der Indices f1:P2 - p. unabhiingig.
Ist wieder (c,) = (@) (b)), und ist » der Rang der Matrix
(b.z); so verhalten sich die Determinanten i Grades, die sich aus den
Elementen von r Zeilen der Matrix b.s bilden lassen, wie die ent-
sprechenden Determinanten »* Grades, die sich aus den Elementen
von irgend 7 Zeilen der Matrix (¢.p) bilden lassen.
Diesen Satz wende ich auf die Matrix

(8) €)= () @) = @& ()

an. Der Rang der Matrix (%) ist g = ef, ebenso der der Matrix &)
Daher gilt der obige Satz sowohl fir die Zeilen, wie fiir die Spalten,
Al Ag te Ag g

und es ist
' L (e)y
B.B,---B,|~ \i) |X BB, B,

wo ¥ von der Wahl der Elemente A,, A,, - 4,, B, B,, --- B, unab-
hingig ist. Vergleicht man in den Relationen '

. ,4‘11[12"‘_44
E

k)

]E},(rl + UEpomr | = ®(& + us) who,

;X/(PQ-l) + uePQ,I’ e (u +1)7 ut-9
13

die Coefficienten von w7, so ergiebt sich: Die Summe aller Haupt-
unterdeterminanten 7 Grades ist fir die Matrix (£) gleich ®(z)° und
fiir die Matrix (‘]%X') gleich 1. Folglichﬂist ¥ = &, also
AIAZ---Ag e \g BIBQ-“_Bg
(9:) BB, B, :(7) X dy oo 4, _
Wihlt man die 2g Elemente A, B, -+ A,, B, so, dass die hierin
auftretende Determinante g*" Grades der Matrix (x) von Null ver-
schieden ist, so ist die entsprechende Determinante der Matrix (e)
bis auf einen constanten Factor gleich . Unter den von Null ver-
schiedenen Determinanten r* Grades dieser beiden Matrizen giebt es
auch Ilauptunterdeterminanten (worin B, =4, .- B, = 4, ist), weil
die Summe aller Hauptunterdeterminanten g""Grades nicht verschwindet.

£ ®(z).
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In derselben Weise ergiebt sich die allgemeinere Formel
e\s - P=A,, 4,4
(10.) = () [x@P| ¥y, (o225 %)

wo ¥(x,y) dieselbe Bedeutung hat, wie in der Gleichung (6.) § 10.

‘é‘pQ-—l + /Y)Q-—lp

§12.

Die Ermittlung der % Primfactoren, worin die Gruppendeter-
minante zerfillt, ist auf die Bestimmung der Constanten o zuriick-
gefithrt, die von der Auflosung einer Gleichung %" Grades abhingt.
Ieh will nun die algebraische und arithmetische Natur dieser Grossei
niiher untersuchen. Zunichst bestimme ich den algebraischen Korper,
dem diese Zahlen angehoren.

Sei ® eine Untergruppe von £, ¢ ihre Ordnung, sei 4 = gn
und H die zu ® gehoérige Gruppendeterminante. Seien E, A, B,
die g Elemente von &, und L, M, - die nicht in ® enthaltenen
Elemente von §. Setzt man dann in © die Variabelen x;, @y, ---
alle gleich Null, so wird, wie ich Ch. § 7, (10.) gezeigt habe,

(1.) ® — H".

Daher sind die Coefficienten derjenigen Glieder von ©, die nur von
%g, %, , ¥y, -~ abhingen, den Coefficienten der entsprechenden Glieder
von H* gleich.

Ist ® eine commutative Gruppe, so ist H ein Product von g li-
nearen Factoren ‘

H = (24, (B),) (5 4, (R)a) -

und die Charaktere J, (R ¢2(R .. sind alle vom ersten Grade, also
Einheitswurzeln. Spemell ist Ly ( E) Vy(E) = --- = 1. Ist demnach
® ein Primfactor f*" Grades von ®, so wird diese Function, wenn
man darin , = &= --- = 0 setzt, gleich dem Producte von f dieser
linearen Factoren, etwa

(2.) ¢ = (S, (R)zy) (3 4,(B) ) (= Lfbf(R)xzc)'
Ersetzt man x; durch @;—u, so erkennt man, dass die f Wurzeln der

"Gleichung ® (x—wue) = 0, falls man x; = &y = --- = 0~setzt, ganze
‘lineare Functionen der Variabelen x;, x,, £z, --- werden, etwa

(30 u =34, (R)o, (=12, )
deren Coefficienten Einheitswurzeln sind. Ist also A eins der Elemente
on ®, so ist der Coefficient von xf'x, in ®(x) gleich

(4) X(A) = 11!/1(:1) + wg(A) +oeee Lpf(A)v

und diese Gleichung gilt auch fir A = E. Sind ferner A und B
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zwei Klemente von &, so ist, weil \, ein Charakter ersten Grades

ist, V,(AB) = \{,(4)Y,(B) und mithin
(5.) X(AB) = W, (A) L, (B) + (A 4,(B) + - + w,(4)y,(B),

Daher hat die Matrix (% (PQ™), die fir die Gruppe § den Rang ef
hat, hochstens noch den Rang f, falls P und @ nur die Elemente
von & durchlaufen.

Ist A irgend ein Element von £, und m seine Ordnung, so bil-
den die Potenzen von A eine commutative Gruppe der Ordnung m.
Wiiblt man diese fir ®, so werden die m Charaktere \,(4) = g,
L, (4) = ps--- alle m* Wurzeln der Einheit. Mithin ist

6) XA =ptetto. xA)=pite+ o+
fiir jeden Werth von n. Fir n = m—1 folgt daraus;, dass y,(4) und
WA conjugirt complexe Grdssen sind (Ch. § 3).

Ist A ein Element der m™ Ordnung und «, ein Charakter S Grades,
so ldisst sich x(A) als eine Summe von f m'™ Wurzeln der Einheit dar-
stellen.

Dieselben sind einzeln dadurch bestimmt, dass 5, (4") gleich der
Summe ihrer n'" Potenzen ist. Setzt man in @ alle Variabelen gleich
Null ausser xz, x,, L4, -+ g1, so wird nach (2.)

=@t w0yt ol wp T ) (gt Oy O+ A T ).

Setzt man daher in ® alle Variabelen gleich Null, ausser x, und
x,, so wird
(7.) (&g @5 Oj 0, ) = (25t p @)@+ 0,0,)  (wp+ N
und mithin nach (9.) §4
(8) w s (d)w g (w2 ,f:}-f(A) = (w+o)(u+p,) - (u+ p}
Speciell ist, da Sx(d) = S(4) ist,

Wendet man die Formel (1.) auf die Gruppe ® an, die von den Po

tenzen von A gebildet wird, so erhilt man
h

0= (l—gi(xE+PxA T o ‘l’Pm‘le’fﬁ)H’

wo g alle m"* Wurzeln der Einheit durchliuft. Setzt man also in
alle Variabelen gleich Null, ausser ., und x,, so wird
h

(10) O 0.0,) = (f+ ),

Folglich ist, wie ich in § 3 auf anderem Wege gezeigt habe
Coefficient von % in @ gleich

(rr.) I s(d) = (ml)ll—g.
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Sei B ein zweites Element von £, und seien o, 6,, - ¢, die f
dem Charakter ,(B) entsprechenden Einheitswurzeln, also

(12.) X(B):a-1+°'2+"'+0’f5 X(Baz:a_ylp,+o_q;++g;.

Sind nun A und B mit einander vertauschbar, so erzeugen sie eine
Gruppe ®. Daber kann man die Formel (5.) anwenden und erkennt:
Die Einheitswurzeln der beiden Systeme lassen sich einander so zu-
ordnen, dass

(13.) X(A.B):“-pla'l—I—.---l"PfO‘/., X(A’BS):P;Oi—‘— "'-|—‘O}O';.

wird. Setzt man in der Primfunction ®, die dem Charakter , ent-
spricht, alle Variabelen gleich Null, ausser zz, , und x5, so erhilt
man nach (2.)

(14.) ®(®z2,,25,0,0, ) = (b ay o @) (xﬁ—i-pfxtﬁ—ﬁfﬂ?g)»

wodureh zugleich die Zuordnung der Einheitswurzeln bestimmt ist.

Um fir die entwickelten Sitze ein Beispiel zu geben, betrachte
ich ein invariantes Element B der Gruppe £, d.h. ein solches, das mit
jedem Elemente B von § vertauschbar ist. In der Formel (3.) § 7 ist
dann R*BR = B, und mithin, falls A irgend ein anderes Element
von §) ist,

x(A)x(B) = fx(4B).

Alle invarianten Elemente von $ bilden eine commutative Gruppe ®.
Setzt man fiir jedes Element G derselben %, (G) = f(G), so ist dem-
nach fiir je zwei Elemente 4 und B von ® L(A)V(B) = L(AB). Mit-
hin ist L (&) ein Charakter von G, also eine Einheitswurzel p. Ferner
ist U (@) = L (GY, also o, (G) = fo und % (G") = fp". Fir ein invariantes
Element G von § sind folglich die f in der Formel (6.) auftretenden
Finheitswurzeln alle einander gleich.

Zu demselben Resultate fiihrt die Bemerkung, dass ein invariantes
Element A fiir sich allein eine Classe conjugirter Elemente bildet.
Setzt man daher in ® alle Variabelen gleich Null ausser x; und
so wird @ nach Formel (7.) §6 die f* Potenz einer linearen Function
von &, und x,, und folglich ist nach Formel (7.) p, = gy = --- = fy-

Nun sei wieder A ein beliebiges Element von §, und sei m seine
Ordnung. Tst o eine primitive m Wurzel der Einheit, so sind die
Grdssen g, p,, -+ py in der Formel (6.) alle Potenzen von p, und daher
_ist 5 (A) eine Zahl des Korpers K(g), der von allen rationalen Funec-
tionen von p gebildet wird. Unter den mit A conjugirten Elementen
der Gruppe $ konnen sich auch Potenzen von A befinden, A, A5, A
Ihre Exponenten sind zu m theilerfremd und bilden eine Gruppe, d. h.
einer unter ihnen ist =rs (mod.m), wenn r und s irgend zwei von
ihnen sind. Da A und A" conjugirt sind, so ist o (4) = %(4), also
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prt g =p+ - +p.  Driickt man x(A4) durch p aus, so bleibt
demnach diese Zahl ungefindert, falls man p durch o ersetzt. Die-
Jenigen Zahlen des Korpers K{p), die ungeindert bleiben, falls man p
durch ¢ oder g, oder oy ersetzt, bilden einen Korper A(p), einen
Divisor von K(p). Die Zahl (4) gehort fblglich diesem Korper A(p) an.

Ist z. B. $ die symmetrische Gruppe des Grades n, also 4 = n!,
so ist A mit jeder Potenz A" conjugirt (§hnlich), deren Exponent r zu
m theilerfremd ist. Daher sind die Charaktere der symmetrischen
Gruppe simmtlich ganze rationale Zahlen (vergl. die Beispicle n = 4
und 5, Ch. §8).

In dem Korper A(p) ist %(4) als Summe von Einheitswurzeln eine
ganze algebraische Zahl. FEine solche ist aber auch jeder Coefficient
von @, also auch von ®,. Denn wenn in einem Producte ® = & ¥ von
zwei ganzen Functionen von beliebig vielen Variabelen, deren Coeffi-
cienten algebraische Zahlen sind, alle Coefficienten ganze algebraische
Zahlen sind, so ist auch das Product aus jedem Coefficienten von @
und jedem von ¥ eine ganze algebraische Zahl (vergl. Depexino, Uber
einen arithmetischen Satz von Gavss. Prager Math. Ges. 1892). Sind

A, B, C, - verschiedene Elemente von $ und ist 7 + s+ ¢ + - — n,
so hat & a2, - in ®, den Coefficienten
1 .
(r5.) o x (o A BB O ),

Folglich ist dieser Ausdruck eine ganze algebraische Zahl. Wendet
man denselben Satz auf die Factoren des Productes (9.) §6 an, so er-
kennt man, dass auch

/
(16'> 'llc\')‘(cc
J
eine ganze algebraische Zahl ist. Folglich ist auch nach (6.) § 7
hoXe — h .
2 FoeT

eine ganze Zahl. Daher ist die Zahl ¢ = f ein Divisor der Ordnung 4.

Ausgegeben am 10. December.

Beulin, gedruckt in der Reichsdruck



