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Abstract. Several basic relative invariants for homogeneous linear differential

equations were discovered during the years shortly after 1878. Also, a basic
relative invariant was found by Paul Appell in 1889 for a type of nonlinear

differential equation. There was little progress during the years 1892–1988 as

researchers who worked with homogeneous linear differential equations were
unknowingly handicapped by the standard practice of introducing binomial

coefficients in the writing of their equations. They thereby failed to develop

adequate formulas for the coefficients of equations resulting from a change of
the independent variable. Consequently, for relative invariants as the most

important kind of invariant, progress was stymied.
The notation was simplified in 1989, adequate transformation formulas

were developed, and explicit expressions were deduced in 2002 for all of the

basic relative invariants of homogeneous linear differential equations. In 2007,
explicit formulas were obtained for all of the basic relative invariants of a

type of ordinary differential equation involving two parameters m and n that

represent positive integers. When n = 1 and m ≥ 3, the formulas specialize to
provide all of the basic relative invariants for homogeneous linear differential

equations of order m; and, when m = n = 2, they yield all three of the basic

relative invariants for the equations of Paul Appell.
A general method developed in 2014 combines two relative invariants of

weights p and q for the same type of equation to explicitly obtain a relative

invariant of weight p+ q+ r, for any r ≥ 0. With that, the principal problems
about relative invariants have now been solved.

This monograph provides clear perspective about the reformulation begun
after 1988 and recently completed. Chapters 15 and 18 show how the major

difficulties confronting earlier researchers have been overcome.
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∗
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Preface

The subject of relative invariants for ordinary differential equations has been
completely redeveloped in a series of publications begun in 1989. Now, there are
satisfactory solutions to the principal unsolved problems that provided interest for
researchers after Edmund Laguerre found a relative invariant in [37, 38] of 1879
for third-order homogeneous linear differential equations and the French Academy
of Sciences encouraged extensions of his research. In particular, Georges-Henri
Halphen won the 1880 Grand Prize of the French Academy of Sciences for research
about invariants published in [32] and Henri Poincaré received honorable mention
for his competitive submission to them in 1880.

Explicit formulas for all of the basic relative invariants of homogeneous linear
differential equations of each fixed order were found and presented in [19] of 2002.
For a type of nonlinear differential equation studied by Paul Appell in [4] of 1889,
he discovered one of its three basic relative invariants. The other two were obtained
for [20] of 2007 and all three appear in [20, page 13, Theorem 1.8] of 2007.

As a remarkable generalization not anticipated by earlier researchers, all of the
basic relative invariants were discovered and presented by explicit formulas in [20,
pages 257, 264, 275–276] for a type of ordinary differential equation involving two
integral parameters m and n, where m is the order of the equation and n is its
degree when its left member is regarded as a homogeneous polynomial in the various
derivatives of the dependent variable. In particular, when n = 1, the formulas
specialize to yield the ones in [19] for the basic relative invariants of homogeneous
linear differential equations of each order m ≥ 3; and, when m = n = 2, they
specialize to yield the ones in [20] for the three basic relative invariants of the
nonlinear equations Paul Appell studied in [4].

To complete the research involving the preceding results, a construction was
developed in [21] of 2014 where, under general conditions, it combines two relative
invariants of respective weights p and q for the same type of equation to produce
a relative invariant of weight p+ q + r, for any integer r ≥ 0. Examples were also
given in [21] to illustrate how, starting with the basic relative invariants for a given
type of equation, that construction can be repeatedly applied to obtain linearly
independent relative invariants of a given weight whose linear combinations yield
all of the relative invariants having that weight.

This revision of [21] includes Chapters 15 and 18 as new ones to show why,
after a flurry of intense interest during the years 1879–1891, the subject remained in
limbo until 1989. In particular, these chapters make precise the principal difficulties
earlier researchers failed to overcome.

Roger Chalkley
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