
CHAPTER 18

Suitable Context for Older Notation

The principal failing of the notation for (15.1), (15.3), and (15.6) that involves
binomial coefficients was its role before 1989 in greatly hindering the discovery of
suitable formulas for the coefficients of (15.6) corresponding to a change (15.5) of
the independent variable. The details about this in Chapter 15 make it clear that
the notation involving binomial coefficient should never have been adopted.

However, before we abandon that notation, an explanation should be given to
explain why truly remarkable results like (17.4)–(17.5) of Edmund Laguerre and
Georges-Henri Halphen were known to only a few mathematicians in 1989. Thus,
we provide in Section 18.1 a previously missing precise context about invariants for
equations like (15.1). However, to truly honor Laguerre and Halphen, their results
should be presented in a form like that of Section 1.3 where binomial coefficients
are avoided as a needless distraction.

18.1. Symbolism and terminology

In previous research about invariants for equations written as (15.1), instead of
constructing semi-invariants and relative invariants from polynomials upon which
algebraic operations can be performed and into which substitutions can be made,
the semi-invariants and relative invariants were represented by functions without

mention of substitutions. For example, the expression C2(z)−
(
C1(z)

)2−C(1)
1 (z) in

the right member of (17.2), the expression inside the brackets of the right member
for (17.3), and the expression in the right member of (17.4) were described as
invariants.

For suitable notation, let Rm,1 be the ring of polynomials over Q in the variables

(18.1) W
(j)
i , for 1 ≤ i ≤ m and j ≥ 0;

set Wi ≡ W
(0)
i , for 1 ≤ i ≤ m; and let ′ denote the unique derivation for Rm,1

such that
(
W

(j)
i

)′ ≡W (j+1)
i , when 1 ≤ i ≤ m and j ≥ 0. The constants of Rm,1

(i.e., the elements γ in Rm,1 having γ′ = 0) are the elements of Q. The weight

of W
(j)
i is i + j; the weight of a nonzero element of Q is 0; and the weight of any

nonzero monomial in Rm,1 is the sum of the weights of its factors. A polynomial
in Rm,1 is said to be isobaric when it is nonzero and the weights of its nonzero terms
are equal. The weight of an isobaric polynomial is the weight of any nonzero term.

For any polynomial R̂ in Rm,1, let R̂(z) denote the function on Ω that is

obtained by replacing each W
(j)
i of R̂ with the corresponding C

(j)
i (z) from (15.1),

let R̂∗(z) denote the function on Ω obtained by replacing each W
(j)
i of R̂ with the

corresponding C
∗(j)
i (z) from (15.3), and let let R̂∗∗(ζ) denote the function on .Ω∗∗

obtained by replacing each W
(j)
i of R̂ with the corresponding C

∗∗(j)
i (ζ) from (15.6).
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172 18. SUITABLE CONTEXT FOR OLDER NOTATION

For instance, in terms of the polynomial

(18.2) P̂2 ≡W2 − (W1)2 −W (1)
1 ,

the identity (17.2) of James Cockle for m ≥ 2 is P̂ ∗2 (z) ≡ P̂2(z), on Ω. Also, for

(18.3) Q̂m,2 ≡W2 −
(m− 2)(3m− 1)

3(m− 1)2
(W1)

2 − 2(m− 2)

3(m− 1)
W

(1)
1 ,

the identity (17.3) of Cockle is given by Q̂∗∗m,2(ζ) ≡
(
f ′(ζ)

)2
Q̂m,2

(
f(ζ)

)
, on Ω∗∗.

The identities (17.4) and (17.5) of Halphen are represented with the polynomial

(18.4) Ĥ3 ≡W3 − 3W2W1 + 2(W1)3 − 3
2W

(1)
2 + 3W1W

(1)
1 + 1

2W
(2)
1 .

by Ĥ ∗3 (z) ≡ Ĥ3(z), on Ω, and Ĥ ∗∗3 (ζ) ≡
(
f ′(ζ)

)3
Ĥ3

(
f(ζ)

)
, on Ω∗∗. In fact, if the

variables W
(j)
i of (18.1) are introduced so that they are related to the variables

w
(j)
i for (1.13) by w

(j)
i ≡

(
m
i

)
W

(j)
i , then Im,1; 3 in (1.13) yields Im,1; 3 ≡

(
m

3

)
Ĥ3.

Definition 18.1. A polynomial R̂ in Rm,1 is a Cockle-semi-invariant of the
first kind for equations of the form (15.1) when it is not a constant and yields

(18.5) R̂∗(z) ≡ R̂(z),

for each (15.1) and each transformation (15.2) of (15.1) into a corresponding (15.3).

Definition 18.2. A polynomial R̂ in Rm,1 is a Cockle-semi-invariant of the
second kind for equations of the form (15.1) when it is not a constant and there is
an integer s such that

(18.6) R̂∗∗(ζ) ≡
(
f ′(ζ)

)s
R̂
(
f(ζ)

)
,

for each (15.1) and each transformation (15.5) of (15.1) into a corresponding (15.6).

Definition 18.3. A polynomial R̂ in Rm,1 is a Laguerre-Halphen relative
invariant for equations of the form (15.1) when it is both a Cockle-semi-invariant
of the first kind and a Cockle-semi-invariant of the second kind for such equations.

As examples, we note that P̂2 in (18.2) is a Cockle-semi-invariant of the first

kind; Q̂m,2 in (18.3) is a Cockle-semi-invariant of the second kind; and Ĥ3 in (18.4)
is a Laguerre-Halphen relative invariant.

18.2. Our viewpoint abut the older Cockle-semi-invariants

To illustrate how the context of Section 18.1 can be employed, we begin by

defining F̂i and Ĝi in Rm,1 through

(18.7) F̂0 ≡ 1, F̂1 ≡ −W1, F̂i+1 ≡ F̂
(1)

i + F̂1 F̂i, for i ≥ 1,

and, with the introduction of W0 ≡ 1,

(18.8) Ĝi ≡
i∑

j=0

(
i

j

)
F̂i−jWj , when 0 ≤ i ≤ m.

We have Ĝ0 ≡ 1, Ĝ1 ≡ 0, and Ĝ2 ≡ P̂2 in (18.2). The coefficients of F̂i and Ĝi

are polynomials in the variables W
(k)
j over Q. They do not involve m.

To obtain Ĝi(z) on Ω or Ĝ∗i (z) on Ω, we replace each W
(k)
j of Ĝi with the

corresponding C
(k)
j (z) from (15.1) or the corresponding C

∗(k)
j (z) from (15.3).
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Theorem 18.4. For 2 ≤ i ≤ m and the equations (15.1), Ĝi is an isobaric
Cockle-semi-invariant of the first kind having weight i.

Proof. For 2 ≤ i ≤ m, we use (18.8) and (18.7) to see that the coefficient

of Wi in Ĝi is 1 and therefore Ĝi is not a constant. Since (18.7) shows that F̂i
is an isobaric polynomial of weight i for i ≥ 0, we apply (18.8) to conclude, for

2 ≤ i ≤ m, that Ĝi is an isobaric polynomial of weight i.

For 0 ≤ i ≤ m and a transformation (15.2) of (15.1) into a corresponding
(15.3), we employ (18.8), (15.4), and the identity(

i

j

)(
j

k

)
≡
(
i

k

)(
i− k
j − k

)
, for 0 ≤ k ≤ j ≤ i,

to obtain

Ĝ∗i (z) ≡
i∑

j=0

(
i

j

)
F̂ ∗i−j(z) C

∗
j (z)(18.9)

≡
i∑

j=0

(
i

j

)
F̂ ∗i−j(z)

j∑
k=0

(
j

k

)
ρ(j−k)(z)

ρ(z)
Ck(z)

≡
i∑

k=0

(
i

k

)
Ck(z)

i∑
j=k

(
i− k
j − k

)
ρ(j−k)(z)

ρ(z)
F̂ ∗i−j(z)

≡
i∑

k=0

(
i

k

)
Ck(z)

i−k∑
ν=0

(
i− k
ν

)
ρ(ν)(z)

ρ(z)
F̂ ∗i−k−ν(z)

≡
i∑

k=0

(
i

k

)
Ck(z)Si−k(z), on Ω,

where

Sµ(z) ≡
µ∑
ν=0

(
µ

ν

)
ρ(ν)(z)

ρ(z)
F̂ ∗µ−ν(z), on Ω for µ ≥ 0.(18.10)

We note that (18.10), (18.7), and (17.1) yield S0(z) ≡ F̂0(z) and

S1(z) ≡ F̂ ∗1 (z) +
ρ(1)(z)

ρ(z)
≡ −C∗1 (z) +

ρ(1)(z)

ρ(z)
≡ −C1(z) ≡ F̂1(z).

Let µ be an integer satisfying µ ≥ 1 such that Sµ(z) ≡ F̂µ(z). Then, we use (18.7),

F̂µ(z) ≡ Sµ(z), F̂1(z) ≡ ρ(1)(z)/ρ(z) + F̂ ∗1 (z), and (18.10) to verify that

F̂µ+1(z) ≡ F̂ (1)
µ (z) + F̂1(z) F̂µ(z)

≡ S(1)
µ z) +

ρ(1)(z)

ρ(z)
Sµ(z) + F̂ ∗1 (z)Sµ(z)

≡
µ∑
ν=0

(
µ

ν

)
ρ(ν+1)(z)

ρ(z)
F̂ ∗µ−ν(z)− ρ(1)(z)

ρ(z)
Sµ(z) +

ρ(1)(z)

ρ(z)
Sµ(z)

+

(
µ∑
ν=0

(
µ

ν

)
ρ(ν)(z)

ρ(z)
F̂
∗(1)
µ−ν (z) +

µ∑
ν=0

(
µ

ν

)
ρ(ν)(z)

ρ(z)
F̂ ∗1 (z) F̂ ∗µ−ν(z)

)
and, since the relation F̂i+1 ≡ F̂

(1)

i + F̂1 F̂i in (18.7) is also valid for i = 0,
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F̂µ+1(z) ≡
µ+1∑
ν=1

(
µ

ν − 1

)
ρ(ν)(z)

ρ(z)
F̂ ∗µ+1−ν(z) +

µ∑
ν=0

(
µ

ν

)
ρ(ν)(z)

ρ(z)
F̂ ∗µ+1−ν(z)

≡
µ+1∑
ν=0

(
µ+ 1

ν

)
ρ(ν)(z)

ρ(z)
F̂ ∗µ+1−ν(z) ≡ Sµ+1(z), on Ω.

Thus, Sµ(z) ≡ F̂µ(z) is valid on Ω for µ ≥ 0. We replace Si−k(z) in (18.9) with

F̂i−k(z) and compare the result with (18.8) to see, for any (15.1) and (15.2), that

Ĝ∗i (z) ≡
i∑

k=0

(
i

k

)
Ck(z) F̂i−k(z) ≡ Ĝi(z), on Ω when 0 ≤ i ≤ m.

Hence, for 2 ≤ i ≤ m, Ĝi is an isobaric Cockle-semi-invariant of the first kind

having weight i. This completes the proof. �

This proof of Theorem 18.4 illustrates how the context of Section 18.1 can be
applied. To connect it with the argument in Subsection 18.3.2 as the only one
available for earlier researchers, we have the following result.

Theorem 18.5. For an equation (15.1) on Ω having order m ≥ 2, repeated as

y(m)(z) +

m∑
i=1

(
m

i

)
Ci(z) y

(m−i)(z) = 0,

suppose that ρ1(z) 6≡ 0 is a meromorphic function on a subregion U1 of Ω such that
the substitution y(z) = ρ1(z) t(z) transforms the restriction to U1 of (15.1) into

(18.11) t(m)(z) +

m∑
i=2

(
m

i

)
di(z) t

(m−i)(z) = 0, on U1 with d1(z) ≡ 0.

Then, for 1 ≤ i ≤ m, di(z) of (18.11) is given by di(z) ≡ Ĝi(z), on U1.

Proof. For the indicated transformation of (15.1) on U1 into (18.11) on U1,
we find that (15.4) and (18.7) yield

(18.12) d1(z) ≡ ρ
(1)
1 (z)

ρ1(z)
+ C1(z) ≡ 0 and F̂1(z) ≡ −C1(z) ≡ ρ

(1)
1 (z)

ρ1(z)
, on U1.

We use (18.7) and (18.12) to see that the formula

(18.13) F̂k(z) ≡ ρ
(k)
1 (z)

ρ1(z)
, on U1,

is true for k = 0 and k = 1. In terms of any positive integer k for which (18.13) is
valid, we observe that (18.7) and (18.13) yield

F̂k+1(z) ≡ F̂ (1)
k (z) + F̂1(z) F̂k(z)

≡ ρ
(k+1)
1 (z)

ρ1(z)
− ρ

(k)
1 (z)ρ

(1)
1 (z)(

ρ1(z)
)2 +

ρ
(1)
1 (z)

ρ1(z)

ρ
(k)
1 (z)

ρ1(z)
≡ ρ

(k+1)
1 (z)

ρ1(z)
.

Thus, (18.13) is true for k ≥ 0. Using (15.4), (18.13), and (18.8), we notice that
the substitution y(z) = ρ1(z)v(z) transforms the restriction to U1 of (15.1) into the
equation (18.11) on U1 having

di(z) ≡
i∑

j=0

(
i

j

)
ρ
(i−j)
1 (z)

ρ1(z)
Cj(z) ≡

i∑
j=0

(
i

j

)
F̂i−j(z) Cj(z) ≡ Ĝi(z),

for 2 ≤ i ≤ m. This completes the proof. �
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18.3. Original introduction of Ĝi(z), Ĝ
∗
i (z), and Ĝ∗i (z) ≡ Ĝi(z)

Let (15.1) be an equation of order m ≥ 2 on Ω and let y(z) = ρ(z) v(z) be a
substitution as described for (15.2) that transforms (15.1) on Ω into (15.3) on Ω.
Here, we are to ignore the content of Sections 18.1 and 18.2 in order to view the
way that Georges-Henri Halphen in [32] and Andrew Forsyth in [28] introduced the
Cockle-semi-invariants of the first kind that were essential for their constructions.

18.3.1. Halphen canonical form for (15.1). Let ρ1(z) be a meromorphic

function on a subregion U1 of Ω such that ρ
(1)
1 (z) + C1(z) ρ1(z) ≡ 0 on U1 and

ρ1(z) 6≡ 0. Then, we use (15.4) to see that the substitution y(z) = ρ1(z) t(z)
transforms the restriction to U1 of (15.1) into the equation on U1 given by

(18.14) t(m)(z) +

m∑
i=2

(
m

i

)
Ĝi(z) t

(m−i)(z) = 0, with Ĝ1(z) ≡ 0,

where explicit expressions for Ĝ2(z), . . . , Ĝm(z) are obtained by substituting

ρ
(1)
1 (z)

ρ1(z)
≡ −C1(z),

ρ
(2)
1 (z)

ρ1(z)
≡ −C(1)

1 (z) +

(
ρ
(1)
1 (z)

ρ1(z)

)2

≡ −C(1)
1 (z) +

(
C1(z)

)2
,

and

ρ
(k+1)
1 (z)

ρ1(z)
≡

(
ρ
(k)
1 (z)

ρ1(z)

)′
+
ρ
(k)
1 (z)

ρ1(z)

ρ
(1)
1 (z)

ρ1(z)
, for k ≥ 2,

into (15.4) to obtain Ĝ1(z) ≡ 0, Ĝ2(z) ≡ C2(z)−
(
C1(z)

)2−C(1)
1 (z), . . . . But, the

coefficients of (18.14) are defined on all of Ω and they are uniquely specified by the
given (15.1). In this way, apart from the selection of the variable t, the equation
(15.1) on Ω uniquely determines (18.14) on Ω as its Halphen canonical form.

18.3.2. Deduction of Ĝ∗i (z) ≡ Ĝi(z). Just as (15.1) on Ω specifies (18.14)
on Ω as its Halphen canonical form, the equation (15.3) on Ω specifies

(18.15) t(m)(z) +

m∑
i=2

(
m

i

)
Ĝ∗i (z) t

(m−i)(z) = 0, with Ĝ∗1(z) ≡ 0,

on Ω as its Halphen canonical form where Ĝ∗2(z) ≡ C∗2 (z) −
(
C∗1 (z)

)2 − C∗(1)1 (z),

and so on. For 1 ≤ i ≤ m, Ĝ∗i (z) was regarded as obtained from Ĝi(z) by replacing

in Ĝi(z) each C
(k)
j (z) from (15.1) with the corresponding C

∗(k)
j (z) from (15.3).

With reference to U1 for the local transformation y(z) = ρ1(z) t(z) of (15.1)
on U1 into (18.14) on U1, we observe that the substitution v(z) =

(
1/ρ(z)

)
y(z)

transforms the restriction to U1 of (15.3) into the restriction to U1 of (15.1). Hence,
the substitution v(z) =

(
ρ1(z)/ρ(z)

)
t(z) transforms the restriction to U1 of (15.3)

into the restriction to U1 of (18.14). Consequently, both (18.14) and (18.15) are

Halphen canonical forms for (15.3). This requires Ĝ∗i (z) ≡ Ĝi(z), for 2 ≤ i ≤ m.
Since Georges-Henri Halphen in [32] of 1884, Andrew Forsyth in [28] of 1888,

and other researchers did not employ polynomials into which substitutions from

(15.1) or (15.3) or (15.6) could be performed, the function Ĝi(z), for 2 ≤ i ≤ m,
was referred to as an isobaric semi-invariant of the first kind having weight i.

Sections 18.1 and 18.2 provide clarification. See Theorems 18.4 and 18.5.
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18.4. Results of Forsyth in the context for Sections 18.1 and 18.2

Andrew Forsyth employed infinitesimal transformations in [28, pages 398–401]
of 1888 to derive a necessary structure for Laguerre-Halphen relative invariants
of weights s = 3, 4, 5, 6, 7 for equations (15.1) of order m ≥ s. The deduction for
the weight s = 3 in [28, page 398, (14)] corresponds to the notation

(18.16) Θ̂3(z) ≡ Ĝ3(z)− (3/2)Ĝ
(1)
2 (z), for equations (15.1) of order m ≥ 3.

The right member of (18.16) is equal to the right member of (17.4) and was known
to Georges-Henri Halphen in [32] of 1884. That it does not involve m was noted on
page 169. In that regard, the notation of Sections 18.1 and 18.2 yields the identity

(18.17) Θ̂3 ≡ Ĝ3 − (3/2)Ĝ
(1)
2 ≡ Ĥ3,

where Ĥ3 is given by (18.4).
With respect to the notation of Section 18.1 on page 171, we use (18.8) to see

that the polynomials of interest that correspond to the formulas for Θ̂4(z), Θ̂5(z),

Θ̂6(z), and Θ̂7(z) in [28, pages 399–401, (15), (16),(17),(18)] are given by

Θ̂4 ≡ Ĝ4 − 2Ĝ
(1)
3 + (6/5)Ĝ

(2)
2 −

3(5m+ 7

5(m+ 1)

(
Ĝ2

)2
,(18.18)

for equations (15.1) of order m ≥ 4,

Θ̂5 ≡ Ĝ5 −
5

2
Ĝ

(1)
4 +

15

7
Ĝ

(2)
3 −

5

7
Ĝ

(3)
2 −

10(7m+ 13)

7(m+ 1)
Ĝ2 Θ̂3,(18.19)

for equations (15.1) of order m ≥ 5,

Θ̂6 ≡ Ĝ6 − 3Ĝ
(1)
5 + (10/3)Ĝ

(2)
4 − (5/3)Ĝ

(3)
3 + (5/14)Ĝ

(4)
2(18.20)

+
30(7m2 + 28m+ 25)

7(m+ 1)2
(
Ĝ2

)3
+

5(7m+ 8)

14(m+ 1)

(
Ĝ

(1)
2

)2
− 5

3m+ 7

m+ 1
Ĝ2

(
Ĝ4 − 2Ĝ

(1)
3 +

2(14m+ 31)

7(3m+ 7)
Ĝ

(2)
2

)
,

for equations (15.1) of order m ≥ 6,

and

Θ̂7 ≡ Ĝ7 −
7

2
Ĝ

(1)
6 +

105

22
Ĝ

(2)
5 −

35

11
Ĝ

(3)
4 +

35

33
Ĝ

(4)
3 −

7

44
Ĝ

(5)
2(18.21)

− 7Ĝ2

11(m+ 1)

 (3/2)(11m+ 31)
(

2Ĝ5 − 5Ĝ
(1)
4

)
+ 5(15m+ 41)Ĝ

(2)
3 − 15(2m+ 5)Ĝ

(3)
2


− 7(3m+ 4)

11(m+ 1)

[
3Ĝ

(2)
2

(
Ĝ3 + Ĝ

(1)
2

)
− 5Ĝ

(1)
2 Ĝ

(1)
3

]
+

21(55m2 + 288m+ 329)

11(m+ 1)2
(
Ĝ2

)2
Θ̂3,

for equations (15.1) of order m ≥ 7,

except that: the denominator 11(m+ 1)2 appearing in the last fraction of (18.21)
is a correction for the denominator 22(m+1)2 that [28, page 401, (18)] would give.
For details about that misprint, see [19, page 79].

The restriction to infinitesimal transformations is removed in Theorem 18.7.
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18.4.1. Deduction for Ĝ
(k)
i . For any polynomial P̂ in Rm,1 of page 171 and

the derivation ′ for Rm,1, we write P̂ (0) ≡ P̂ , P̂ (1) ≡
(
P̂ (0)

)′
, P̂ (2) ≡

(
P̂ (1)

)′
, . . . .

Thus, for any k ≥ 0, we use the notation P̂ (k) for the polynomial in Rm,1 obtained

from P̂ by repeatedly applying k times the derivation ′ defined for Rm,1.

We recall that P̂ (z) designates the function on Ω obtained from P̂ by replacing

each W
(j)
i in P̂ with the corresponding C

(j)
i (z) from (15.1). However, due to

properties of the derivation ′ for Rm,1, we see that the function
(
P̂ (k)

)
(z) on Ω

that is obtained from P̂ (k) by replacing each W
(j)
i in P̂ (k) with the corresponding

C
(j)
i (z) from (15.1) is equal to the kth derivative with respect to z of P̂ (z). Similarly,

the function
(
P̂ (k)

)∗
(z) on Ω obtained from P̂ (k) by replacing each W

(j)
i in P̂ (k)

with the corresponding C
∗(j)
i (z) from (15.3) is equal to the kth derivative with

respect to z of the function P̂ ∗(z) obtained from P̂ by replacing each W
(j)
i in P̂

with the corresponding C
∗(j)
i (z) from (15.3).

Proposition 18.6. For 2 ≤ i ≤ m and k ≥ 0, Ĝ
(k)
i is an isobaric Cockle-semi-

invariant of the first kind having weight i+ k.

Proof. For 2 ≤ i ≤ m and k ≥ 0, we use (18.8) to see that the coefficient

ofW
(k)
i in Ĝ

(k)
i is 1 and Ĝ

(k)
i is an isobaric polynomial of weight i+k. Theorem 18.4

on page 173 yields Ĝ∗i (z) ≡ Ĝi(z), on Ω, from which we deduce

(18.22)
(
Ĝ

(k)
i

)∗
(z) ≡ dk

dzk
Ĝ∗i (z) ≡

dk

dzk
Ĝi(z) ≡

(
Ĝ

(k)
i

)
(z), on Ω.

We compare (18.22) with (18.6) of Definition 18.1 on page 172 to complete the
proof. �

18.4.2. Properties of Θ̂3, Θ̂4, Θ̂5, Θ̂6, and Θ̂7. We know that Θ̂3 in (18.17)
is a Laguerre-Halphen relative invariant for equations (15.1) of order m ≥ 3 because

Ĥ3 in (18.4) on page 172 has that property with respect to Definition 18.3.

Theorem 18.7. For 3 ≤ s ≤ 7, Θ̂s is a Laguerre-Halphen relative invariant of
weight s for the equations (15.1) of order m ≥ s.

Proof. Let s satisfy 3 ≤ s ≤ 7. We use (18.17)–(18.21) to see that the

coefficient ofWs in Θ̂s is equal to the coefficient 1 ofWs in Ĝs. Since Definition 18.1
on page 172 shows that a nonzero sum of Cockle-semi-invariants of the first kind
is a Cockle-semi-invariant of the first kind, we apply Proposition 18.6 to conclude

that Θ̂s is an isobaric Cockle-semi-invariant of the first kind having weight s.
We establish in Section 18.5 that: when an equation (15.1) on Ω is transformed

by z = f(ζ) of (15.5) into a corresponding equation (15.6) on Ω∗∗, the identity

(18.23) Θ̂∗∗s (ζ)−
(
f ′(ζ)

)s
Θ̂s
(
f(ζ)

)
≡ 0, on Ω∗∗ for 3 ≤ s ≤ 7,

is valid, where Θ̂s(z) on Ω and Θ̂∗∗s (ζ) on Ω∗∗ are obtained by replacing each W
(j)
i

in Θ̂s with the corresponding C
(j)
i (z) from (15.1) and C

∗∗(j)
i (ζ) from (15.6). In view

of (18.23) and Definitions 18.2–18.3, we conclude that Θ̂s is a Laguerre-Halphen
relative invariant of weight s. �
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18.5. Computer-algebra verification of (18.23)

After selecting a version of Mathematica from [55, 56, 57, 58, 59] as the
system, we recall from page 167 that the evaluations of

Ce[m_,0][z_] := 1

alpha[0,j_][zeta_] := 1

alpha[i_,j_][zeta_] := ( Sum[alpha[i-1,k]’[zeta]

-(i-1+k)(f’’[zeta]/f’[zeta])*

alpha[i-1,k][zeta],{k,1,j}] ) /; i >= 1

beta[m_,r_,s_][zeta_]:=(Product[(m-s-k+1),{k,1,r}]/

Product[(s+k),{k,1,r}])*alpha[r,s][zeta]

CeSS[m_,i_][zeta_] := Sum[beta[m,i-j,m-i][zeta]*

(f’[zeta])^j*Ce[m, j][f[zeta]],{j,0,i}]

provide representations for the coefficients C∗∗1 (ζ), C∗∗2 (ζ), . . . of (15.6). We use
(18.7) and (18.8) to see that the evaluations of

F[0][z_] := 1

F[1][z_] := - Ce[m,1][z]

F[i_][z_] := F[i-1]’[z]+F[1][z]*F[i-1][z] /; i >= 2

G[i_][z_] := Sum[Binomial[i,j]*F[i-j][z]*Ce[m,j][z],{j,0,i}]

FSS[0][zeta_] := 1

FSS[1][zeta_] := - CeSS[m,1][zeta]

FSS[i_][zeta_] :=

FSS[i-1]’[zeta]+FSS[1][zeta]*FSS[i-1][zeta] /; i >= 2

GSS[i_][zeta_] :=

Sum[Binomial[i,j]*FSS[i-j][zeta]*CeSS[m,j][zeta],{j,0,i}]

provide representations for the function Ĝi(z) on Ω and Ĝ∗∗i (ζ) on Ω∗∗ obtained

from Ĝi by replacing each Wj in Ĝi with the corresponding Cj(z) from (15.1) or
C∗∗j (ζ) from (15.6). In view of (18.17)–(18.21), we observe that the evaluations of

Theta[3][z_] := ( G[3][z]-(3/2)G[2]’[z] )

ThetaSS[3][zeta_] := ( GSS[3][zeta]-(3/2)GSS[2]’[zeta] )

Theta[4][z_] := ( G[4][z]-2G[3]’[z]+(6/5)G[2]’’[z]

-(3/5)((5m+7)/(m+1))G[2][z]^2 )



18.5. COMPUTER-ALGEBRA VERIFICATION OF (18.23) 179

ThetaSS[4][zeta_] := ( GSS[4][zeta]-2GSS[3]’[zeta]

+(6/5)GSS[2]’’[zeta]-(3/5)((5m+7)/(m+1))GSS[2][zeta]^2 )

Theta[5][z_] := ( G[5][z]-(5/2)G[4]’[z]+(15/7)G[3]’’[z]

-(5/7)G[2]’’’[z]-(10/7)((7m+13)/(m+1))G[2][z]*Theta[3][z] )

ThetaSS[5][zeta_] := ( GSS[5][zeta]-(5/2)GSS[4]’[zeta]

+(15/7)GSS[3]’’[zeta]-(5/7)GSS[2]’’’[zeta]

-(10/7)((7m+13)/(m+1))GSS[2][zeta]*ThetaSS[3][zeta] )

Theta[6][z_] := ( G[6][z]-3G[5]’[z]+(10/3)G[4]’’[z]

-(5/3)G[3]’’’[z]+(5/14)G[2]’’’’[z]

+(30/7)G[2][z]^3*((7m^2+28m+25)/(m+1)^2)

+(5/14)((7m+8)/(m+1))G[2]’[z]^2

-5((3m+7)/(m+1))G[2][z]*

(G[4][z]-2G[3]’[z]+(2/7)((14m+31)/(3m+7))G[2]’’[z]) )

ThetaSS[6][zeta_] := ( GSS[6][zeta]-3GSS[5]’[zeta]

+(10/3)GSS[4]’’[zeta]-(5/3)GSS[3]’’’[zeta]

+(5/14)GSS[2]’’’’[zeta]

+(30/7)GSS[2][zeta]^3*((7m^2+28m+25)/(m+1)^2)

+(5/14)((7m+8)/(m+1))GSS[2]’[zeta]^2

-5((3m+7)/(m+1))GSS[2][zeta]*(GSS[4][zeta]

-2GSS[3]’[zeta]+(2/7)((14m+31)/(3m+7))GSS[2]’’[zeta]) )

Theta[7][z_] := ( G[7][z]-(7/2)G[6]’[z]+(105/22)G[5]’’[z]

-(35/11)G[4]’’’[z]+(35/33)G[3]’’’’[z]-(7/44)G[2]’’’’’[z]

-(7/11)(G[2][z]/(m+1))*( (3/2)(11m+31)(2G[5][z]-5G[4]’[z])

+5(15m+41)G[3]’’[z]-15(2m+5)G[2]’’’[z] )

-(7/11)((3m+4)/(m+1))*( 3G[2]’’[z]( G[3][z]+G[2]’[z] )

- 5G[2]’[z]*G[3]’[z] )

+G[2][z]^2*Theta[3][z]*((1155m^2+6048m+6909)/(11(m+1)^2)) )

ThetaSS[7][zeta_] := ( GSS[7][zeta]-(7/2)GSS[6]’[zeta]

+(105/22)GSS[5]’’[zeta]-(35/11)GSS[4]’’’[zeta]

+(35/33)GSS[3]’’’’[zeta]-(7/44)GSS[2]’’’’’[zeta]

-(7/11)(GSS[2][zeta]/(m+1))*( (3/2)(11m+31)(2GSS[5][zeta]

-5GSS[4]’[zeta])+5(15m+41)GSS[3]’’[zeta]

-15(2m+5)GSS[2]’’’[zeta] )

- (7/11)((3m+4)/(m+1))( 3GSS[2]’’[zeta]*

(GSS[3][zeta]+GSS[2]’[zeta])-5GSS[2]’[zeta]*GSS[3]’[zeta])

+GSS[2][zeta]^2*ThetaSS[3][zeta]*

(21(55m^2+288m+329)/(11(m+1)^2)) )

represent the functions Θ̂s(z) on Ω and Θ̂∗∗s (ζ) on Ω∗∗, for 3 ≤ s ≤ 7, that appear
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in (18.23) on page 177. Since the evaluation for each of

FullSimplify[ ThetaSS[3][zeta] - f’[zeta]^3*Theta[3][f[zeta]] ]

FullSimplify[ ThetaSS[4][zeta] - f’[zeta]^4*Theta[4][f[zeta]] ]

FullSimplify[ ThetaSS[5][zeta] - f’[zeta]^5*Theta[5][f[zeta]] ]

FullSimplify[ ThetaSS[6][zeta] - f’[zeta]^6*Theta[6][f[zeta]] ]

FullSimplify[ ThetaSS[7][zeta] - f’[zeta]^7*Theta[7][f[zeta]] ]

is zero, we conclude that (18.23) is valid. A Mathematica notebook containing the
preceding evaluations can be downloaded from

http://homepages.uc.edu/~chalklr/Chapter-18.html

with the Google browser Chrome. It illustrates well the technique of Chapter 17.

18.6. Several observations

A different argument to verify Theorem 18.7 was employed for [19, page 79].
There, after finding explicit formulas for all of the basic relative invariants of the

equations (15.9), we used computer algebra with the substitution w
(j)
i =

(
m
i

)
W

(j)
i

in the basic relative invariants Im,1; 3, . . . , Im,1; 7 to verify that

(18.24) Im,1; s ≡
(
m

s

)
Θ̂s, for 3 ≤ s ≤ 7 and m ≥ s,

where Θ̂3, . . . , Θ̂7 are given by (18.17)–(18.21). The properties of Θ̂s as a Laguerre-
Halphen relative invariant for the equations (15.1) then follow from properties of
Im,1; s as a relative invariant for the equations (15.9).

The formulas for Θ̂3(z), Θ̂4(z), Θ̂5(z), Θ̂6(z), and Θ̂7(z) in [28, pages 398–401]
and their rewritten versions appearing in [8, page 235] did not lead to general results.

Francesc Brioschi introduced errors when he rewrote Θ̂7(z) for [8, page 235] of 1891

and those errors were copied in the expression for Θ̂7(z) that Ludwig Schlesinger
included in [47, page 196] of 1897.

18.7. Computer-algebra verification of (18.24)

We continue with the Mathematica notebook that was begun on page 178 and
includes the sixteen commands of page 178, the seven commands of page 179,
and the five commands above. At this point, the evaluations of Theta[3][z],
Theta[4][z], Theta[5][z], Theta[6][z], Theta[7][z] are representations for

the functions Θ̂3(z), Θ̂4(z), Θ̂5(z), Θ̂6(z), and Θ̂7(z) on Ω that are obtained by

replacing each W
(k)
j in Θ̂3, Θ̂4, Θ̂5, Θ̂6, and Θ̂7 of (18.17)–(18.21) with C

(k)
j (z)

from (15.1). Next, we evaluate

Ce[m_,i_][z_] = W[i][z]

and recognize that the evaluations of Theta[3][z], Theta[4][z], Theta[5][z],

Theta[6][z], Theta[7][z] now represent the polynomials Θ̂3, Θ̂4, Θ̂5, Θ̂6, and

Θ̂7 of (18.17)–(18.21) in the variables W
(k)
j over Q.
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With respect to the equations (15.9) on page 158, in order for the evaluations
of basicInv[m,1,3][z], basicInv[m,1,4][z], basicInv[m,1,5][z] as well as
basicInv[m,1,6][z] and basicInv[m,1,7][z] to represent the basic relative
invariants Im,1; 3, Im,1; 4, Im,1; 5, Im,1; 6, and Im,1; 7 as polynomials over Q in the

variables w
(j)
i , for 1 ≤ i ≤ m and j ≥ 0, we evaluate the input commands

a[m_,1][z_] := (1/Binomial[m+1,3])( w[2][z]

-((m-1)/2)w[1]’[z]-((m-1)/(2m))w[1][z]^2 )

d[m_,1][z_] := (1/(m(m-1)))w[1][z]

K[m_,1,i_,j_][z_] := 0 /; i <= -1

K[m_,1,0,j_][z_] := 1

K[m_,1,i_,j_][z_] :=

( Sum[( D[K[m,1,i-1,k][z],z]

-(m-1)*d[m,1][z]*K[m,1,i-1,k][z]

+(m+2-i-k)(2-i-k)a[m,1][z]*

K[m,1,i-2,k][z]),{k,j+1,m}] ) /; i >= 1

w[0][z_] = 1; X[k_][z_] := w[k][z]

L[m_,1,i_][z_] :=

Sum[ K[m,1,i-j,j][z]*X[j][z], {j, 0, i}]

M[m_,1,e1_,i_][z_] :=

FunctionExpand[Binomial[m-i,e1-i]]*

Product[(e1-r), {r,1,e1-i}]*L[m,1,i][z]

A[e1_,i_] := -1/(e1+i-1) /; i >= 1

B[e1_,i_] := (e1-i)/(e1+i-2) /; i >= 1

inv[m_,1,e1_,0][z_] := 0

inv[m_,1,e1_,1][z_] := 0

inv[m_,1,e1_,i_][z_] := ( M[m,1,e1,i][z]

+A[e1,i-1]*D[ inv[m,1,e1,i-1][z], z]

+B[e1,i-1]*a[m,1][z]*

inv[m,1,e1,i-2][z] ) /; i >= 2

basicInv[m_,1,e1_][z_] := inv[m,1,e1,e1][z]

from pages 53–54 of Section 6.1. For the relation w
(k)
j =

(
m
j

)
W

(k)
j , we evaluate

binomial[m_,i_] := Product[m-k,{k,0,i-1}]/i!

w[i_][z_] := binomial[m,i]*W[i][z]
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where the first of these two input commands enables
(
m
i

)
to be evaluated for any

nonnegative integer i even when m is merely a symbol. Since the evaluations for
each of the input commands

FullSimplify[ basicInv[m,1,3][z] - binomial[m,3]*Theta[3][z] ]

FullSimplify[ basicInv[m,1,4][z] - binomial[m,4]*Theta[4][z] ]

FullSimplify[ basicInv[m,1,5][z] - binomial[m,5]*Theta[5][z] ]

FullSimplify[ basicInv[m,1,6][z] - binomial[m,6]*Theta[6][z] ]

FullSimplify[ basicInv[m,1,7][z] - binomial[m,7]*Theta[7][z] ]

is zero, we conclude that (18.24) on page 180 is valid. The Mathematica notebook
that is downloadable from

http://homepages.uc.edu/~chalklr/Chapter-18.html

with the Google browser Chrome contains evaluations for the input statements of
this chapter.

18.8. Brief summary

The subject needed a simpler notation, precise definitions, explicit formulas of
a general character for the coefficients of equations resulting from a change of the
independent variable, and a symmetrical development with respect to the two types
of semi-invariants. Instead, after the research of Andrew Forsyth in [28] of 1888,
the subject was identified with the performance of infinitesimal transformations.
For example, see [7] of 1899 and [53] of 1906. Biographies of Georges-Henri Halphen
reveal the attitudes that prevailed by incorrectly implying the subject of invariants
for differential equations was merely a detail in the theory of continuous groups.
Also, since Halphen’s research about invariants did not fit into that context, it
should have been praised rather than claimed by biographers to be “no longer in
the mainstream.” Thus, because the subject had become so thoroughly muddled,
it needed the complete redevelopment that we began in 1989.

There are numerous areas of mathematics where considerable effort would be
required for a neophyte to understand the contributions made by experts or to fit
those contributions into an interesting historical perspective.

In contrast, the subject of relative invariants has a long history. Moreover, it
should now be intelligible to anyone knowledgeable about the differential calculus
and the concept of a polynomial in algebra.

We are pleased to have advanced this remarkable area of mathematics.
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and Paul Painlevé on nonlinear differential equations whose solutions are free of movable

branch points, J. Differential Equations 68 (1987), 72–117.

14. , Relative invariants for homogeneous linear differential equations, J. Differential
Equations 80 (1989), 107–153.

15. , The differential equation Q = 0 in which Q is a quadratic form in y′′, y′, y having

meromorphic coefficients, Proc. Amer. Math. Soc. 116 (1992), 427–435.
16. , A formula giving the known relative invariants for homogeneous linear differential

equations, J. Differential Equations 100 (1992), 379–404.

17. , Semi-invariants and relative invariants for homogeneous linear differential equations,
J. Math. Anal. Appl. 176 (1993), 49–75.

18. , A persymmetric determinant, J. Math. Anal. Appl. 176 (1994), 107–117.

19. , Basic Global Relative Invariants for Homogeneous Linear Differential Equations, no.

744, Memoirs Amer. Math. Soc., Providence, 2002, 1–204.

20. , Basic Global Relative Invariants for Nonlinear Differential Equations, no. 888, Mem-
oirs Amer. Math. Soc., Providence, 2007, 1–365.

21. , Relative Invariants from 1879 Onward: Their Evolution for Differential Equations,

Lumina Press, Plantation, Florida, 2014, 1–145 + xviii.
22. J. Cockle, Correlations of analysis, The London, Edinburgh, and Dublin Philosophical Mag-

azine and Journal of Science (4) 24 (1862), 531–534.

23. , On a differential criticoid, Philos. Mag. (4) 50 (1875), 440–446.
24. C. M. Cosgrove, New family of exact stationary axisymmetric gravitational fields generalizing

the Tomimatsu-Sato solutions, J. Phys. A 10 (1977), 1481–1524.

183



184 BIBLIOGRAPHY

25. , A new formulation of the field equations for the stationary axisymmetric vacuum
gravitational field I. general theory, J. Phys. A 11 (1978), 365–382.

26. D. R. Curtiss, On the invariants of a homogeneous quadratic differential equation of the

second order, Amer. J. Math. (1903), 365–382.
27. B. M. Dubrov, Generalized Wilczynski invaiants for nonlinear ordinary differential equations,

Symmetries and overdetermined systems of partial differential equations (M. Eastwood, ed.),

IMA Vol. Math. Appl., vol. 144, Proceedings of the IMA summer program, Minneapolis, MN,
July 17 - August 4, 2006, Springer, New York, 2008, pp. 25–40.

28. A. R. Forsyth, Invariants, covariants and quotient derivatives associated with linear differen-

tial equations, Philosophical Transactions of the Royal Society of London 179 (1888), 377–489.
29. N. V. Grigorenko, Web-based review in Zentralblatt MATH. Zbl 1006.34084 of [19], European

Mathematical Society, FIZ Karlsruhe & Springer-Verlag, online 2002 to time of this writing.
30. , Web-based review in Zentralblatt MATH. Zbl 1136.34001 of [20], European Mathe-

matical Society, FIZ Karlsruhe & Springer-Verlag, online 2007 to time of this writing.
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Um,n; i,j , 34

Vq,r,s,t,µ,ν,k, 113
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αp,q,i, 99

βp,q,i, 100

γh,i,j , 99

π, 19, 24, 25, 29

ρ(z), 29

σ, 30

φh,i,j(z), 77
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the order-sum of a monomial, 101

differential polynomial Cp,q,r
(
P , Q

)
applications, 39, 69, 70, 127–132

definition of, 36

expansion for, 59–61

for machine representations, 139, 151

identities involving, 62, 74



INDEX 189

Andrew Russell Forsyth, 1, 4, 5, 9, 37, 169,
175, 176, 182

Georges-Henri Halphen, xi, 1, 3–5, 168,

171, 172, 175, 176, 182

hindrances for research before 1989

counter-productive notation, 1, 157, 158,

171

distracting infinitesimal transformations,

182

misleading generalizations, 182

missing precise definitions, 171, 172

undiscovered key formulas

for changes of independent variable,

21, 22, 157, 158, 171

identities

for Cp,q,1
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Frantǐsek Neuman, 9

global versus local, 9

Jules Henri Poincaré, xi
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Paul Émile Appell, xi, 5, 9, 65, 66

Nicolas Bourbaki, 30, 48, 72

Charles Leonard Bouton, 8, 9, 182

Francesco Brioschi, 9, 180

Domenico Caligo, 9

Robert Campbell, 48

Roger Chalkley, xi, 1, 3, 5–7, 9, 31–33,

35, 37, 40, 42, 61, 63, 65, 66, 70, 107,
132, 143, 157, 161, 176, 180

James Cockle, 8, 168

Christopher M. Cosgrove, 9

David Raymond Curtiss, 9

Paul Dale, 9

Boris Mikhailovich Dubrov, 9

Andrew Russell Forsyth, 4, 5, 9, 37, 169,

174, 175, 180, 182

Georges-Henri Halphen, xi, 3, 4, 8, 42,

168, 169, 174–176

Ludwig Otto Hölder, 48
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