
CHAPTER 1

Historical Introduction

Anyone knowledgeable about the differential calculus can effortlessly develop
an interest in the subject of invariants by interacting with the computer-algebra
aspects of Chapters 16 and 17 before becoming involved with details.

The initial discovery of a relative invariant was made by Edmund Laguerre
in [37, 38] of 1879 when he found one for monic third-order homogeneous linear
differential equations. The principal research about relative invariants before 1989
was performed by Edmund Laguerre, Georges-Henri Halphen, Andrew Forsyth, and
Paul Appell during the years 1879–1889. For Laguerre’s use of relative, see page 39.

1.1. Notation to avoid

Chapters 15 and 18 provide a detailed explanation why research about relative
invariants languished during the years from 1890 through 1988. The main cause was
that authors who wrote papers about such matters before 1989 used notation like

(1.0) y(m)(z) +

m∑
j=1

(
m

j

)
dj(z)y

(m−j)(z) = 0, with binomial coefficients

(
m

j

)
.

Chapter 15 shows how that notation hindered the discovery of adequate formulas
for the coefficients of equations resulting from a change of the independent variable.
The abandonment of that notation in [14, 16, 17] during 1989–1993 was responsible
for the advances in [19, 20]. Throughout, we shall avoid notation like that of (1.0)
except for Chapters 15, 17, and 18 where early details are examined.

1.2. Relative invariant of Edmund Laguerre

To recall a result of Edmund Laguerre, we note that: when c1(z), c2(z), c3(z)
are any three meromorphic functions on a region Ω of the complex plane and ρ(z) is
a not-identically-zero meromorphic function on Ω, there are unique meromorphic
functions c∗1(z), c∗2(z), c∗3(z) on Ω such that the monic third-order homogeneous
linear differential equation

(1.1) y′′′(z) + c1(z)y′′(z) + c2(z)y′(z) + c3(z)y(z) = 0, on Ω,

is transformed by the substitution

(1.2) y(z) = ρ(z)v(z)

into the monic third-order homogeneous linear differential equation

(1.3) v′′′(z) + c∗1(z)v′′(z) + c∗2(z)v′(z) + c∗3(z)v(z) = 0, on Ω.

Each of c∗1(z), c∗2(z), c∗3(z) can be expressed in terms of c1(z), c2(z), c3(z) and the
derivatives of ρ(z) by simple hand-written computations that yield
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c∗3(z)− 1

3 c
∗
1(z) c∗2(z)

+ 2
27

(
c∗1(z)

)3− 1
2 c
∗(1)
2 (z)

+ 1
3 c
∗
1(z) c

∗(1)
1 (z)

+ 1
6 c
∗(2)
1 (z)

 ≡

c3(z)− 1

3 c1(z) c2(z)

+ 2
27

(
c1(z)

)3− 1
2 c

(1)
2 (z)

+ 1
3 c1(z) c

(1)
1 (z)

+ 1
6 c

(2)
1 (z)

,(∗)

for each z in Ω.

When c1(z), c2(z), c3(z) are any three meromorphic functions defined on a region Ω
and z = f(ζ) is a univalent analytic function on a region Ω∗∗ with f(Ω∗∗) = Ω,
there are unique meromorphic functions c∗∗1 (ζ), c∗∗2 (ζ), c∗∗3 (ζ) on Ω∗∗ such that the
substitution

(1.4) z = f(ζ), with u(ζ) = y
(
f(ζ)

)
,

transforms (1.1) into

(1.5) u′′′(ζ) + c∗∗1 (ζ)u′′(ζ) + c∗∗2 (ζ)u′(ζ) + c∗∗3 (ζ)u(ζ) = 0, on Ω∗∗.

Each of c∗∗1 (ζ), c∗∗2 (ζ), c∗∗3 (ζ) can be expressed in terms of c1(z), c2(z), c3(z), as
well as z = f(ζ) and derivatives of f(ζ) by simple computations that yield

c∗∗3 (ζ)− 1
3 c
∗∗
1 (ζ) c∗∗2 (ζ)

+ 2
27

(
c∗∗1 (ζ)

)3− 1
2 c
∗∗(1)
2 (ζ)

+ 1
3 c
∗∗
1 (ζ) c

∗∗(1)
1 (ζ)

+ 1
6 c
∗∗(2)
1 (ζ)

 ≡
(
f ′(ζ)

)3

c3
(
f(ζ)

)
− 1

3 c1
(
f(ζ)

)
c2
(
f(ζ)

)
+ 2

27

(
c1
(
f(ζ)

))3− 1
2 c

(1)
2

(
f(ζ)

)
+ 1

3 c1
(
f(ζ)

)
c
(1)
1

(
f(ζ)

)
+ 1

6 c
(2)
1

(
f(ζ)

)

,(∗∗)

for each ζ in Ω∗∗.

We represent the relative invariant associated with (∗) and (∗∗) by

(1.6) I3,1; 3 ≡ w3 − 1
3w1w2 + 2

27 (w1)3 − 1
2w

(1)
2 + 1

3w1w
(1)
1 + 1

6w
(2)
1

and regard it as a differential polynomial into which substitutions can be made.

Thus, with wi = w
(0)
i , if I3,1; 3(z), I∗3,1; 3(z), and I∗∗3,1; 3(ζ) are respectively obtained

by replacing each w
(j)
i in I3,1; 3 with the corresponding c

(j)
i (z) from (1.1), c

∗(j)
i (z)

from (1.3), and c
∗∗(j)
i (ζ) from (1.5), then (∗) and (∗∗) may be written as

I∗3,1; 3(z) ≡ I3,1; 3(z), on Ω, and I∗∗3,1; 3(ζ) ≡
(
f ′(ζ)

)3 I3,1; 3(f(ζ)
)
, on Ω∗∗.

We note that the relative invariant of Edmund Laguerre presented in [37, page 117]
of 1879, or in [33, page 421], corresponds to the notation 2I3,1; 3.

Composites of some (1.2) and some (1.4) yield the transformations of (1.1).

1.3. Terminology for homogeneous linear differential equations

When c1(z), c2(z), . . . , cm(z) are meromorphic functions on a region Ω of the
complex plane and ρ(z) is a not-identically-zero meromorphic function on Ω, there
are unique meromorphic functions c∗1(z), c∗2(z), . . . , c∗m(z) on Ω such that the monic
mth-order homogeneous linear differential equation

(1.7) y(m)(z) +

m∑
j=1

cj(z)y
(m−j)(z) = 0, on Ω,
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is transformed by the substitution

(1.8) y(z) = ρ(z)v(z)

into the monic mth-order homogeneous linear differential equation

(1.9) v(m)(z) +

m∑
i=1

c∗i (z)v
(m−i)(z) = 0, on Ω.

We set n = 1 in (3.4) of page 19 to obtain c∗i (z) for (1.9) as in (15.12) of page 158.
In terms of meromorphic functions c1(z), c2(z), . . . , cm(z) on a region Ω and

a univalent analytic function z = f(ζ) on a region Ω∗∗ with f(Ω∗∗) = Ω, there
are unique meromorphic functions c∗∗1 (ζ), c∗∗2 (ζ), . . . , c∗∗m (ζ) on Ω∗∗ such that the
substitution

(1.10) z = f(ζ), with u(ζ) = y
(
f(ζ)

)
,

transforms (1.7) into

(1.11) u(m)(ζ) +

m∑
i=1

c∗∗i (ζ)u(m−i)(ζ) = 0, on Ω∗∗.

Satisfactory formulas for the c∗∗i (ζ) were available only after the investigations
in [14, 16, 17] of 1989–1993 that lead to [19, page 136, Theorem A.3] of 2002.
To verify that, see the beginning of Section 15.1 on page 157. Here, for c∗∗i (ζ) in
(1.11), set n = 1 in (3.21)–(3.24) on page 24 and obtain (15.16)–(15.18) on page 159.

For any polynomial I over the field Q of rational numbers in variables w
(j)
i

having 1 ≤ i ≤ m and j ≥ 0, let I(z) onΩ, I∗(z) onΩ, and I∗∗(ζ) onΩ∗∗ denote the

functions respectively obtained by replacing each w
(j)
i in I with the corresponding

c
(j)
i (z) from (1.7), c

∗(j)
i (z) from (1.9), and c

∗∗(j)
i (ζ) from (1.11). Then, I is a

relative invariant for mth-order homogeneous linear differential equations when I

effectively involves at least one w
(j)
i and there is a fixed positive integer s such that

(1.12) I∗(z) ≡ I(z), on Ω, and I∗∗(ζ) ≡
(
f ′(ζ)

)s
I
(
f(ζ)

)
, on Ω∗∗,

for each equation (1.7) as well as each (1.8) and (1.10).

1.4. Relative invariants of Georges-Henri Halphen

For each fixed integer m ≥ 3, the polynomial

Im,1; 3 ≡ w3 −
m− 2

m
w1w2 +

(m− 1)(m− 2)

3m2

(
w1

)3 − m− 2

2
w

(1)
2(1.13)

+
(m− 1)(m− 2)

2m
w1w

(1)
1 +

(m− 1)(m− 2)

12
w

(2)
1

is a relative invariant with s = 3 for the equations (1.7) of order m. This is a
consequence of Theorem 4.6 on page 32. It was published in a different form by
G.-H. Halphen in [32, page 127] of 1884. Namely, by rewriting his expression for V
in [32, page 127, Equation (10)] or [35, page 112, Equation (10)] with respect to
the coefficients of (1.7), we find that

(1.14) V ≡
(

−12

m(m− 1)(m− 2)

)
Im,1; 3(z),

where, with wi = w
(0)
i , Im,1; 3(z) is the function on Ω obtained by replacing each

w
(j)
i in (1.13) with the corresponding c

(j)
i (z) from (1.7).

In particular, for m = 3, (1.13) yields (1.6).
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By setting m = 4 in (1.13), we see that the differential polynomial

(1.15) I4,1; 3 ≡ w3 − 1
2w1w2 + 1

8 (w1)3 −w(1)
2 + 3

4w1w
(1)
1 + 1

2w
(2)
1

is a relative invariant with s = 3 for the differential equations

(1.16) y(4)(z) + c1(z)y(3)(z) + c2(z)y(2)(z) + c3(z)y(1)(z) + c4(z)y(z) = 0.

In [31, page 331, Equation (9)] or [35, page 469, Equation (9)], G.-H. Halphen
had already indicated a relative invariant with s = 3 for the equations (1.16).
His expression is equal to (−1/2)I4,1; 3(z). For the relative invariants presented
here thus far, the computations required to directly verify their properties can be
done as hand-written ones without great effort.

G.-H. Halphen used [31, page 339, line 3] or [35, page 474, line 23] of 1883 to
make plausible the existence of a relative invariant with s = 4 for (1.16). We used
Theorem 4.6 with computer algebra to conclude that the differential polynomial

I4,1; 4 ≡ w4 − 1
4w1w3 − 1

2w
(1)
3 − 9

100 (w2)2 + 1
5w

(2)
2 + 13

100 (w1)2w2(1.17)

+ 27
100w

(1)
1 w2 + 1

4w1w
(1)
2 − 39

1600 (w1)4 − 39
200 (w1)2w

(1)
1

− 33
200

(
w

(1)
1

)2 − 3
20w1w

(2)
1 − 1

20w
(3)
1

is a relative invariant with s = 4 for the equations (1.16). For merely a verification,
see Example 16.3 on page 164. Section 12.1 shows that each relative invariant
having s = 4 for the equations (1.16) is expressible in the form γ I4,1; 4, for some
nonzero rational number γ.

1.5. Infinitesimal Transformations of Andrew Forsyth

To find explicit expressions for the coefficients of various relative invariants,
Forsyth recognized in [28, pages 394–401] that computations would be considerably
simplified if transformations of the type (1.10) were replaced by corresponding
infinitesimal transformations where higher order infinitesimals could be neglected.
His viewpoint was expressed in a footnote to [28, page 394] as follows.

“The functions are shown by this process to be invariants only
for an infinitesimal, but otherwise perfectly general, transforma-
tion; but the immediate purpose is to obtain the numerical co-
efficients and not to prove the property of general invariance,
which, otherwise known, could be derived by the principle of
cumulative variations.” (Andrew Forsyth)

Indeed, for each integer s satisfying 3 ≤ s ≤ 7 and for monic homogeneous
linear differential equations of order m ≥ s, his process yields a relative invariant
that satisfies (1.12) with that s. Namely, after correcting the tiny misprint that we
noticed for [28, page 401, Equation (18)] in [19, page 79] and describe for s = 7 on
page 176 of Chapter 18, we used computer algebra in [19] to verify that Forsyth’s
expressions could be identified with γm,sIm,1; s, for 3 ≤ s ≤ 7, where Im,1; s is
given by (4.17) of page 32 with m = m (as any integer ≥ s), n = 1, and e1 = s.
Since Im,1; s was shown in [19] to be a relative invariant corresponding to (1.12)
with s ≥ 3 and m ≥ s, the properties of Forsyth’s expressions follow from that.
Details about this are presented in Sections 18.6 and 18.7 of Chapter 18.

A direct verification for each of the formulas [28, pages 399–401, (14)–(18)] in
the proof of Theorem 18.7 required a previously unavailable transformation formula.
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1.6. Laguerre-Forsyth canonical forms

Andrew Forsyth established and applied in [28, pages 403–407] of 1888 the
result that: for any homogeneous linear differential equation of order m ≥ 2 having
meromorphic coefficients on a region, there is a subregion on which the restriction
of the equation can be transformed into a homogeneous linear differential equation
of order m in which the coefficients of the derivatives of order m− 1 and m− 2 are
zero. This process is described as a local transformation for a homogeneous linear
differential equation to a Laguerre-Forsyth canonical form.

By using infinitesimal transformations with reductions to Laguerre-Forsyth
canonical forms, Forsyth obtained expressions in [28, pages 404–407] that yield
identities various relative invariants would give when restricted to transformations
of one Laguerre-Forsyth canonical form into another. The corresponding invariants
for this restrictive context were descriptively termed linear invariants by Forsyth
to distinguish them from the true relative invariants of Laguerre and Halphen.

Without need for infinitesimal transformations, the preceding ideas were thor-
oughly redeveloped in [19, pages 39–49] and used in [19, Chapters 7–9] to prove
the result [19, page 6, Main Theorem] that presented explicit formulas for all of the
basic relative invariants of homogeneous linear differential equations. The concept
of a Laguerre-Forsyth canonical form was extended in [20, pages 47–65, 265–274]
to more general types of ordinary differential equations and their properties were
essential for the verification in [20] of the results presented here in Theorem 4.6
on page 32 and Theorem 4.8 on page 34.

1.7. Differential equations of Paul Appell

In [4] of 1889, Paul Appell studied the differential equations expressible as(
y′′(z)

)2
+ 2 c0,1(z) y′′(z) y′(z) + 2 c0,2(z) y′′(z) y(z) + c1,1(z)

(
y′(z)

)2
(1.18)

+ 2 c1,2(z) y′(z) y(z) + c2,2(z)
(
y(z)

)2
= 0,

where the ci,j(z) are meromorphic functions on a region Ω of the complex plane.
For any not-identically-zero meromorphic function ρ(z) on Ω, there are unique
meromorphic functions c∗i,j(z) on Ω such that the substitution

(1.19) y(z) ≡ ρ(z)v(z)

transforms (1.18) into(
v′′(z)

)2
+ 2 c∗0,1(z) v′′(z) v′(z) + 2 c∗0,2(z) v′′(z) v(z) + c∗1,1(z)

(
v′(z)

)2
(1.20)

+ 2 c∗1,2(z) v′(z) v(z) + c∗2,2(z)
(
v(z)

)2
= 0, on Ω.

Also, for any univalent analytic function z = f(ζ) on a region Ω∗∗ with f(Ω∗∗) = Ω,
there are unique meromorphic functions c∗∗i,j(ζ) on Ω∗∗ such that the substitution

(1.21) z = f(ζ), with u(ζ) = y
(
f(ζ)

)
,

transforms (1.18) into(
u′′(ζ)

)2
+ 2 c∗∗0,1(ζ)u′′(ζ)u′(ζ) + 2 c∗∗0,2(ζ)u′′(ζ)u(ζ) + c∗∗1,1(z)

(
u′(ζ)

)2
(1.22)

+ 2 c∗∗1,2(ζ)u′(ζ) u(ζ) + c∗∗2,2(ζ)
(
u(ζ)

)2
= 0, on Ω∗∗.
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Simple handwritten computations show that (1.18) and (1.20) yield

c∗1,1(z)−
(
c∗0,1(z)

)2 ≡ c1,1(z)−
(
c0,1(z)

)2
, on Ω,(1.23)

while (1.18) and (1.22) give

c∗∗1,1(ζ)−
(
c∗∗0,1(ζ)

)2 ≡ (f ′(ζ)
)2 [

c1,1
(
f(ζ)

)
−
(
c0,1
(
f(ζ)

))2]
, on Ω∗∗.(1.24)

In this manner, Paul Appell found the relative invariant representable by

(1.25) I2,2; 1,1 ≡ w1,1 − (w0,1)2.

For details about other relative invariants closely related to Appell’s research in [4],
see Chapter 7. In particular, for the basic relative invariants, see page 67.

As motivation for the notation (1.29) and (1.30), we note that the differential
equations (1.18) is the special case m = 2 of

(1.26)
(
y(m)(z)

)2
+

∑
0≤j1, j2≤m
(j1, j2)6=(0, 0)

cj1, j2(z)

2∏
ν=1

y(m−jν)(z) = 0,

where c0,0(z) ≡ 1 and the coefficients cj1,j2(z) are meromorphic functions on some
region Ω of the complex plane such that

cjπ(1), jπ(2)
(z) ≡ cj1, j2(z), on Ω,(1.27)

for 0 ≤ j1, j2 ≤ m and any permutation π of {1, 2}.

1.8. Recent developments

Earlier researchers lacked several tools essential for our work. There are now
adequate transformation formulas from [19] and [20]; e.g., see Chapter 3 as well as
Chapter 15. Also, computer algebra enabled us to discover several key identities
for [19, 20]. Moreover, modern algebra provides a precise context.

From 1889 until 2002, the principal unsolved problems were the following ones.
Problem 1. For general systems of differential equations, characterize

and find explicit formulas for all relative invariants that have the structure
of (1.6) for the equations (1.1), the structures of (1.15) and (1.17) for the
equations (1.16), the structure of (1.13) for the equations (1.7), as well as the
structure of (1.25) for the equations (1.18).

Problem 2. When a satisfactory solution to Problem 1 is found and
those special relative invariants are termed basic ones, discover how any relative
invariant can be expressed in terms of the basic ones.

Problem 1 was solved in [19] and [20]. Namely, we characterized and found
explicit formulas in [19] for all of the basic relative invariants for homogeneous linear
differential equations. Then, after doing the same in [20] for nonlinear differential
equations like (1.18) and (1.26), we were able to unify in [20, Part 4] those diverse
results by characterizing and finding explicit formulas for all of the basic relative
invariants of differential equations obtained as special rewritten versions of ones like

(1.28)
(
y(m)(z)

)n
+

∑
0≤i1≤i2≤···≤in≤m

(i1, i2, ..., in)6=(0, 0, ..., 0)

ai1, i2, ..., in(z)

n∏
ν=1

y(m−iν)(z) = 0, on Ω,

where m, n are positive integers and each ai1, i2, ..., in(z) is a meromorphic function.
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Chapter 2 explains the desirability and technique for rewriting each (1.28) as

(1.29)
(
y(m)(z)

)n
+

∑
0≤j1, j2, ..., jn≤m

(j1, j2, ..., jn) 6=(0, 0, ..., 0)

cj1, j2, ..., jn(z)

n∏
ν=1

y(m−jν)(z) = 0, on Ω,

where m, n are positive integers and the cj1, j2, ..., jn(z) are meromorphic functions
on some region Ω of the complex plane such that

c0, 0, ..., 0(z) ≡ 1 and cjπ(1), jπ(2), ..., jπ(n)
(z) ≡ cj1, j2, ..., jn(z),(1.30)

for 0 ≤ j1, j2, . . . , jn ≤ m and any permutation π of {1, 2, . . . , n}.

Each pair of positive integers m, n specifies a collection of equation having the
form (1.29)–(1.30). For n = 1 and m = m, they are the homogeneous linear ones of
(1.7) and possess relative invariants only when m ≥ 3; while, for m = n = 2, they
specialize to the form (1.18). Chapter 4 begins with (1.29)–(1.30) as its subject.

In terms of (1.29)–(1.30) and a not-identically-zero meromorphic function ρ(z)
on Ω, Theorem 3.1 specifies meromorphic functions c∗m,n; j1, j2, ..., jn(z) on Ω such

that the substitution y(z) = ρ(z)v(z) transforms (1.29)–(1.30) into

(1.31)
(
y(m)(z)

)n
+

∑
0≤j1, j2, ..., jn≤m

(j1, j2, ..., jn)6=(0, 0, ..., 0)

c∗m,n; j1, j2, ..., jn(z)

n∏
ν=1

y(m−jν)(z) = 0, on Ω,

where

c∗m,n; 0, 0, ..., 0(z) ≡ 1 and c∗m,n; jπ(1), jπ(2), ..., jπ(n)
(z) ≡ c∗m,n; j1, j2, ..., jn(z),(1.32)

for 0 ≤ j1, j2, . . . , jn ≤ m and any permutation π of {1, 2, . . . , n}.

However, the dependence of c∗m,n; j1, j2, ..., jn(z) on m and n can be implied by

the context. Thus, we shall henceforth write c∗j1, j2, ..., jn(z) for c∗m,n; j1, j2, ..., jn(z).

Then, (1.3), (1.9), and (1.20) are included as special cases. In particular, see (4.4).

For (1.29)–(1.30) and a univalent analytic function z = f(ζ) on a region Ω∗∗

with f(Ω∗∗) = Ω, Theorem 3.3 specifies meromorphic functions c∗∗m,n: j1, j2, ..., jn(ζ)

on Ω∗∗ such that z = f(ζ), with u(ζ) = y
(
f(ζ)

)
, transforms (1.29)–(1.30) into

(1.33)
(
u(m)(ζ)

)n
+

∑
0≤j1, j2, ..., jn≤m

(j1, j2, ..., jn) 6=(0, 0, ..., 0)

c∗∗m,n; j1, j2, ..., jn(ζ)

n∏
ν=1

u(m−jν)(ζ) = 0, on Ω∗∗,

where

c∗∗m,n; 0, 0, ..., 0(ζ) ≡ 1 and c∗∗m,n; jπ(1), jπ(2), ..., jπ(n)
(ζ) ≡ c∗∗m,n; j1, j2, ..., jn(ζ),(1.34)

for 0 ≤ j1, j2, . . . , jn ≤ m and any permutation π of {1, 2, . . . , n}.

The dependence of c∗∗m,n; j1, j2, ..., jn(ζ) on m and n can be inferred from the context.
Thus, we shall henceforth write c∗∗j1, j2, ..., jn(ζ) for c∗∗m,n; j1, j2, ..., jn(ζ). This enables
(1.5), (1.11), and (1.22) to be included as special cases. Also, see (4.7).

The equations (1.29)–(1.30) possess relative invariants if and only if the fixed
positive integers m and n satisfy (m, n) 6= (1, 1), (2, 1). In regard to the situation
of historical interest where m ≥ 2, we characterize the basic relative invariants and
present formulas for all of them in Sections 4.3–4.4. For the remarkably simple
situation where m = 1 and n ≥ 2, see [20, pages 257–260]. Thus, with Problem 1
solved, the emphasis of this monograph is focused on Problem 2.
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1.9. Principal results not in Memoirs [19] and [20]

The subject of relative invariants for differential equations was thoroughly
redeveloped in [19] of 2002 and [20] of 2007. There, the concept of a basic relative
invariant was formalized and we presented a single set of explicit formulas for the
construction of the basic relative invariants for a wide variety of equations. The
principal problem left unsolved in [19, 20] was that of explicitly constructing the
other relative invariants from the basic ones. At that time, methods of combining
two relative invariants to construct others had not been investigated deeply.

In this revision of [21], we continue without alteration the examination of
the construction presented on page 36 that uses relative invariants P and Q of
respective weights p and q for the same type of equation to construct, for each
integer r ≥ 0, a differential-polynomial combination Cp,q,r

(
P , Q

)
of P and Q

over the field Q of rational numbers such that: Cp,q,r

(
P , Q

)
is a relative invariant

of weight p+ q + r if and only if Cp,q,r

(
P , Q

)
6≡ 0.

For r ≥ 2, Theorem 4.10 of page 36 establishes that Cp,q,r

(
P , Q

)
is a relative

invariant of weight p + q + r if and only if r is an even integer or P and Q are
linearly independent over Q.

For r = 1, we have Cp,q,1

(
P , Q

)
≡ P Q(1) − (q/p)P (1)Q. Proposition 8.1

on page 71 shows that Cp,q,1

(
P , Q

)
is a relative invariant of weight p+q+1 if and

only if P q and Qp are linearly independent over Q. To interpret this, see page 73.
For r = 0, Cp,q,0

(
P , Q

)
is the relative invariant P Q of weight p+ q.

Part 1 of this monograph provides the general perspective of [20]. Part 2 gives
a proof for Theorem 4.10. An alternate proof is given in Part 3. The results
about Cp,q,r

(
P , Q

)
are used in Part 4 with the basic relative invariants for several

types of equations to construct all the relative invariants of a given weight for those
equations. Part 5 clarifies the problems faced by researchers before 1989 when
difficulties were created through the use of notation like that in (1.0).

1.10. Subsidiary details

To define semi-invariants of the first and second kinds for the equations (1.7),

let I denote a polynomial over Q in variables w
(j)
i , with 1 ≤ i ≤ m and j ≥ 0,

such that I effectively involves some w
(j)
i . When the first condition I∗(z) ≡ I(z)

of (1.12) is satisfied, I is said to be a semi-invariant of the first kind for the

equations (1.7). When the second condition I∗∗(ζ) ≡
(
f ′(ζ)

)s
I
(
f(ζ)

)
of (1.12) is

satisfied for some positive integer s, I is said to be a semi-invariant of the second
kind for the equations (1.7). Thus, I is a relative invariant for the equations (1.7)
if and only if I is both a semi-invariant of the first kind and a semi-invariant of
the second kind for them. This terminology was introduced by Edmund Laguerre
in [37, 38, 33]. For more detail about it, see Section 4.9.

The research of James Cockle in numerous papers typified by [22] of 1862
yielded semi-invariants of the first kind for homogeneous linear differential equations
of various orders. Example 17.1 of page 168 is a reformulation of his result in [22].
His research in [23] of 1875 can be verified to give a semi-invariant of the second
kind with s = 2 for each homogeneous linear differential equation of order m ≥ 2.
Example 17.2 of page 168 provides details. For additional information about the
semi-invariantss of James Cockle, see [7].
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As noted on page 4, Andrew Forsyth introduced infinitesimal transformations
in [28] of 1888 to derive the coefficients for formulas thought likely to specify relative
invariants of respective weights s = 3, 4, 5, 6, 7 for homogeneous linear differential
equations of order m ≥ s. Because his expressions illustrate well how our explicit
formulas for the coefficients of transformed equations can be used to check the
validity of older results, we include them as (18.17)–(18.21) on page 176. After
a tiny misprint in [28, page 401, (18)] was corrected for (18.21), the results of
Section 18.5 verify directly that (18.17)–(18.21) yield relative invariants.

Forsyth’s use of infinitesimal transformations had a strong influence on later
research even though his formulas corresponding to (18.17)–(18.21) were insufficient
for the purpose of discovering a general pattern that would yield a relative invariant
of any weight s ≥ 3 for homogeneous linear differential equations of order m ≥ s.
In particular, Francisco Brioschi used infinitesimal transformations in [8, page 235]
of 1891 where he presented (18.17)–(18.21) in a different form. But, his expression
that corresponds to (18.21) is thoroughly incorrect. Ludwig Schlesinger employed
infinitesimal transformations in [47, page 196] of 1897 when he included without
alteration the formulas of [8, page 235]. Infinitesimal transformations were the
focus for developments in [7] of 1899 and [53] of 1906. Moreover, they also appeared
in [26] of 1903 for the nonlinear equations (1.18).

The most important part of the research done by Andrew Forsyth in [28]
of 1888 for invariants of homogeneous linear differential equations was his discovery
of the explicit simplified form that various relative invariants would assume when
restricted to transformations of one Laguerre-Forsyth canonical form into another
such form. For these expressions descriptively termed linear invariants, various
researchers implied that they may be a key item for future progress. We have
already mentioned in Section 1.6 our own indebtedness to Forsyth for those ideas.

For particular applications, various authors have proposed that a given (1.7) be
locally transformed into a Laguerre-Forsyth canonical form to which Forsyth’s linear
invariants could then be applied. This nonconstructive procedure was suggested in
[8, 40, 47, 7, 53, 41, 42, 52, 48, 27, 43, 44]. Because the term relative invariant
has occasionally been incorrectly applied to situations of the preceding type that
depend on a local transformation, we employed global as a modifier of relative
invariants in the titles of [19] and [20]. The importance of distinguishing global
properties from local ones was made clear by Frantǐsek Neuman in [45] of 1991.

While the equations (1.18) of Paul Appell were studied with respect to relative
invariants in [4, 26] and [20, pages 13–17], other results about them appear in
[1, 2, 3, 4, 51, 9, 10, 12, 24, 25, 49, 13, 15, 18, 50] and [20, Chapter 19].
Of unusual interest for the equations (1.18) are three relative invariants D2 in (7.2),
E6 in (7.10), and E7 in (7.12) that enable us to check, as indicated on page 66,
whether any given (1.18) satisfies the solvability condition (7.4) on page 65.

All three of the basic relative invariants for the equations (1.18) were initially
discovered in [20, page 13] of 2007 by first finding in [20, Chapters 7–13] all of
the basic relative invariants of the equations (1.26)–(1.27) for any m ≥ 2 and then
setting m = 2. Here, instead of regarding (1.18) as the special case of (1.26)–(1.27)
having m = 2, we can view (1.18) as the special case of (4.1)–(4.2) having m = 2
and n = 2. Thus, we can simply set m = 2 and n = 2 in Theorem 4.6 on page 32
or in Theorem 4.8 on page 34 to obtain (7.14), (7.15), and (7.16) of page 67.
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1.11. Instructive observations

MathSciNet is currently incapable of directing anyone to a publication having
satisfactory formulas for all of the coefficients of the monic equation that results
from a change of the independent variable in any given monic homogeneous linear
differential equation of arbitrary orderm. However, the satisfactory formulas of that
kind developed and presented in [19, pages 135–137] of 2002 were essential for each
of the principal advances made in [19], [20], and [21]. For that reason, Chapter 15
has been included as an aid for readers who are unable to use a mathematics library
in the manner described in

http://homepages.uc.edu/~chalklr/Library.pdf

and who may therefore find it difficult to believe that there was extremely little
progress about our subject from 1890 through 1988. Chapter 15 shows how the
use without exception prior to 1989 of binomial coefficients as in (15.1), (15.3),
and (15.6) on pages 157–158 is sufficient to explain why earlier researchers failed to
discover adequate formulas for the coefficients of equations resulting from changes
of the independent variable.

Chapter 16 is written as if it were a separate expository paper designed to
awaken interest in a truly fascinating subject. It shows how easy it is to make
interesting discoveries based on satisfactory transformation formulas and the use of
computer algebra without need for additional details.

Chapter 17 demonstrates how the current existence of adequate formulas for
the coefficients of transformed equations enables one to check the accuracy of results
in older publications that involve the notation of (1.0) with binomial coefficients.
In particular, this technique is employed in Section 18.5 to verify Theorem 18.7.

Chapter 18 introduces a suitable symbolism and precise definitions for research
done before 1989 in order to show how its absence was undoubtedly a serious
handicap not only to researchers but also to mathematical historians who were
unable to popularize the remarkable results of 1879–1889 with precise statements.

In view of the long history of our subject, we are pleased that the single set
of formulas given in Theorem 4.6 enables all of the basic relative invariants to
be explicitly obtained for such a wide variety of situations. Various systems of
computer algebra can easily incorporate them. Each Mathematica notebook in this
monograph has an evaluation done with Version 7.0.1 that can be downloaded by
using the Google internet browser Chrome to visit the web page

http://homepages.uc.edu/~chalklr/Notebooks.htm

and make a selection. Various other internet browsers may be unable to download
these notebooks. The same evaluations for them are also produced by other versions
of Mathematica such as Versions 8.0.1, 9.0.1, 10.1, and 11.2.


