CHAPTER 16

Computer Algebra with Formulas (15.9)–(15.18)

The research presented in [19, 20, 21] was made possible when (15.16) was discovered and systems of computer algebra could then be used to find several key identities through trial-and-error experimentation. Similarly, one can make interesting discoveries or rediscoveries merely by using the formulas for $c_i^*(z)$ and $c_i^{**}(\zeta)$ with a few basic commands in a system of computer algebra. Here, we illustrate how that can be done by selecting a version of *Mathematica* from [55, 56, 57, 58, 59] as the system. The names of its commands indicate well what they do.

16.1. Computer representations for $c_i^*(z)$ and $c_i^{**}(\zeta)$

We apply (15.9), (15.12), (15.17), (15.18), and (15.16) with the selected version of *Mathematica* to conclude that successive notebook evaluations of

```
c[m_,0][z_] := 1

cS[m_,i_][z_] := Sum[Binomial[m-j,i-j]*
	(D[rho[z],{z,i-j}]/rho[z])*c[m,j][z],{j,0,i}]

alpha[0,j_][zeta_] := 1

alpha[i_,j_][zeta_] := (Sum[alpha[i-1,k]'[zeta]
	-(i-1+k)(f''[zeta]/f'[zeta])*
	alpha[i-1,k][zeta],{k,1,j}] ) /; i >= 1

cSS[m_,i_][zeta_] := Sum[alpha[i-j,m-i][zeta]*
	(f'[zeta])^j*c[m, j][f[zeta]],{j,0,i}]
```

enable *Mathematica* to then give computer representations for $c_i^*(z)$ and $c_i^{**}(\zeta)$, when $i = 0, 1, 2, \ldots$ and m can remain a symbol for any positive integer $\geq i$. For instance, the computer representations for the evaluations of cS[m,1][z] and cSS[m,1][zeta] show that $c_1^*(\zeta)$ and $c_1^{**}(\zeta)$ are respectively given by

$$c_1^*(z) \equiv c_1(z) + m \frac{\rho'(z)}{\rho(z)}$$
 and $c_1^{**}(\zeta) \equiv f'(\zeta) c_1(f(\zeta)) - {m \choose 2} \frac{f''(\zeta)}{f'(\zeta)}$

Also, the computer representation for the evaluation of cS[m,2][z] yields

$$c_2^*(z) \equiv c_2(z) + (m-1)c_1(z)\frac{\rho'(z)}{\rho(z)} + {\binom{m}{2}}\frac{\rho''(z)}{\rho(z)}.$$

16.2. Applications based on the representations for $c_i^*(z)$ and $c_i^{**}(\zeta)$

EXAMPLE 16.1. With $m \ge 2$ and symbols r_1, r_2 for rational numbers, we set

(16.1)
$$\boldsymbol{P}_{m,2} \equiv \boldsymbol{w}_2^{(0)} + r_1 \left(\boldsymbol{w}_1^{(0)} \right)^2 + r_2 \boldsymbol{w}_1^{(1)}$$

In regard to the function $P_{m,2}(z)$ on Ω that is obtained by replacing each $\boldsymbol{w}_i^{(j)}$ in $\boldsymbol{P}_{m,2}$ with the corresponding $c_i^{(j)}(z)$ from (15.9), we see that the evaluation of

P[z_] := c[m,2][z] + r1*c[m,1][z]^2 + r2*c[m,1]'[z]

represents $P_{m,2}(z)$. Also, for the function $P_{m,2}^*(z)$ on Ω that is obtained by replacing each $\boldsymbol{w}_i^{(j)}$ in $\boldsymbol{P}_{m,2}$ with the corresponding $c_i^{*(j)}(z)$ from (15.12), the evaluation of

represents $P_{m,2}^*(z)$. There are eight terms in the output for the evaluation of

 $dif1[z_] = Expand[PS[z] - P[z]]$

and in those terms the parts not involving m, r1, r2 are equal to the evaluations of

b[1] = c[m,1][z]*rho'[z]/rho[z];

while the evaluations of

a[1] = Coefficient[dif1[z],b[1]];

a[2] = Coefficient[dif1[z],b[2]];

```
a[3] = Coefficient[dif1[z],b[3]];
```

then yield the respective coefficients a[1], a[2], a[3] of b[1], b[2], b[3] in dif1[z]. Of course, if $r1 = r_1$ and $r2 = r_2$ are specific rational numbers, then we see that: a[1], a[2], a[3] are zero if and only if PS(z) - P(z) is zero and $P_{m,2}^*(z) \equiv P_{m,2}(z)$. After the evaluation of

list1 = {a[1]==0, a[2]==0, a[3]==0}

as a system of three linear equations in r1 and r2, the evaluation of

Solve[list1, {r1,r2}]

yields a unique solution that corresponds to

(16.2)
$$r_1 \equiv -\frac{(m-1)}{2m} \text{ and } r_2 \equiv -\frac{(m-1)}{2}$$

Thus, when r_1 , r_2 for (16.1) are defined by (16.2), we have $P_{m,2}^*(z) \equiv P_{m,2}(z)$ on Ω as a valid identity for any (15.9) on Ω having $m \geq 2$ and any transformation (15.10) of that (15.9) into a corresponding equation (15.11) on Ω .

EXAMPLE 16.2. With $m \ge 2$ and symbols s_1, s_2 for rational numbers, we set (16.3) $\boldsymbol{Q}_{m,2} \equiv \boldsymbol{w}_2^{(0)} + s_1 (\boldsymbol{w}_1^{(0)})^2 + s_2 \boldsymbol{w}_1^{(1)}.$

In regard to the function $Q_{m,2}(z)$ on Ω that is obtained by replacing each $\boldsymbol{w}_i^{(j)}$ in $\boldsymbol{Q}_{m,2}$ with the corresponding $c_i^{(j)}(z)$ from (15.9), we see that the evaluation of

Q[z_] := c[m,2][z] + s1*c[m,1][z]^2 + s2*c[m,1]'[z]

represents $Q_{m,2}(z)$. For the function $Q_{m,2}^{**}(\zeta)$ on Ω^{**} that is obtained by replacing each $\boldsymbol{w}_i^{(j)}$ in $\boldsymbol{Q}_{m,2}$ with the corresponding $c_i^{**(j)}(\zeta)$ from (15.16), the evaluation of

QSS[zeta_] := (cSS[m,2][zeta] + s1*cSS[m,1][zeta]^2 + s2*cSS[m,1]'[zeta])

represents $Q_{m,2}^{**}(\zeta)$. There are twenty terms in the output for the evaluation of

and in those terms the parts not involving m, s1, s2 are given by the evaluations of

b[4] = c[m, 1][f[zeta]] f''[zeta];

b[5] = (f''[zeta]/f'[zeta])^2;

b[6] = f'''[zeta]/f'[zeta];

while the evaluations of

- a[4] = Coefficient[dif2[zeta],b[4]];
- a[5] = Coefficient[dif2[zeta],b[5]];
- a[6] = Coefficient[dif2[zeta],b[6]];

give the coefficients of b[4], b[5], b[6] in dif2[zeta]. Naturally, if $s1 = s_1$ and $s2 = s_2$ are specific rational numbers, then we see that: a[4], a[5], a[6] are zero if and only if QSS[zeta] - (f'[zeta])^2*Q[f[zeta]] is zero and we have the identity $Q_{m,2}^{**}(\zeta) \equiv (f'(\zeta))^2 Q_{m,2}(f(\zeta))$. After the evaluation of

list2 = {a[4]==0, a[5]==0, a[6]==0}

as a system of three linear equations in s1 and s2, the evaluation of

Solve[list2, {s1,s2}]

yields a unique solution that corresponds to

(16.4)
$$s_1 \equiv -\frac{(m-2)(3m-1)}{6m(m-1)}$$
 and $s_2 \equiv -\frac{m-2}{3}$.

Thus, for s_1 , s_2 in (16.3) defined by (16.4), we have $Q_{m,2}^{**}(\zeta) \equiv (f'(\zeta))^2 Q_{m,2}(f(\zeta))$ on Ω^{**} as a valid identity for any equation (15.9) on Ω having $m \geq 2$ and any transformation (15.14) of that (15.9) into a corresponding equation (15.15) on Ω^{**} . EXAMPLE 16.3. Here, we use the computer representations for $c_i^*(z)$ and $c_i^{**}(\zeta)$ in Section 16.1 to check that the expression for $\mathcal{I}_{4,1;4}$ in (1.17) on page 4 is printed correctly. We find that the evaluation of

```
\begin{aligned} & \text{Simplify} \left[ \left( cS[4,4][z] - (1/4)cS[4,1][z]*cS[4,3][z] \right. \\ & - (1/2)cS[4,3]'[z] - (9/100)cS[4,2][z]^2 \\ & + (1/5)cS[4,2]''[z] + (13/100)cS[4,1][z]^2*cS[4,2][z] \\ & + (27/100)cS[4,1]'[z]*cS[4,2][z] + (1/4)cS[4,1][z]*cS[4,2]'[z] \\ & - (39/1600)cS[4,1][z]^4 - (39/200)cS[4,1][z]^2*cS[4,1]'[z] \\ & - (33/200)(cS[4,1]'[z])^2 - (3/20)cS[4,1][z]*cS[4,1]''[z] \\ & - (1/20)cS[4,1]''[z])^2 \\ & - (c[4,4][z] - (1/4)c[4,1][z]*c[4,3][z] \\ & - (c[4,4][z] - (1/4)c[4,1][z]*c[4,3][z] \\ & - (1/2)c[4,3]'[z] - (9/100)c[4,2][z]^2 \\ & + (1/5)c[4,2]''[z] + (13/100)c[4,1][z]^2*c[4,2][z] \\ & + (27/100)c[4,1]'[z]*c[4,2][z] + (1/4)c[4,1][z]*c[4,2]'[z] \\ & - (39/1600)c[4,1][z]^4 - (39/200)c[4,1][z]^2*c[4,1]'[z] \\ & - (33/200)(c[4,1]'[z])^2 - (3/20)c[4,1][z]*c[4,1]''[z] \\ & - (1/20)c[4,1]''[z]) \end{bmatrix} \end{aligned}
```

is zero and the evaluation of

```
Simplify[ ( cSS[4,4][zeta]
  -(1/4)cSS[4,1][zeta]*cSS[4,3][zeta]
  -(1/2)cSS[4,3]'[zeta] -(9/100)cSS[4,2][zeta]^2
  +(1/5)cSS[4,2]''[zeta]
  +(13/100)cSS[4,1][zeta]^2*cSS[4,2][zeta]
  +(27/100)cSS[4,1]'[zeta]*cSS[4,2][zeta]
  +(1/4)cSS[4,1][zeta]*cSS[4,2]'[zeta]
  -(39/1600)cSS[4,1][zeta]^4
  -(39/200)cSS[4,1][zeta]^2*cSS[4,1]'[zeta]
  -(33/200)(cSS[4,1]'[zeta])^2
  -(3/20)cSS[4,1][zeta]*cSS[4,1]''[zeta]
  -(1/20)cSS[4,1]'''[zeta])
       - (f'[zeta])^4( c[4,4][f[zeta]]
  -(1/4)c[4,1][f[zeta]]*c[4,3][f[zeta]]
  -(1/2)c[4,3]'[f[zeta]] -(9/100)c[4,2][f[zeta]]^2
  +(1/5)c[4,2]''[f[zeta]]
  +(13/100)c[4,1][f[zeta]]^2*c[4,2][f[zeta]]
  +(27/100)c[4,1]'[f[zeta]]*c[4,2][f[zeta]]
  +(1/4)c[4,1][f[zeta]]*c[4,2]'[f[zeta]]
  -(39/1600)c[4,1][f[zeta]]^4
  -(39/200)c[4,1][f[zeta]]<sup>2</sup>*c[4,1]'[f[zeta]]
  -(33/200)(c[4,1]'[f[zeta]])^2
  -(3/20)c[4,1][f[zeta]]*c[4,1]''[f[zeta]]
  -(1/20)c[4,1]'''[f[zeta]] )]
```

is zero. Consequently, $\mathcal{I}_{4,1;4}$ as presented in (1.17) on page 4 is a relative invariant of weight s = 4 for the equations (15.9) on page 158 having order m = 4.

16.2. APPLICATIONS BASED ON THE REPRESENTATIONS FOR $c_i^*(z)$ AND $c_i^{**}(\zeta)$ 165

EXAMPLE 16.4. With $m \ge 3$ and symbols t_1, t_2, t_3, t_4, t_5 representing rational numbers, we introduce

(16.5)
$$\boldsymbol{I}_{m,3} \equiv \boldsymbol{w}_3 + t_1 \, \boldsymbol{w}_1 \, \boldsymbol{w}_2 + t_2 \left(\boldsymbol{w}_1 \right)^3 + t_3 \, \boldsymbol{w}_2^{(1)} + t_4 \, \boldsymbol{w}_1 \, \boldsymbol{w}_1^{(1)} + t_5 \, \boldsymbol{w}_1^{(2)}.$$

For the function $I_{m,3}(z)$ on Ω that is obtained by replacing each $\boldsymbol{w}_i^{(j)}$ in $\boldsymbol{I}_{m,3}$ with the corresponding $c_i^{(j)}(z)$ from (15.9), the evaluation of

represents $I_{m,3}(z)$. For the function $I_{m,3}^*(z)$ on Ω that is obtained by replacing each $\boldsymbol{w}_i^{(j)}$ in $\boldsymbol{I}_{m,3}$ with the corresponding $c_i^{*(j)}(z)$ from (15.12), the evaluation of

```
InvS[z_] := ( cS[m,3][z] + t1*cS[m,1][z]*cS[m,2][z]
+ t2*cS[m,1][z]^3 + t3*cS[m,2]'[z]
+ t4*cS[m,1][z]*cS[m,1]'[z] + t5*cS[m,1]''[z] )
```

represents $I_{m,3}^*(z)$. For the function $I_{m,3}^{**}(\zeta)$ on Ω^{**} that is obtained by replacing each $\boldsymbol{w}_i^{(j)}$ in $\boldsymbol{I}_{m,3}$ with the corresponding $c_i^{**(j)}(\zeta)$ from (15.16), the evaluation of

```
InvSS[zeta_] := ( cSS[m,3][zeta]
+ t1*cSS[m,1][zeta]*cSS[m,2][zeta] + t2*cSS[m,1][zeta]^3
+ t3*cSS[m,2]'[zeta] + t4*cSS[m,1][zeta]*cSS[m,1]'[zeta]
+ t5*cSS[m,1]''[zeta] )
```

represents $I_{m,3}^{**}(\zeta)$. We note that t_1, t_2, t_3, t_4, t_5 for (16.5) yield

(16.6) $I_{m,3}^*(z) \equiv I_{m,3}(z)$ on Ω , and $I_{m,3}^{**}(\zeta) \equiv (f'(\zeta))^3 I_{m,3}(f(\zeta))$, on Ω^{**} .

if and only if their representations t1, t2, t3, t4, t5 make the evaluations of

diff1[z_] = Expand[InvS[z] - Inv[z]]

diff2[zeta_] = Expand[InvSS[zeta]-(f'[zeta])^3*Inv[f[zeta]]]

identically zero. Among the thirty-eight terms in the expansion of diff1[z], there are eight parts that do not involve m, t1, t2, t3, t4, t5. Let them be copied individually from the output, pasted into individual input cells, given the names $b3[1], b3[2], \ldots, b3[8]$, and then evaluated. Among the ninety-three terms in the expansion of diff2[zeta], there are eight parts that do not involve m, t1, t2, t3, t4, t5. Let them be copied from the output, pasted into input cells, given the names $b3[9], b3[10], \ldots, b3[16]$, and then be evaluated. We evaluate

```
Do[a3[k] = Coefficient[diff1[z], b3[k]], {k,1,8}];
```

```
Do[a3[k] = Coefficient[diff2[zeta], b3[k]], {k,9,16}];
```

and then find that the evaluation of

yields a unique solution. As expressed for (16.5), it is given by

(16.7)
$$t_1 = -\frac{m-2}{m}, \quad t_2 = \frac{(m-1)(m-2)}{3m^2}, \quad t_3 = -\frac{m-2}{2},$$

 $t_4 = \frac{(m-1)(m-2)}{2m}, \quad \text{and} \quad t_5 = \frac{(m-1)(m-2)}{12}.$

Thus, (16.6) is satisfied by (16.5) with (16.7) for each equation (15.9) having $m \geq 3$ as well as each transformation (15.10) of (15.9) into a corresponding (15.11) and each transformation (15.14) of (15.9) into a corresponding (15.15). In this regard, see (1.13) of page 3. If the definitions of b3[1], b3[2], ..., b3[16] give difficulty, use the Google browser *Chrome* to visit

http://homepages.uc.edu/~chalklr/Chapter-16.html and then download the *Mathematica* notebook available there. Details are also given in that notebook for Examples 16.1, 16.2, 16.3, and 16.5.

EXAMPLE 16.5. There are unique rational numbers
$$u_1, u_2, ..., u_{12}$$
 for
(16.8) $\boldsymbol{I}_{m,4} \equiv \boldsymbol{w}_4 + u_1 \, \boldsymbol{w}_1 \, \boldsymbol{w}_3 + u_2 \, \boldsymbol{w}_3^{(1)} + u_3 \left(\boldsymbol{w}_2 \right)^2 + u_4 \, \boldsymbol{w}_2^{(2)} + u_5 \left(\boldsymbol{w}_1 \right)^2 \boldsymbol{w}_2$
 $+ u_6 \, \boldsymbol{w}_1^{(1)} \, \boldsymbol{w}_2 + u_7 \, \boldsymbol{w}_1 \, \boldsymbol{w}_2^{(1)} + u_8 \left(\boldsymbol{w}_1 \right)^4 + u_9 \left(\boldsymbol{w}_1 \right)^2 \boldsymbol{w}_1^{(1)}$
 $+ u_{10} \left(\boldsymbol{w}_1^{(1)} \right)^2 + u_{11} \, \boldsymbol{w}_1 \, \boldsymbol{w}_1^{(2)} + u_{12} \, \boldsymbol{w}_1^{(3)}, \quad \text{with } m \ge 4,$

such that the functions $I_{m,4}(z)$ on Ω , $I_{m,4}^*(z)$ on Ω , and $I_{m,4}^{**}(\zeta)$ on Ω^{**} that are obtained by replacing each $\boldsymbol{w}_i^{(j)}$ in $\boldsymbol{I}_{m,4}$ with the corresponding $c_i^{(j)}(z)$ from (15.9), with the $c_i^{*(j)}(z)$ from (15.11), and with the $c_i^{**(j)}(\zeta)$ from (15.15), satisfy both

$$I_{m,4}^*(z) \equiv I_{m,4}(z)$$
 on Ω , and $I_{m,4}^{**}(\zeta) \equiv \left(f'(\zeta)\right)^4 I_{m,4}\left(f(\zeta)\right)$, on Ω^{**} .

When the technique of Example 4.4 is repeated here, the main difference is that: in place of the copy and paste for Example 4.4 where b3[k] was obtained separately for $1 \le k \le 8$ and $9 \le k \le 16$, we now use copy and paste to obtain b4[k]separately for $1 \le k \le 20$ and for $21 \le k \le 40$. Of course, this requires more patience. However, when details similar to those of Example 4.4 are carried out, the coefficients for $I_{m,4}$ in (16.8) are found to be

$$\begin{array}{ll} (16.9) & u_1 = -\frac{m-3}{m}, \quad u_2 = -\frac{m-3}{2}, \quad u_3 = -\frac{(m-2)(m-3)(3m+1)}{10(m+1)(m)(m-1)}, \\ & u_4 = \frac{(m-2)(m-3)}{10}, \quad u_5 = \frac{(m-2)(m-3)(5m+6)}{5(m+1)m^2}, \quad u_6 = \frac{(m-2)(m-3)(5m+7)}{10(m+1)m}, \\ & u_7 = \frac{(m-2)(m-3)}{2m}, \quad u_8 = -\frac{(m-1)(m-2)(m-3)(5m+6)}{20(m+1)m^3}, \\ & u_9 = -\frac{(m-1)(m-2)(m-3)(5m+6)}{10(m+1)m^2}, \quad u_{10} = -\frac{(m-1)(m-2)(m-3)(2m+3)}{20(m+1)m}, \\ & u_{11} = -\frac{(m-1)(m-2)(m-3)}{10m}, \quad u_{12} = -\frac{(m-1)(m-2)(m-3)}{120}. \end{array}$$

By setting m = 4 in these formulas, we obtain the coefficients for (1.17) on page 4.

Observation. The basic relative invariants $\mathcal{I}_{m,1;s}$ of weight $s \geq 3$ for the equations (15.9) of order $m \geq s$ are given explicitly by the computer program in Section 6.1 on pages 53–54. We note that $I_{m,3}$ in (16.5) with the coefficients of (16.7) is equal to $\mathcal{I}_{m,1;3}$. Also, $I_{m,4}$ in (16.8) with the coefficients of (16.9) is equal to $\mathcal{I}_{m,1;4}$.