
CHAPTER 16

Computer Algebra with Formulas (15.9)–(15.18)

The research presented in [19, 20, 21] was made possible when (15.16) was
discovered and systems of computer algebra could then be used to find several key
identities through trial-and-error experimentation. Similarly, one can make inter-
esting discoveries or rediscoveries merely by using the formulas for c∗i (z) and c∗∗i (ζ)
with a few basic commands in a system of computer algebra. Here, we illustrate how
that can be done by selecting a version of Mathematica from [55, 56, 57, 58, 59]
as the system. The names of its commands indicate well what they do.

16.1. Computer representations for c∗i (z) and c∗∗i (ζ)

We apply (15.9), (15.12), (15.17), (15.18), and (15.16) with the selected version
of Mathematica to conclude that successive notebook evaluations of

c[m_,0][z_] := 1

cS[m_,i_][z_] := Sum[Binomial[m-j,i-j]*

(D[rho[z],{z,i-j}]/rho[z])*c[m,j][z],{j,0,i}]

alpha[0,j_][zeta_] := 1

alpha[i_,j_][zeta_] := ( Sum[alpha[i-1,k]’[zeta]

-(i-1+k)(f’’[zeta]/f’[zeta])*

alpha[i-1,k][zeta],{k,1,j}] ) /; i >= 1

cSS[m_,i_][zeta_] := Sum[alpha[i-j,m-i][zeta]*

(f’[zeta])^j*c[m, j][f[zeta]],{j,0,i}]

enable Mathematica to then give computer representations for c∗i (z) and c∗∗i (ζ),
when i = 0, 1, 2, . . . and m can remain a symbol for any positive integer ≥ i.
For instance, the computer representations for the evaluations of cS[m,1][z] and
cSS[m,1][zeta] show that c∗1(z) and c∗∗1 (ζ) are respectively given by

c∗1(z) ≡ c1(z) +m
ρ′(z)

ρ(z)
and c∗∗1 (ζ) ≡ f ′(ζ) c1

(
f(ζ)

)
−
(
m

2

)
f ′′(ζ)

f ′(ζ)
.

Also, the computer representation for the evaluation of cS[m,2][z] yields

c∗2(z) ≡ c2(z) + (m− 1) c1(z)
ρ′(z)

ρ(z)
+

(
m

2

)
ρ′′(z)

ρ(z)
.

161
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16.2. Applications based on the representations for c∗i (z) and c∗∗i (ζ)

Example 16.1. With m ≥ 2 and symbols r1, r2 for rational numbers, we set

(16.1) Pm,2 ≡ w(0)
2 + r1

(
w

(0)
1

)2
+ r2w

(1)
1 .

In regard to the function Pm,2(z) on Ω that is obtained by replacing each w
(j)
i

in Pm,2 with the corresponding c
(j)
i (z) from (15.9), we see that the evaluation of

P[z_] := c[m,2][z] + r1*c[m,1][z]^2 + r2*c[m,1]’[z]

represents Pm,2(z). Also, for the function P ∗m,2(z) onΩ that is obtained by replacing

each w
(j)
i in Pm,2 with the corresponding c

∗(j)
i (z) from (15.12), the evaluation of

PS[z_] := cS[m,2][z] + r1*cS[m,1][z]^2 + r2*cS[m,1]’[z]

represents P ∗m,2(z). There are eight terms in the output for the evaluation of

dif1[z_] = Expand[ PS[z] - P[z] ]

and in those terms the parts not involving m, r1, r2 are equal to the evaluations of

b[1] = c[m,1][z]*rho’[z]/rho[z];

b[2] = (rho’[z]/rho[z])^2;

b[3] = rho’’[z]/rho[z];

while the evaluations of

a[1] = Coefficient[dif1[z],b[1]];

a[2] = Coefficient[dif1[z],b[2]];

a[3] = Coefficient[dif1[z],b[3]];

then yield the respective coefficients a[1], a[2], a[3] of b[1], b[2], b[3] in
dif1[z]. Of course, if r1= r1 and r2= r2 are specific rational numbers, then
we see that: a[1], a[2], a[3] are zero if and only if PS(z) - P(z) is zero and
P ∗m,2(z) ≡ Pm,2(z). After the evaluation of

list1 = {a[1]==0, a[2]==0, a[3]==0}

as a system of three linear equations in r1 and r2, the evaluation of

Solve[list1, {r1,r2}]

yields a unique solution that corresponds to

(16.2) r1 ≡ −
(m− 1)

2m
and r2 ≡ −

(m− 1)

2
.

Thus, when r1, r2 for (16.1) are defined by (16.2), we have P ∗m,2(z) ≡ Pm,2(z) on Ω
as a valid identity for any (15.9) on Ω having m ≥ 2 and any transformation (15.10)
of that (15.9) into a corresponding equation (15.11) on Ω.
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Example 16.2. With m ≥ 2 and symbols s1, s2 for rational numbers, we set

(16.3) Qm,2 ≡ w
(0)
2 + s1

(
w

(0)
1

)2
+ s2w

(1)
1 .

In regard to the function Qm,2(z) on Ω that is obtained by replacing each w
(j)
i

in Qm,2 with the corresponding c
(j)
i (z) from (15.9), we see that the evaluation of

Q[z_] := c[m,2][z] + s1*c[m,1][z]^2 + s2*c[m,1]’[z]

represents Qm,2(z). For the function Q∗∗m,2(ζ) on Ω∗∗ that is obtained by replacing

each w
(j)
i in Qm,2 with the corresponding c

∗∗(j)
i (ζ) from (15.16), the evaluation of

QSS[zeta_] := ( cSS[m,2][zeta] + s1*cSS[m,1][zeta]^2

+ s2*cSS[m,1]’[zeta] )

represents Q∗∗m,2(ζ). There are twenty terms in the output for the evaluation of

dif2[zeta_] = Expand[ QSS[zeta] - (f’[zeta])^2*Q[f[zeta]] ]

and in those terms the parts not involving m, s1, s2 are given by the evaluations of

b[4] = c[m, 1][f[zeta]] f’’[zeta];

b[5] = (f’’[zeta]/f’[zeta])^2;

b[6] = f’’’[zeta]/f’[zeta];

while the evaluations of

a[4] = Coefficient[dif2[zeta],b[4]];

a[5] = Coefficient[dif2[zeta],b[5]];

a[6] = Coefficient[dif2[zeta],b[6]];

give the coefficients of b[4], b[5], b[6] in dif2[zeta]. Naturally, if s1= s1 and
s2= s2 are specific rational numbers, then we see that: a[4], a[5], a[6] are zero
if and only if QSS[zeta] - (f’[zeta])^2*Q[f[zeta]] is zero and we have the
identity Q∗∗m,2(ζ) ≡

(
f ′(ζ)

)
2Qm,2

(
f(ζ)

)
. After the evaluation of

list2 = {a[4]==0, a[5]==0, a[6]==0}

as a system of three linear equations in s1 and s2, the evaluation of

Solve[list2, {s1,s2}]

yields a unique solution that corresponds to

(16.4) s1 ≡ −
(m− 2)(3m− 1)

6m(m− 1)
and s2 ≡ −

m− 2

3
.

Thus, for s1, s2 in (16.3) defined by (16.4), we have Q∗∗m,2(ζ) ≡
(
f ′(ζ)

)
2Qm,2

(
f(ζ)

)
on Ω∗∗ as a valid identity for any equation (15.9) on Ω having m ≥ 2 and any
transformation (15.14) of that (15.9) into a corresponding equation (15.15) on Ω∗∗.
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Example 16.3. Here, we use the computer representations for c∗i (z) and c∗∗i (ζ)
in Section 16.1 to check that the expression for I4,1; 4 in (1.17) on page 4 is printed
correctly. We find that the evaluation of

Simplify[ ( cS[4,4][z] -(1/4)cS[4,1][z]*cS[4,3][z]

-(1/2)cS[4,3]’[z] -(9/100)cS[4,2][z]^2

+(1/5)cS[4,2]’’[z] +(13/100)cS[4,1][z]^2*cS[4,2][z]

+(27/100)cS[4,1]’[z]*cS[4,2][z] +(1/4)cS[4,1][z]*cS[4,2]’[z]

-(39/1600)cS[4,1][z]^4 -(39/200)cS[4,1][z]^2*cS[4,1]’[z]

-(33/200)(cS[4,1]’[z])^2 -(3/20)cS[4,1][z]*cS[4,1]’’[z]

-(1/20)cS[4,1]’’’[z] )

- ( c[4,4][z] -(1/4)c[4,1][z]*c[4,3][z]

-(1/2)c[4,3]’[z] -(9/100)c[4,2][z]^2

+(1/5)c[4,2]’’[z] +(13/100)c[4,1][z]^2*c[4,2][z]

+(27/100)c[4,1]’[z]*c[4,2][z] +(1/4)c[4,1][z]*c[4,2]’[z]

-(39/1600)c[4,1][z]^4 -(39/200)c[4,1][z]^2*c[4,1]’[z]

-(33/200)(c[4,1]’[z])^2 -(3/20)c[4,1][z]*c[4,1]’’[z]

-(1/20)c[4,1]’’’[z] ) ]

is zero and the evaluation of

Simplify[ ( cSS[4,4][zeta]

-(1/4)cSS[4,1][zeta]*cSS[4,3][zeta]

-(1/2)cSS[4,3]’[zeta] -(9/100)cSS[4,2][zeta]^2

+(1/5)cSS[4,2]’’[zeta]

+(13/100)cSS[4,1][zeta]^2*cSS[4,2][zeta]

+(27/100)cSS[4,1]’[zeta]*cSS[4,2][zeta]

+(1/4)cSS[4,1][zeta]*cSS[4,2]’[zeta]

-(39/1600)cSS[4,1][zeta]^4

-(39/200)cSS[4,1][zeta]^2*cSS[4,1]’[zeta]

-(33/200)(cSS[4,1]’[zeta])^2

-(3/20)cSS[4,1][zeta]*cSS[4,1]’’[zeta]

-(1/20)cSS[4,1]’’’[zeta] )

- (f’[zeta])^4( c[4,4][f[zeta]]

-(1/4)c[4,1][f[zeta]]*c[4,3][f[zeta]]

-(1/2)c[4,3]’[f[zeta]] -(9/100)c[4,2][f[zeta]]^2

+(1/5)c[4,2]’’[f[zeta]]

+(13/100)c[4,1][f[zeta]]^2*c[4,2][f[zeta]]

+(27/100)c[4,1]’[f[zeta]]*c[4,2][f[zeta]]

+(1/4)c[4,1][f[zeta]]*c[4,2]’[f[zeta]]

-(39/1600)c[4,1][f[zeta]]^4

-(39/200)c[4,1][f[zeta]]^2*c[4,1]’[f[zeta]]

-(33/200)(c[4,1]’[f[zeta]])^2

-(3/20)c[4,1][f[zeta]]*c[4,1]’’[f[zeta]]

-(1/20)c[4,1]’’’[f[zeta]] ) ]

is zero. Consequently, I4,1; 4 as presented in (1.17) on page 4 is a relative invariant
of weight s = 4 for the equations (15.9) on page 158 having order m = 4.
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Example 16.4. With m ≥ 3 and symbols t1, t2, t3, t4, t5 representing rational
numbers, we introduce

(16.5) Im,3 ≡ w3 + t1w1w2 + t2
(
w1

)3
+ t3w

(1)
2 + t4w1w

(1)
1 + t5w

(2)
1 .

For the function Im,3(z) on Ω that is obtained by replacing each w
(j)
i in Im,3 with

the corresponding c
(j)
i (z) from (15.9), the evaluation of

Inv[z_] := ( c[m,3][z] + t1*c[m,1][z]*c[m,2][z]

+ t2*c[m,1][z]^3 + t3*c[m,2]’[z]

+ t4*c[m,1][z]*c[m,1]’[z] + t5*c[m,1]’’[z] )

represents Im,3(z). For the function I∗m,3(z) on Ω that is obtained by replacing

each w
(j)
i in Im,3 with the corresponding c

∗(j)
i (z) from (15.12), the evaluation of

InvS[z_] := ( cS[m,3][z] + t1*cS[m,1][z]*cS[m,2][z]

+ t2*cS[m,1][z]^3 + t3*cS[m,2]’[z]

+ t4*cS[m,1][z]*cS[m,1]’[z] + t5*cS[m,1]’’[z] )

represents I∗m,3(z). For the function I∗∗m,3(ζ) on Ω∗∗ that is obtained by replacing

each w
(j)
i in Im,3 with the corresponding c

∗∗(j)
i (ζ) from (15.16), the evaluation of

InvSS[zeta_] := ( cSS[m,3][zeta]

+ t1*cSS[m,1][zeta]*cSS[m,2][zeta] + t2*cSS[m,1][zeta]^3

+ t3*cSS[m,2]’[zeta] + t4*cSS[m,1][zeta]*cSS[m,1]’[zeta]

+ t5*cSS[m,1]’’[zeta] )

represents I∗∗m,3(ζ). We note that t1, t2, t3, t4, t5 for (16.5) yield

(16.6) I∗m,3(z) ≡ Im,3(z) on Ω, and I∗∗m,3(ζ) ≡
(
f ′(ζ)

)
3 Im,3

(
f(ζ)

)
, on Ω∗∗.

if and only if their representations t1, t2, t3, t4, t5 make the evaluations of

diff1[z_] = Expand[ InvS[z] - Inv[z] ]

diff2[zeta_] = Expand[InvSS[zeta]-(f’[zeta])^3*Inv[f[zeta]]]

identically zero. Among the thirty-eight terms in the expansion of diff1[z], there
are eight parts that do not involve m, t1, t2, t3, t4, t5. Let them be copied
individually from the output, pasted into individual input cells, given the names
b3[1], b3[2], . . . , b3[8], and then evaluated. Among the ninety-three terms in
the expansion of diff2[zeta], there are eight parts that do not involve m, t1, t2,
t3, t4, t5. Let them be copied from the output, pasted into input cells, given the
names b3[9], b3[10], . . . , b3[16], and then be evaluated. We evaluate

Do[a3[k] = Coefficient[diff1[z], b3[k]], {k,1,8}];

Do[a3[k] = Coefficient[diff2[zeta], b3[k]], {k,9,16}];

and then find that the evaluation of

Solve[ Table[a3[k] == 0, {k,1,16}], {t1,t2,t3,t4,t5} ]
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yields a unique solution. As expressed for (16.5), it is given by

t1 = −m− 2

m
, t2 =

(m− 1)(m− 2)

3m2
, t3 = −m− 2

2
,(16.7)

t4 =
(m− 1)(m− 2)

2m
, and t5 =

(m− 1)(m− 2)

12
.

Thus, (16.6) is satisfied by (16.5) with (16.7) for each equation (15.9) having m ≥ 3
as well as each transformation (15.10) of (15.9) into a corresponding (15.11) and
each transformation (15.14) of (15.9) into a corresponding (15.15). In this regard,
see (1.13) of page 3. If the definitions of b3[1], b3[2], . . . , b3[16] give difficulty,
use the Google browser Chrome to visit

http://homepages.uc.edu/~chalklr/Chapter-16.html

and then download the Mathematica notebook available there. Details are also
given in that notebook for Examples 16.1, 16.2, 16.3, and 16.5.

Example 16.5. There are unique rational numbers u1, u2, . . . , u12 for

Im,4 ≡ w4 + u1w1w3 + u2w
(1)
3 + u3

(
w2

)2
+ u4w

(2)
2 + u5

(
w1

)2
w2(16.8)

+ u6w
(1)
1 w2 + u7w1w

(1)
2 + u8 (w1)4 + u9

(
w1

)2
w

(1)
1

+ u10
(
w

(1)
1

)2
+ u11w1w

(2)
1 + u12w

(3)
1 , with m ≥ 4,

such that the functions Im,4(z) on Ω, I∗m,4(z) on Ω, and I∗∗m,4(ζ) on Ω∗∗ that are

obtained by replacing each w
(j)
i in Im,4 with the corresponding c

(j)
i (z) from (15.9),

with the c
∗(j)
i (z) from (15.11), and with the c

∗∗(j)
i (ζ) from (15.15), satisfy both

I∗m,4(z) ≡ Im,4(z) on Ω, and I∗∗m,4(ζ) ≡
(
f ′(ζ)

)
4 Im,4

(
f(ζ)

)
, on Ω∗∗.

When the technique of Example 4.4 is repeated here, the main difference is that:
in place of the copy and paste for Example 4.4 where b3[k] was obtained separately
for 1 ≤ k ≤ 8 and 9 ≤ k ≤ 16, we now use copy and paste to obtain b4[k]

separately for 1 ≤ k ≤ 20 and for 21 ≤ k ≤ 40. Of course, this requires more
patience. However, when details similar to those of Example 4.4 are carried out,
the coefficients for Im,4 in (16.8) are found to be

u1 = −m−3m , u2 = −m−32 , u3 = − (m−2)(m−3)(5m+7)
10(m+1)(m)(m−1) ,(16.9)

u4 = (m−2)(m−3)
10 , u5 = (m−2)(m−3)(5m+6)

5(m+1)m2 , u6 = (m−2)(m−3)(5m+7)
10(m+1)m ,

u7 = (m−2)(m−3)
2m , u8 = − (m−1)(m−2)(m−3)(5m+6)

20(m+1)m3 ,

u9 = − (m−1)(m−2)(m−3)(5m+6)
10(m+1)m2 , u10 = − (m−1)(m−2)(m−3)(2m+3)

20(m+1)m ,

u11 = − (m−1)(m−2)(m−3)
10m , u12 = − (m−1)(m−2)(m−3)

120 .

By setting m = 4 in these formulas, we obtain the coefficients for (1.17) on page 4.

Observation. The basic relative invariants Im,1; s of weight s ≥ 3 for the
equations (15.9) of order m ≥ s are given explicitly by the computer program in
Section 6.1 on pages 53–54. We note that Im,3 in (16.5) with the coefficients of
(16.7) is equal to Im,1; 3. Also, Im,4 in (16.8) with the coefficients of (16.9) is equal
to Im,1; 4.


