
SEMINAR TALK: WICK FORMULA FOR QUATERNION
NORMAL LAWS

WLODEK BRYC AND VIRGIL PIERCE

Abstract. This is a seminar talk of February 13, 2008.

1. Wick’s theorem for R-valued normal vectors

The following is known as Wick’s theorem.

Theorem A (Wick [9]). If (X1, . . . , X2n) is multivariate normal with mean zero,
then

E(X1X2 . . . X2n) =
∑

V

∏

{j,k}∈V

E(XjXk),

where the sum is taken over all pair partitions V of {1, 2, . . . , 2n}.1

For example, E(X1X2X3X4) = E(X1X2)E(X3X4)+E(X1X3)E(X2X4)+E(X1X4)E(X2X3)
as {1, 2, 3, 4} has three pair partitions V1 = {{1, 2}, {3, 4}}, V1 = {{1, 3}, {2, 4}},
V1 = {{1, 4}, {3, 2}}. In particular, if X1 = X2 = X3 = X4 = X and E(X2) = 1,
then the formula gives E(X4) = 3.

Proof. (This is a consequence of moments-cumulants relation [4]; the connection
is best visible in the partition formulation of [7]. For another proof, see [2, page
12].) Suppose first that X1 . . . Xn are of very special form. Namely, suppose they
are selected with repetition from a fixed finite i.i.d. N(0, 1) family Z1, Z2, . . . .
Then E(X1 . . . Xn) is zero if some of the Z ′s enter the product an odd number of
times. If all Z’s appear an even number of times, then the answer is E(X1 . . . Xn) =
(2n1−1)!!(2n2−1)!! . . . (2nk−1), where say Z1 is repeated 2n1 times, Z2 is repeated
2n2 times, etc.

This matches the answer from the pair partitions: the only contributing par-
titions are those that pair {1, . . . , 2n1} within itself, and {n1 + 1, . . . , n1 + n2}
within itself, etc. The number of pairings of {1, . . . , 2n} is (2n − 1) matches
for 1 times the number of pairings of the remaining 2n − 2 elements. Thus it
is (2n− 1)× (2n− 3)× . . . 3× 1.

Suppose now that we have general multivariate normal Xj =
∑

j Ai,jZj . Then
Ca,b = E(XaXb) =

∑
Aa,jAb,j .

Date: Created: November 16, 2007. Printed: February 12, 2008 File: quaaternion-wick-08.tex.
1That is, partitions into two-element sets, so each V has the form

V = {{j1, k1}, {j2, k2}, . . . , {jn, kn}} .
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Now by the previous part,

E(X1, . . . , X2n) =
∏

i

∑

j

AijZj =
∑

j1,...,j2n

A1j1 . . . A2n,j2nE(Zj1 . . . Zj2n)

=
∑

j1,...,j2n

A1j1 . . . A2n,j2n

∑

V

∏

(a,b)∈V

δja=jb
=

∑

j1,...,j2n

∑

V

∏

(a,b)∈V

δja=jb
Aa,jaAb,jb

=
∑

V

∏

(a,b)∈V


∑

ja,jb

δja=jb
Aa,jaAb,jb


 =

∑

V

∏

(a,b)∈V

∑

ja

Aa,ja
Ab,ja

=
∑

V

∏

(a,b)∈V

Ca,b =
∑

V

∏

(a,b)∈V

E(Xa, Xb).

¤

Example 1.1. The above proof works also for X1, . . . , Xn that are linear combina-
tions of i.i.d. N(0, 1) r.v. with complex coefficients Aij . So with Z = X + iY ,
where X,Y are independent N(0, 1) random variables, we get E(Z2n) = 0 and
E(|Z|2n) = n!.

2. Wick’s Theorem for quaternion normal variables

2.1. Quaternions. Recall that a quaternion q ∈ H can be represented as q =
x0 + ix1 + jx2 + kx3 with i2 = j2 = k2 = ijk = −1 and real coefficients x0, . . . , x3.
The conjugate quaternion is q = x0−ix1−jx2−kx3, so |q|2 := qq ≥ 0. Quaternions
with x1 = x2 = x3 are usually identified with real numbers; the real part of a
quaternion is <(q) = (q + q̄)/2.

It is well known that quaternions can be identified with the set of certain 2× 2
complex matrices:

(2.1) H 3 x0 + ix1 + jx2 + kx3 ∼
[

x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

]
∈M2×2(C)

where on the right hand side i is the usual imaginary unit of C. Note that since
<(q) is twice the trace of the matrix representation in (2.1), this implies cyclic
property <(q1q2) = <(q2q1) which we will use freely.

2.2. Quaternion normal law. The (standard) quaternion normal random vari-
able is a H-valued random variable which can be represented as

(2.2) Z = ξ0 + iξ1 + jξ2 + kξ3

with independent real normal N(0, 1) random variables ξ0, ξ1, ξ2, ξ3. Due to sym-
metry of the centered normal laws on R, the law of (Z, Z) is the same as the law of
(Z, Z). A calculation shows that if Z is quaternion normal then for fixed q1, q2 ∈ H,

E(Zq1Zq2) = E(Z2)q̄1q2, E(Zq1Zq2) = E(ZZ̄)<(q1)q2 .

For future reference, we insert explicitly the moments:

E(Zq1Zq2) = −2q̄1q2,(2.3)

E(Zq1Zq2) = 2(q1 + q̄1)q2.(2.4)
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By linearity, these formulas imply

E(<(Zq1)<(Zq2)) = <(q1q2),(2.5)
E(<(Zq1)<(Zq2)) = <(q̄1q2).(2.6)

2.3. Wick’s formula. In view of the Wick formula for real-valued jointly Gauss-
ian random variables, formulas (2.3) and (2.4) allow us to compute moments of
certain products of quaternion normal random variables. Suppose the n-tuple
(X1, X2, . . . , Xn) consists of random variables taken, possibly with repetition, from
the set {Z1, Z̄1, Z2, Z̄2, . . . } where Z1, Z2, . . . are independent quaternion normal.
Consider an auxiliary family of independent pairs {(Y (r)

j , Y
(r)
k ) : r = 1, 2, . . . } which

have the same laws as (Xj , Xk), 1 ≤ j, k ≤ n and are independent for different r.
Then the Wick formula for real-valued normal variables implies E(X1, X2, . . . , Xn) =
0 for odd n, and

(2.7) E(X1X2 . . . Xn) =
∑

f

E(Y (f(1))
1 Y

(f(2))
2 . . . Y (f(n))

n ),

where the sum is over all two-to-one valued functions f : {1, . . . , n} → {1, . . . ,m}
for n = 2m. Formulas (2.3) and (2.4) then show that the Wick reduction step takes
the following form.

(2.8) E(X1X2 . . . Xn) =
n∑

j=2

E(X1Xj)E(UjXj+1 . . . Xn)

where

Uj =





<(X2 . . . Xj−1) if Xj = X̄1

X̄j−1 . . . X̄2 if Xj = X1

0 otherwise

For example, if Z is quaternion normal then applying (2.7) with the pairings
{1, 2}, {1, 3}, {1, 4} we get

E(Z4) = E(X2)(E(Z2) + E(Z̄Z) + E(Z̄2)) = 0.

This suggests that one can do inductively the calculations, but it is not quite clear
what answers to expect. We begin with the one-variable warm-up.

Proposition 2.1. If Z is quaternion normal (2.2), then:

E(|Z|2k) = 2k(k + 1)!(2.9)

E(Z2|Z|2k−2) = −2k−1(k + 1)!(2.10)

E(Z2m|Z|2k) = 0, m > 1.(2.11)

Proof of (2.9), (2.10), (2.11). Clearly, formula (2.9) holds true when k = 0, 1. For-
mula (2.10) holds for k = 0. Formula (2.11) holds for k = 0, m = 2 by inspection.

Suppose there is a K ≥ 0 such that the formulas already hold for ALL k,m such
that k + m ≤ K. Then the recurrence step is based on the expansions:

E(Z2|Z|2K) = E(ZZK+1Z̄K)(2.12)

E(|Z|2K+2) = E(ZZKZ̄K+1)(2.13)

E(Z2+2m|Z|2k) = E(ZZk+2m+1Z̄k)(2.14)
(2.15)
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Each of the inductive steps applies (2.9), (2.10), (2.11) to the expressions with the
total exponent of at most K.

Using (2.8), we expand the right hand side of (2.12):

(2.16) E(Z2|Z|2K) = E(ZZK+1Z̄K) =
K+1∑

j=1

E(Z2)E(Z̄K+j−1ZK+1−j)

+
1
2

K∑
r=1

E(|Z|2)E(ZK+1Z̄K−1) +
1
2

K∑
r=1

E(|Z|2)E(Z̄2K+1−rZr−1)

Substituting u = K + 2− j in the first sum, we get

(2.17)

E(Z2|Z|2K) = −2
K+1∑
u=1

E(Z̄2u−2|Z|2K+2−2u)+2KE(Z2|Z|2K−2)+2
K∑

r=1

E(Z̄2K+2−2r|Z|2r−2)

= −2E(|Z|2K)− 2E(Z̄2|Z|2K−2)− 2K2K−1(K + 1)! + 2E(Z2|Z|2K−2)

= −2× 2K(K + 1)!− 2K2K−1(K + 1)! = −2K(K + 1)!(K + 2)

Note that the proof used (2.11) with pairs k, m such that m > 1 and k + m ≤ K.
Using (2.8), we expand (2.13). (This just requires us to shift the index K by 1

in the previous proof.)

E(|Z|2K+2) = E(ZZKZ̄K+1) =
K∑

j=1

E(Z2)E(Z̄K+jZK−j)

+
1
2

K+1∑
r=1

E(|Z|2)E(ZKZ̄K) +
1
2

K+1∑
r=1

E(|Z|2)E(Z̄2K+1−rZr−1)

= −2E(Z̄K+1ZK−1) + 2(K + 1)E(ZKZ̄K) + 2E(Z̄KZK) + 2E(Z̄K+1ZK−1)

= −2E(Z2|Z|2K−2) + 2(K + 1)E(|Z|2K) + 2E(|Z|2K) + 2E(Z2|Z|2K−2)

= 2(K + 2)E(|Z|2K) = 2(K + 2)2K(K + 1)! = 2K+1(K + 2)!

Note that the proof used (2.11) for pairs k, m such that m > 1 and k + m ≤ K.
Suppose now m > 1 is such that k + m = K. Using (??), we expand (2.14):

(2.18)

E(Z2+2m|Z|2k) = E(ZZk+2m+1Z̄k) =
k+2m+1∑

j=1

E(Z2)E(Z̄k+j−1Zk+2m+1−j)

+
1
2

k∑
r=1

E(|Z|2)E(Zk+2m+1Z̄k−1) +
1
2

k∑
r=1

E(|Z|2)E(Z̄2k+2m+1−rZr−1)

= −2
k+2m+1∑

j=1

E(Z̄2j−2|Z|2k+2m+2−2j)+2kE(Z2m+2|Z|2k−2)+2
k∑

r=1

E(Z̄2k+2m+2−2r|Z|2r−2)

= −2E(|Z|2k+2m)− 2E(Z2|Z|2k+2m−2) + 0

= −2× 2k+m(k + m + 1)! + 4× 2k+m−1(k + m + 1)! = 0.
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Note that again the proof uses (2.11) only with k + m ≤ K. Similarly, (2.9) and
(2.10) are applied only to exponents ≤ K.

¤

Formula (2.8) implies that E(X1X2 . . . Xn) is real, so on the left hand side of
(2.8) we can write E(<(X1X2 . . . Xn)); this form of the formula is associated with
one-vertex Möbius graphs.

Furthermore, we have a Wick reduction in multiple vertex cases
(2.19)

E(<(X1)<(X2X3 . . . Xn)) =
n∑

j=2

E(<(X1)<(Xj))E(<(X2 . . . Xj−1Xj+1 . . . Xn)),

(this is just the consequence of Wick formula for the R-valued case). Furthermore,
from (2.1) it is clear that we have cyclic symmetry,

(2.20) <(X1X2 . . . Xn) = <(X2X3 . . . XnX1).

3. Möbius graphs and quaternion normal moments

3.1. Möbius graphs. Möbius graphs are graphs (with loops) that allow regular
as well as ”twisted” edges. For the formal definition, see [6, Section 6]. Here we will
draw the vertices as disks, the edges as ribbons which may preserve orientation, or
reverse it (twists).

3.1.1. Euler characteristics. Denote by v(Γ), e(Γ), and f(Γ) the number of vertices,
edges, and faces of Γ. The Euler characteristic is

χ(Γ) = v(Γ)− e(Γ) + f(Γ).

Note that the faces are the cycles of the graph. To illustrate the orientation-
changing edges, we draw ribbons for edges, and disks for the vertices. The conven-
tion is that the cycle is not completed until we return to the ”same side” of the
disk that represents a vertex. For example, in Fig. 1, the Euler characteristics are
χ1 = 1− 1 + 2 = 2 and χ2 = 1− 1 + 1 = 1.

If Γ decomposes into components Γ1, Γ2, then χ(Γ) = χ(Γ1) + χ(Γ2).

3.2. Quaternion version of Wick’s theorem. Suppose the n-tuple (X1, X2, . . . , X2n)
consists of random variables taken, possibly with repetition, from the set {Z1, Z̄1, Z2, Z̄2, . . . }
where Z1, Z2, . . . are independent quaternion normal. Fix a sequence j1, j2, . . . , jm

of natural numbers such that j1 + · · ·+ jm = 2n.
Consider the family M = Mj1,...,jm(X1, X2, . . . , X2n), possibly empty, of Möbius

graphs with m vertices of degrees j1, j2, . . . , jm which are labeled by X1, X2, . . . , X2n,
whose regular edges correspond to pairs Xi = X̄j and flipped edges correspond to
pairs Xi = Xj . No edges of Γ ∈ M can join random variables Xi, Xj that are
independent.

Theorem 3.1.

(3.1) E
(<(X1X2 . . . Xj1)<(Xj1+1 . . . Xj1+j2)× . . .

×<(Xj1+j2+jm−1+1 . . . X2n)
)

= 4n−m
∑

Γ∈M

(−2)χ(Γ).

(The right hand side is interpreted as 0 when M = ∅.)
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Question 3.2. What would be the formula for E(q1X1q2X2 . . . q2nX2n)? Or for
more general Q-Gaussian n-touples? (For more general definition, see [8])

Proof. In view of (2.7) and (2.8), it suffices to show that if X1, . . . , X2n consists of
n independent pairs, and each pair is either of the form (X, X) or (X, X̄), then

(3.2) E
(<(X1X2 . . . Xj1)<(Xj1+1 . . . Xj1+j2)× . . .

×<(Xj1+j2+jm−1+1 . . . X2n)
)

= 4n−m(−2)χ(Γ),

where Γ is the Möbius graph that describes all pairings of the sequence.
First we check the two Möbius graphs for n = 1, m = 1:

E(<(XX̄)) = (−2)2 , and E(<(XX)) = (−2)1 .

One checks that these correspond to the Möbius graphs in Figure 1, which gives a
sphere (χ = 2) and projective sphere (χ = 1) respectively.

Figure 1.

For n = 2,m = 1 we have the following twelve cases.
(1)

E(<(XY Ȳ X̄)) = E(XX̄)E(Y Ȳ ) = (−2)241

which matches the graph in Figure 2. This graph gives a sphere.

Figure 2. χ(Γ) = 2

(2)
E(<(XY Ȳ X)) = E(XX)E(Y Ȳ ) = (−2)141

which matches the graph in Figure 3. This graph gives a projective sphere.
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Figure 3. χ(Γ) = 1

(3)
E(<(XY Y X̄)) = E(XX̄)E(<(Y Y )) = (−2)141

which matches the graph in Figure 4. This graph gives a projective sphere.

Figure 4. χ(Γ) = 1

(4)
E(<(XY Y X)) = E(XX)E(Ȳ Ȳ ) = 41

which matches the graph in Figure 5. This graph gives a Klein bottle.

Figure 5. χ(Γ) = 0

(5)
E(<(XY X̄Ȳ )) = E(XX̄)E(<(Y )Ȳ ) = 41

which matches the graph in Figure 6. This graph gives a torus.

Figure 6. χ(Γ) = 0
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(6)
E(<(XY XȲ )) = E(XX)E(Ȳ Ȳ ) = 41

which matches the graph in Figure 7. This graph gives a Klein bottle.

Figure 7. χ(Γ) = 0

(7)
E(<(XY X̄Y )) = E(XX̄)E(<Y Y ) = 41

which matches the graph in Figure 8. This graph gives a Klein bottle.

Figure 8. χ(Γ) = 0

(8)
E(<(XY XY )) = E(XX)E(Ȳ Y ) = (−2)141

which matches the graph in Figure 9. This graph gives a projective sphere.

Figure 9. χ(Γ) = 1

(9)
E(<(XX̄Y Ȳ )) = E(XX̄)E(Y Ȳ ) = (−2)241

which matches the graph in Figure 10. This graph gives a sphere.
(10)

E(<(XXY Ȳ )) = E(XX)E(Y Ȳ ) = (−2)141

which matches the graph in Figure 11. This graph gives a projective sphere.
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Figure 10. χ(Γ) = 2

Figure 11. χ(Γ) = 1

(11)
E(<(XX̄Y Y )) = E(XX̄)E(Y Y ) = (−2)141

which matches the graph in Figure 12. This graph gives a projective sphere.

Figure 12. χ(Γ) = 1

(12)
E(<(XXY Y )) = E(XX)E(Y Y ) = 41 ,

which matches the graph in Figure 13. This graph gives a Klein bottle.

Figure 13. χ(Γ) = 0

We leave the cases of n = 2, m = 2, to the reader, they proceed as above using
only the relations (2.3-2.6).

(1) E(<(XX)<(Y Y ) = 4, χ = 2.
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(2) E(<(XX)<(Y Ȳ ) = −8, χ = 3.
(3) E(<(XX̄)<(Y Ȳ ) = 16, χ = 4.
(4) E(<(XY )<(XȲ ) = −2, χ = 1.
(5) E(<(XY )<(XY ) = 4, χ = 2.
(6) E(<(X)<(X̄Y Ȳ ) = E(<(X)<(XY Ȳ ) = E(<(X)<(Y X̄Ȳ ) = E(<(X)<(Y XȲ ) =

4, χ = 2.
(7) E(<(X)<(XY Y ) = E(<(X)<(Y XY ) = E(<(X)<(Y X̄Y ) = −2, χ = 1

We now proceed with the induction step. One notes that by independence of
the pairs at different edges, the left hand side of (3.2) factors into the product
corresponding to connected components of Γ. It is therefore enough to consider
connected Γ.

If Γ has two vertices that are joined by an edge, we can use cyclicity of < to
move the variables that label the edge to the first positions in their cycles, say X1

and Xj1 and use (2.5) or (2.6) to eliminate this pair from the product. The use
of relation (2.5) is just that of gluing the two vertices together removing the edge
x which is labeled by the two appearances of Z. Relation (2.6) glues together the
two vertices, removing the edge x, and the reversal of orientation across the edge is
given by the conjugate (see Figure 14). These geometric operations reduce n and
m by one without changing the Euler characteristic: the number of edges and the
number of vertices are reduced by 1; the faces are preserved – in the case of edge
flip in Fig. 14, the edges of the face from which we remove the edge, after reduction
follow the same order.

Therefore we will only need to prove the result for the single vertex case of the
induction step.

Figure 14.

We wish to show that

(3.3) E(X1X2X3X4 . . . X2n) = (−2)χ(Γ)4n−1 ,

where Γ is a one vertex Möbius graph with arrows (half edges) labeled by Xk. The
trivial case is when X1 = X̄2 in which case we find that (3.3) is

E(X1X̄1)E(X3X4 . . . X2n) = 4E(X3X4 . . . X2n)(3.4)

= 4
[
(−2)χ24(n−1)−1

]

= (−2)χ24n−1 .
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Equation (3.4) corresponds to the reduction of the Möbius graph given in Figure
15 and represents a net of 0 to the Euler characteristic, χ2 = χ1 + 2, from which
we see that the result follows in this case.

Figure 15. χ2 = v2 − e2 + f2 = v1 − (e1 − 1) + (f1 − 1) = χ1

The second nearly trivial case is X2 = X1 in which case we find that (3.3) is

E(X1X1)E(X3X4 . . . X2n) = (−2) [E(X3X4 . . . X2n)](3.5)

= (−2)
[
(−2)χ24(n−1)−1

]
(3.6)

= (−2)χ2−14n−1 .(3.7)

Equation (3.5) corresponds to the reduction of the Möbius graph given in Figure
16 and represents a net change of 1 to the Euler characteristic, from which we see
that the result follows in this case.

In what follows we take j < k, and let q1 = X3 . . . Xj−1, q2 = Xj+1 . . . Xk−1,
and q3 = Xk+1 . . . X2n. Conjugation of qi in the following computations arises from
an orientation reversal. In the diagrams we have used an arrow to indicate an edge
which reverses the local orientation of the vertex, in other words a ribbon with
a flip to it. Geometrically conjugation reverses the order of the edges as well as
switching local orientations. There are 8 non-trivial cases, corresponding precisely
to the n = 2, m = 1 cases 1-8:
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Figure 16.

(1) When X1 = X̄k and X2 = X̄j we find that

E(X1X2q1X̄2q2X̄1q3)

= E(X1X̄1)E(<(X2q1X̄2q2)<(q3))

= 4E(X2X̄2)E(<(q1)<(q2)<(q3))

= 42E(<(q1)<(q2)<(q3))

= 42
[
(−2)χ24(n−2)−3

]

= (−2)χ2−44n−1 .

Figure 17.
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This corresponds to the reduction of the Möbius graph given in Figure
17. We note that χ2 = v2 − e2 + f2 = v1 + 2 − (e1 − 2) + f1 = χ1 + 4, as
the number of faces is not changed when q1, q2, q3 6= 1.

(2) When X1 = Xk and X2 = X̄j we find that

<E(X1X2q1X̄2q2X1q3)

= E(X1X1)<E(q̄2X2q̄1X̄2q3)

= (−2)<E(X2q̄1X̄2q3q̄2)

= (−2)E(X2X̄2)E(<(q̄1)<(q3q̄2))

= (−2)3E(<(q̄1)<(q3q̄2))

= (−2)3
[
(−2)χ24(n−2)−2

]

= (−2)χ2−34n−1 .

Figure 18.

This corresponds to the reduction of the Möbius graph given in Figure
18 and represents a net of 3 to the Euler characteristic.

(3) When X1 = X̄k and X2 = Xj we find that

E(X1X2q1X2q2X̄1q3)

= E(X1X̄1)E(<(X2q1X2q2)<(q3))

= 4E(X2X2)E(<(q̄1q2)<(q3))

= (−2)3 [E(<(q̄1q2)<(q3))]

= (−2)3
[
(−2)χ24(n−2)−2

]

= (−2)χ2−34n−1 .

This corresponds to the reduction for the Möbius graph given in Figure
19, represents a net of 3 to the Euler characteristic, and the result follows.
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Figure 19.

(4) When X1 = Xk and X2 = Xj we find that

E(X1X2q1X2q2X1q3)

= E(X1X1)E(q̄2X̄2q̄1X̄2q3)

= (−2)E(X̄2q̄1X̄2q3q̄2)

= (−2)E(X̄2X̄2)E(q1q3q̄2)

= (−2)2E(q1q3q̄2)

= (−2)2
[
(−2)χ24(n−2)−1

]

= (−2)χ2−24n−1 .

Figure 20.
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This corresponds to the reduction for the Möbius graph given in Figure
20, represents a net of 2 to the Euler characteristic (χ2 = χ1 + 2), and the
result follows.

(5) When X1 = X̄j and X2 = X̄k we find that

<E(X1X2q1X̄1q2X̄2q3)

= E(X1X̄1)E(<(X2q1)<(q2X̄2q3))

= 4E(<(X2q1)<(X̄2q3q2))

= 4E(<(q1q3q2))

= 4
[
(−2)χ24(n−2)−1

]

= (−2)χ2−24n−1 .

Figure 21.

This corresponds to the reduction for the Möbius graph given in Figure
21, represents a net of 2 to the Euler characteristic, and the result follows.

(6) When X1 = Xj and X2 = X̄k we find that

E(X1X2q1X1q2X̄2q3)

= E(X1X1)E(q̄1X̄2q2X̄2q3)

= (−2)E(X̄2q2X̄2q3q̄1)

= (−2)E(X̄2X̄2)E(q̄2q3q̄1)

= (−2)2E(q̄2q3q̄1)

= (−2)−2
[
(−2)χ24(n−2)−1

]

= (−2)χ2−24n−1 .

This corresponds to the reduction for the Möbius graph given in Figure
22, represents a net of 2 to the Euler characteristic, and the result follows.



16 WLODEK BRYC AND VIRGIL PIERCE

Figure 22.

(7) When X1 = X̄j and X2 = Xk we find that

E(X1X2q1X̄1q2X2q3)

= E(X1X̄1)E(<(X2q1)<(q2X2q3))

= 4E(<(X2q1)<(X2q3q2))

= 4E(q̄1q3q2)

= 4
[
(−2)χ24(n−2)−1

]

= (−2)χ2−24n−1 .

This corresponds to the reduction for the Möbius graph given in Figure
23, represents a net of 2 to the Euler characteristic, and the result follows.

(8) When X1 = Xj and X2 = Xk we find that

E(X1X2q1X1q2X2q3)

= E(X1X1)E(q̄1X̄2q2X2q3)

= (−2)E(X2q3q̄1X̄2q2)

= (−2)E(X2X̄2)E(<(q3q̄1)<(q2))

= (−2)3E(<(q3q̄1)<(q2))

= (−2)3
[
(−2)χ24(n−2)−2

]

= (−2)χ2−34n−1 .

This corresponds to the reduction for the Möbius graph given in Figure
24, represents a net of 3 to the Euler characteristic, and the result follows.
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Figure 23.

Figure 24.

Note that taking away an oriented ribbon creates a new vertex. The remaining
graph might be still connected, or it may split into two components. If taking
away a loop makes the graph disconnected, then the counts of changes to edges and
vertices are still the same. But the faces need to be counted as follows: The inner
face of the removed edge becomes the outside face of one component, and the outer
face at the removed edge becomes the outer face of the other component. Thus the
counting of faces is not affected by whether the graph is connected – no change.

With each of these cases checked, by the induction hypothesis, the proof is
completed.

¤
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4. Duality between GOE and GSE ensembles

The duality between β = 1 and β = 4 asserts that the formulas for moments
of traces of polynomials in H-valued Gaussian ensembles can be obtained from the
corresponding formulas for the R-valued Gaussian ensembles by replacing the di-
mension parameter N by (−2N). The duality for one-matrix Wishart ensembles
was discovered in [1, Corollary 4.2]. The duality for one-matrix GOE/GSE ensem-
bles appears in [5]. A derivation based on recurrence formulas for moments is in
[3].

4.1. Quaternion matrices. By MM×N (Hβ) we denote the set of all M × N
matrices with entries from Hβ . For A ∈ MM×N (Hβ), the conjugate matrix is
A∗i,j := Aj,i. The trace is tr(A) =

∑N
j=1 Ajj .

When β = 4, traces tr(A) may fail to commute, so in the formulas we will use
<(tr(A)). In fact, the natural definition of trace would be trβ(·) := β<(tr(·)). Such
a nonstandard definition is consistent with the treatment of A ∈ MN×N (Hβ) as
an element of MβN×βN (R) via transformation (??). Non-standard definition of
quaternionic trace is used in [1]

4.1.1. GSE Ensembles. We will be interested GUEβ ensembles. These are square
self-adjoint matrices

(4.1) Z = [Zi,j ]

where {Zi,j : i < j} is a family of independent Hβ-normal random variables, {Zi,i}
is a family of independent real normal of variance 2, and Zi,j = Z̄j,i. The law of
such a matrix has a density C exp(− 1

2 tr(x2)), which is supported on the self-adjoint
subset of MN×N (Hβ). (C = C(N, β) is a normalizing constant.)

4.2. A multi-matrix version of Mulase and Waldron. In this section we will
demonstrate a multi-matrix version of the theorem of Mulase and Waldron [5]
from a heuristic argument using our Wick formula and quadratic relations. This
represents an improvement to the argument of Mulase and Waldron as we will not
need to rely on labelings of the vertices by the quaternions 1, i, j, and k. This part
of their argument is encoded in relations (2.5) and (2.6).

We will compute here the expected values of the real traces of powers of a
quaternionic self-dual matrix in the Gaussian symplectic ensemble (4.1) where the
off-diagonal matrix entries are (2.2).

The basic theorem we will prove is

Theorem 4.1.

1
(4N)n−m

E(<(tr(Zj1))<(tr(Zj2)) . . .<(tr(Zjm))) =
∑

Γ

(−2N)χ(Γ) ,

where the sum is over labeled Möbius graphs Γ with m vertices of degree j1, j2, . . . ,
jm, χ(Γ) is the Euler characteristic and j1 + j2 + · · ·+ jm = 2n.

More generally, suppose Z1, . . . ,Zs are independent N ×N GSE ensembles and
t : {1, . . . , 2n} → {1, . . . , s} is fixed. Let α0 = 1, αk = j1 + j2 + · · · + jk−1 + 1,
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βk = j1 + j2 + · · ·+ jk denote the ranges under traces. Then

(4.2)
1

(4N)n−m
E

(<(tr(Zt(1) . . .Zt(β1)))<(tr(Zt(α2) . . .Zt(β2))) . . .<(tr(Zt(αm) . . .Zt(βm)))
)

=
∑

Γ

(−2N)χ(Γ) ,

where the sum is over labeled color-preserving Möbius graphs Γ with vertices of
degree j1, j2, . . . , jm that are colored with s colors by the mapping t. As previously,
χ(Γ) is the Euler characteristic and j1 + j2 + · · ·+ jm = 2n. (If there are no Γ that
are consistent with the coloring t, we interpret the sum as 0.)

Perhaps instead of
the example, we
should clarify how
come the Theorem
IS the ”duality”?

Example 4.2. To illustrate the multi-matrix aspect of the theorem, suppose Z1 and
Z2 are independent N× GSE and X1,X2 be independent N× GOE ensembles.
Fix r,m, k and let f(N) := E(tr(X2m

1 X2k
2 )r). Since f(N) = N (m+k−1)r

∑
Γ Nχ(Γ),

[reference?] therefore Theorem 4.1 implies that the moments for the independent
GSE ensembles are determined from the corresponding moments of independent
GOE ensembles by the “dual formula”

E(tr(Z2m
1 Z2k

2 )r) = (4)(m+k−1)rf(−2N).

Proof. We begin by expanding out the traces in terms of the matrix entries

Nm

4n−m
E(<(tr(Zj1))<(tr(Zj2)) . . .<(tr(Zjm))) =

(4.3)

=
∑

1 ≤ a1, a2, . . . , aj1 ≤ N
1 ≤ b1, b2, . . . , bj2 ≤ N

...
1 ≤ c1, c2, . . . , cjm ≤ N

1
(4n)n−mE(<(Za1,a2Za2,a3 . . . Zaj1 ,a1)<(Zb1,b2 . . . Zbj2 ,b1) . . .

. . .<(Zc1,c2 . . . Zcjm ,c1)) .

Note that essentially the same expansion applies to (4.2), except that the consecu-
tive entries Z

(t)
i,j must now be labeled also by the ”color” t.

Colors make for cumbersome notation! It is then better to index the products by
the cycles of a permutation, so that the formula is∑

a:[1...2n]→[1...N ]

∏
c∈σ

E(<(
∏

j∈c

Z
t(j)
a(j),a(σ(j)))).

We then need a special convention to follow the right order for products over the
cycles. Luckily, < of quaternions has cyclic property so such products are well
defnied.

From (2.8) it follows that the right hand side of (4.3) can be expanded as sum
over all pairings, and we can assume that the pairs are independent.

Of course, pairings that match two independent random variables do not con-
tribute to the sum. The pairings that contribute to the sum are of three different
types: pairs that match Z with another Z at a different position in the product,
pairs that match Z with Z̄, and pairings that match the diagonal (real) entries.
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We first dispense with the pairings that match a diagonal entry Zi,i = ξ with
another diagonal entry Zj,j = ξ. Since real numbers commute with quaternions,

<(E(q0ξq1ξq2)) = E(ξ2)<(q0q1q2) = 2<(q0q1q2).

On the other hand, using the cyclic property of <(·) and adding formulas (2.3) and
(2.4), we see that the same answer arises from

E<(q0Zq1Zq2) + E<(q0Zq1Z̄q2) = E<(Zq1Zq2q0) + E<(Zq1Z̄q2q0) = 2<(q1q2q0).

So the contribution of each such diagonal pairing is the same as that of two matches
of quaternionic entries (Z,Z) and (Z, Z̄).

Thus, once we replace all the real entries that came from the diagonal entries
by the corresponding quaternion-normal pairs, we get the sum over all possible
pairs of matches of the first two types only. We label all such pairings by Möbius
graphs, with the interpretation that pairings or random variables Z, Z correspond
to twisted ribbons, while pairings Z, Z̄ correspond to ribbons without a twist. The
pairs of variables at different ribbons can now be assumed independent. In the
multi-matrix case, the edges of the graph at each vertex are colored according to
function t, which restricts the number of available pairings.

We now relabel the Zi,j by Zak,ak+1 = Xk, Zbk,bk+1 = Xj1+k, . . . , Mck,ck+1 =
Xj1+j2+...jm−1+k. Our claim is then that given a Möbius graph Γ with vertices of
degree j1, j2, . . . , and jm with edges labeled by Xk, satisfies

(4.4)
1

(4N)n−m
E(<(X1 . . . Xj1)<(Xj1+1 . . . Xj1+j2) . . .<(Xj1+···+jm−1+1 . . . X2n))

= (−2N)χ(Γ)N−f(Γ) ,

where f(Γ) is the number of faces of Γ. The N−f(Γ) terms are removed by the
summations in (4.3), the relations given by the edges of Γ reduce the number of
summations leaving us with f(Γ) sums from 1 to N . Collecting the powers of N
we find that this is the same as (3.2). ¤
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